xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision 40fc2e391af8213d65bc79dcb6f4d38e37395c44)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 #include <unordered_map>
15 
16 #include "lldb/Core/ArchSpec.h"
17 #include "lldb/Core/DataBuffer.h"
18 #include "lldb/Core/Error.h"
19 #include "lldb/Core/FileSpecList.h"
20 #include "lldb/Core/Log.h"
21 #include "lldb/Core/Module.h"
22 #include "lldb/Core/ModuleSpec.h"
23 #include "lldb/Core/PluginManager.h"
24 #include "lldb/Core/Section.h"
25 #include "lldb/Core/Stream.h"
26 #include "lldb/Core/Timer.h"
27 #include "lldb/Symbol/DWARFCallFrameInfo.h"
28 #include "lldb/Symbol/SymbolContext.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 
32 #include "llvm/ADT/PointerUnion.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/Support/MathExtras.h"
35 
36 #define CASE_AND_STREAM(s, def, width)                  \
37     case def: s->Printf("%-*s", width, #def); break;
38 
39 using namespace lldb;
40 using namespace lldb_private;
41 using namespace elf;
42 using namespace llvm::ELF;
43 
44 namespace {
45 
46 // ELF note owner definitions
47 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
48 const char *const LLDB_NT_OWNER_GNU     = "GNU";
49 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
50 const char *const LLDB_NT_OWNER_CSR     = "csr";
51 const char *const LLDB_NT_OWNER_ANDROID = "Android";
52 const char *const LLDB_NT_OWNER_CORE    = "CORE";
53 const char *const LLDB_NT_OWNER_LINUX   = "LINUX";
54 
55 // ELF note type definitions
56 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
57 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
58 
59 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
60 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
61 
62 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
63 
64 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
65 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
66 
67 // GNU ABI note OS constants
68 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
69 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
70 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
71 
72 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants
73 #define NT_PRSTATUS             1
74 #define NT_PRFPREG              2
75 #define NT_PRPSINFO             3
76 #define NT_TASKSTRUCT           4
77 #define NT_AUXV                 6
78 #define NT_SIGINFO              0x53494749
79 #define NT_FILE                 0x46494c45
80 #define NT_PRXFPREG             0x46e62b7f
81 #define NT_PPC_VMX              0x100
82 #define NT_PPC_SPE              0x101
83 #define NT_PPC_VSX              0x102
84 #define NT_386_TLS              0x200
85 #define NT_386_IOPERM           0x201
86 #define NT_X86_XSTATE           0x202
87 #define NT_S390_HIGH_GPRS       0x300
88 #define NT_S390_TIMER           0x301
89 #define NT_S390_TODCMP          0x302
90 #define NT_S390_TODPREG         0x303
91 #define NT_S390_CTRS            0x304
92 #define NT_S390_PREFIX          0x305
93 #define NT_S390_LAST_BREAK      0x306
94 #define NT_S390_SYSTEM_CALL     0x307
95 #define NT_S390_TDB             0x308
96 #define NT_S390_VXRS_LOW        0x309
97 #define NT_S390_VXRS_HIGH       0x30a
98 #define NT_ARM_VFP              0x400
99 #define NT_ARM_TLS              0x401
100 #define NT_ARM_HW_BREAK         0x402
101 #define NT_ARM_HW_WATCH         0x403
102 #define NT_ARM_SYSTEM_CALL      0x404
103 #define NT_METAG_CBUF           0x500
104 #define NT_METAG_RPIPE          0x501
105 #define NT_METAG_TLS            0x502
106 
107 //===----------------------------------------------------------------------===//
108 /// @class ELFRelocation
109 /// @brief Generic wrapper for ELFRel and ELFRela.
110 ///
111 /// This helper class allows us to parse both ELFRel and ELFRela relocation
112 /// entries in a generic manner.
113 class ELFRelocation
114 {
115 public:
116 
117     /// Constructs an ELFRelocation entry with a personality as given by @p
118     /// type.
119     ///
120     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
121     ELFRelocation(unsigned type);
122 
123     ~ELFRelocation();
124 
125     bool
126     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
127 
128     static unsigned
129     RelocType32(const ELFRelocation &rel);
130 
131     static unsigned
132     RelocType64(const ELFRelocation &rel);
133 
134     static unsigned
135     RelocSymbol32(const ELFRelocation &rel);
136 
137     static unsigned
138     RelocSymbol64(const ELFRelocation &rel);
139 
140     static unsigned
141     RelocOffset32(const ELFRelocation &rel);
142 
143     static unsigned
144     RelocOffset64(const ELFRelocation &rel);
145 
146     static unsigned
147     RelocAddend32(const ELFRelocation &rel);
148 
149     static unsigned
150     RelocAddend64(const ELFRelocation &rel);
151 
152 private:
153     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
154 
155     RelocUnion reloc;
156 };
157 
158 ELFRelocation::ELFRelocation(unsigned type)
159 {
160     if (type == DT_REL || type == SHT_REL)
161         reloc = new ELFRel();
162     else if (type == DT_RELA || type == SHT_RELA)
163         reloc = new ELFRela();
164     else {
165         assert(false && "unexpected relocation type");
166         reloc = static_cast<ELFRel*>(NULL);
167     }
168 }
169 
170 ELFRelocation::~ELFRelocation()
171 {
172     if (reloc.is<ELFRel*>())
173         delete reloc.get<ELFRel*>();
174     else
175         delete reloc.get<ELFRela*>();
176 }
177 
178 bool
179 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
180 {
181     if (reloc.is<ELFRel*>())
182         return reloc.get<ELFRel*>()->Parse(data, offset);
183     else
184         return reloc.get<ELFRela*>()->Parse(data, offset);
185 }
186 
187 unsigned
188 ELFRelocation::RelocType32(const ELFRelocation &rel)
189 {
190     if (rel.reloc.is<ELFRel*>())
191         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
192     else
193         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
194 }
195 
196 unsigned
197 ELFRelocation::RelocType64(const ELFRelocation &rel)
198 {
199     if (rel.reloc.is<ELFRel*>())
200         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
201     else
202         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
203 }
204 
205 unsigned
206 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
207 {
208     if (rel.reloc.is<ELFRel*>())
209         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
210     else
211         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
212 }
213 
214 unsigned
215 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
216 {
217     if (rel.reloc.is<ELFRel*>())
218         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
219     else
220         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
221 }
222 
223 unsigned
224 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
225 {
226     if (rel.reloc.is<ELFRel*>())
227         return rel.reloc.get<ELFRel*>()->r_offset;
228     else
229         return rel.reloc.get<ELFRela*>()->r_offset;
230 }
231 
232 unsigned
233 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
234 {
235     if (rel.reloc.is<ELFRel*>())
236         return rel.reloc.get<ELFRel*>()->r_offset;
237     else
238         return rel.reloc.get<ELFRela*>()->r_offset;
239 }
240 
241 unsigned
242 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
243 {
244     if (rel.reloc.is<ELFRel*>())
245         return 0;
246     else
247         return rel.reloc.get<ELFRela*>()->r_addend;
248 }
249 
250 unsigned
251 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
252 {
253     if (rel.reloc.is<ELFRel*>())
254         return 0;
255     else
256         return rel.reloc.get<ELFRela*>()->r_addend;
257 }
258 
259 } // end anonymous namespace
260 
261 bool
262 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
263 {
264     // Read all fields.
265     if (data.GetU32(offset, &n_namesz, 3) == NULL)
266         return false;
267 
268     // The name field is required to be nul-terminated, and n_namesz
269     // includes the terminating nul in observed implementations (contrary
270     // to the ELF-64 spec).  A special case is needed for cores generated
271     // by some older Linux versions, which write a note named "CORE"
272     // without a nul terminator and n_namesz = 4.
273     if (n_namesz == 4)
274     {
275         char buf[4];
276         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
277             return false;
278         if (strncmp (buf, "CORE", 4) == 0)
279         {
280             n_name = "CORE";
281             *offset += 4;
282             return true;
283         }
284     }
285 
286     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
287     if (cstr == NULL)
288     {
289         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
290         if (log)
291             log->Printf("Failed to parse note name lacking nul terminator");
292 
293         return false;
294     }
295     n_name = cstr;
296     return true;
297 }
298 
299 static uint32_t
300 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
301 {
302     const uint32_t dsp_rev = e_flags & 0xFF;
303     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
304     switch(dsp_rev)
305     {
306         // TODO(mg11) Support more variants
307         case 10:
308             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
309             break;
310         case 14:
311             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
312             break;
313         case 17:
314         case 20:
315             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
316             break;
317         default:
318             break;
319     }
320     return kal_arch_variant;
321 }
322 
323 static uint32_t
324 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
325 {
326     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
327     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
328 
329     switch (mips_arch)
330     {
331         case llvm::ELF::EF_MIPS_ARCH_1:
332         case llvm::ELF::EF_MIPS_ARCH_2:
333         case llvm::ELF::EF_MIPS_ARCH_3:
334         case llvm::ELF::EF_MIPS_ARCH_4:
335         case llvm::ELF::EF_MIPS_ARCH_5:
336         case llvm::ELF::EF_MIPS_ARCH_32:
337             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
338         case llvm::ELF::EF_MIPS_ARCH_32R2:
339             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
340         case llvm::ELF::EF_MIPS_ARCH_32R6:
341             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
342         case llvm::ELF::EF_MIPS_ARCH_64:
343             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
344         case llvm::ELF::EF_MIPS_ARCH_64R2:
345             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
346         case llvm::ELF::EF_MIPS_ARCH_64R6:
347             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
348         default:
349             break;
350     }
351 
352     return arch_variant;
353 }
354 
355 static uint32_t
356 subTypeFromElfHeader(const elf::ELFHeader& header)
357 {
358     if (header.e_machine == llvm::ELF::EM_MIPS)
359         return mipsVariantFromElfFlags (header.e_flags,
360             header.e_ident[EI_DATA]);
361 
362     return
363         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
364         kalimbaVariantFromElfFlags(header.e_flags) :
365         LLDB_INVALID_CPUTYPE;
366 }
367 
368 //! The kalimba toolchain identifies a code section as being
369 //! one with the SHT_PROGBITS set in the section sh_type and the top
370 //! bit in the 32-bit address field set.
371 static lldb::SectionType
372 kalimbaSectionType(
373     const elf::ELFHeader& header,
374     const elf::ELFSectionHeader& sect_hdr)
375 {
376     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
377     {
378         return eSectionTypeOther;
379     }
380 
381     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
382     {
383         return eSectionTypeZeroFill;
384     }
385 
386     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
387     {
388         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
389         return KAL_CODE_BIT & sect_hdr.sh_addr ?
390              eSectionTypeCode  : eSectionTypeData;
391     }
392 
393     return eSectionTypeOther;
394 }
395 
396 // Arbitrary constant used as UUID prefix for core files.
397 const uint32_t
398 ObjectFileELF::g_core_uuid_magic(0xE210C);
399 
400 //------------------------------------------------------------------
401 // Static methods.
