xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision 3df471c32de4bba7395662f01e2036ff45e40e18)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 #include "lldb/Host/HostInfo.h"
31 
32 #include "llvm/ADT/PointerUnion.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/Support/MathExtras.h"
35 
36 #define CASE_AND_STREAM(s, def, width)                  \
37     case def: s->Printf("%-*s", width, #def); break;
38 
39 using namespace lldb;
40 using namespace lldb_private;
41 using namespace elf;
42 using namespace llvm::ELF;
43 
44 namespace {
45 
46 // ELF note owner definitions
47 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
48 const char *const LLDB_NT_OWNER_GNU     = "GNU";
49 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
50 const char *const LLDB_NT_OWNER_CSR     = "csr";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = LLDB_INVALID_CPUTYPE;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_64:
294             if (endian == ELFDATA2LSB)
295                 arch_variant = llvm::Triple::mips64el;
296             else
297                 arch_variant = llvm::Triple::mips64;
298             break;
299 
300         default:
301             break;
302     }
303 
304     return arch_variant;
305 }
306 
307 static uint32_t
308 subTypeFromElfHeader(const elf::ELFHeader& header)
309 {
310     if (header.e_machine == llvm::ELF::EM_MIPS)
311         return mipsVariantFromElfFlags (header.e_flags,
312             header.e_ident[EI_DATA]);
313 
314     return
315         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
316         kalimbaVariantFromElfFlags(header.e_flags) :
317         LLDB_INVALID_CPUTYPE;
318 }
319 
320 //! The kalimba toolchain identifies a code section as being
321 //! one with the SHT_PROGBITS set in the section sh_type and the top
322 //! bit in the 32-bit address field set.
323 static lldb::SectionType
324 kalimbaSectionType(
325     const elf::ELFHeader& header,
326     const elf::ELFSectionHeader& sect_hdr)
327 {
328     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
329     {
330         return eSectionTypeOther;
331     }
332 
333     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
334     {
335         return eSectionTypeZeroFill;
336     }
337 
338     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
339     {
340         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
341         return KAL_CODE_BIT & sect_hdr.sh_addr ?
342              eSectionTypeCode  : eSectionTypeData;
343     }
344 
345     return eSectionTypeOther;
346 }
347 
348 // Arbitrary constant used as UUID prefix for core files.
349 const uint32_t
350 ObjectFileELF::g_core_uuid_magic(0xE210C);
351 
352 //------------------------------------------------------------------
353 // Static methods.
354 //------------------------------------------------------------------
355 void
356 ObjectFileELF::Initialize()
357 {
358     PluginManager::RegisterPlugin(GetPluginNameStatic(),
359                                   GetPluginDescriptionStatic(),
360                                   CreateInstance,
361                                   CreateMemoryInstance,
362                                   GetModuleSpecifications);
363 }
364 
365 void
366 ObjectFileELF::Terminate()
367 {
368     PluginManager::UnregisterPlugin(CreateInstance);
369 }
370 
371 lldb_private::ConstString
372 ObjectFileELF::GetPluginNameStatic()
373 {
374     static ConstString g_name("elf");
375     return g_name;
376 }
377 
378 const char *
379 ObjectFileELF::GetPluginDescriptionStatic()
380 {
381     return "ELF object file reader.";
382 }
383 
384 ObjectFile *
385 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
386                                DataBufferSP &data_sp,
387                                lldb::offset_t data_offset,
388                                const lldb_private::FileSpec* file,
389                                lldb::offset_t file_offset,
390                                lldb::offset_t length)
391 {
392     if (!data_sp)
393     {
394         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
395         data_offset = 0;
396     }
397 
398     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
399     {
400         const uint8_t *magic = data_sp->GetBytes() + data_offset;
401         if (ELFHeader::MagicBytesMatch(magic))
402         {
403             // Update the data to contain the entire file if it doesn't already
404             if (data_sp->GetByteSize() < length) {
405                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
406                 data_offset = 0;
407                 magic = data_sp->GetBytes();
408             }
409             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
410             if (address_size == 4 || address_size == 8)
411             {
412                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
413                 ArchSpec spec;
414                 if (objfile_ap->GetArchitecture(spec) &&
415                     objfile_ap->SetModulesArchitecture(spec))
416                     return objfile_ap.release();
417             }
418         }
419     }
420     return NULL;
421 }
422 
423 
424 ObjectFile*
425 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
426                                      DataBufferSP& data_sp,
427                                      const lldb::ProcessSP &process_sp,
428                                      lldb::addr_t header_addr)
429 {
430     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
431     {
432         const uint8_t *magic = data_sp->GetBytes();
433         if (ELFHeader::MagicBytesMatch(magic))
434         {
435             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
436             if (address_size == 4 || address_size == 8)
437             {
438                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
439                 ArchSpec spec;
440                 if (objfile_ap->GetArchitecture(spec) &&
441                     objfile_ap->SetModulesArchitecture(spec))
442                     return objfile_ap.release();
443             }
444         }
445     }
446     return NULL;
447 }
448 
449 bool
450 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
451                                   lldb::addr_t data_offset,
452                                   lldb::addr_t data_length)
453 {
454     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
455     {
456         const uint8_t *magic = data_sp->GetBytes() + data_offset;
457         return ELFHeader::MagicBytesMatch(magic);
458     }
459     return false;
460 }
461 
462 /*
463  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
464  *
465  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
466  *   code or tables extracted from it, as desired without restriction.
467  */
468 static uint32_t
469 calc_crc32(uint32_t crc, const void *buf, size_t size)
470 {
471     static const uint32_t g_crc32_tab[] =
472     {
473         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
474         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
475         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
476         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
477         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
478         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
479         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
480         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
481         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
482         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
483         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
484         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
485         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
486         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
487         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
488         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
489         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
490         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
491         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
492         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
493         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
494         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
495         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
496         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
497         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
498         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
499         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
500         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
501         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
502         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
503         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
504         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
505         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
506         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
507         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
508         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
509         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
510         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
511         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
512         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
513         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
514         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
515         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
516     };
517     const uint8_t *p = (const uint8_t *)buf;
518 
519     crc = crc ^ ~0U;
520     while (size--)
521         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
522     return crc ^ ~0U;
523 }
524 
525 static uint32_t
526 calc_gnu_debuglink_crc32(const void *buf, size_t size)
527 {
528     return calc_crc32(0U, buf, size);
529 }
530 
531 uint32_t
532 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
533                                                DataExtractor& object_data)
534 {
535     typedef ProgramHeaderCollConstIter Iter;
536 
537     uint32_t core_notes_crc = 0;
538 
539     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
540     {
541         if (I->p_type == llvm::ELF::PT_NOTE)
542         {
543             const elf_off ph_offset = I->p_offset;
544             const size_t ph_size = I->p_filesz;
545 
546             DataExtractor segment_data;
547             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
548             {
549                 // The ELF program header contained incorrect data,
550                 // probably corefile is incomplete or corrupted.
551                 break;
552             }
553 
554             core_notes_crc = calc_crc32(core_notes_crc,
555                                         segment_data.GetDataStart(),
556                                         segment_data.GetByteSize());
557         }
558     }
559 
560     return core_notes_crc;
561 }
562 
563 static const char*
564 OSABIAsCString (unsigned char osabi_byte)
565 {
566 #define _MAKE_OSABI_CASE(x) case x: return #x
567     switch (osabi_byte)
568     {
569         _MAKE_OSABI_CASE(ELFOSABI_NONE);
570         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
571         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
572         _MAKE_OSABI_CASE(ELFOSABI_GNU);
573         _MAKE_OSABI_CASE(ELFOSABI_HURD);
574         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
575         _MAKE_OSABI_CASE(ELFOSABI_AIX);
576         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
577         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
578         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
579         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
580         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
581         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
582         _MAKE_OSABI_CASE(ELFOSABI_NSK);
583         _MAKE_OSABI_CASE(ELFOSABI_AROS);
584         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
585         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
586         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
587         _MAKE_OSABI_CASE(ELFOSABI_ARM);
588         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
589         default:
590             return "<unknown-osabi>";
591     }
592 #undef _MAKE_OSABI_CASE
593 }
594 
595 static bool
596 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
597 {
598     switch (osabi_byte)
599     {
600         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
601         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
602         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
603         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
604         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
605         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
606         default:
607             ostype = llvm::Triple::OSType::UnknownOS;
608     }
609     return ostype != llvm::Triple::OSType::UnknownOS;
610 }
611 
612 size_t
613 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
614                                         lldb::DataBufferSP& data_sp,
615                                         lldb::offset_t data_offset,
616                                         lldb::offset_t file_offset,
617                                         lldb::offset_t length,
618                                         lldb_private::ModuleSpecList &specs)
619 {
620     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
621 
622     const size_t initial_count = specs.GetSize();
623 
624     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
625     {
626         DataExtractor data;
627         data.SetData(data_sp);
628         elf::ELFHeader header;
629         if (header.Parse(data, &data_offset))
630         {
631             if (data_sp)
632             {
633                 ModuleSpec spec (file);
634 
635                 const uint32_t sub_type = subTypeFromElfHeader(header);
636                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
637                                                        header.e_machine,
638                                                        sub_type);
639 
640                 if (spec.GetArchitecture().IsValid())
641                 {
642                     llvm::Triple::OSType ostype;
643                     // First try to determine the OS type from the OSABI field in the elf header.
