1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/PointerUnion.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/MathExtras.h" 34 35 #define CASE_AND_STREAM(s, def, width) \ 36 case def: s->Printf("%-*s", width, #def); break; 37 38 using namespace lldb; 39 using namespace lldb_private; 40 using namespace elf; 41 using namespace llvm::ELF; 42 43 namespace { 44 45 // ELF note owner definitions 46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 47 const char *const LLDB_NT_OWNER_GNU = "GNU"; 48 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 49 const char *const LLDB_NT_OWNER_CSR = "csr"; 50 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 287 { 288 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 289 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 290 291 switch (mips_arch) 292 { 293 case llvm::ELF::EF_MIPS_ARCH_32: 294 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 295 case llvm::ELF::EF_MIPS_ARCH_32R2: 296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 297 case llvm::ELF::EF_MIPS_ARCH_32R6: 298 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 299 case llvm::ELF::EF_MIPS_ARCH_64: 300 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 301 case llvm::ELF::EF_MIPS_ARCH_64R2: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 303 case llvm::ELF::EF_MIPS_ARCH_64R6: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 305 default: 306 break; 307 } 308 309 return arch_variant; 310 } 311 312 static uint32_t 313 subTypeFromElfHeader(const elf::ELFHeader& header) 314 { 315 if (header.e_machine == llvm::ELF::EM_MIPS) 316 return mipsVariantFromElfFlags (header.e_flags, 317 header.e_ident[EI_DATA]); 318 319 return 320 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 321 kalimbaVariantFromElfFlags(header.e_flags) : 322 LLDB_INVALID_CPUTYPE; 323 } 324 325 //! The kalimba toolchain identifies a code section as being 326 //! one with the SHT_PROGBITS set in the section sh_type and the top 327 //! bit in the 32-bit address field set. 328 static lldb::SectionType 329 kalimbaSectionType( 330 const elf::ELFHeader& header, 331 const elf::ELFSectionHeader& sect_hdr) 332 { 333 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 334 { 335 return eSectionTypeOther; 336 } 337 338 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 339 { 340 return eSectionTypeZeroFill; 341 } 342 343 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 344 { 345 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 346 return KAL_CODE_BIT & sect_hdr.sh_addr ? 347 eSectionTypeCode : eSectionTypeData; 348 } 349 350 return eSectionTypeOther; 351 } 352 353 // Arbitrary constant used as UUID prefix for core files. 354 const uint32_t 355 ObjectFileELF::g_core_uuid_magic(0xE210C); 356 357 //------------------------------------------------------------------ 358 // Static methods. 359 //------------------------------------------------------------------ 360 void 361 ObjectFileELF::Initialize() 362 { 363 PluginManager::RegisterPlugin(GetPluginNameStatic(), 364 GetPluginDescriptionStatic(), 365 CreateInstance, 366 CreateMemoryInstance, 367 GetModuleSpecifications); 368 } 369 370 void 371 ObjectFileELF::Terminate() 372 { 373 PluginManager::UnregisterPlugin(CreateInstance); 374 } 375 376 lldb_private::ConstString 377 ObjectFileELF::GetPluginNameStatic() 378 { 379 static ConstString g_name("elf"); 380 return g_name; 381 } 382 383 const char * 384 ObjectFileELF::GetPluginDescriptionStatic() 385 { 386 return "ELF object file reader."; 387 } 388 389 ObjectFile * 390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 391 DataBufferSP &data_sp, 392 lldb::offset_t data_offset, 393 const lldb_private::FileSpec* file, 394 lldb::offset_t file_offset, 395 lldb::offset_t length) 396 { 397 if (!data_sp) 398 { 399 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 400 data_offset = 0; 401 } 402 403 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 404 { 405 const uint8_t *magic = data_sp->GetBytes() + data_offset; 406 if (ELFHeader::MagicBytesMatch(magic)) 407 { 408 // Update the data to contain the entire file if it doesn't already 409 if (data_sp->GetByteSize() < length) { 410 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 411 data_offset = 0; 412 magic = data_sp->GetBytes(); 413 } 414 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 415 if (address_size == 4 || address_size == 8) 416 { 417 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 418 ArchSpec spec; 419 if (objfile_ap->GetArchitecture(spec) && 420 objfile_ap->SetModulesArchitecture(spec)) 421 return objfile_ap.release(); 422 } 423 } 424 } 425 return NULL; 426 } 427 428 429 ObjectFile* 430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 431 DataBufferSP& data_sp, 432 const lldb::ProcessSP &process_sp, 433 lldb::addr_t header_addr) 434 { 435 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 436 { 437 const uint8_t *magic = data_sp->GetBytes(); 438 if (ELFHeader::MagicBytesMatch(magic)) 439 { 440 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 441 if (address_size == 4 || address_size == 8) 442 { 443 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 444 ArchSpec spec; 445 if (objfile_ap->GetArchitecture(spec) && 446 objfile_ap->SetModulesArchitecture(spec)) 447 return objfile_ap.release(); 448 } 449 } 450 } 451 return NULL; 452 } 453 454 bool 455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 456 lldb::addr_t data_offset, 457 lldb::addr_t data_length) 458 { 459 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 460 { 461 const uint8_t *magic = data_sp->GetBytes() + data_offset; 462 return ELFHeader::MagicBytesMatch(magic); 463 } 464 return false; 465 } 466 467 /* 468 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 469 * 470 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 471 * code or tables extracted from it, as desired without restriction. 