402 //------------------------------------------------------------------
403 void
404 ObjectFileELF::Initialize()
405 {
406     PluginManager::RegisterPlugin(GetPluginNameStatic(),
407                                   GetPluginDescriptionStatic(),
408                                   CreateInstance,
409                                   CreateMemoryInstance,
410                                   GetModuleSpecifications);
411 }
412 
413 void
414 ObjectFileELF::Terminate()
415 {
416     PluginManager::UnregisterPlugin(CreateInstance);
417 }
418 
419 lldb_private::ConstString
420 ObjectFileELF::GetPluginNameStatic()
421 {
422     static ConstString g_name("elf");
423     return g_name;
424 }
425 
426 const char *
427 ObjectFileELF::GetPluginDescriptionStatic()
428 {
429     return "ELF object file reader.";
430 }
431 
432 ObjectFile *
433 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
434                                DataBufferSP &data_sp,
435                                lldb::offset_t data_offset,
436                                const lldb_private::FileSpec* file,
437                                lldb::offset_t file_offset,
438                                lldb::offset_t length)
439 {
440     if (!data_sp)
441     {
442         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
443         data_offset = 0;
444     }
445 
446     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
447     {
448         const uint8_t *magic = data_sp->GetBytes() + data_offset;
449         if (ELFHeader::MagicBytesMatch(magic))
450         {
451             // Update the data to contain the entire file if it doesn't already
452             if (data_sp->GetByteSize() < length) {
453                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
454                 data_offset = 0;
455                 magic = data_sp->GetBytes();
456             }
457             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
458             if (address_size == 4 || address_size == 8)
459             {
460                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
461                 ArchSpec spec;
462                 if (objfile_ap->GetArchitecture(spec) &&
463                     objfile_ap->SetModulesArchitecture(spec))
464                     return objfile_ap.release();
465             }
466         }
467     }
468     return NULL;
469 }
470 
471 
472 ObjectFile*
473 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
474                                      DataBufferSP& data_sp,
475                                      const lldb::ProcessSP &process_sp,
476                                      lldb::addr_t header_addr)
477 {
478     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
479     {
480         const uint8_t *magic = data_sp->GetBytes();
481         if (ELFHeader::MagicBytesMatch(magic))
482         {
483             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
484             if (address_size == 4 || address_size == 8)
485             {
486                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
487                 ArchSpec spec;
488                 if (objfile_ap->GetArchitecture(spec) &&
489                     objfile_ap->SetModulesArchitecture(spec))
490                     return objfile_ap.release();
491             }
492         }
493     }
494     return NULL;
495 }
496 
497 bool
498 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
499                                   lldb::addr_t data_offset,
500                                   lldb::addr_t data_length)
501 {
502     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
503     {
504         const uint8_t *magic = data_sp->GetBytes() + data_offset;
505         return ELFHeader::MagicBytesMatch(magic);
506     }
507     return false;
508 }
509 
510 /*
511  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
512  *
513  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
514  *   code or tables extracted from it, as desired without restriction.
515  */
516 static uint32_t
517 calc_crc32(uint32_t crc, const void *buf, size_t size)
518 {
519     static const uint32_t g_crc32_tab[] =
520     {
521         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
522         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
523         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
524         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
525         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
526         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
527         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
528         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
529         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
530         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
531         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
532         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
533         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
534         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
535         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
536         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
537         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
538         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
539         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
540         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
541         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
542         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
543         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
544         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
545         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
546         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
547         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
548         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
549         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
550         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
551         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
552         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
553         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
554         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
555         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
556         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
557         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
558         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
559         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
560         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
561         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
562         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
563         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
564     };
565     const uint8_t *p = (const uint8_t *)buf;
566 
567     crc = crc ^ ~0U;
568     while (size--)
569         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
570     return crc ^ ~0U;
571 }
572 
573 static uint32_t
574 calc_gnu_debuglink_crc32(const void *buf, size_t size)
575 {
576     return calc_crc32(0U, buf, size);
577 }
578 
579 uint32_t
580 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
581                                                DataExtractor& object_data)
582 {
583     typedef ProgramHeaderCollConstIter Iter;
584 
585     uint32_t core_notes_crc = 0;
586 
587     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
588     {
589         if (I->p_type == llvm::ELF::PT_NOTE)
590         {
591             const elf_off ph_offset = I->p_offset;
592             const size_t ph_size = I->p_filesz;
593 
594             DataExtractor segment_data;
595             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
596             {
597                 // The ELF program header contained incorrect data,
598                 // probably corefile is incomplete or corrupted.
599                 break;
600             }
601 
602             core_notes_crc = calc_crc32(core_notes_crc,
603                                         segment_data.GetDataStart(),
604                                         segment_data.GetByteSize());
605         }
606     }
607 
608     return core_notes_crc;
609 }
610 
611 static const char*
612 OSABIAsCString (unsigned char osabi_byte)
613 {
614 #define _MAKE_OSABI_CASE(x) case x: return #x
615     switch (osabi_byte)
616     {
617         _MAKE_OSABI_CASE(ELFOSABI_NONE);
618         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
619         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
620         _MAKE_OSABI_CASE(ELFOSABI_GNU);
621         _MAKE_OSABI_CASE(ELFOSABI_HURD);
622         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
623         _MAKE_OSABI_CASE(ELFOSABI_AIX);
624         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
625         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
626         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
627         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
628         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
629         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
630         _MAKE_OSABI_CASE(ELFOSABI_NSK);
631         _MAKE_OSABI_CASE(ELFOSABI_AROS);
632         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
633         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
634         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
635         _MAKE_OSABI_CASE(ELFOSABI_ARM);
636         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
637         default:
638             return "<unknown-osabi>";
639     }
640 #undef _MAKE_OSABI_CASE
641 }
642 
643 //
644 // WARNING : This function is being deprecated
645 // It's functionality has moved to ArchSpec::SetArchitecture
646 // This function is only being kept to validate the move.
647 //
648 // TODO : Remove this function
649 static bool
650 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
651 {
652     switch (osabi_byte)
653     {
654         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
655         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
656         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
657         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
658         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
659         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
660         default:
661             ostype = llvm::Triple::OSType::UnknownOS;
662     }
663     return ostype != llvm::Triple::OSType::UnknownOS;
664 }
665 
666 size_t
667 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
668                                         lldb::DataBufferSP& data_sp,
669                                         lldb::offset_t data_offset,
670                                         lldb::offset_t file_offset,
671                                         lldb::offset_t length,
672                                         lldb_private::ModuleSpecList &specs)
673 {
674     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
675 
676     const size_t initial_count = specs.GetSize();
677 
678     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
679     {
680         DataExtractor data;
681         data.SetData(data_sp);
682         elf::ELFHeader header;
683         if (header.Parse(data, &data_offset))
684         {
685             if (data_sp)
686             {
687                 ModuleSpec spec (file);
688 
689                 const uint32_t sub_type = subTypeFromElfHeader(header);
690                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
691                                                        header.e_machine,
692                                                        sub_type,
693                                                        header.e_ident[EI_OSABI]);
694 
695                 if (spec.GetArchitecture().IsValid())
696                 {
697                     llvm::Triple::OSType ostype;
698                     llvm::Triple::VendorType vendor;
699                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
700 
701                     if (log)
702                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
703 
704                     // SetArchitecture should have set the vendor to unknown
705                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
706                     assert(vendor == llvm::Triple::UnknownVendor);
707 
708                     //
709                     // Validate it is ok to remove GetOsFromOSABI
710                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
711                     assert(spec_ostype == ostype);
712                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
713                     {
714                         if (log)
715                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
716                     }
717 
718                     // Try to get the UUID from the section list. Usually that's at the end, so
719                     // map the file in if we don't have it already.
720                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
721                     if (section_header_end > data_sp->GetByteSize())
722                     {
723                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
724                         data.SetData(data_sp);
725                     }
726 
727                     uint32_t gnu_debuglink_crc = 0;
728                     std::string gnu_debuglink_file;
729                     SectionHeaderColl section_headers;
730                     lldb_private::UUID &uuid = spec.GetUUID();
731 
732                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
733 
734                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
735 
736                     if (log)
737                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
738 
739                     if (!uuid.IsValid())
740                     {
741                         uint32_t core_notes_crc = 0;
742 
743                         if (!gnu_debuglink_crc)
744                         {
745                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
746                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
747                                                               file.GetLastPathComponent().AsCString(),
748                                                               (file.GetByteSize()-file_offset)/1024);
749 
750                             // For core files - which usually don't happen to have a gnu_debuglink,
751                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
752                             // Thus we will need to fallback to something simpler.
753                             if (header.e_type == llvm::ELF::ET_CORE)
754                             {
755                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
756                                 if (program_headers_end > data_sp->GetByteSize())
757                                 {
758                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
759                                     data.SetData(data_sp);
760                                 }
761                                 ProgramHeaderColl program_headers;
762                                 GetProgramHeaderInfo(program_headers, data, header);
763 
764                                 size_t segment_data_end = 0;
765                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
766                                      I != program_headers.end(); ++I)
767                                 {
768                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
769                                 }
770 
771                                 if (segment_data_end > data_sp->GetByteSize())
772                                 {
773                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
774                                     data.SetData(data_sp);
775                                 }
776 
777                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
778                             }
779                             else
780                             {
781                                 // Need to map entire file into memory to calculate the crc.
782                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
783                                 data.SetData(data_sp);
784                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
785                             }
786                         }
787                         if (gnu_debuglink_crc)
788                         {
789                             // Use 4 bytes of crc from the .gnu_debuglink section.
790                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
791                             uuid.SetBytes (uuidt, sizeof(uuidt));
792                         }
793                         else if (core_notes_crc)
794                         {
795                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
796                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
797                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
798                             uuid.SetBytes (uuidt, sizeof(uuidt));
799                         }
800                     }
801 
802                     specs.Append(spec);
803                 }
804             }
805         }
806     }
807 
808     return specs.GetSize() - initial_count;
809 }
810 
811 //------------------------------------------------------------------
812 // PluginInterface protocol
813 //------------------------------------------------------------------
814 lldb_private::ConstString
815 ObjectFileELF::GetPluginName()
816 {
817     return GetPluginNameStatic();
818 }
819 
820 uint32_t
821 ObjectFileELF::GetPluginVersion()
822 {
823     return m_plugin_version;
824 }
825 //------------------------------------------------------------------
826 // ObjectFile protocol
827 //------------------------------------------------------------------
828 
829 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
830                               DataBufferSP& data_sp,
831                               lldb::offset_t data_offset,
832                               const FileSpec* file,
833                               lldb::offset_t file_offset,
834                               lldb::offset_t length) :
835     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
836     m_header(),
837     m_uuid(),
838     m_gnu_debuglink_file(),
839     m_gnu_debuglink_crc(0),
840     m_program_headers(),
841     m_section_headers(),
842     m_dynamic_symbols(),
843     m_filespec_ap(),
844     m_entry_point_address(),
845     m_arch_spec()
846 {
847     if (file)
848         m_file = *file;
849     ::memset(&m_header, 0, sizeof(m_header));
850 }
851 
852 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
853                               DataBufferSP& header_data_sp,
854                               const lldb::ProcessSP &process_sp,
855                               addr_t header_addr) :
856     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
857     m_header(),
858     m_uuid(),
859     m_gnu_debuglink_file(),
860     m_gnu_debuglink_crc(0),
861     m_program_headers(),
862     m_section_headers(),
863     m_dynamic_symbols(),
864     m_filespec_ap(),
865     m_entry_point_address(),
866     m_arch_spec()
867 {
868     ::memset(&m_header, 0, sizeof(m_header));
869 }
870 
871 ObjectFileELF::~ObjectFileELF()
872 {
873 }
874 
875 bool
876 ObjectFileELF::IsExecutable() const
877 {
878     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
879 }
880 
881 bool
882 ObjectFileELF::SetLoadAddress (Target &target,
883                                lldb::addr_t value,
884                                bool value_is_offset)
885 {
886     ModuleSP module_sp = GetModule();
887     if (module_sp)
888     {
889         size_t num_loaded_sections = 0;
890         SectionList *section_list = GetSectionList ();
891         if (section_list)
892         {
893             if (!value_is_offset)
894             {
895                 bool found_offset = false;
896                 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i)
897                 {
898                     const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i);
899                     if (header == nullptr)
900                         continue;
901 
902                     if (header->p_type != PT_LOAD || header->p_offset != 0)
903                         continue;
904 
905                     value = value - header->p_vaddr;
906                     found_offset = true;
907                     break;
908                 }
909                 if (!found_offset)
910                     return false;
911             }
912 
913             const size_t num_sections = section_list->GetSize();
914             size_t sect_idx = 0;
915 
916             for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
917             {
918                 // Iterate through the object file sections to find all
919                 // of the sections that have SHF_ALLOC in their flag bits.
920                 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
921                 // if (section_sp && !section_sp->IsThreadSpecific())
922                 if (section_sp && section_sp->Test(SHF_ALLOC))
923                 {
924                     lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
925 
926                     // On 32-bit systems the load address have to fit into 4 bytes. The rest of
927                     // the bytes are the overflow from the addition.