644 
645                     if (log)
646                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
647                     if (GetOsFromOSABI (header.e_ident[EI_OSABI], ostype) && ostype != llvm::Triple::OSType::UnknownOS)
648                     {
649                         spec.GetArchitecture ().GetTriple ().setOS (ostype);
650 
651                         // Also clear the vendor so we don't end up with situations like
652                         // x86_64-apple-FreeBSD.
653                         spec.GetArchitecture ().GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
654 
655                         if (log)
656                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
657                     }
658 
659                     // Try to get the UUID from the section list. Usually that's at the end, so
660                     // map the file in if we don't have it already.
661                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
662                     if (section_header_end > data_sp->GetByteSize())
663                     {
664                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
665                         data.SetData(data_sp);
666                     }
667 
668                     uint32_t gnu_debuglink_crc = 0;
669                     std::string gnu_debuglink_file;
670                     SectionHeaderColl section_headers;
671                     lldb_private::UUID &uuid = spec.GetUUID();
672 
673                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
674 
675                     // If the module vendor is not set and the module OS matches this host OS, set the module vendor to the host vendor.
676                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
677                     if (spec_triple.getVendor () == llvm::Triple::VendorType::UnknownVendor)
678                     {
679                         const llvm::Triple &host_triple = HostInfo::GetArchitecture().GetTriple();
680                         if (spec_triple.getOS () == host_triple.getOS ())
681                             spec_triple.setVendor (host_triple.getVendor ());
682                     }
683 
684                     if (log)
685                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
686 
687                     if (!uuid.IsValid())
688                     {
689                         uint32_t core_notes_crc = 0;
690 
691                         if (!gnu_debuglink_crc)
692                         {
693                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
694                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
695                                                               file.GetLastPathComponent().AsCString(),
696                                                               (file.GetByteSize()-file_offset)/1024);
697 
698                             // For core files - which usually don't happen to have a gnu_debuglink,
699                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
700                             // Thus we will need to fallback to something simpler.
701                             if (header.e_type == llvm::ELF::ET_CORE)
702                             {
703                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
704                                 if (program_headers_end > data_sp->GetByteSize())
705                                 {
706                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
707                                     data.SetData(data_sp);
708                                 }
709                                 ProgramHeaderColl program_headers;
710                                 GetProgramHeaderInfo(program_headers, data, header);
711 
712                                 size_t segment_data_end = 0;
713                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
714                                      I != program_headers.end(); ++I)
715                                 {
716                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
717                                 }
718 
719                                 if (segment_data_end > data_sp->GetByteSize())
720                                 {
721                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
722                                     data.SetData(data_sp);
723                                 }
724 
725                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
726                             }
727                             else
728                             {
729                                 // Need to map entire file into memory to calculate the crc.
730                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
731                                 data.SetData(data_sp);
732                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
733                             }
734                         }
735                         if (gnu_debuglink_crc)
736                         {
737                             // Use 4 bytes of crc from the .gnu_debuglink section.
738                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
739                             uuid.SetBytes (uuidt, sizeof(uuidt));
740                         }
741                         else if (core_notes_crc)
742                         {
743                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
744                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
745                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
746                             uuid.SetBytes (uuidt, sizeof(uuidt));
747                         }
748                     }
749 
750                     specs.Append(spec);
751                 }
752             }
753         }
754     }
755 
756     return specs.GetSize() - initial_count;
757 }
758 
759 //------------------------------------------------------------------
760 // PluginInterface protocol
761 //------------------------------------------------------------------
762 lldb_private::ConstString
763 ObjectFileELF::GetPluginName()
764 {
765     return GetPluginNameStatic();
766 }
767 
768 uint32_t
769 ObjectFileELF::GetPluginVersion()
770 {
771     return m_plugin_version;
772 }
773 //------------------------------------------------------------------
774 // ObjectFile protocol
775 //------------------------------------------------------------------
776 
777 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
778                               DataBufferSP& data_sp,
779                               lldb::offset_t data_offset,
780                               const FileSpec* file,
781                               lldb::offset_t file_offset,
782                               lldb::offset_t length) :
783     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
784     m_header(),
785     m_uuid(),
786     m_gnu_debuglink_file(),
787     m_gnu_debuglink_crc(0),
788     m_program_headers(),
789     m_section_headers(),
790     m_dynamic_symbols(),
791     m_filespec_ap(),
792     m_entry_point_address(),
793     m_arch_spec()
794 {
795     if (file)
796         m_file = *file;
797     ::memset(&m_header, 0, sizeof(m_header));
798 }
799 
800 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
801                               DataBufferSP& data_sp,
802                               const lldb::ProcessSP &process_sp,
803                               addr_t header_addr) :
804     ObjectFile(module_sp, process_sp, LLDB_INVALID_ADDRESS, data_sp),
805     m_header(),
806     m_uuid(),
807     m_gnu_debuglink_file(),
808     m_gnu_debuglink_crc(0),
809     m_program_headers(),
810     m_section_headers(),
811     m_dynamic_symbols(),
812     m_filespec_ap(),
813     m_entry_point_address(),
814     m_arch_spec()
815 {
816     ::memset(&m_header, 0, sizeof(m_header));
817 }
818 
819 ObjectFileELF::~ObjectFileELF()
820 {
821 }
822 
823 bool
824 ObjectFileELF::IsExecutable() const
825 {
826     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
827 }
828 
829 bool
830 ObjectFileELF::SetLoadAddress (Target &target,
831                                lldb::addr_t value,
832                                bool value_is_offset)
833 {
834     ModuleSP module_sp = GetModule();
835     if (module_sp)
836     {
837         size_t num_loaded_sections = 0;
838         SectionList *section_list = GetSectionList ();
839         if (section_list)
840         {
841             if (value_is_offset)
842             {
843                 const size_t num_sections = section_list->GetSize();
844                 size_t sect_idx = 0;
845 
846                 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
847                 {
848                     // Iterate through the object file sections to find all
849                     // of the sections that have SHF_ALLOC in their flag bits.
850                     SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
851                     // if (section_sp && !section_sp->IsThreadSpecific())
852                     if (section_sp && section_sp->Test(SHF_ALLOC))
853                     {
854                         if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value))
855                             ++num_loaded_sections;
856                     }
857                 }
858                 return num_loaded_sections > 0;
859             }
860             else
861             {
862                 // Not sure how to slide an ELF file given the base address
863                 // of the ELF file in memory
864             }
865         }
866     }
867     return false; // If it changed
868 }
869 
870 ByteOrder
871 ObjectFileELF::GetByteOrder() const
872 {
873     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
874         return eByteOrderBig;
875     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
876         return eByteOrderLittle;
877     return eByteOrderInvalid;
878 }
879 
880 uint32_t
881 ObjectFileELF::GetAddressByteSize() const
882 {
883     return m_data.GetAddressByteSize();
884 }
885 
886 // Top 16 bits of the `Symbol` flags are available.
887 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
888 
889 AddressClass
890 ObjectFileELF::GetAddressClass (addr_t file_addr)
891 {
892     auto res = ObjectFile::GetAddressClass (file_addr);
893 
894     if (res != eAddressClassCode)
895         return res;
896 
897     ArchSpec arch_spec;
898     GetArchitecture(arch_spec);
899     if (arch_spec.GetMachine() != llvm::Triple::arm)
900         return res;
901 
902     auto symtab = GetSymtab();
903     if (symtab == nullptr)
904         return res;
905 
906     auto symbol = symtab->FindSymbolContainingFileAddress(file_addr);
907     if (symbol == nullptr)
908         return res;
909 
910     // Thumb symbols have the lower bit set in the flags field so we just check
911     // for that.
912     if (symbol->GetFlags() & ARM_ELF_SYM_IS_THUMB)
913         res = eAddressClassCodeAlternateISA;
914 
915     return res;
916 }
917 
918 size_t
919 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
920 {
921     return std::distance(m_section_headers.begin(), I) + 1u;
922 }
923 
924 size_t
925 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
926 {
927     return std::distance(m_section_headers.begin(), I) + 1u;
928 }
929 
930 bool
931 ObjectFileELF::ParseHeader()
932 {
933     lldb::offset_t offset = 0;
934     return m_header.Parse(m_data, &offset);
935 }
936 
937 bool
938 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
939 {
940     // Need to parse the section list to get the UUIDs, so make sure that's been done.
941     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
942         return false;
943 
944     if (m_uuid.IsValid())
945     {
946         // We have the full build id uuid.
947         *uuid = m_uuid;
948         return true;
949     }
950     else if (GetType() == ObjectFile::eTypeCoreFile)
951     {
952         uint32_t core_notes_crc = 0;
953 
954         if (!ParseProgramHeaders())
955             return false;
956 
957         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
958 
959         if (core_notes_crc)
960         {
961             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
962             // look different form .gnu_debuglink crc - followed by 4 bytes of note
963             // segments crc.
964             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
965             m_uuid.SetBytes (uuidt, sizeof(uuidt));
966         }
967     }
968     else
969     {
970         if (!m_gnu_debuglink_crc)
971             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
972         if (m_gnu_debuglink_crc)
973         {
974             // Use 4 bytes of crc from the .gnu_debuglink section.