928                     if (GetAddressByteSize() == 4)
929                         load_addr &= 0xFFFFFFFF;
930 
931                     if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
932                         ++num_loaded_sections;
933                 }
934             }
935             return num_loaded_sections > 0;
936         }
937     }
938     return false;
939 }
940 
941 ByteOrder
942 ObjectFileELF::GetByteOrder() const
943 {
944     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
945         return eByteOrderBig;
946     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
947         return eByteOrderLittle;
948     return eByteOrderInvalid;
949 }
950 
951 uint32_t
952 ObjectFileELF::GetAddressByteSize() const
953 {
954     return m_data.GetAddressByteSize();
955 }
956 
957 // Top 16 bits of the `Symbol` flags are available.
958 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
959 
960 AddressClass
961 ObjectFileELF::GetAddressClass (addr_t file_addr)
962 {
963     Symtab* symtab = GetSymtab();
964     if (!symtab)
965         return eAddressClassUnknown;
966 
967     // The address class is determined based on the symtab. Ask it from the object file what
968     // contains the symtab information.
969     ObjectFile* symtab_objfile = symtab->GetObjectFile();
970     if (symtab_objfile != nullptr && symtab_objfile != this)
971         return symtab_objfile->GetAddressClass(file_addr);
972 
973     auto res = ObjectFile::GetAddressClass (file_addr);
974     if (res != eAddressClassCode)
975         return res;
976 
977     auto ub = m_address_class_map.upper_bound(file_addr);
978     if (ub == m_address_class_map.begin())
979     {
980         // No entry in the address class map before the address. Return
981         // default address class for an address in a code section.
982         return eAddressClassCode;
983     }
984 
985     // Move iterator to the address class entry preceding address
986     --ub;
987 
988     return ub->second;
989 }
990 
991 size_t
992 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
993 {
994     return std::distance(m_section_headers.begin(), I) + 1u;
995 }
996 
997 size_t
998 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
999 {
1000     return std::distance(m_section_headers.begin(), I) + 1u;
1001 }
1002 
1003 bool
1004 ObjectFileELF::ParseHeader()
1005 {
1006     lldb::offset_t offset = 0;
1007     if (!m_header.Parse(m_data, &offset))
1008         return false;
1009 
1010     if (!IsInMemory())
1011         return true;
1012 
1013     // For in memory object files m_data might not contain the full object file. Try to load it
1014     // until the end of the "Section header table" what is at the end of the ELF file.
1015     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
1016     if (m_data.GetByteSize() < file_size)
1017     {
1018         ProcessSP process_sp (m_process_wp.lock());
1019         if (!process_sp)
1020             return false;
1021 
1022         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
1023         if (!data_sp)
1024             return false;
1025         m_data.SetData(data_sp, 0, file_size);
1026     }
1027 
1028     return true;
1029 }
1030 
1031 bool
1032 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
1033 {
1034     // Need to parse the section list to get the UUIDs, so make sure that's been done.
1035     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
1036         return false;
1037 
1038     if (m_uuid.IsValid())
1039     {
1040         // We have the full build id uuid.
1041         *uuid = m_uuid;
1042         return true;
1043     }
1044     else if (GetType() == ObjectFile::eTypeCoreFile)
1045     {
1046         uint32_t core_notes_crc = 0;
1047 
1048         if (!ParseProgramHeaders())
1049             return false;
1050 
1051         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
1052 
1053         if (core_notes_crc)
1054         {
1055             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
1056             // look different form .gnu_debuglink crc - followed by 4 bytes of note
1057             // segments crc.
1058             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
1059             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1060         }
1061     }
1062     else
1063     {
1064         if (!m_gnu_debuglink_crc)
1065             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1066         if (m_gnu_debuglink_crc)
1067         {
1068             // Use 4 bytes of crc from the .gnu_debuglink section.
1069             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1070             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1071         }
1072     }
1073 
1074     if (m_uuid.IsValid())
1075     {
1076         *uuid = m_uuid;
1077         return true;
1078     }
1079 
1080     return false;
1081 }
1082 
1083 lldb_private::FileSpecList
1084 ObjectFileELF::GetDebugSymbolFilePaths()
1085 {
1086     FileSpecList file_spec_list;
1087 
1088     if (!m_gnu_debuglink_file.empty())
1089     {
1090         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1091         file_spec_list.Append (file_spec);
1092     }
1093     return file_spec_list;
1094 }
1095 
1096 uint32_t
1097 ObjectFileELF::GetDependentModules(FileSpecList &files)
1098 {
1099     size_t num_modules = ParseDependentModules();
1100     uint32_t num_specs = 0;
1101 
1102     for (unsigned i = 0; i < num_modules; ++i)
1103     {
1104         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1105             num_specs++;
1106     }
1107 
1108     return num_specs;
1109 }
1110 
1111 Address
1112 ObjectFileELF::GetImageInfoAddress(Target *target)
1113 {
1114     if (!ParseDynamicSymbols())
1115         return Address();
1116 
1117     SectionList *section_list = GetSectionList();
1118     if (!section_list)
1119         return Address();
1120 
1121     // Find the SHT_DYNAMIC (.dynamic) section.
1122     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1123     if (!dynsym_section_sp)
1124         return Address();
1125     assert (dynsym_section_sp->GetObjectFile() == this);
1126 
1127     user_id_t dynsym_id = dynsym_section_sp->GetID();
1128     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1129     if (!dynsym_hdr)
1130         return Address();
1131 
1132     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1133     {
1134         ELFDynamic &symbol = m_dynamic_symbols[i];
1135 
1136         if (symbol.d_tag == DT_DEBUG)
1137         {
1138             // Compute the offset as the number of previous entries plus the
1139             // size of d_tag.
1140             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1141             return Address(dynsym_section_sp, offset);
1142         }
1143         // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP exists in non-PIE.
1144         else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target)
1145         {
1146             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1147             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1148             if (dyn_base == LLDB_INVALID_ADDRESS)
1149                 return Address();
1150 
1151             Error error;
1152             if (symbol.d_tag == DT_MIPS_RLD_MAP)
1153             {
1154                 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
1155                 Address addr;
1156                 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1157                     return addr;
1158             }
1159             if (symbol.d_tag == DT_MIPS_RLD_MAP_REL)
1160             {
1161                 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, relative to the address of the tag.
1162                 uint64_t rel_offset;
1163                 rel_offset = target->ReadUnsignedIntegerFromMemory(dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error);
1164                 if (error.Success() && rel_offset != UINT64_MAX)
1165                 {
1166                     Address addr;
1167                     addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset;
1168                     addr.SetOffset (debug_ptr_address);
1169                     return addr;
1170                 }
1171             }
1172         }
1173     }
1174 
1175     return Address();
1176 }
1177 
1178 lldb_private::Address
1179 ObjectFileELF::GetEntryPointAddress ()
1180 {
1181     if (m_entry_point_address.IsValid())
1182         return m_entry_point_address;
1183 
1184     if (!ParseHeader() || !IsExecutable())
1185         return m_entry_point_address;
1186 
1187     SectionList *section_list = GetSectionList();
1188     addr_t offset = m_header.e_entry;
1189 
1190     if (!section_list)
1191         m_entry_point_address.SetOffset(offset);
1192     else
1193         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1194     return m_entry_point_address;
1195 }
1196 
1197 //----------------------------------------------------------------------
1198 // ParseDependentModules
1199 //----------------------------------------------------------------------
1200 size_t
1201 ObjectFileELF::ParseDependentModules()
1202 {
1203     if (m_filespec_ap.get())
1204         return m_filespec_ap->GetSize();
1205 
1206     m_filespec_ap.reset(new FileSpecList());
1207 
1208     if (!ParseSectionHeaders())
1209         return 0;
1210 
1211     SectionList *section_list = GetSectionList();
1212     if (!section_list)
1213         return 0;
1214 
1215     // Find the SHT_DYNAMIC section.
1216     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1217     if (!dynsym)
1218         return 0;
1219     assert (dynsym->GetObjectFile() == this);
1220 
1221     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1222     if (!header)
1223         return 0;
1224     // sh_link: section header index of string table used by entries in the section.
1225     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1226     if (!dynstr)
1227         return 0;
1228 
1229     DataExtractor dynsym_data;
1230     DataExtractor dynstr_data;
1231     if (ReadSectionData(dynsym, dynsym_data) &&
1232         ReadSectionData(dynstr, dynstr_data))
1233     {
1234         ELFDynamic symbol;
1235         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1236         lldb::offset_t offset = 0;
1237 
1238         // The only type of entries we are concerned with are tagged DT_NEEDED,
1239         // yielding the name of a required library.
1240         while (offset < section_size)
1241         {
1242             if (!symbol.Parse(dynsym_data, &offset))
1243                 break;
1244 
1245             if (symbol.d_tag != DT_NEEDED)
1246                 continue;
1247 
1248             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1249             const char *lib_name = dynstr_data.PeekCStr(str_index);
1250             m_filespec_ap->Append(FileSpec(lib_name, true));
1251         }
1252     }
1253 
1254     return m_filespec_ap->GetSize();
1255 }
1256 
1257 //----------------------------------------------------------------------
1258 // GetProgramHeaderInfo
1259 //----------------------------------------------------------------------
1260 size_t
1261 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1262                                     DataExtractor &object_data,
1263                                     const ELFHeader &header)
1264 {
1265     // We have already parsed the program headers
1266     if (!program_headers.empty())
1267         return program_headers.size();
1268 
1269     // If there are no program headers to read we are done.
1270     if (header.e_phnum == 0)
1271         return 0;
1272 
1273     program_headers.resize(header.e_phnum);
1274     if (program_headers.size() != header.e_phnum)
1275         return 0;
1276 
1277     const size_t ph_size = header.e_phnum * header.e_phentsize;
1278     const elf_off ph_offset = header.e_phoff;
1279     DataExtractor data;
1280     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1281         return 0;
1282 
1283     uint32_t idx;
1284     lldb::offset_t offset;
1285     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1286     {
1287         if (program_headers[idx].Parse(data, &offset) == false)
1288             break;
1289     }
1290 
1291     if (idx < program_headers.size())
1292         program_headers.resize(idx);
1293 
1294     return program_headers.size();
1295 
1296 }
1297 
1298 //----------------------------------------------------------------------
1299 // ParseProgramHeaders
1300 //----------------------------------------------------------------------
1301 size_t
1302 ObjectFileELF::ParseProgramHeaders()
1303 {
1304     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1305 }
1306 
1307 lldb_private::Error
1308 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1309 {
1310     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1311     Error error;
1312 
1313     lldb::offset_t offset = 0;
1314 
1315     while (true)
1316     {
1317         // Parse the note header.  If this fails, bail out.
1318         const lldb::offset_t note_offset = offset;
1319         ELFNote note = ELFNote();
1320         if (!note.Parse(data, &offset))
1321         {
1322             // We're done.
1323             return error;
1324         }
1325 
1326         if (log)
1327             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1328 
1329         // Process FreeBSD ELF notes.
1330         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1331             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1332             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1333         {
1334             // Pull out the min version info.
1335             uint32_t version_info;
1336             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1337             {
1338                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1339                 return error;
1340             }
1341 
1342             // Convert the version info into a major/minor number.
1343             const uint32_t version_major = version_info / 100000;
1344             const uint32_t version_minor = (version_info / 1000) % 100;
1345 
1346             char os_name[32];
1347             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1348 
1349             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1350             arch_spec.GetTriple ().setOSName (os_name);
1351             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1352 
1353             if (log)
1354                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1355         }
1356         // Process GNU ELF notes.
1357         else if (note.n_name == LLDB_NT_OWNER_GNU)
1358         {
1359             switch (note.n_type)
1360             {
1361                 case LLDB_NT_GNU_ABI_TAG:
1362                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1363                     {
1364                         // Pull out the min OS version supporting the ABI.
1365                         uint32_t version_info[4];
1366                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1367                         {
1368                             error.SetErrorString ("failed to read GNU ABI note payload");
1369                             return error;
1370                         }
1371 
1372                         // Set the OS per the OS field.
1373                         switch (version_info[0])
1374                         {
1375                             case LLDB_NT_GNU_ABI_OS_LINUX:
1376                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1377                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1378                                 if (log)
1379                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1380                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1381                                 break;
1382                             case LLDB_NT_GNU_ABI_OS_HURD:
1383                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1384                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1385                                 if (log)
1386                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1387                                 break;
1388                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1389                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1390                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1391                                 if (log)
1392                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1393                                 break;
1394                             default:
1395                                 if (log)
1396                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1397                                 break;
1398                         }
1399                     }
1400                     break;
1401 
1402                 case LLDB_NT_GNU_BUILD_ID_TAG:
1403                     // Only bother processing this if we don't already have the uuid set.
1404                     if (!uuid.IsValid())
1405                     {
1406                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1407                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1408                         {
1409                             uint8_t uuidbuf[20];
1410                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1411                             {
1412                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1413                                 return error;
1414                             }
1415 
1416                             // Save the build id as the UUID for the module.
1417                             uuid.SetBytes (uuidbuf, note.n_descsz);
1418                         }
1419                     }
1420                     break;
1421             }
1422         }
1423         // Process NetBSD ELF notes.
1424         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1425                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1426                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1427         {
1428             // Pull out the min version info.
1429             uint32_t version_info;
1430             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1431             {
1432                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1433                 return error;
1434             }
1435 
1436             // Set the elf OS version to NetBSD.  Also clear the vendor.
1437             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1438             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1439 
1440             if (log)
1441                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1442         }
1443         // Process CSR kalimba notes
1444         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1445                 (note.n_name == LLDB_NT_OWNER_CSR))
1446         {
1447             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1448             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1449 
1450             // TODO At some point the description string could be processed.
1451             // It could provide a steer towards the kalimba variant which
1452             // this ELF targets.
1453             if(note.n_descsz)
1454             {
1455                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1456                 (void)cstr;
1457             }
1458         }
1459         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1460         {
1461             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1462             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1463         }
1464         else if (note.n_name == LLDB_NT_OWNER_LINUX)
1465         {
1466             // This is sometimes found in core files and usually contains extended register info
1467             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1468         }
1469         else if (note.n_name == LLDB_NT_OWNER_CORE)
1470         {
1471             // Parse the NT_FILE to look for stuff in paths to shared libraries
1472             // As the contents look like:
1473             // count     = 0x000000000000000a (10)
1474             // page_size = 0x0000000000001000 (4096)
1475             // Index start              end                file_ofs           path
1476             // ===== ------------------ ------------------ ------------------ -------------------------------------
1477             // [  0] 0x0000000000400000 0x0000000000401000 0x0000000000000000 /tmp/a.out
1478             // [  1] 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out
1479             // [  2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1480             // [  3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 /lib/x86_64-linux-gnu/libc-2.19.so
1481             // [  4] 0x00007fa79cba8000 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-gnu/libc-2.19.so
1482             // [  5] 0x00007fa79cda7000 0x00007fa79cdab000 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so
1483             // [  6] 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64-linux-gnu/libc-2.19.so
1484             // [  7] 0x00007fa79cdb2000 0x00007fa79cdd5000 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so
1485             // [  8] 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64-linux-gnu/ld-2.19.so
1486             // [  9] 0x00007fa79cfd5000 0x00007fa79cfd6000 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so
1487             if (note.n_type == NT_FILE)
1488             {
1489                 uint64_t count = data.GetU64(&offset);
1490                 offset += 8 + 3*8*count; // Skip page size and all start/end/file_ofs
1491                 for (size_t i=0; i<count; ++i)
1492                 {
1493                     llvm::StringRef path(data.GetCStr(&offset));
1494                     if (path.startswith("/lib/x86_64-linux-gnu"))
1495                     {
1496                         arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1497                         break;
1498                     }
1499                 }
1500             }
1501         }
1502 
1503         // Calculate the offset of the next note just in case "offset" has been used
1504         // to poke at the contents of the note data
1505         offset = note_offset + note.GetByteSize();
1506     }
1507 
1508     return error;
1509 }
1510 
1511 
1512 //----------------------------------------------------------------------
1513 // GetSectionHeaderInfo
1514 //----------------------------------------------------------------------
1515 size_t
1516 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1517                                     lldb_private::DataExtractor &object_data,
1518                                     const elf::ELFHeader &header,
1519                                     lldb_private::UUID &uuid,
1520                                     std::string &gnu_debuglink_file,
1521                                     uint32_t &gnu_debuglink_crc,
1522                                     ArchSpec &arch_spec)
1523 {
1524     // Don't reparse the section headers if we already did that.
1525     if (!section_headers.empty())
1526         return section_headers.size();
1527 
1528     // Only initialize the arch_spec to okay defaults if they're not already set.
1529     // We'll refine this with note data as we parse the notes.
1530     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1531     {
1532         llvm::Triple::OSType ostype;
1533         llvm::Triple::OSType spec_ostype;
1534         const uint32_t sub_type = subTypeFromElfHeader(header);
1535         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1536         //
1537         // Validate if it is ok to remove GetOsFromOSABI
1538         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1539         spec_ostype = arch_spec.GetTriple ().getOS ();
1540         assert(spec_ostype == ostype);
1541     }
1542 
1543     if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1544         || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1545     {
1546         switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE)
1547         {
1548             case llvm::ELF::EF_MIPS_MICROMIPS:
1549                 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips);
1550                 break;
1551             case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1552                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16);
1553                 break;
1554             case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1555                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx);
1556                 break;
1557             default:
1558                 break;
1559         }
1560     }
1561 
1562     // If there are no section headers we are done.
1563     if (header.e_shnum == 0)
1564         return 0;
1565 
1566     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1567 
1568     section_headers.resize(header.e_shnum);
1569     if (section_headers.size() != header.e_shnum)
1570         return 0;
1571 
1572     const size_t sh_size = header.e_shnum * header.e_shentsize;
1573     const elf_off sh_offset = header.e_shoff;
1574     DataExtractor sh_data;
1575     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1576         return 0;
1577 
1578     uint32_t idx;
1579     lldb::offset_t offset;
1580     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1581     {
1582         if (section_headers[idx].Parse(sh_data, &offset) == false)
1583             break;
1584     }
1585     if (idx < section_headers.size())
1586         section_headers.resize(idx);
1587 
1588     const unsigned strtab_idx = header.e_shstrndx;
1589     if (strtab_idx && strtab_idx < section_headers.size())
1590     {
1591         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1592         const size_t byte_size = sheader.sh_size;
1593         const Elf64_Off offset = sheader.sh_offset;
1594         lldb_private::DataExtractor shstr_data;
1595 
1596         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1597         {
1598             for (SectionHeaderCollIter I = section_headers.begin();
1599                  I != section_headers.end(); ++I)
1600             {
1601                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1602                 const ELFSectionHeaderInfo &sheader = *I;
1603                 const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1604                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1605 
1606                 I->section_name = name;
1607 
1608                 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1609                     || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1610                 {
1611                     uint32_t arch_flags = arch_spec.GetFlags ();
1612                     DataExtractor data;
1613                     if (sheader.sh_type == SHT_MIPS_ABIFLAGS)
1614                     {
1615 
1616                         if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size))
1617                         {
1618                             lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0
1619                             arch_flags |= data.GetU32 (&ase_offset);
1620                         }
1621                     }
1622                     // Settings appropriate ArchSpec ABI Flags
1623                     if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1624                     {
1625                         arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1626                     }
1627                     else if (header.e_flags & llvm::ELF::EF_MIPS_ABI_O32)
1628                     {
1629                          arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1630                     }
1631                     arch_spec.SetFlags (arch_flags);
1632                 }
1633 
1634                 if (name == g_sect_name_gnu_debuglink)
1635                 {
1636                     DataExtractor data;
1637                     if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size))
1638                     {
1639                         lldb::offset_t gnu_debuglink_offset = 0;
1640                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1641                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1642                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1643                     }
1644                 }
1645 
1646                 // Process ELF note section entries.
1647                 bool is_note_header = (sheader.sh_type == SHT_NOTE);
1648 
1649                 // The section header ".note.android.ident" is stored as a
1650                 // PROGBITS type header but it is actually a note header.
1651                 static ConstString g_sect_name_android_ident (".note.android.ident");
1652                 if (!is_note_header && name == g_sect_name_android_ident)
1653                     is_note_header = true;
1654 
1655                 if (is_note_header)
1656                 {
1657                     // Allow notes to refine module info.
1658                     DataExtractor data;
1659                     if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size))
1660                     {
1661                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1662                         if (error.Fail ())
1663                         {
1664                             if (log)
1665                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1666                         }
1667                     }
1668                 }
1669             }
1670 
1671             // Make any unknown triple components to be unspecified unknowns.