975             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
976             m_uuid.SetBytes (uuidt, sizeof(uuidt));
977         }
978     }
979 
980     if (m_uuid.IsValid())
981     {
982         *uuid = m_uuid;
983         return true;
984     }
985 
986     return false;
987 }
988 
989 lldb_private::FileSpecList
990 ObjectFileELF::GetDebugSymbolFilePaths()
991 {
992     FileSpecList file_spec_list;
993 
994     if (!m_gnu_debuglink_file.empty())
995     {
996         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
997         file_spec_list.Append (file_spec);
998     }
999     return file_spec_list;
1000 }
1001 
1002 uint32_t
1003 ObjectFileELF::GetDependentModules(FileSpecList &files)
1004 {
1005     size_t num_modules = ParseDependentModules();
1006     uint32_t num_specs = 0;
1007 
1008     for (unsigned i = 0; i < num_modules; ++i)
1009     {
1010         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1011             num_specs++;
1012     }
1013 
1014     return num_specs;
1015 }
1016 
1017 Address
1018 ObjectFileELF::GetImageInfoAddress(Target *target)
1019 {
1020     if (!ParseDynamicSymbols())
1021         return Address();
1022 
1023     SectionList *section_list = GetSectionList();
1024     if (!section_list)
1025         return Address();
1026 
1027     // Find the SHT_DYNAMIC (.dynamic) section.
1028     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1029     if (!dynsym_section_sp)
1030         return Address();
1031     assert (dynsym_section_sp->GetObjectFile() == this);
1032 
1033     user_id_t dynsym_id = dynsym_section_sp->GetID();
1034     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1035     if (!dynsym_hdr)
1036         return Address();
1037 
1038     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1039     {
1040         ELFDynamic &symbol = m_dynamic_symbols[i];
1041 
1042         if (symbol.d_tag == DT_DEBUG)
1043         {
1044             // Compute the offset as the number of previous entries plus the
1045             // size of d_tag.
1046             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1047             return Address(dynsym_section_sp, offset);
1048         }
1049         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1050         {
1051             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1052             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1053             if (dyn_base == LLDB_INVALID_ADDRESS)
1054                 return Address();
1055             Address addr;
1056             Error error;
1057             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1058                 return addr;
1059         }
1060     }
1061 
1062     return Address();
1063 }
1064 
1065 lldb_private::Address
1066 ObjectFileELF::GetEntryPointAddress ()
1067 {
1068     if (m_entry_point_address.IsValid())
1069         return m_entry_point_address;
1070 
1071     if (!ParseHeader() || !IsExecutable())
1072         return m_entry_point_address;
1073 
1074     SectionList *section_list = GetSectionList();
1075     addr_t offset = m_header.e_entry;
1076 
1077     if (!section_list)
1078         m_entry_point_address.SetOffset(offset);
1079     else
1080         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1081     return m_entry_point_address;
1082 }
1083 
1084 //----------------------------------------------------------------------
1085 // ParseDependentModules
1086 //----------------------------------------------------------------------
1087 size_t
1088 ObjectFileELF::ParseDependentModules()
1089 {
1090     if (m_filespec_ap.get())
1091         return m_filespec_ap->GetSize();
1092 
1093     m_filespec_ap.reset(new FileSpecList());
1094 
1095     if (!ParseSectionHeaders())
1096         return 0;
1097 
1098     SectionList *section_list = GetSectionList();
1099     if (!section_list)
1100         return 0;
1101 
1102     // Find the SHT_DYNAMIC section.
1103     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1104     if (!dynsym)
1105         return 0;
1106     assert (dynsym->GetObjectFile() == this);
1107 
1108     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1109     if (!header)
1110         return 0;
1111     // sh_link: section header index of string table used by entries in the section.
1112     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1113     if (!dynstr)
1114         return 0;
1115 
1116     DataExtractor dynsym_data;
1117     DataExtractor dynstr_data;
1118     if (ReadSectionData(dynsym, dynsym_data) &&
1119         ReadSectionData(dynstr, dynstr_data))
1120     {
1121         ELFDynamic symbol;
1122         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1123         lldb::offset_t offset = 0;
1124 
1125         // The only type of entries we are concerned with are tagged DT_NEEDED,
1126         // yielding the name of a required library.
1127         while (offset < section_size)
1128         {
1129             if (!symbol.Parse(dynsym_data, &offset))
1130                 break;
1131 
1132             if (symbol.d_tag != DT_NEEDED)
1133                 continue;
1134 
1135             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1136             const char *lib_name = dynstr_data.PeekCStr(str_index);
1137             m_filespec_ap->Append(FileSpec(lib_name, true));
1138         }
1139     }
1140 
1141     return m_filespec_ap->GetSize();
1142 }
1143 
1144 //----------------------------------------------------------------------
1145 // GetProgramHeaderInfo
1146 //----------------------------------------------------------------------
1147 size_t
1148 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1149                                     DataExtractor &object_data,
1150                                     const ELFHeader &header)
1151 {
1152     // We have already parsed the program headers
1153     if (!program_headers.empty())
1154         return program_headers.size();
1155 
1156     // If there are no program headers to read we are done.
1157     if (header.e_phnum == 0)
1158         return 0;
1159 
1160     program_headers.resize(header.e_phnum);
1161     if (program_headers.size() != header.e_phnum)
1162         return 0;
1163 
1164     const size_t ph_size = header.e_phnum * header.e_phentsize;
1165     const elf_off ph_offset = header.e_phoff;
1166     DataExtractor data;
1167     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1168         return 0;
1169 
1170     uint32_t idx;
1171     lldb::offset_t offset;
1172     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1173     {
1174         if (program_headers[idx].Parse(data, &offset) == false)
1175             break;
1176     }
1177 
1178     if (idx < program_headers.size())
1179         program_headers.resize(idx);
1180 
1181     return program_headers.size();
1182 
1183 }
1184 
1185 //----------------------------------------------------------------------
1186 // ParseProgramHeaders
1187 //----------------------------------------------------------------------
1188 size_t
1189 ObjectFileELF::ParseProgramHeaders()
1190 {
1191     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1192 }
1193 
1194 lldb_private::Error
1195 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1196 {
1197     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1198     Error error;
1199 
1200     lldb::offset_t offset = 0;
1201 
1202     while (true)
1203     {
1204         // Parse the note header.  If this fails, bail out.
1205         ELFNote note = ELFNote();
1206         if (!note.Parse(data, &offset))
1207         {
1208             // We're done.
1209             return error;
1210         }
1211 
1212         // If a tag processor handles the tag, it should set processed to true, and
1213         // the loop will assume the tag processing has moved entirely past the note's payload.
1214         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1215         bool processed = false;
1216 
1217         if (log)
1218             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1219 
1220         // Process FreeBSD ELF notes.
1221         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1222             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1223             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1224         {
1225             // We'll consume the payload below.
1226             processed = true;
1227 
1228             // Pull out the min version info.
1229             uint32_t version_info;
1230             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1231             {
1232                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1233                 return error;
1234             }
1235 
1236             // Convert the version info into a major/minor number.
1237             const uint32_t version_major = version_info / 100000;
1238             const uint32_t version_minor = (version_info / 1000) % 100;
1239 
1240             char os_name[32];
1241             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1242 
1243             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1244             arch_spec.GetTriple ().setOSName (os_name);
1245             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1246 
1247             if (log)
1248                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1249         }
1250         // Process GNU ELF notes.
1251         else if (note.n_name == LLDB_NT_OWNER_GNU)
1252         {
1253             switch (note.n_type)
1254             {
1255                 case LLDB_NT_GNU_ABI_TAG:
1256                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1257                     {
1258                         // We'll consume the payload below.
1259                         processed = true;
1260 
1261                         // Pull out the min OS version supporting the ABI.
1262                         uint32_t version_info[4];
1263                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1264                         {
1265                             error.SetErrorString ("failed to read GNU ABI note payload");
1266                             return error;
1267                         }
1268 
1269                         // Set the OS per the OS field.
1270                         switch (version_info[0])
1271                         {
1272                             case LLDB_NT_GNU_ABI_OS_LINUX:
1273                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1274                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1275                                 if (log)
1276                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1277                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1278                                 break;
1279                             case LLDB_NT_GNU_ABI_OS_HURD:
1280                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1281                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1282                                 if (log)
1283                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1284                                 break;
1285                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1286                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1287                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1288                                 if (log)
1289                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1290                                 break;
1291                             default:
1292                                 if (log)
1293                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1294                                 break;
1295                         }
1296                     }
1297                     break;
1298 
1299                 case LLDB_NT_GNU_BUILD_ID_TAG:
1300                     // Only bother processing this if we don't already have the uuid set.
1301                     if (!uuid.IsValid())
1302                     {
1303                         // We'll consume the payload below.
1304                         processed = true;
1305 
1306                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1307                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1308                         {
1309                             uint8_t uuidbuf[20];
1310                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1311                             {
1312                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1313                                 return error;
1314                             }
1315 
1316                             // Save the build id as the UUID for the module.
1317                             uuid.SetBytes (uuidbuf, note.n_descsz);
1318                         }
1319                     }
1320                     break;
1321             }
1322         }
1323         // Process NetBSD ELF notes.
1324         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1325                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1326                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1327         {
1328 
1329             // We'll consume the payload below.
1330             processed = true;
1331 
1332             // Pull out the min version info.
1333             uint32_t version_info;
1334             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1335             {
1336                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1337                 return error;
1338             }
1339 
1340             // Set the elf OS version to NetBSD.  Also clear the vendor.