1672             if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1673                 arch_spec.GetTriple().setVendorName (llvm::StringRef());
1674             if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1675                 arch_spec.GetTriple().setOSName (llvm::StringRef());
1676 
1677             return section_headers.size();
1678         }
1679     }
1680 
1681     section_headers.clear();
1682     return 0;
1683 }
1684 
1685 size_t
1686 ObjectFileELF::GetProgramHeaderCount()
1687 {
1688     return ParseProgramHeaders();
1689 }
1690 
1691 const elf::ELFProgramHeader *
1692 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1693 {
1694     if (!id || !ParseProgramHeaders())
1695         return NULL;
1696 
1697     if (--id < m_program_headers.size())
1698         return &m_program_headers[id];
1699 
1700     return NULL;
1701 }
1702 
1703 DataExtractor
1704 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1705 {
1706     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1707     if (segment_header == NULL)
1708         return DataExtractor();
1709     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1710 }
1711 
1712 std::string
1713 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1714 {
1715     size_t pos = symbol_name.find('@');
1716     return symbol_name.substr(0, pos).str();
1717 }
1718 
1719 //----------------------------------------------------------------------
1720 // ParseSectionHeaders
1721 //----------------------------------------------------------------------
1722 size_t
1723 ObjectFileELF::ParseSectionHeaders()
1724 {
1725     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1726 }
1727 
1728 const ObjectFileELF::ELFSectionHeaderInfo *
1729 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1730 {
1731     if (!id || !ParseSectionHeaders())
1732         return NULL;
1733 
1734     if (--id < m_section_headers.size())
1735         return &m_section_headers[id];
1736 
1737     return NULL;
1738 }
1739 
1740 lldb::user_id_t
1741 ObjectFileELF::GetSectionIndexByName(const char* name)
1742 {
1743     if (!name || !name[0] || !ParseSectionHeaders())
1744         return 0;
1745     for (size_t i = 1; i < m_section_headers.size(); ++i)
1746         if (m_section_headers[i].section_name == ConstString(name))
1747             return i;
1748     return 0;
1749 }
1750 
1751 void
1752 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1753 {
1754     if (!m_sections_ap.get() && ParseSectionHeaders())
1755     {
1756         m_sections_ap.reset(new SectionList());
1757 
1758         for (SectionHeaderCollIter I = m_section_headers.begin();
1759              I != m_section_headers.end(); ++I)
1760         {
1761             const ELFSectionHeaderInfo &header = *I;
1762 
1763             ConstString& name = I->section_name;
1764             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1765             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1766 
1767             static ConstString g_sect_name_text (".text");
1768             static ConstString g_sect_name_data (".data");
1769             static ConstString g_sect_name_bss (".bss");
1770             static ConstString g_sect_name_tdata (".tdata");
1771             static ConstString g_sect_name_tbss (".tbss");
1772             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1773             static ConstString g_sect_name_dwarf_debug_addr (".debug_addr");
1774             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1775             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1776             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1777             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1778             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1779             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1780             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1781             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1782             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1783             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1784             static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets");
1785             static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo");
1786             static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo");
1787             static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo");
1788             static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo");
1789             static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo");
1790             static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo");
1791             static ConstString g_sect_name_eh_frame (".eh_frame");
1792             static ConstString g_sect_name_arm_exidx (".ARM.exidx");
1793             static ConstString g_sect_name_arm_extab (".ARM.extab");
1794             static ConstString g_sect_name_go_symtab (".gosymtab");
1795 
1796             SectionType sect_type = eSectionTypeOther;
1797 
1798             bool is_thread_specific = false;
1799 
1800             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1801             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1802             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1803             else if (name == g_sect_name_tdata)
1804             {
1805                 sect_type = eSectionTypeData;
1806                 is_thread_specific = true;
1807             }
1808             else if (name == g_sect_name_tbss)
1809             {
1810                 sect_type = eSectionTypeZeroFill;
1811                 is_thread_specific = true;
1812             }
1813             // .debug_abbrev – Abbreviations used in the .debug_info section
1814             // .debug_aranges – Lookup table for mapping addresses to compilation units
1815             // .debug_frame – Call frame information
1816             // .debug_info – The core DWARF information section
1817             // .debug_line – Line number information
1818             // .debug_loc – Location lists used in DW_AT_location attributes
1819             // .debug_macinfo – Macro information
1820             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1821             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1822             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1823             // .debug_str – String table used in .debug_info
1824             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1825             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1826             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1827             else if (name == g_sect_name_dwarf_debug_abbrev)          sect_type = eSectionTypeDWARFDebugAbbrev;
1828             else if (name == g_sect_name_dwarf_debug_addr)            sect_type = eSectionTypeDWARFDebugAddr;
1829             else if (name == g_sect_name_dwarf_debug_aranges)         sect_type = eSectionTypeDWARFDebugAranges;
1830             else if (name == g_sect_name_dwarf_debug_frame)           sect_type = eSectionTypeDWARFDebugFrame;
1831             else if (name == g_sect_name_dwarf_debug_info)            sect_type = eSectionTypeDWARFDebugInfo;
1832             else if (name == g_sect_name_dwarf_debug_line)            sect_type = eSectionTypeDWARFDebugLine;
1833             else if (name == g_sect_name_dwarf_debug_loc)             sect_type = eSectionTypeDWARFDebugLoc;
1834             else if (name == g_sect_name_dwarf_debug_macinfo)         sect_type = eSectionTypeDWARFDebugMacInfo;
1835             else if (name == g_sect_name_dwarf_debug_pubnames)        sect_type = eSectionTypeDWARFDebugPubNames;
1836             else if (name == g_sect_name_dwarf_debug_pubtypes)        sect_type = eSectionTypeDWARFDebugPubTypes;
1837             else if (name == g_sect_name_dwarf_debug_ranges)          sect_type = eSectionTypeDWARFDebugRanges;
1838             else if (name == g_sect_name_dwarf_debug_str)             sect_type = eSectionTypeDWARFDebugStr;
1839             else if (name == g_sect_name_dwarf_debug_str_offsets)     sect_type = eSectionTypeDWARFDebugStrOffsets;
1840             else if (name == g_sect_name_dwarf_debug_abbrev_dwo)      sect_type = eSectionTypeDWARFDebugAbbrev;
1841             else if (name == g_sect_name_dwarf_debug_info_dwo)        sect_type = eSectionTypeDWARFDebugInfo;
1842             else if (name == g_sect_name_dwarf_debug_line_dwo)        sect_type = eSectionTypeDWARFDebugLine;
1843             else if (name == g_sect_name_dwarf_debug_loc_dwo)         sect_type = eSectionTypeDWARFDebugLoc;
1844             else if (name == g_sect_name_dwarf_debug_str_dwo)         sect_type = eSectionTypeDWARFDebugStr;
1845             else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets;
1846             else if (name == g_sect_name_eh_frame)                    sect_type = eSectionTypeEHFrame;
1847             else if (name == g_sect_name_arm_exidx)                   sect_type = eSectionTypeARMexidx;
1848             else if (name == g_sect_name_arm_extab)                   sect_type = eSectionTypeARMextab;
1849             else if (name == g_sect_name_go_symtab)                   sect_type = eSectionTypeGoSymtab;
1850 
1851             switch (header.sh_type)
1852             {
1853                 case SHT_SYMTAB:
1854                     assert (sect_type == eSectionTypeOther);
1855                     sect_type = eSectionTypeELFSymbolTable;
1856                     break;
1857                 case SHT_DYNSYM:
1858                     assert (sect_type == eSectionTypeOther);
1859                     sect_type = eSectionTypeELFDynamicSymbols;
1860                     break;
1861                 case SHT_RELA:
1862                 case SHT_REL:
1863                     assert (sect_type == eSectionTypeOther);
1864                     sect_type = eSectionTypeELFRelocationEntries;
1865                     break;
1866                 case SHT_DYNAMIC:
1867                     assert (sect_type == eSectionTypeOther);
1868                     sect_type = eSectionTypeELFDynamicLinkInfo;
1869                     break;
1870             }
1871 
1872             if (eSectionTypeOther == sect_type)
1873             {
1874                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1875                 // support linkscripts which (can) give rise to various arbitrarily named
1876                 // sections being "Code" or "Data".
1877                 sect_type = kalimbaSectionType(m_header, header);
1878             }
1879 
1880             const uint32_t target_bytes_size =
1881                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1882                 m_arch_spec.GetDataByteSize() :
1883                     eSectionTypeCode == sect_type ?
1884                     m_arch_spec.GetCodeByteSize() : 1;
1885 
1886             elf::elf_xword log2align = (header.sh_addralign==0)
1887                                         ? 0
1888                                         : llvm::Log2_64(header.sh_addralign);
1889             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1890                                               this,               // ObjectFile to which this section belongs and should read section data from.
1891                                               SectionIndex(I),    // Section ID.
1892                                               name,               // Section name.
1893                                               sect_type,          // Section type.
1894                                               header.sh_addr,     // VM address.
1895                                               vm_size,            // VM size in bytes of this section.
1896                                               header.sh_offset,   // Offset of this section in the file.
1897                                               file_size,          // Size of the section as found in the file.
1898                                               log2align,          // Alignment of the section
1899                                               header.sh_flags,    // Flags for this section.
1900                                               target_bytes_size));// Number of host bytes per target byte
1901 
1902             if (is_thread_specific)
1903                 section_sp->SetIsThreadSpecific (is_thread_specific);
1904             m_sections_ap->AddSection(section_sp);
1905         }
1906     }
1907 
1908     if (m_sections_ap.get())
1909     {
1910         if (GetType() == eTypeDebugInfo)
1911         {
1912             static const SectionType g_sections[] =
1913             {
1914                 eSectionTypeDWARFDebugAbbrev,
1915                 eSectionTypeDWARFDebugAddr,
1916                 eSectionTypeDWARFDebugAranges,
1917                 eSectionTypeDWARFDebugFrame,
1918                 eSectionTypeDWARFDebugInfo,
1919                 eSectionTypeDWARFDebugLine,
1920                 eSectionTypeDWARFDebugLoc,
1921                 eSectionTypeDWARFDebugMacInfo,
1922                 eSectionTypeDWARFDebugPubNames,
1923                 eSectionTypeDWARFDebugPubTypes,
1924                 eSectionTypeDWARFDebugRanges,
1925                 eSectionTypeDWARFDebugStr,
1926                 eSectionTypeDWARFDebugStrOffsets,
1927                 eSectionTypeELFSymbolTable,
1928             };
1929             SectionList *elf_section_list = m_sections_ap.get();
1930             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1931             {
1932                 SectionType section_type = g_sections[idx];
1933                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1934                 if (section_sp)
1935                 {
1936                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1937                     if (module_section_sp)
1938                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1939                     else
1940                         unified_section_list.AddSection (section_sp);
1941                 }
1942             }
1943         }
1944         else
1945         {
1946             unified_section_list = *m_sections_ap;
1947         }
1948     }
1949 }
1950 
1951 // Find the arm/aarch64 mapping symbol character in the given symbol name. Mapping symbols have the
1952 // form of "$<char>[.<any>]*". Additionally we recognize cases when the mapping symbol prefixed by
1953 // an arbitrary string because if a symbol prefix added to each symbol in the object file with
1954 // objcopy then the mapping symbols are also prefixed.
1955 static char
1956 FindArmAarch64MappingSymbol(const char* symbol_name)
1957 {
1958     if (!symbol_name)
1959         return '\0';
1960 
1961     const char* dollar_pos = ::strchr(symbol_name, '$');
1962     if (!dollar_pos || dollar_pos[1] == '\0')
1963         return '\0';
1964 
1965     if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
1966         return dollar_pos[1];
1967     return '\0';
1968 }
1969 
1970 #define STO_MIPS_ISA            (3 << 6)
1971 #define STO_MICROMIPS           (2 << 6)
1972 #define IS_MICROMIPS(ST_OTHER)  (((ST_OTHER) & STO_MIPS_ISA) == STO_MICROMIPS)
1973 
1974 // private
1975 unsigned
1976 ObjectFileELF::ParseSymbols (Symtab *symtab,
1977                              user_id_t start_id,
1978                              SectionList *section_list,
1979                              const size_t num_symbols,
1980                              const DataExtractor &symtab_data,
1981                              const DataExtractor &strtab_data)
1982 {
1983     ELFSymbol symbol;
1984     lldb::offset_t offset = 0;
1985 
1986     static ConstString text_section_name(".text");
1987     static ConstString init_section_name(".init");
1988     static ConstString fini_section_name(".fini");
1989     static ConstString ctors_section_name(".ctors");
1990     static ConstString dtors_section_name(".dtors");
1991 
1992     static ConstString data_section_name(".data");
1993     static ConstString rodata_section_name(".rodata");
1994     static ConstString rodata1_section_name(".rodata1");
1995     static ConstString data2_section_name(".data1");
1996     static ConstString bss_section_name(".bss");
1997     static ConstString opd_section_name(".opd");    // For ppc64
1998 
1999     // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full
2000     // .text section what causes issues with displaying unusable symbol name to the user and very
2001     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
2002     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
2003     // use for the debugger and they are causing a lot of trouble.
2004     // Filtering can't be restricted to Android because this special object file don't contain the
2005     // note section specifying the environment to Android but the custom extension and file name
2006     // makes it highly unlikely that this will collide with anything else.
2007     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat");
2008 
2009     ArchSpec arch;
2010     GetArchitecture(arch);
2011 
2012     // Local cache to avoid doing a FindSectionByName for each symbol. The "const char*" key must
2013     // came from a ConstString object so they can be compared by pointer
2014     std::unordered_map<const char*, lldb::SectionSP> section_name_to_section;
2015 
2016     unsigned i;
2017     for (i = 0; i < num_symbols; ++i)
2018     {
2019         if (symbol.Parse(symtab_data, &offset) == false)
2020             break;
2021 
2022         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2023 
2024         // No need to add non-section symbols that have no names
2025         if (symbol.getType() != STT_SECTION &&
2026             (symbol_name == NULL || symbol_name[0] == '\0'))
2027             continue;
2028 
2029         // Skipping oatdata and oatexec sections if it is requested. See details above the
2030         // definition of skip_oatdata_oatexec for the reasons.
2031         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
2032             continue;
2033 
2034         SectionSP symbol_section_sp;
2035         SymbolType symbol_type = eSymbolTypeInvalid;
2036         Elf64_Half symbol_idx = symbol.st_shndx;
2037 
2038         switch (symbol_idx)
2039         {
2040         case SHN_ABS:
2041             symbol_type = eSymbolTypeAbsolute;
2042             break;
2043         case SHN_UNDEF:
2044             symbol_type = eSymbolTypeUndefined;
2045             break;
2046         default:
2047             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
2048             break;
2049         }
2050 
2051         // If a symbol is undefined do not process it further even if it has a STT type
2052         if (symbol_type != eSymbolTypeUndefined)
2053         {
2054             switch (symbol.getType())
2055             {
2056             default:
2057             case STT_NOTYPE:
2058                 // The symbol's type is not specified.
2059                 break;
2060 
2061             case STT_OBJECT:
2062                 // The symbol is associated with a data object, such as a variable,
2063                 // an array, etc.
2064                 symbol_type = eSymbolTypeData;
2065                 break;
2066 
2067             case STT_FUNC:
2068                 // The symbol is associated with a function or other executable code.
2069                 symbol_type = eSymbolTypeCode;
2070                 break;
2071 
2072             case STT_SECTION:
2073                 // The symbol is associated with a section. Symbol table entries of
2074                 // this type exist primarily for relocation and normally have
2075                 // STB_LOCAL binding.
2076                 break;
2077 
2078             case STT_FILE:
2079                 // Conventionally, the symbol's name gives the name of the source
2080                 // file associated with the object file. A file symbol has STB_LOCAL
2081                 // binding, its section index is SHN_ABS, and it precedes the other
2082                 // STB_LOCAL symbols for the file, if it is present.
2083                 symbol_type = eSymbolTypeSourceFile;
2084                 break;
2085 
2086             case STT_GNU_IFUNC:
2087                 // The symbol is associated with an indirect function. The actual
2088                 // function will be resolved if it is referenced.
2089                 symbol_type = eSymbolTypeResolver;
2090                 break;
2091             }
2092         }
2093 
2094         if (symbol_type == eSymbolTypeInvalid)
2095         {
2096             if (symbol_section_sp)
2097             {
2098                 const ConstString &sect_name = symbol_section_sp->GetName();
2099                 if (sect_name == text_section_name ||
2100                     sect_name == init_section_name ||
2101                     sect_name == fini_section_name ||
2102                     sect_name == ctors_section_name ||
2103                     sect_name == dtors_section_name)
2104                 {
2105                     symbol_type = eSymbolTypeCode;
2106                 }
2107                 else if (sect_name == data_section_name ||
2108                          sect_name == data2_section_name ||
2109                          sect_name == rodata_section_name ||
2110                          sect_name == rodata1_section_name ||
2111                          sect_name == bss_section_name)
2112                 {
2113                     symbol_type = eSymbolTypeData;
2114                 }
2115             }
2116         }
2117 
2118         int64_t symbol_value_offset = 0;
2119         uint32_t additional_flags = 0;
2120 
2121         if (arch.IsValid())
2122         {
2123             if (arch.GetMachine() == llvm::Triple::arm)
2124             {
2125                 if (symbol.getBinding() == STB_LOCAL)
2126                 {
2127                     char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2128                     if (symbol_type == eSymbolTypeCode)
2129                     {
2130                         switch (mapping_symbol)
2131                         {
2132                             case 'a':
2133                                 // $a[.<any>]* - marks an ARM instruction sequence
2134                                 m_address_class_map[symbol.st_value] = eAddressClassCode;
2135                                 break;
2136                             case 'b':
2137                             case 't':
2138                                 // $b[.<any>]* - marks a THUMB BL instruction sequence
2139                                 // $t[.<any>]* - marks a THUMB instruction sequence
2140                                 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2141                                 break;
2142                             case 'd':
2143                                 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2144                                 m_address_class_map[symbol.st_value] = eAddressClassData;
2145                                 break;
2146                         }
2147                     }
2148                     if (mapping_symbol)
2149                         continue;
2150                 }
2151             }
2152             else if (arch.GetMachine() == llvm::Triple::aarch64)
2153             {
2154                 if (symbol.getBinding() == STB_LOCAL)
2155                 {
2156                     char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2157                     if (symbol_type == eSymbolTypeCode)
2158                     {
2159                         switch (mapping_symbol)
2160                         {
2161                             case 'x':
2162                                 // $x[.<any>]* - marks an A64 instruction sequence
2163                                 m_address_class_map[symbol.st_value] = eAddressClassCode;
2164                                 break;
2165                             case 'd':
2166                                 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2167                                 m_address_class_map[symbol.st_value] = eAddressClassData;
2168                                 break;
2169                         }
2170                     }
2171                     if (mapping_symbol)
2172                         continue;
2173                 }
2174             }
2175 
2176             if (arch.GetMachine() == llvm::Triple::arm)
2177             {
2178                 if (symbol_type == eSymbolTypeCode)
2179                 {
2180                     if (symbol.st_value & 1)
2181                     {
2182                         // Subtracting 1 from the address effectively unsets
2183                         // the low order bit, which results in the address
2184                         // actually pointing to the beginning of the symbol.
2185                         // This delta will be used below in conjunction with
2186                         // symbol.st_value to produce the final symbol_value
2187                         // that we store in the symtab.
2188                         symbol_value_offset = -1;
2189                         additional_flags = ARM_ELF_SYM_IS_THUMB;
2190                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
2191                     }
2192                     else
2193                     {
2194                         // This address is ARM
2195                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2196                     }
2197                 }
2198             }
2199 
2200             /*
2201              * MIPS:
2202              * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for MIPS).
2203              * This allows processer to switch between microMIPS and MIPS without any need
2204              * for special mode-control register. However, apart from .debug_line, none of
2205              * the ELF/DWARF sections set the ISA bit (for symbol or section). Use st_other
2206              * flag to check whether the symbol is microMIPS and then set the address class
2207              * accordingly.
2208             */
2209             const llvm::Triple::ArchType llvm_arch = arch.GetMachine();
2210             if (llvm_arch == llvm::Triple::mips || llvm_arch == llvm::Triple::mipsel
2211                 || llvm_arch == llvm::Triple::mips64 || llvm_arch == llvm::Triple::mips64el)
2212             {
2213                 if (IS_MICROMIPS(symbol.st_other))
2214                     m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2215                 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode))
2216                 {
2217                     symbol.st_value = symbol.st_value & (~1ull);
2218                     m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2219                 }
2220                 else
2221                 {
2222                     if (symbol_type == eSymbolTypeCode)
2223                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2224                     else if (symbol_type == eSymbolTypeData)
2225                         m_address_class_map[symbol.st_value] = eAddressClassData;
2226                     else
2227                         m_address_class_map[symbol.st_value] = eAddressClassUnknown;
2228                 }
2229             }
2230         }
2231 
2232         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2233         // THUMB symbols. See above for more details.
2234         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2235         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2236             symbol_value -= symbol_section_sp->GetFileAddress();
2237 
2238         if (symbol_section_sp)
2239         {
2240             ModuleSP module_sp(GetModule());
2241             if (module_sp)
2242             {
2243                 SectionList *module_section_list = module_sp->GetSectionList();
2244                 if (module_section_list && module_section_list != section_list)
2245                 {
2246                     const ConstString &sect_name = symbol_section_sp->GetName();
2247                     auto section_it = section_name_to_section.find(sect_name.GetCString());
2248                     if (section_it == section_name_to_section.end())
2249                         section_it = section_name_to_section.emplace(
2250                             sect_name.GetCString(),
2251                             module_section_list->FindSectionByName (sect_name)).first;
2252                     if (section_it->second && section_it->second->GetFileSize())
2253                         symbol_section_sp = section_it->second;
2254                 }
2255             }
2256         }
2257 
2258         bool is_global = symbol.getBinding() == STB_GLOBAL;
2259         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2260         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2261 
2262         llvm::StringRef symbol_ref(symbol_name);
2263 
2264         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2265         size_t version_pos = symbol_ref.find('@');
2266         bool has_suffix = version_pos != llvm::StringRef::npos;
2267         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2268         Mangled mangled(ConstString(symbol_bare), is_mangled);
2269 
2270         // Now append the suffix back to mangled and unmangled names. Only do it if the
2271         // demangling was successful (string is not empty).
2272         if (has_suffix)
2273         {
2274             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2275 
2276             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2277             if (! mangled_name.empty())
2278                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2279 
2280             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2281             llvm::StringRef demangled_name = demangled.GetStringRef();
2282             if (!demangled_name.empty())
2283                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2284         }
2285 
2286         Symbol dc_symbol(
2287             i + start_id,       // ID is the original symbol table index.
2288             mangled,
2289             symbol_type,        // Type of this symbol
2290             is_global,          // Is this globally visible?
2291             false,              // Is this symbol debug info?
2292             false,              // Is this symbol a trampoline?
2293             false,              // Is this symbol artificial?
2294             AddressRange(
2295                 symbol_section_sp,  // Section in which this symbol is defined or null.
2296                 symbol_value,       // Offset in section or symbol value.
2297                 symbol.st_size),    // Size in bytes of this symbol.
2298             symbol.st_size != 0,    // Size is valid if it is not 0
2299             has_suffix,             // Contains linker annotations?
2300             flags);                 // Symbol flags.
2301         symtab->AddSymbol(dc_symbol);
2302     }
2303     return i;
2304 }
2305 
2306 unsigned
2307 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2308 {
2309     if (symtab->GetObjectFile() != this)
2310     {
2311         // If the symbol table section is owned by a different object file, have it do the
2312         // parsing.
2313         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2314         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2315     }
2316 
2317     // Get section list for this object file.
2318     SectionList *section_list = m_sections_ap.get();
2319     if (!section_list)
2320         return 0;
2321 
2322     user_id_t symtab_id = symtab->GetID();
2323     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2324     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2325            symtab_hdr->sh_type == SHT_DYNSYM);
2326 
2327     // sh_link: section header index of associated string table.
2328     // Section ID's are ones based.
2329     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2330     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2331 
2332     if (symtab && strtab)
2333     {
2334         assert (symtab->GetObjectFile() == this);
2335         assert (strtab->GetObjectFile() == this);
2336 
2337         DataExtractor symtab_data;
2338         DataExtractor strtab_data;
2339         if (ReadSectionData(symtab, symtab_data) &&
2340             ReadSectionData(strtab, strtab_data))
2341         {
2342             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2343 
2344             return ParseSymbols(symbol_table, start_id, section_list,
2345                                 num_symbols, symtab_data, strtab_data);
2346         }
2347     }
2348 
2349     return 0;
2350 }
2351 
2352 size_t
2353 ObjectFileELF::ParseDynamicSymbols()
2354 {
2355     if (m_dynamic_symbols.size())
2356         return m_dynamic_symbols.size();
2357 
2358     SectionList *section_list = GetSectionList();
2359     if (!section_list)
2360         return 0;
2361 
2362     // Find the SHT_DYNAMIC section.
2363     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2364     if (!dynsym)
2365         return 0;
2366     assert (dynsym->GetObjectFile() == this);
2367 
2368     ELFDynamic symbol;
2369     DataExtractor dynsym_data;
2370     if (ReadSectionData(dynsym, dynsym_data))
2371     {
2372         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2373         lldb::offset_t cursor = 0;
2374 
2375         while (cursor < section_size)
2376         {
2377             if (!symbol.Parse(dynsym_data, &cursor))
2378                 break;
2379 
2380             m_dynamic_symbols.push_back(symbol);
2381         }
2382     }
2383 
2384     return m_dynamic_symbols.size();
2385 }
2386 
2387 const ELFDynamic *
2388 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2389 {
2390     if (!ParseDynamicSymbols())
2391         return NULL;
2392 
2393     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2394     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2395     for ( ; I != E; ++I)
2396     {
2397         ELFDynamic *symbol = &*I;
2398 
2399         if (symbol->d_tag == tag)
2400             return symbol;
2401     }
2402 
2403     return NULL;
2404 }
2405 
2406 unsigned
2407 ObjectFileELF::PLTRelocationType()
2408 {
2409     // DT_PLTREL
2410     //  This member specifies the type of relocation entry to which the
2411     //  procedure linkage table refers. The d_val member holds DT_REL or
2412     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2413     //  must use the same relocation.
2414     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2415 
2416     if (symbol)
2417         return symbol->d_val;
2418 
2419     return 0;
2420 }
2421 
2422 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2423 // 0th entry in the plt table is usually a resolution entry which have different size in some
2424 // architectures then the rest of the plt entries.
2425 static std::pair<uint64_t, uint64_t>
2426 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2427 {
2428     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2429 
2430     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2431     // So round the entsize up by the alignment if addralign is set.
2432     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2433         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2434 
2435     if (plt_entsize == 0)
2436     {
2437         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2438         // entries based on the number of entries and the size of the plt section with the
2439         // assumption that the size of the 0th entry is at least as big as the size of the normal
2440         // entries and it isn't much bigger then that.