1341             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1342             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1343 
1344             if (log)
1345                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1346         }
1347         // Process CSR kalimba notes
1348         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1349                 (note.n_name == LLDB_NT_OWNER_CSR))
1350         {
1351             // We'll consume the payload below.
1352             processed = true;
1353             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1354             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1355 
1356             // TODO At some point the description string could be processed.
1357             // It could provide a steer towards the kalimba variant which
1358             // this ELF targets.
1359             if(note.n_descsz)
1360             {
1361                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1362                 (void)cstr;
1363             }
1364         }
1365 
1366         if (!processed)
1367             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1368     }
1369 
1370     return error;
1371 }
1372 
1373 
1374 //----------------------------------------------------------------------
1375 // GetSectionHeaderInfo
1376 //----------------------------------------------------------------------
1377 size_t
1378 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1379                                     lldb_private::DataExtractor &object_data,
1380                                     const elf::ELFHeader &header,
1381                                     lldb_private::UUID &uuid,
1382                                     std::string &gnu_debuglink_file,
1383                                     uint32_t &gnu_debuglink_crc,
1384                                     ArchSpec &arch_spec)
1385 {
1386     // Don't reparse the section headers if we already did that.
1387     if (!section_headers.empty())
1388         return section_headers.size();
1389 
1390     // Only initialize the arch_spec to okay defaults if they're not already set.
1391     // We'll refine this with note data as we parse the notes.
1392     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1393     {
1394         const uint32_t sub_type = subTypeFromElfHeader(header);
1395         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type);
1396 
1397         switch (arch_spec.GetAddressByteSize())
1398         {
1399         case 4:
1400             {
1401                 const ArchSpec host_arch32 = HostInfo::GetArchitecture(HostInfo::eArchKind32);
1402                 if (host_arch32.GetCore() == arch_spec.GetCore())
1403                 {
1404                     arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data());
1405                     arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data());
1406                 }
1407             }
1408             break;
1409         case 8:
1410             {
1411                 const ArchSpec host_arch64 = HostInfo::GetArchitecture(HostInfo::eArchKind64);
1412                 if (host_arch64.GetCore() == arch_spec.GetCore())
1413                 {
1414                     arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data());
1415                     arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data());
1416                 }
1417             }
1418             break;
1419         }
1420     }
1421 
1422     // If there are no section headers we are done.
1423     if (header.e_shnum == 0)
1424         return 0;
1425 
1426     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1427 
1428     section_headers.resize(header.e_shnum);
1429     if (section_headers.size() != header.e_shnum)
1430         return 0;
1431 
1432     const size_t sh_size = header.e_shnum * header.e_shentsize;
1433     const elf_off sh_offset = header.e_shoff;
1434     DataExtractor sh_data;
1435     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1436         return 0;
1437 
1438     uint32_t idx;
1439     lldb::offset_t offset;
1440     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1441     {
1442         if (section_headers[idx].Parse(sh_data, &offset) == false)
1443             break;
1444     }
1445     if (idx < section_headers.size())
1446         section_headers.resize(idx);
1447 
1448     const unsigned strtab_idx = header.e_shstrndx;
1449     if (strtab_idx && strtab_idx < section_headers.size())
1450     {
1451         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1452         const size_t byte_size = sheader.sh_size;
1453         const Elf64_Off offset = sheader.sh_offset;
1454         lldb_private::DataExtractor shstr_data;
1455 
1456         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1457         {
1458             for (SectionHeaderCollIter I = section_headers.begin();
1459                  I != section_headers.end(); ++I)
1460             {
1461                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1462                 const ELFSectionHeaderInfo &header = *I;
1463                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1464                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1465 
1466                 I->section_name = name;
1467 
1468                 if (name == g_sect_name_gnu_debuglink)
1469                 {
1470                     DataExtractor data;
1471                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1472                     {
1473                         lldb::offset_t gnu_debuglink_offset = 0;
1474                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1475                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1476                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1477                     }
1478                 }
1479 
1480                 // Process ELF note section entries.
1481                 if (header.sh_type == SHT_NOTE)
1482                 {
1483                     // Allow notes to refine module info.
1484                     DataExtractor data;
1485                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1486                     {
1487                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1488                         if (error.Fail ())
1489                         {
1490                             if (log)
1491                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1492                         }
1493                     }
1494                 }
1495             }
1496 
1497             return section_headers.size();
1498         }
1499     }
1500 
1501     section_headers.clear();
1502     return 0;
1503 }
1504 
1505 size_t
1506 ObjectFileELF::GetProgramHeaderCount()
1507 {
1508     return ParseProgramHeaders();
1509 }
1510 
1511 const elf::ELFProgramHeader *
1512 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1513 {
1514     if (!id || !ParseProgramHeaders())
1515         return NULL;
1516 
1517     if (--id < m_program_headers.size())
1518         return &m_program_headers[id];
1519 
1520     return NULL;
1521 }
1522 
1523 DataExtractor
1524 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1525 {
1526     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1527     if (segment_header == NULL)
1528         return DataExtractor();
1529     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1530 }
1531 
1532 std::string
1533 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1534 {
1535     size_t pos = symbol_name.find("@");
1536     return symbol_name.substr(0, pos).str();
1537 }
1538 
1539 //----------------------------------------------------------------------
1540 // ParseSectionHeaders
1541 //----------------------------------------------------------------------
1542 size_t
1543 ObjectFileELF::ParseSectionHeaders()
1544 {
1545     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1546 }
1547 
1548 const ObjectFileELF::ELFSectionHeaderInfo *
1549 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1550 {
1551     if (!id || !ParseSectionHeaders())
1552         return NULL;
1553 
1554     if (--id < m_section_headers.size())
1555         return &m_section_headers[id];
1556 
1557     return NULL;
1558 }
1559 
1560 void
1561 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1562 {
1563     if (!m_sections_ap.get() && ParseSectionHeaders())
1564     {
1565         m_sections_ap.reset(new SectionList());
1566 
1567         for (SectionHeaderCollIter I = m_section_headers.begin();
1568              I != m_section_headers.end(); ++I)
1569         {
1570             const ELFSectionHeaderInfo &header = *I;
1571 
1572             ConstString& name = I->section_name;
1573             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1574             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1575 
1576             static ConstString g_sect_name_text (".text");
1577             static ConstString g_sect_name_data (".data");
1578             static ConstString g_sect_name_bss (".bss");
1579             static ConstString g_sect_name_tdata (".tdata");
1580             static ConstString g_sect_name_tbss (".tbss");
1581             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1582             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1583             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1584             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1585             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1586             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1587             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1588             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1589             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1590             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1591             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1592             static ConstString g_sect_name_eh_frame (".eh_frame");
1593 
1594             SectionType sect_type = eSectionTypeOther;
1595 
1596             bool is_thread_specific = false;
1597 
1598             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1599             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1600             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1601             else if (name == g_sect_name_tdata)
1602             {
1603                 sect_type = eSectionTypeData;
1604                 is_thread_specific = true;
1605             }
1606             else if (name == g_sect_name_tbss)
1607             {
1608                 sect_type = eSectionTypeZeroFill;
1609                 is_thread_specific = true;
1610             }
1611             // .debug_abbrev – Abbreviations used in the .debug_info section
1612             // .debug_aranges – Lookup table for mapping addresses to compilation units
1613             // .debug_frame – Call frame information
1614             // .debug_info – The core DWARF information section
1615             // .debug_line – Line number information
1616             // .debug_loc – Location lists used in DW_AT_location attributes
1617             // .debug_macinfo – Macro information
1618             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1619             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1620             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1621             // .debug_str – String table used in .debug_info
1622             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1623             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1624             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1625             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1626             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1627             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1628             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1629             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1630             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1631             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1632             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1633             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1634             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1635             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1636             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1637 
1638             switch (header.sh_type)
1639             {
1640                 case SHT_SYMTAB:
1641                     assert (sect_type == eSectionTypeOther);
1642                     sect_type = eSectionTypeELFSymbolTable;
1643                     break;
1644                 case SHT_DYNSYM:
1645                     assert (sect_type == eSectionTypeOther);
1646                     sect_type = eSectionTypeELFDynamicSymbols;
1647                     break;
1648                 case SHT_RELA:
1649                 case SHT_REL:
1650                     assert (sect_type == eSectionTypeOther);
1651                     sect_type = eSectionTypeELFRelocationEntries;
1652                     break;
1653                 case SHT_DYNAMIC:
1654                     assert (sect_type == eSectionTypeOther);
1655                     sect_type = eSectionTypeELFDynamicLinkInfo;
1656                     break;
1657             }
1658 
1659             if (eSectionTypeOther == sect_type)
1660             {
1661                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1662                 // supports linkscripts which (can) give rise to various arbitarily named
1663                 // sections being "Code" or "Data".
1664                 sect_type = kalimbaSectionType(m_header, header);
1665             }
1666 
1667             const uint32_t target_bytes_size =
1668                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1669                 m_arch_spec.GetDataByteSize() :
1670                     eSectionTypeCode == sect_type ?
1671                     m_arch_spec.GetCodeByteSize() : 1;
1672 
1673             elf::elf_xword log2align = (header.sh_addralign==0)
1674                                         ? 0
1675                                         : llvm::Log2_64(header.sh_addralign);
1676             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1677                                               this,               // ObjectFile to which this section belongs and should read section data from.