2441         if (plt_hdr->sh_addralign)
2442             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2443         else
2444             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2445     }
2446 
2447     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2448 
2449     return std::make_pair(plt_entsize, plt_offset);
2450 }
2451 
2452 static unsigned
2453 ParsePLTRelocations(Symtab *symbol_table,
2454                     user_id_t start_id,
2455                     unsigned rel_type,
2456                     const ELFHeader *hdr,
2457                     const ELFSectionHeader *rel_hdr,
2458                     const ELFSectionHeader *plt_hdr,
2459                     const ELFSectionHeader *sym_hdr,
2460                     const lldb::SectionSP &plt_section_sp,
2461                     DataExtractor &rel_data,
2462                     DataExtractor &symtab_data,
2463                     DataExtractor &strtab_data)
2464 {
2465     ELFRelocation rel(rel_type);
2466     ELFSymbol symbol;
2467     lldb::offset_t offset = 0;
2468 
2469     uint64_t plt_offset, plt_entsize;
2470     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2471     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2472 
2473     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2474     reloc_info_fn reloc_type;
2475     reloc_info_fn reloc_symbol;
2476 
2477     if (hdr->Is32Bit())
2478     {
2479         reloc_type = ELFRelocation::RelocType32;
2480         reloc_symbol = ELFRelocation::RelocSymbol32;
2481     }
2482     else
2483     {
2484         reloc_type = ELFRelocation::RelocType64;
2485         reloc_symbol = ELFRelocation::RelocSymbol64;
2486     }
2487 
2488     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2489     unsigned i;
2490     for (i = 0; i < num_relocations; ++i)
2491     {
2492         if (rel.Parse(rel_data, &offset) == false)
2493             break;
2494 
2495         if (reloc_type(rel) != slot_type)
2496             continue;
2497 
2498         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2499         if (!symbol.Parse(symtab_data, &symbol_offset))
2500             break;
2501 
2502         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2503         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2504         uint64_t plt_index = plt_offset + i * plt_entsize;
2505 
2506         Symbol jump_symbol(
2507             i + start_id,    // Symbol table index
2508             symbol_name,     // symbol name.
2509             is_mangled,      // is the symbol name mangled?
2510             eSymbolTypeTrampoline, // Type of this symbol
2511             false,           // Is this globally visible?
2512             false,           // Is this symbol debug info?
2513             true,            // Is this symbol a trampoline?
2514             true,            // Is this symbol artificial?
2515             plt_section_sp,  // Section in which this symbol is defined or null.
2516             plt_index,       // Offset in section or symbol value.
2517             plt_entsize,     // Size in bytes of this symbol.
2518             true,            // Size is valid
2519             false,           // Contains linker annotations?
2520             0);              // Symbol flags.
2521 
2522         symbol_table->AddSymbol(jump_symbol);
2523     }
2524 
2525     return i;
2526 }
2527 
2528 unsigned
2529 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2530                                       user_id_t start_id,
2531                                       const ELFSectionHeaderInfo *rel_hdr,
2532                                       user_id_t rel_id)
2533 {
2534     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2535 
2536     // The link field points to the associated symbol table. The info field
2537     // points to the section holding the plt.
2538     user_id_t symtab_id = rel_hdr->sh_link;
2539     user_id_t plt_id = rel_hdr->sh_info;
2540 
2541     // If the link field doesn't point to the appropriate symbol name table then
2542     // try to find it by name as some compiler don't fill in the link fields.
2543     if (!symtab_id)
2544         symtab_id = GetSectionIndexByName(".dynsym");
2545     if (!plt_id)
2546         plt_id = GetSectionIndexByName(".plt");
2547 
2548     if (!symtab_id || !plt_id)
2549         return 0;
2550 
2551     // Section ID's are ones based;
2552     symtab_id++;
2553     plt_id++;
2554 
2555     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2556     if (!plt_hdr)
2557         return 0;
2558 
2559     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2560     if (!sym_hdr)
2561         return 0;
2562 
2563     SectionList *section_list = m_sections_ap.get();
2564     if (!section_list)
2565         return 0;
2566 
2567     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2568     if (!rel_section)
2569         return 0;
2570 
2571     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2572     if (!plt_section_sp)
2573         return 0;
2574 
2575     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2576     if (!symtab)
2577         return 0;
2578 
2579     // sh_link points to associated string table.
2580     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2581     if (!strtab)
2582         return 0;
2583 
2584     DataExtractor rel_data;
2585     if (!ReadSectionData(rel_section, rel_data))
2586         return 0;
2587 
2588     DataExtractor symtab_data;
2589     if (!ReadSectionData(symtab, symtab_data))
2590         return 0;
2591 
2592     DataExtractor strtab_data;
2593     if (!ReadSectionData(strtab, strtab_data))
2594         return 0;
2595 
2596     unsigned rel_type = PLTRelocationType();
2597     if (!rel_type)
2598         return 0;
2599 
2600     return ParsePLTRelocations (symbol_table,
2601                                 start_id,
2602                                 rel_type,
2603                                 &m_header,
2604                                 rel_hdr,
2605                                 plt_hdr,
2606                                 sym_hdr,
2607                                 plt_section_sp,
2608                                 rel_data,
2609                                 symtab_data,
2610                                 strtab_data);
2611 }
2612 
2613 unsigned
2614 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2615                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2616                 DataExtractor &rel_data, DataExtractor &symtab_data,
2617                 DataExtractor &debug_data, Section* rel_section)
2618 {
2619     ELFRelocation rel(rel_hdr->sh_type);
2620     lldb::addr_t offset = 0;
2621     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2622     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2623     reloc_info_fn reloc_type;
2624     reloc_info_fn reloc_symbol;
2625 
2626     if (hdr->Is32Bit())
2627     {
2628         reloc_type = ELFRelocation::RelocType32;
2629         reloc_symbol = ELFRelocation::RelocSymbol32;
2630     }
2631     else
2632     {
2633         reloc_type = ELFRelocation::RelocType64;
2634         reloc_symbol = ELFRelocation::RelocSymbol64;
2635     }
2636 
2637     for (unsigned i = 0; i < num_relocations; ++i)
2638     {
2639         if (rel.Parse(rel_data, &offset) == false)
2640             break;
2641 
2642         Symbol* symbol = NULL;
2643 
2644         if (hdr->Is32Bit())
2645         {
2646             switch (reloc_type(rel)) {
2647             case R_386_32:
2648             case R_386_PC32:
2649             default:
2650                 assert(false && "unexpected relocation type");
2651             }
2652         } else {
2653             switch (reloc_type(rel)) {
2654             case R_X86_64_64:
2655             {
2656                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2657                 if (symbol)
2658                 {
2659                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2660                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2661                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2662                     *dst = value + ELFRelocation::RelocAddend64(rel);
2663                 }
2664                 break;
2665             }
2666             case R_X86_64_32:
2667             case R_X86_64_32S:
2668             {
2669                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2670                 if (symbol)
2671                 {
2672                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2673                     value += ELFRelocation::RelocAddend32(rel);
2674                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2675                            (reloc_type(rel) == R_X86_64_32S &&
2676                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2677                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2678                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2679                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2680                     *dst = truncated_addr;
2681                 }
2682                 break;
2683             }
2684             case R_X86_64_PC32:
2685             default:
2686                 assert(false && "unexpected relocation type");
2687             }
2688         }
2689     }
2690 
2691     return 0;
2692 }
2693 
2694 unsigned
2695 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2696 {
2697     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2698 
2699     // Parse in the section list if needed.
2700     SectionList *section_list = GetSectionList();
2701     if (!section_list)
2702         return 0;
2703 
2704     // Section ID's are ones based.
2705     user_id_t symtab_id = rel_hdr->sh_link + 1;
2706     user_id_t debug_id = rel_hdr->sh_info + 1;
2707 
2708     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2709     if (!symtab_hdr)
2710         return 0;
2711 
2712     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2713     if (!debug_hdr)
2714         return 0;
2715 
2716     Section *rel = section_list->FindSectionByID(rel_id).get();
2717     if (!rel)
2718         return 0;
2719 
2720     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2721     if (!symtab)
2722         return 0;
2723 
2724     Section *debug = section_list->FindSectionByID(debug_id).get();
2725     if (!debug)
2726         return 0;
2727 
2728     DataExtractor rel_data;
2729     DataExtractor symtab_data;
2730     DataExtractor debug_data;
2731 
2732     if (ReadSectionData(rel, rel_data) &&
2733         ReadSectionData(symtab, symtab_data) &&
2734         ReadSectionData(debug, debug_data))
2735     {
2736         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2737                         rel_data, symtab_data, debug_data, debug);
2738     }
2739 
2740     return 0;
2741 }
2742 
2743 Symtab *
2744 ObjectFileELF::GetSymtab()
2745 {
2746     ModuleSP module_sp(GetModule());
2747     if (!module_sp)
2748         return NULL;
2749 
2750     // We always want to use the main object file so we (hopefully) only have one cached copy
2751     // of our symtab, dynamic sections, etc.
2752     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2753     if (module_obj_file && module_obj_file != this)
2754         return module_obj_file->GetSymtab();
2755 
2756     if (m_symtab_ap.get() == NULL)
2757     {
2758         SectionList *section_list = module_sp->GetSectionList();
2759         if (!section_list)
2760             return NULL;
2761 
2762         uint64_t symbol_id = 0;
2763         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2764 
2765         // Sharable objects and dynamic executables usually have 2 distinct symbol
2766         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2767         // version of the symtab that only contains global symbols. The information found
2768         // in the dynsym is therefore also found in the symtab, while the reverse is not
2769         // necessarily true.
2770         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2771         if (!symtab)
2772         {
2773             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2774             // then use the dynsym section which should always be there.
2775             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2776         }
2777         if (symtab)
2778         {
2779             m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2780             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2781         }
2782 
2783         // DT_JMPREL
2784         //      If present, this entry's d_ptr member holds the address of relocation
2785         //      entries associated solely with the procedure linkage table. Separating
2786         //      these relocation entries lets the dynamic linker ignore them during
2787         //      process initialization, if lazy binding is enabled. If this entry is
2788         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2789         //      also be present.
2790         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2791         if (symbol)
2792         {
2793             // Synthesize trampoline symbols to help navigate the PLT.
2794             addr_t addr = symbol->d_ptr;
2795             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2796             if (reloc_section)
2797             {
2798                 user_id_t reloc_id = reloc_section->GetID();
2799                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2800                 assert(reloc_header);
2801 
2802                 if (m_symtab_ap == nullptr)
2803                     m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2804 
2805                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2806             }
2807         }
2808 
2809         // If we still don't have any symtab then create an empty instance to avoid do the section
2810         // lookup next time.
2811         if (m_symtab_ap == nullptr)
2812             m_symtab_ap.reset(new Symtab(this));
2813 
2814         m_symtab_ap->CalculateSymbolSizes();
2815     }
2816 
2817     for (SectionHeaderCollIter I = m_section_headers.begin();
2818          I != m_section_headers.end(); ++I)
2819     {
2820         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2821         {
2822             if (CalculateType() == eTypeObjectFile)
2823             {
2824                 const char *section_name = I->section_name.AsCString("");
2825                 if (strstr(section_name, ".rela.debug") ||
2826                     strstr(section_name, ".rel.debug"))
2827                 {
2828                     const ELFSectionHeader &reloc_header = *I;
2829                     user_id_t reloc_id = SectionIndex(I);
2830                     RelocateDebugSections(&reloc_header, reloc_id);
2831                 }
2832             }
2833         }
2834     }
2835     return m_symtab_ap.get();
2836 }
2837 
2838 Symbol *
2839 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2840 {
2841     if (!m_symtab_ap.get())
2842         return nullptr; // GetSymtab() should be called first.
2843 
2844     const SectionList *section_list = GetSectionList();
2845     if (!section_list)
2846         return nullptr;
2847 
2848     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2849     {
2850         AddressRange range;
2851         if (eh_frame->GetAddressRange (so_addr, range))
2852         {
2853             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2854             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2855             if (symbol)
2856                 return symbol;
2857 
2858             // Note that a (stripped) symbol won't be found by GetSymtab()...
2859             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2860             if (eh_sym_section_sp.get())
2861             {
2862                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2863                 addr_t offset = file_addr - section_base;
2864                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2865 
2866                 Symbol eh_symbol(
2867                         symbol_id,            // Symbol table index.
2868                         "???",                // Symbol name.
2869                         false,                // Is the symbol name mangled?