1678                                               SectionIndex(I),    // Section ID.
1679                                               name,               // Section name.
1680                                               sect_type,          // Section type.
1681                                               header.sh_addr,     // VM address.
1682                                               vm_size,            // VM size in bytes of this section.
1683                                               header.sh_offset,   // Offset of this section in the file.
1684                                               file_size,          // Size of the section as found in the file.
1685                                               log2align,          // Alignment of the section
1686                                               header.sh_flags,    // Flags for this section.
1687                                               target_bytes_size));// Number of host bytes per target byte
1688 
1689             if (is_thread_specific)
1690                 section_sp->SetIsThreadSpecific (is_thread_specific);
1691             m_sections_ap->AddSection(section_sp);
1692         }
1693     }
1694 
1695     if (m_sections_ap.get())
1696     {
1697         if (GetType() == eTypeDebugInfo)
1698         {
1699             static const SectionType g_sections[] =
1700             {
1701                 eSectionTypeDWARFDebugAranges,
1702                 eSectionTypeDWARFDebugInfo,
1703                 eSectionTypeDWARFDebugAbbrev,
1704                 eSectionTypeDWARFDebugFrame,
1705                 eSectionTypeDWARFDebugLine,
1706                 eSectionTypeDWARFDebugStr,
1707                 eSectionTypeDWARFDebugLoc,
1708                 eSectionTypeDWARFDebugMacInfo,
1709                 eSectionTypeDWARFDebugPubNames,
1710                 eSectionTypeDWARFDebugPubTypes,
1711                 eSectionTypeDWARFDebugRanges,
1712                 eSectionTypeELFSymbolTable,
1713             };
1714             SectionList *elf_section_list = m_sections_ap.get();
1715             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1716             {
1717                 SectionType section_type = g_sections[idx];
1718                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1719                 if (section_sp)
1720                 {
1721                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1722                     if (module_section_sp)
1723                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1724                     else
1725                         unified_section_list.AddSection (section_sp);
1726                 }
1727             }
1728         }
1729         else
1730         {
1731             unified_section_list = *m_sections_ap;
1732         }
1733     }
1734 }
1735 
1736 // private
1737 unsigned
1738 ObjectFileELF::ParseSymbols (Symtab *symtab,
1739                              user_id_t start_id,
1740                              SectionList *section_list,
1741                              const size_t num_symbols,
1742                              const DataExtractor &symtab_data,
1743                              const DataExtractor &strtab_data)
1744 {
1745     ELFSymbol symbol;
1746     lldb::offset_t offset = 0;
1747 
1748     static ConstString text_section_name(".text");
1749     static ConstString init_section_name(".init");
1750     static ConstString fini_section_name(".fini");
1751     static ConstString ctors_section_name(".ctors");
1752     static ConstString dtors_section_name(".dtors");
1753 
1754     static ConstString data_section_name(".data");
1755     static ConstString rodata_section_name(".rodata");
1756     static ConstString rodata1_section_name(".rodata1");
1757     static ConstString data2_section_name(".data1");
1758     static ConstString bss_section_name(".bss");
1759     static ConstString opd_section_name(".opd");    // For ppc64
1760 
1761     //StreamFile strm(stdout, false);
1762     unsigned i;
1763     for (i = 0; i < num_symbols; ++i)
1764     {
1765         if (symbol.Parse(symtab_data, &offset) == false)
1766             break;
1767 
1768         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1769 
1770         // No need to add non-section symbols that have no names
1771         if (symbol.getType() != STT_SECTION &&
1772             (symbol_name == NULL || symbol_name[0] == '\0'))
1773             continue;
1774 
1775         //symbol.Dump (&strm, i, &strtab_data, section_list);
1776 
1777         SectionSP symbol_section_sp;
1778         SymbolType symbol_type = eSymbolTypeInvalid;
1779         Elf64_Half symbol_idx = symbol.st_shndx;
1780 
1781         switch (symbol_idx)
1782         {
1783         case SHN_ABS:
1784             symbol_type = eSymbolTypeAbsolute;
1785             break;
1786         case SHN_UNDEF:
1787             symbol_type = eSymbolTypeUndefined;
1788             break;
1789         default:
1790             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1791             break;
1792         }
1793 
1794         // If a symbol is undefined do not process it further even if it has a STT type
1795         if (symbol_type != eSymbolTypeUndefined)
1796         {
1797             switch (symbol.getType())
1798             {
1799             default:
1800             case STT_NOTYPE:
1801                 // The symbol's type is not specified.
1802                 break;
1803 
1804             case STT_OBJECT:
1805                 // The symbol is associated with a data object, such as a variable,
1806                 // an array, etc.
1807                 symbol_type = eSymbolTypeData;
1808                 break;
1809 
1810             case STT_FUNC:
1811                 // The symbol is associated with a function or other executable code.
1812                 symbol_type = eSymbolTypeCode;
1813                 break;
1814 
1815             case STT_SECTION:
1816                 // The symbol is associated with a section. Symbol table entries of
1817                 // this type exist primarily for relocation and normally have
1818                 // STB_LOCAL binding.
1819                 break;
1820 
1821             case STT_FILE:
1822                 // Conventionally, the symbol's name gives the name of the source
1823                 // file associated with the object file. A file symbol has STB_LOCAL
1824                 // binding, its section index is SHN_ABS, and it precedes the other
1825                 // STB_LOCAL symbols for the file, if it is present.
1826                 symbol_type = eSymbolTypeSourceFile;
1827                 break;
1828 
1829             case STT_GNU_IFUNC:
1830                 // The symbol is associated with an indirect function. The actual
1831                 // function will be resolved if it is referenced.
1832                 symbol_type = eSymbolTypeResolver;
1833                 break;
1834             }
1835         }
1836 
1837         if (symbol_type == eSymbolTypeInvalid)
1838         {
1839             if (symbol_section_sp)
1840             {
1841                 const ConstString &sect_name = symbol_section_sp->GetName();
1842                 if (sect_name == text_section_name ||
1843                     sect_name == init_section_name ||
1844                     sect_name == fini_section_name ||
1845                     sect_name == ctors_section_name ||
1846                     sect_name == dtors_section_name)
1847                 {
1848                     symbol_type = eSymbolTypeCode;
1849                 }
1850                 else if (sect_name == data_section_name ||
1851                          sect_name == data2_section_name ||
1852                          sect_name == rodata_section_name ||
1853                          sect_name == rodata1_section_name ||
1854                          sect_name == bss_section_name)
1855                 {
1856                     symbol_type = eSymbolTypeData;
1857                 }
1858             }
1859         }
1860 
1861         ArchSpec arch;
1862         int64_t symbol_value_offset = 0;
1863         uint32_t additional_flags = 0;
1864 
1865         if (GetArchitecture(arch) &&
1866             arch.GetMachine() == llvm::Triple::arm)
1867         {
1868             // ELF symbol tables may contain some mapping symbols. They provide
1869             // information about the underlying data. There are three of them
1870             // currently defined:
1871             //   $a[.<any>]* - marks an ARM instruction sequence
1872             //   $t[.<any>]* - marks a THUMB instruction sequence
1873             //   $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1874             // These symbols interfere with normal debugger operations and we
1875             // don't need them. We can drop them here.
1876 
1877             static const llvm::StringRef g_armelf_arm_marker("$a");
1878             static const llvm::StringRef g_armelf_thumb_marker("$t");
1879             static const llvm::StringRef g_armelf_data_marker("$d");
1880             llvm::StringRef symbol_name_ref(symbol_name);
1881 
1882             if (symbol_name &&
1883                 (symbol_name_ref.startswith(g_armelf_arm_marker) ||
1884                  symbol_name_ref.startswith(g_armelf_thumb_marker) ||
1885                  symbol_name_ref.startswith(g_armelf_data_marker)))
1886                 continue;
1887 
1888             // THUMB functions have the lower bit of their address set. Fixup
1889             // the actual address and mark the symbol as THUMB.
1890             if (symbol_type == eSymbolTypeCode && symbol.st_value & 1)
1891             {
1892                 // Substracting 1 from the address effectively unsets
1893                 // the low order bit, which results in the address
1894                 // actually pointing to the beginning of the symbol.
1895                 // This delta will be used below in conjuction with
1896                 // symbol.st_value to produce the final symbol_value
1897                 // that we store in the symtab.
1898                 symbol_value_offset = -1;
1899                 additional_flags = ARM_ELF_SYM_IS_THUMB;
1900             }
1901         }
1902 
1903         // If the symbol section we've found has no data (SHT_NOBITS), then check the module section
1904         // list. This can happen if we're parsing the debug file and it has no .text section, for example.
1905         if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0))
1906         {
1907             ModuleSP module_sp(GetModule());
1908             if (module_sp)
1909             {
1910                 SectionList *module_section_list = module_sp->GetSectionList();
1911                 if (module_section_list && module_section_list != section_list)
1912                 {
1913                     const ConstString &sect_name = symbol_section_sp->GetName();
1914                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
1915                     if (section_sp && section_sp->GetFileSize())
1916                     {
1917                         symbol_section_sp = section_sp;
1918                     }
1919                 }
1920             }
1921         }
1922 
1923         // symbol_value_offset may contain 0 for ARM symbols or -1 for
1924         // THUMB symbols. See above for more details.
1925         uint64_t symbol_value = symbol.st_value | symbol_value_offset;
1926         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
1927             symbol_value -= symbol_section_sp->GetFileAddress();
1928         bool is_global = symbol.getBinding() == STB_GLOBAL;
1929         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
1930         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
1931 
1932         llvm::StringRef symbol_ref(symbol_name);
1933 
1934         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
1935         size_t version_pos = symbol_ref.find('@');
1936         bool has_suffix = version_pos != llvm::StringRef::npos;
1937         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
1938         Mangled mangled(ConstString(symbol_bare), is_mangled);
1939 
1940         // Now append the suffix back to mangled and unmangled names. Only do it if the
1941         // demangling was sucessful (string is not empty).
1942         if (has_suffix)
1943         {
1944             llvm::StringRef suffix = symbol_ref.substr(version_pos);
1945 
1946             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
1947             if (! mangled_name.empty())
1948                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
1949 
1950             llvm::StringRef demangled_name = mangled.GetDemangledName().GetStringRef();
1951             if (! demangled_name.empty())
1952                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
1953         }
1954 
1955         Symbol dc_symbol(
1956             i + start_id,       // ID is the original symbol table index.
1957             mangled,
1958             symbol_type,        // Type of this symbol
1959             is_global,          // Is this globally visible?
1960             false,              // Is this symbol debug info?
1961             false,              // Is this symbol a trampoline?
1962             false,              // Is this symbol artificial?
1963             AddressRange(
1964                 symbol_section_sp,  // Section in which this symbol is defined or null.
1965                 symbol_value,       // Offset in section or symbol value.
1966                 symbol.st_size),    // Size in bytes of this symbol.
1967             true,               // Size is valid
1968             has_suffix,         // Contains linker annotations?
1969             flags);             // Symbol flags.
1970         symtab->AddSymbol(dc_symbol);
1971     }
1972     return i;
1973 }
1974 
1975 unsigned
1976 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
1977 {
1978     if (symtab->GetObjectFile() != this)
1979     {
1980         // If the symbol table section is owned by a different object file, have it do the
1981         // parsing.
1982         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
1983         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
1984     }
1985 
1986     // Get section list for this object file.
1987     SectionList *section_list = m_sections_ap.get();
1988     if (!section_list)
1989         return 0;
1990 
1991     user_id_t symtab_id = symtab->GetID();
1992     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
1993     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
1994            symtab_hdr->sh_type == SHT_DYNSYM);
1995 
1996     // sh_link: section header index of associated string table.
1997     // Section ID's are ones based.
1998     user_id_t strtab_id = symtab_hdr->sh_link + 1;
1999     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2000 
2001     if (symtab && strtab)
2002     {
2003         assert (symtab->GetObjectFile() == this);
2004         assert (strtab->GetObjectFile() == this);
2005 
2006         DataExtractor symtab_data;
2007         DataExtractor strtab_data;
2008         if (ReadSectionData(symtab, symtab_data) &&
2009             ReadSectionData(strtab, strtab_data))
2010         {
2011             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2012 
2013             return ParseSymbols(symbol_table, start_id, section_list,
2014                                 num_symbols, symtab_data, strtab_data);
2015         }
2016     }
2017 
2018     return 0;
2019 }
2020 
2021 size_t
2022 ObjectFileELF::ParseDynamicSymbols()
2023 {
2024     if (m_dynamic_symbols.size())
2025         return m_dynamic_symbols.size();
2026 
2027     SectionList *section_list = GetSectionList();
2028     if (!section_list)
2029         return 0;
2030 
2031     // Find the SHT_DYNAMIC section.
2032     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2033     if (!dynsym)
2034         return 0;
2035     assert (dynsym->GetObjectFile() == this);
2036 
2037     ELFDynamic symbol;
2038     DataExtractor dynsym_data;
2039     if (ReadSectionData(dynsym, dynsym_data))
2040     {
2041         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2042         lldb::offset_t cursor = 0;
2043 
2044         while (cursor < section_size)
2045         {
2046             if (!symbol.Parse(dynsym_data, &cursor))
2047                 break;
2048 
2049             m_dynamic_symbols.push_back(symbol);
2050         }
2051     }
2052 
2053     return m_dynamic_symbols.size();
2054 }
2055 
2056 const ELFDynamic *
2057 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2058 {
2059     if (!ParseDynamicSymbols())
2060         return NULL;
2061 
2062     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2063     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2064     for ( ; I != E; ++I)
2065     {
2066         ELFDynamic *symbol = &*I;
2067 
2068         if (symbol->d_tag == tag)
2069             return symbol;
2070     }
2071 
2072     return NULL;
2073 }
2074 
2075 unsigned
2076 ObjectFileELF::PLTRelocationType()
2077 {
2078     // DT_PLTREL
2079     //  This member specifies the type of relocation entry to which the
2080     //  procedure linkage table refers. The d_val member holds DT_REL or
2081     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2082     //  must use the same relocation.
2083     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2084 
2085     if (symbol)
2086         return symbol->d_val;
2087 
2088     return 0;
2089 }
2090 
2091 static unsigned
2092 ParsePLTRelocations(Symtab *symbol_table,
2093                     user_id_t start_id,
2094                     unsigned rel_type,
2095                     const ELFHeader *hdr,
2096                     const ELFSectionHeader *rel_hdr,
2097                     const ELFSectionHeader *plt_hdr,
2098                     const ELFSectionHeader *sym_hdr,
2099                     const lldb::SectionSP &plt_section_sp,
2100                     DataExtractor &rel_data,
2101                     DataExtractor &symtab_data,
2102                     DataExtractor &strtab_data)
2103 {
2104     ELFRelocation rel(rel_type);
2105     ELFSymbol symbol;
2106     lldb::offset_t offset = 0;
2107     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2108     // So round the entsize up by the alignment if addralign is set.
2109     const elf_xword plt_entsize = plt_hdr->sh_addralign ?
2110         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2111     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2112 
2113     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2114     reloc_info_fn reloc_type;
2115     reloc_info_fn reloc_symbol;
2116 
2117     if (hdr->Is32Bit())
2118     {
2119         reloc_type = ELFRelocation::RelocType32;
2120         reloc_symbol = ELFRelocation::RelocSymbol32;
2121     }
2122     else
2123     {
2124         reloc_type = ELFRelocation::RelocType64;
2125         reloc_symbol = ELFRelocation::RelocSymbol64;
2126     }
2127 
2128     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2129     unsigned i;
2130     for (i = 0; i < num_relocations; ++i)
2131     {
2132         if (rel.Parse(rel_data, &offset) == false)
2133             break;
2134 
2135         if (reloc_type(rel) != slot_type)
2136             continue;
2137 
2138         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2139         uint64_t plt_index = (i + 1) * plt_entsize;
2140 
2141         if (!symbol.Parse(symtab_data, &symbol_offset))
2142             break;
2143 
2144         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2145         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2146 
2147         Symbol jump_symbol(
2148             i + start_id,    // Symbol table index
2149             symbol_name,     // symbol name.
2150             is_mangled,      // is the symbol name mangled?
2151             eSymbolTypeTrampoline, // Type of this symbol
2152             false,           // Is this globally visible?
2153             false,           // Is this symbol debug info?
2154             true,            // Is this symbol a trampoline?
2155             true,            // Is this symbol artificial?
2156             plt_section_sp,  // Section in which this symbol is defined or null.
2157             plt_index,       // Offset in section or symbol value.
2158             plt_entsize,     // Size in bytes of this symbol.
2159             true,            // Size is valid
2160             false,           // Contains linker annotations?
2161             0);              // Symbol flags.
2162 
2163         symbol_table->AddSymbol(jump_symbol);
2164     }
2165 
2166     return i;
2167 }
2168 
2169 unsigned
2170 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2171                                       user_id_t start_id,
2172                                       const ELFSectionHeaderInfo *rel_hdr,
2173                                       user_id_t rel_id)
2174 {
2175     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2176 
2177     // The link field points to the associated symbol table. The info field
2178     // points to the section holding the plt.
2179     user_id_t symtab_id = rel_hdr->sh_link;
2180     user_id_t plt_id = rel_hdr->sh_info;
2181 
2182     if (!symtab_id || !plt_id)
2183         return 0;
2184 
2185     // Section ID's are ones based;
2186     symtab_id++;
2187     plt_id++;
2188 
2189     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2190     if (!plt_hdr)
2191         return 0;
2192 
2193     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2194     if (!sym_hdr)
2195         return 0;
2196 
2197     SectionList *section_list = m_sections_ap.get();
2198     if (!section_list)
2199         return 0;
2200 
2201     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2202     if (!rel_section)
2203         return 0;
2204 
2205     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2206     if (!plt_section_sp)
2207         return 0;
2208 
2209     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2210     if (!symtab)
2211         return 0;
2212 
2213     // sh_link points to associated string table.