2870                         eSymbolTypeCode,      // Type of this symbol.
2871                         true,                 // Is this globally visible?
2872                         false,                // Is this symbol debug info?
2873                         false,                // Is this symbol a trampoline?
2874                         true,                 // Is this symbol artificial?
2875                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2876                         offset,               // Offset in section or symbol value.
2877                         range.GetByteSize(),  // Size in bytes of this symbol.
2878                         true,                 // Size is valid.
2879                         false,                // Contains linker annotations?
2880                         0);                   // Symbol flags.
2881                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2882                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2883             }
2884         }
2885     }
2886     return nullptr;
2887 }
2888 
2889 
2890 bool
2891 ObjectFileELF::IsStripped ()
2892 {
2893     // TODO: determine this for ELF
2894     return false;
2895 }
2896 
2897 //===----------------------------------------------------------------------===//
2898 // Dump
2899 //
2900 // Dump the specifics of the runtime file container (such as any headers
2901 // segments, sections, etc).
2902 //----------------------------------------------------------------------
2903 void
2904 ObjectFileELF::Dump(Stream *s)
2905 {
2906     DumpELFHeader(s, m_header);
2907     s->EOL();
2908     DumpELFProgramHeaders(s);
2909     s->EOL();
2910     DumpELFSectionHeaders(s);
2911     s->EOL();
2912     SectionList *section_list = GetSectionList();
2913     if (section_list)
2914         section_list->Dump(s, NULL, true, UINT32_MAX);
2915     Symtab *symtab = GetSymtab();
2916     if (symtab)
2917         symtab->Dump(s, NULL, eSortOrderNone);
2918     s->EOL();
2919     DumpDependentModules(s);
2920     s->EOL();
2921 }
2922 
2923 //----------------------------------------------------------------------
2924 // DumpELFHeader
2925 //
2926 // Dump the ELF header to the specified output stream
2927 //----------------------------------------------------------------------
2928 void
2929 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2930 {
2931     s->PutCString("ELF Header\n");
2932     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2933     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2934               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2935     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2936               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2937     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2938               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2939 
2940     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2941     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2942     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2943     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2944     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2945 
2946     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2947     DumpELFHeader_e_type(s, header.e_type);
2948     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2949     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2950     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2951     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2952     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2953     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2954     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2955     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2956     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2957     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2958     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2959     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2960 }
2961 
2962 //----------------------------------------------------------------------
2963 // DumpELFHeader_e_type
2964 //
2965 // Dump an token value for the ELF header member e_type
2966 //----------------------------------------------------------------------
2967 void
2968 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2969 {
2970     switch (e_type)
2971     {
2972     case ET_NONE:   *s << "ET_NONE"; break;
2973     case ET_REL:    *s << "ET_REL"; break;
2974     case ET_EXEC:   *s << "ET_EXEC"; break;
2975     case ET_DYN:    *s << "ET_DYN"; break;
2976     case ET_CORE:   *s << "ET_CORE"; break;
2977     default:
2978         break;
2979     }
2980 }
2981 
2982 //----------------------------------------------------------------------
2983 // DumpELFHeader_e_ident_EI_DATA
2984 //
2985 // Dump an token value for the ELF header member e_ident[EI_DATA]
2986 //----------------------------------------------------------------------
2987 void
2988 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2989 {
2990     switch (ei_data)
2991     {
2992     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2993     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2994     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2995     default:
2996         break;
2997     }
2998 }
2999 
3000 
3001 //----------------------------------------------------------------------
3002 // DumpELFProgramHeader
3003 //
3004 // Dump a single ELF program header to the specified output stream
3005 //----------------------------------------------------------------------
3006 void
3007 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
3008 {
3009     DumpELFProgramHeader_p_type(s, ph.p_type);
3010     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
3011     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
3012 
3013     DumpELFProgramHeader_p_flags(s, ph.p_flags);
3014     s->Printf(") %8.8" PRIx64, ph.p_align);
3015 }
3016 
3017 //----------------------------------------------------------------------
3018 // DumpELFProgramHeader_p_type
3019 //
3020 // Dump an token value for the ELF program header member p_type which
3021 // describes the type of the program header
3022 // ----------------------------------------------------------------------
3023 void
3024 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
3025 {
3026     const int kStrWidth = 15;
3027     switch (p_type)
3028     {
3029     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
3030     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
3031     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
3032     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
3033     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
3034     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
3035     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
3036     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
3037     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3038     default:
3039         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
3040         break;
3041     }
3042 }
3043 
3044 
3045 //----------------------------------------------------------------------
3046 // DumpELFProgramHeader_p_flags
3047 //
3048 // Dump an token value for the ELF program header member p_flags
3049 //----------------------------------------------------------------------
3050 void
3051 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
3052 {
3053     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
3054         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3055         << ((p_flags & PF_W) ? "PF_W" : "    ")
3056         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3057         << ((p_flags & PF_R) ? "PF_R" : "    ");
3058 }
3059 
3060 //----------------------------------------------------------------------
3061 // DumpELFProgramHeaders
3062 //
3063 // Dump all of the ELF program header to the specified output stream
3064 //----------------------------------------------------------------------
3065 void
3066 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
3067 {
3068     if (!ParseProgramHeaders())
3069         return;
3070 
3071     s->PutCString("Program Headers\n");
3072     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
3073                   "p_filesz p_memsz  p_flags                   p_align\n");
3074     s->PutCString("==== --------------- -------- -------- -------- "
3075                   "-------- -------- ------------------------- --------\n");
3076 
3077     uint32_t idx = 0;
3078     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
3079          I != m_program_headers.end(); ++I, ++idx)
3080     {
3081         s->Printf("[%2u] ", idx);
3082         ObjectFileELF::DumpELFProgramHeader(s, *I);
3083         s->EOL();
3084     }
3085 }
3086 
3087 //----------------------------------------------------------------------
3088 // DumpELFSectionHeader
3089 //
3090 // Dump a single ELF section header to the specified output stream
3091 //----------------------------------------------------------------------
3092 void
3093 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
3094 {
3095     s->Printf("%8.8x ", sh.sh_name);
3096     DumpELFSectionHeader_sh_type(s, sh.sh_type);
3097     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
3098     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
3099     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
3100     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
3101     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3102 }
3103 
3104 //----------------------------------------------------------------------
3105 // DumpELFSectionHeader_sh_type
3106 //
3107 // Dump an token value for the ELF section header member sh_type which
3108 // describes the type of the section
3109 //----------------------------------------------------------------------
3110 void
3111 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
3112 {
3113     const int kStrWidth = 12;
3114     switch (sh_type)
3115     {
3116     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
3117     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
3118     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
3119     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
3120     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
3121     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
3122     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
3123     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
3124     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
3125     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
3126     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
3127     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
3128     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
3129     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
3130     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
3131     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
3132     default:
3133         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3134         break;
3135     }
3136 }
3137 
3138 //----------------------------------------------------------------------
3139 // DumpELFSectionHeader_sh_flags
3140 //
3141 // Dump an token value for the ELF section header member sh_flags
3142 //----------------------------------------------------------------------
3143 void
3144 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
3145 {
3146     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
3147         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3148         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
3149         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3150         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
3151 }
3152 
3153 //----------------------------------------------------------------------
3154 // DumpELFSectionHeaders
3155 //
3156 // Dump all of the ELF section header to the specified output stream
3157 //----------------------------------------------------------------------
3158 void
3159 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
3160 {
3161     if (!ParseSectionHeaders())
3162         return;
3163 
3164     s->PutCString("Section Headers\n");
3165     s->PutCString("IDX  name     type         flags                            "
3166                   "addr     offset   size     link     info     addralgn "
3167                   "entsize  Name\n");
3168     s->PutCString("==== -------- ------------ -------------------------------- "
3169                   "-------- -------- -------- -------- -------- -------- "
3170                   "-------- ====================\n");
3171 
3172     uint32_t idx = 0;
3173     for (SectionHeaderCollConstIter I = m_section_headers.begin();
3174          I != m_section_headers.end(); ++I, ++idx)
3175     {
3176         s->Printf("[%2u] ", idx);
3177         ObjectFileELF::DumpELFSectionHeader(s, *I);
3178         const char* section_name = I->section_name.AsCString("");
3179         if (section_name)
3180             *s << ' ' << section_name << "\n";
3181     }
3182 }
3183 
3184 void
3185 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
3186 {
3187     size_t num_modules = ParseDependentModules();
3188 
3189     if (num_modules > 0)
3190     {
3191         s->PutCString("Dependent Modules:\n");
3192         for (unsigned i = 0; i < num_modules; ++i)
3193         {
3194             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3195             s->Printf("   %s\n", spec.GetFilename().GetCString());
3196         }
3197     }
3198 }
3199 
3200 bool
3201 ObjectFileELF::GetArchitecture (ArchSpec &arch)
3202 {
3203     if (!ParseHeader())
3204         return false;
3205 
3206     if (m_section_headers.empty())
3207     {
3208         // Allow elf notes to be parsed which may affect the detected architecture.
3209         ParseSectionHeaders();
3210     }
3211 
3212     if (CalculateType() == eTypeCoreFile && m_arch_spec.TripleOSIsUnspecifiedUnknown())
3213     {
3214         // Core files don't have section headers yet they have PT_NOTE program headers
3215         // that might shed more light on the architecture
3216         if (ParseProgramHeaders())
3217         {
3218             for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i)
3219             {
3220                 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i);
3221                 if (header && header->p_type == PT_NOTE && header->p_offset != 0 && header->p_filesz > 0)
3222                 {
3223                     DataExtractor data;
3224                     if (data.SetData (m_data, header->p_offset, header->p_filesz) == header->p_filesz)
3225                     {
3226                         lldb_private::UUID uuid;
3227                         RefineModuleDetailsFromNote (data, m_arch_spec, uuid);
3228                     }
3229                 }
3230             }
3231         }
3232     }
3233     arch = m_arch_spec;
3234     return true;
3235 }
3236 
3237 ObjectFile::Type
3238 ObjectFileELF::CalculateType()
3239 {
3240     switch (m_header.e_type)
3241     {
3242         case llvm::ELF::ET_NONE:
3243             // 0 - No file type
3244             return eTypeUnknown;
3245 
3246         case llvm::ELF::ET_REL:
3247             // 1 - Relocatable file
3248             return eTypeObjectFile;
3249 
3250         case llvm::ELF::ET_EXEC:
3251             // 2 - Executable file
3252             return eTypeExecutable;
3253 
3254         case llvm::ELF::ET_DYN:
3255             // 3 - Shared object file
3256             return eTypeSharedLibrary;
3257 
3258         case ET_CORE:
3259             // 4 - Core file
3260             return eTypeCoreFile;
3261 
3262         default:
3263             break;
3264     }
3265     return eTypeUnknown;
3266 }
3267 
3268 ObjectFile::Strata
3269 ObjectFileELF::CalculateStrata()
3270 {
3271     switch (m_header.e_type)
3272     {
3273         case llvm::ELF::ET_NONE:
3274             // 0 - No file type
3275             return eStrataUnknown;
3276 
3277         case llvm::ELF::ET_REL:
3278             // 1 - Relocatable file
3279             return eStrataUnknown;
3280 
3281         case llvm::ELF::ET_EXEC:
3282             // 2 - Executable file
3283             // TODO: is there any way to detect that an executable is a kernel
3284             // related executable by inspecting the program headers, section
3285             // headers, symbols, or any other flag bits???
3286             return eStrataUser;
3287 
3288         case llvm::ELF::ET_DYN:
3289             // 3 - Shared object file
3290             // TODO: is there any way to detect that an shared library is a kernel
3291             // related executable by inspecting the program headers, section
3292             // headers, symbols, or any other flag bits???
3293             return eStrataUnknown;
3294 
3295         case ET_CORE:
3296             // 4 - Core file
3297             // TODO: is there any way to detect that an core file is a kernel
3298             // related executable by inspecting the program headers, section
3299             // headers, symbols, or any other flag bits???
3300             return eStrataUnknown;
3301 
3302         default:
3303             break;
3304     }
3305     return eStrataUnknown;
3306 }
3307 
3308