2214     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2215     if (!strtab)
2216         return 0;
2217 
2218     DataExtractor rel_data;
2219     if (!ReadSectionData(rel_section, rel_data))
2220         return 0;
2221 
2222     DataExtractor symtab_data;
2223     if (!ReadSectionData(symtab, symtab_data))
2224         return 0;
2225 
2226     DataExtractor strtab_data;
2227     if (!ReadSectionData(strtab, strtab_data))
2228         return 0;
2229 
2230     unsigned rel_type = PLTRelocationType();
2231     if (!rel_type)
2232         return 0;
2233 
2234     return ParsePLTRelocations (symbol_table,
2235                                 start_id,
2236                                 rel_type,
2237                                 &m_header,
2238                                 rel_hdr,
2239                                 plt_hdr,
2240                                 sym_hdr,
2241                                 plt_section_sp,
2242                                 rel_data,
2243                                 symtab_data,
2244                                 strtab_data);
2245 }
2246 
2247 unsigned
2248 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2249                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2250                 DataExtractor &rel_data, DataExtractor &symtab_data,
2251                 DataExtractor &debug_data, Section* rel_section)
2252 {
2253     ELFRelocation rel(rel_hdr->sh_type);
2254     lldb::addr_t offset = 0;
2255     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2256     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2257     reloc_info_fn reloc_type;
2258     reloc_info_fn reloc_symbol;
2259 
2260     if (hdr->Is32Bit())
2261     {
2262         reloc_type = ELFRelocation::RelocType32;
2263         reloc_symbol = ELFRelocation::RelocSymbol32;
2264     }
2265     else
2266     {
2267         reloc_type = ELFRelocation::RelocType64;
2268         reloc_symbol = ELFRelocation::RelocSymbol64;
2269     }
2270 
2271     for (unsigned i = 0; i < num_relocations; ++i)
2272     {
2273         if (rel.Parse(rel_data, &offset) == false)
2274             break;
2275 
2276         Symbol* symbol = NULL;
2277 
2278         if (hdr->Is32Bit())
2279         {
2280             switch (reloc_type(rel)) {
2281             case R_386_32:
2282             case R_386_PC32:
2283             default:
2284                 assert(false && "unexpected relocation type");
2285             }
2286         } else {
2287             switch (reloc_type(rel)) {
2288             case R_X86_64_64:
2289             {
2290                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2291                 if (symbol)
2292                 {
2293                     addr_t value = symbol->GetAddress().GetFileAddress();
2294                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2295                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2296                     *dst = value + ELFRelocation::RelocAddend64(rel);
2297                 }
2298                 break;
2299             }
2300             case R_X86_64_32:
2301             case R_X86_64_32S:
2302             {
2303                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2304                 if (symbol)
2305                 {
2306                     addr_t value = symbol->GetAddress().GetFileAddress();
2307                     value += ELFRelocation::RelocAddend32(rel);
2308                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2309                            (reloc_type(rel) == R_X86_64_32S &&
2310                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2311                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2312                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2313                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2314                     *dst = truncated_addr;
2315                 }
2316                 break;
2317             }
2318             case R_X86_64_PC32:
2319             default:
2320                 assert(false && "unexpected relocation type");
2321             }
2322         }
2323     }
2324 
2325     return 0;
2326 }
2327 
2328 unsigned
2329 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2330 {
2331     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2332 
2333     // Parse in the section list if needed.
2334     SectionList *section_list = GetSectionList();
2335     if (!section_list)
2336         return 0;
2337 
2338     // Section ID's are ones based.
2339     user_id_t symtab_id = rel_hdr->sh_link + 1;
2340     user_id_t debug_id = rel_hdr->sh_info + 1;
2341 
2342     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2343     if (!symtab_hdr)
2344         return 0;
2345 
2346     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2347     if (!debug_hdr)
2348         return 0;
2349 
2350     Section *rel = section_list->FindSectionByID(rel_id).get();
2351     if (!rel)
2352         return 0;
2353 
2354     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2355     if (!symtab)
2356         return 0;
2357 
2358     Section *debug = section_list->FindSectionByID(debug_id).get();
2359     if (!debug)
2360         return 0;
2361 
2362     DataExtractor rel_data;
2363     DataExtractor symtab_data;
2364     DataExtractor debug_data;
2365 
2366     if (ReadSectionData(rel, rel_data) &&
2367         ReadSectionData(symtab, symtab_data) &&
2368         ReadSectionData(debug, debug_data))
2369     {
2370         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2371                         rel_data, symtab_data, debug_data, debug);
2372     }
2373 
2374     return 0;
2375 }
2376 
2377 Symtab *
2378 ObjectFileELF::GetSymtab()
2379 {
2380     ModuleSP module_sp(GetModule());
2381     if (!module_sp)
2382         return NULL;
2383 
2384     // We always want to use the main object file so we (hopefully) only have one cached copy
2385     // of our symtab, dynamic sections, etc.
2386     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2387     if (module_obj_file && module_obj_file != this)
2388         return module_obj_file->GetSymtab();
2389 
2390     if (m_symtab_ap.get() == NULL)
2391     {
2392         SectionList *section_list = module_sp->GetSectionList();
2393         if (!section_list)
2394             return NULL;
2395 
2396         uint64_t symbol_id = 0;
2397         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2398 
2399         m_symtab_ap.reset(new Symtab(this));
2400 
2401         // Sharable objects and dynamic executables usually have 2 distinct symbol
2402         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2403         // version of the symtab that only contains global symbols. The information found
2404         // in the dynsym is therefore also found in the symtab, while the reverse is not
2405         // necessarily true.
2406         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2407         if (!symtab)
2408         {
2409             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2410             // then use the dynsym section which should always be there.
2411             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2412         }
2413         if (symtab)
2414             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2415 
2416         // DT_JMPREL
2417         //      If present, this entry's d_ptr member holds the address of relocation
2418         //      entries associated solely with the procedure linkage table. Separating
2419         //      these relocation entries lets the dynamic linker ignore them during
2420         //      process initialization, if lazy binding is enabled. If this entry is
2421         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2422         //      also be present.
2423         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2424         if (symbol)
2425         {
2426             // Synthesize trampoline symbols to help navigate the PLT.
2427             addr_t addr = symbol->d_ptr;
2428             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2429             if (reloc_section)
2430             {
2431                 user_id_t reloc_id = reloc_section->GetID();
2432                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2433                 assert(reloc_header);
2434 
2435                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2436             }
2437         }
2438     }
2439 
2440     for (SectionHeaderCollIter I = m_section_headers.begin();
2441          I != m_section_headers.end(); ++I)
2442     {
2443         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2444         {
2445             if (CalculateType() == eTypeObjectFile)
2446             {
2447                 const char *section_name = I->section_name.AsCString("");
2448                 if (strstr(section_name, ".rela.debug") ||
2449                     strstr(section_name, ".rel.debug"))
2450                 {
2451                     const ELFSectionHeader &reloc_header = *I;
2452                     user_id_t reloc_id = SectionIndex(I);
2453                     RelocateDebugSections(&reloc_header, reloc_id);
2454                 }
2455             }
2456         }
2457     }
2458     return m_symtab_ap.get();
2459 }
2460 
2461 Symbol *
2462 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2463 {
2464     if (!m_symtab_ap.get())
2465         return nullptr; // GetSymtab() should be called first.
2466 
2467     const SectionList *section_list = GetSectionList();
2468     if (!section_list)
2469         return nullptr;
2470 
2471     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2472     {
2473         AddressRange range;
2474         if (eh_frame->GetAddressRange (so_addr, range))
2475         {
2476             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2477             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2478             if (symbol)
2479                 return symbol;
2480 
2481             // Note that a (stripped) symbol won't be found by GetSymtab()...
2482             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2483             if (eh_sym_section_sp.get())
2484             {
2485                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2486                 addr_t offset = file_addr - section_base;
2487                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2488 
2489                 Symbol eh_symbol(
2490                         symbol_id,            // Symbol table index.
2491                         "???",                // Symbol name.
2492                         false,                // Is the symbol name mangled?
2493                         eSymbolTypeCode,      // Type of this symbol.
2494                         true,                 // Is this globally visible?
2495                         false,                // Is this symbol debug info?
2496                         false,                // Is this symbol a trampoline?
2497                         true,                 // Is this symbol artificial?
2498                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2499                         offset,               // Offset in section or symbol value.
2500                         range.GetByteSize(),  // Size in bytes of this symbol.
2501                         true,                 // Size is valid.
2502                         false,                // Contains linker annotations?
2503                         0);                   // Symbol flags.
2504                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2505                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2506             }
2507         }
2508     }
2509     return nullptr;
2510 }
2511 
2512 
2513 bool
2514 ObjectFileELF::IsStripped ()
2515 {
2516     // TODO: determine this for ELF
2517     return false;
2518 }
2519 
2520 //===----------------------------------------------------------------------===//
2521 // Dump
2522 //
2523 // Dump the specifics of the runtime file container (such as any headers
2524 // segments, sections, etc).
2525 //----------------------------------------------------------------------
2526 void
2527 ObjectFileELF::Dump(Stream *s)
2528 {
2529     DumpELFHeader(s, m_header);
2530     s->EOL();
2531     DumpELFProgramHeaders(s);
2532     s->EOL();
2533     DumpELFSectionHeaders(s);
2534     s->EOL();
2535     SectionList *section_list = GetSectionList();
2536     if (section_list)
2537         section_list->Dump(s, NULL, true, UINT32_MAX);
2538     Symtab *symtab = GetSymtab();
2539     if (symtab)
2540         symtab->Dump(s, NULL, eSortOrderNone);
2541     s->EOL();
2542     DumpDependentModules(s);
2543     s->EOL();
2544 }
2545 
2546 //----------------------------------------------------------------------
2547 // DumpELFHeader
2548 //
2549 // Dump the ELF header to the specified output stream
2550 //----------------------------------------------------------------------
2551 void
2552 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2553 {
2554     s->PutCString("ELF Header\n");
2555     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2556     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2557               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2558     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2559               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2560     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2561               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2562 
2563     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2564     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2565     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2566     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2567     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2568 
2569     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2570     DumpELFHeader_e_type(s, header.e_type);
2571     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2572     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2573     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2574     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2575     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2576     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2577     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2578     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2579     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2580     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2581     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2582     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2583 }
2584 
2585 //----------------------------------------------------------------------
2586 // DumpELFHeader_e_type
2587 //
2588 // Dump an token value for the ELF header member e_type
2589 //----------------------------------------------------------------------
2590 void
2591 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2592 {
2593     switch (e_type)
2594     {
2595     case ET_NONE:   *s << "ET_NONE"; break;
2596     case ET_REL:    *s << "ET_REL"; break;
2597     case ET_EXEC:   *s << "ET_EXEC"; break;
2598     case ET_DYN:    *s << "ET_DYN"; break;
2599     case ET_CORE:   *s << "ET_CORE"; break;
2600     default:
2601         break;
2602     }
2603 }
2604 
2605 //----------------------------------------------------------------------
2606 // DumpELFHeader_e_ident_EI_DATA
2607 //
2608 // Dump an token value for the ELF header member e_ident[EI_DATA]
2609 //----------------------------------------------------------------------
2610 void
2611 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2612 {
2613     switch (ei_data)
2614     {
2615     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2616     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2617     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2618     default:
2619         break;
2620     }
2621 }
2622 
2623 
2624 //----------------------------------------------------------------------
2625 // DumpELFProgramHeader
2626 //
2627 // Dump a single ELF program header to the specified output stream
2628 //----------------------------------------------------------------------
2629 void
2630 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2631 {
2632     DumpELFProgramHeader_p_type(s, ph.p_type);
2633     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2634     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2635 
2636     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2637     s->Printf(") %8.8" PRIx64, ph.p_align);
2638 }
2639 
2640 //----------------------------------------------------------------------
2641 // DumpELFProgramHeader_p_type
2642 //
2643 // Dump an token value for the ELF program header member p_type which
2644 // describes the type of the program header
2645 // ----------------------------------------------------------------------
2646 void
2647 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2648 {
2649     const int kStrWidth = 15;
2650     switch (p_type)
2651     {
2652     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2653     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2654     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2655     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2656     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2657     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2658     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2659     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2660     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2661     default:
2662         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2663         break;
2664     }
2665 }
2666 
2667 
2668 //----------------------------------------------------------------------
2669 // DumpELFProgramHeader_p_flags
2670 //
2671 // Dump an token value for the ELF program header member p_flags
2672 //----------------------------------------------------------------------
2673 void
2674 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2675 {
2676     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2677         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2678         << ((p_flags & PF_W) ? "PF_W" : "    ")
2679         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2680         << ((p_flags & PF_R) ? "PF_R" : "    ");
2681 }
2682 
2683 //----------------------------------------------------------------------
2684 // DumpELFProgramHeaders
2685 //
2686 // Dump all of the ELF program header to the specified output stream
2687 //----------------------------------------------------------------------
2688 void
2689 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2690 {
2691     if (!ParseProgramHeaders())
2692         return;
2693 
2694     s->PutCString("Program Headers\n");
2695     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2696                   "p_filesz p_memsz  p_flags                   p_align\n");
2697     s->PutCString("==== --------------- -------- -------- -------- "
2698                   "-------- -------- ------------------------- --------\n");
2699 
2700     uint32_t idx = 0;
2701     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2702          I != m_program_headers.end(); ++I, ++idx)
2703     {
2704         s->Printf("[%2u] ", idx);
2705         ObjectFileELF::DumpELFProgramHeader(s, *I);
2706         s->EOL();
2707     }
2708 }
2709 
2710 //----------------------------------------------------------------------
2711 // DumpELFSectionHeader
2712 //
2713 // Dump a single ELF section header to the specified output stream
2714 //----------------------------------------------------------------------
2715 void
2716 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2717 {
2718     s->Printf("%8.8x ", sh.sh_name);
2719     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2720     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2721     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2722     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2723     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2724     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2725 }
2726 
2727 //----------------------------------------------------------------------
2728 // DumpELFSectionHeader_sh_type
2729 //
2730 // Dump an token value for the ELF section header member sh_type which
2731 // describes the type of the section
2732 //----------------------------------------------------------------------
2733 void
2734 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2735 {
2736     const int kStrWidth = 12;
2737     switch (sh_type)
2738     {
2739     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2740     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2741     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2742     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2743     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2744     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2745     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2746     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2747     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2748     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2749     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2750     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2751     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2752     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2753     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2754     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2755     default:
2756         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2757         break;
2758     }
2759 }
2760 
2761 //----------------------------------------------------------------------
2762 // DumpELFSectionHeader_sh_flags
2763 //
2764 // Dump an token value for the ELF section header member sh_flags
2765 //----------------------------------------------------------------------
2766 void
2767 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2768 {
2769     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2770         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2771         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2772         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2773         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2774 }
2775 
2776 //----------------------------------------------------------------------
2777 // DumpELFSectionHeaders
2778 //
2779 // Dump all of the ELF section header to the specified output stream
2780 //----------------------------------------------------------------------
2781 void
2782 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2783 {
2784     if (!ParseSectionHeaders())
2785         return;
2786 
2787     s->PutCString("Section Headers\n");
2788     s->PutCString("IDX  name     type         flags                            "
2789                   "addr     offset   size     link     info     addralgn "
2790                   "entsize  Name\n");
2791     s->PutCString("==== -------- ------------ -------------------------------- "
2792                   "-------- -------- -------- -------- -------- -------- "
2793                   "-------- ====================\n");
2794 
2795     uint32_t idx = 0;
2796     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2797          I != m_section_headers.end(); ++I, ++idx)
2798     {
2799         s->Printf("[%2u] ", idx);
2800         ObjectFileELF::DumpELFSectionHeader(s, *I);
2801         const char* section_name = I->section_name.AsCString("");
2802         if (section_name)
2803             *s << ' ' << section_name << "\n";
2804     }
2805 }
2806 
2807 void
2808 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
2809 {
2810     size_t num_modules = ParseDependentModules();
2811 
2812     if (num_modules > 0)
2813     {
2814         s->PutCString("Dependent Modules:\n");
2815         for (unsigned i = 0; i < num_modules; ++i)
2816         {
2817             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
2818             s->Printf("   %s\n", spec.GetFilename().GetCString());
2819         }
2820     }
2821 }
2822 
2823 bool
2824 ObjectFileELF::GetArchitecture (ArchSpec &arch)
2825 {
2826     if (!ParseHeader())
2827         return false;
2828 
2829     if (m_section_headers.empty())
2830     {
2831         // Allow elf notes to be parsed which may affect the detected architecture.
2832         ParseSectionHeaders();
2833     }
2834 
2835     arch = m_arch_spec;
2836     return true;
2837 }
2838 
2839 ObjectFile::Type
2840 ObjectFileELF::CalculateType()
2841 {
2842     switch (m_header.e_type)
2843     {
2844         case llvm::ELF::ET_NONE:
2845             // 0 - No file type
2846             return eTypeUnknown;
2847 
2848         case llvm::ELF::ET_REL:
2849             // 1 - Relocatable file
2850             return eTypeObjectFile;
2851 
2852         case llvm::ELF::ET_EXEC:
2853             // 2 - Executable file
2854             return eTypeExecutable;
2855 
2856         case llvm::ELF::ET_DYN:
2857             // 3 - Shared object file
2858             return eTypeSharedLibrary;
2859 
2860         case ET_CORE:
2861             // 4 - Core file
2862             return eTypeCoreFile;
2863 
2864         default:
2865             break;
2866     }
2867     return eTypeUnknown;
2868 }
2869 
2870 ObjectFile::Strata
2871 ObjectFileELF::CalculateStrata()
2872 {
2873     switch (m_header.e_type)
2874     {
2875         case llvm::ELF::ET_NONE:
2876             // 0 - No file type
2877             return eStrataUnknown;
2878 
2879         case llvm::ELF::ET_REL:
2880             // 1 - Relocatable file
2881             return eStrataUnknown;
2882 
2883         case llvm::ELF::ET_EXEC:
2884             // 2 - Executable file
2885             // TODO: is there any way to detect that an executable is a kernel
2886             // related executable by inspecting the program headers, section
2887             // headers, symbols, or any other flag bits???
2888             return eStrataUser;
2889 
2890         case llvm::ELF::ET_DYN:
2891             // 3 - Shared object file
2892             // TODO: is there any way to detect that an shared library is a kernel
2893             // related executable by inspecting the program headers, section
2894             // headers, symbols, or any other flag bits???
2895             return eStrataUnknown;
2896 
2897         case ET_CORE:
2898             // 4 - Core file
2899             // TODO: is there any way to detect that an core file is a kernel
2900             // related executable by inspecting the program headers, section
2901             // headers, symbols, or any other flag bits???
2902             return eStrataUnknown;
2903 
2904         default:
2905             break;
2906     }
2907     return eStrataUnknown;
2908 }
2909 
2910