472 */ 473 static uint32_t 474 calc_crc32(uint32_t crc, const void *buf, size_t size) 475 { 476 static const uint32_t g_crc32_tab[] = 477 { 478 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 479 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 480 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 481 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 482 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 483 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 484 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 485 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 486 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 487 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 488 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 489 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 490 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 491 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 492 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 493 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 494 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 495 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 496 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 497 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 498 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 499 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 500 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 501 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 502 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 503 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 504 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 505 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 506 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 507 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 508 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 509 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 510 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 511 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 512 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 513 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 514 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 515 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 516 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 517 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 518 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 519 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 520 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 521 }; 522 const uint8_t *p = (const uint8_t *)buf; 523 524 crc = crc ^ ~0U; 525 while (size--) 526 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 527 return crc ^ ~0U; 528 } 529 530 static uint32_t 531 calc_gnu_debuglink_crc32(const void *buf, size_t size) 532 { 533 return calc_crc32(0U, buf, size); 534 } 535 536 uint32_t 537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 538 DataExtractor& object_data) 539 { 540 typedef ProgramHeaderCollConstIter Iter; 541 542 uint32_t core_notes_crc = 0; 543 544 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 545 { 546 if (I->p_type == llvm::ELF::PT_NOTE) 547 { 548 const elf_off ph_offset = I->p_offset; 549 const size_t ph_size = I->p_filesz; 550 551 DataExtractor segment_data; 552 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 553 { 554 // The ELF program header contained incorrect data, 555 // probably corefile is incomplete or corrupted. 556 break; 557 } 558 559 core_notes_crc = calc_crc32(core_notes_crc, 560 segment_data.GetDataStart(), 561 segment_data.GetByteSize()); 562 } 563 } 564 565 return core_notes_crc; 566 } 567 568 static const char* 569 OSABIAsCString (unsigned char osabi_byte) 570 { 571 #define _MAKE_OSABI_CASE(x) case x: return #x 572 switch (osabi_byte) 573 { 574 _MAKE_OSABI_CASE(ELFOSABI_NONE); 575 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 576 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 577 _MAKE_OSABI_CASE(ELFOSABI_GNU); 578 _MAKE_OSABI_CASE(ELFOSABI_HURD); 579 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 580 _MAKE_OSABI_CASE(ELFOSABI_AIX); 581 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 582 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 583 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 584 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 585 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 586 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 587 _MAKE_OSABI_CASE(ELFOSABI_NSK); 588 _MAKE_OSABI_CASE(ELFOSABI_AROS); 589 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 590 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 591 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 592 _MAKE_OSABI_CASE(ELFOSABI_ARM); 593 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 594 default: 595 return "<unknown-osabi>"; 596 } 597 #undef _MAKE_OSABI_CASE 598 } 599 600 // 601 // WARNING : This function is being deprecated 602 // It's functionality has moved to ArchSpec::SetArchitecture 603 // This function is only being kept to validate the move. 604 // 605 // TODO : Remove this function 606 static bool 607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 608 { 609 switch (osabi_byte) 610 { 611 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 612 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 613 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 614 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 615 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 616 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 617 default: 618 ostype = llvm::Triple::OSType::UnknownOS; 619 } 620 return ostype != llvm::Triple::OSType::UnknownOS; 621 } 622 623 size_t 624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 625 lldb::DataBufferSP& data_sp, 626 lldb::offset_t data_offset, 627 lldb::offset_t file_offset, 628 lldb::offset_t length, 629 lldb_private::ModuleSpecList &specs) 630 { 631 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 632 633 const size_t initial_count = specs.GetSize(); 634 635 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 636 { 637 DataExtractor data; 638 data.SetData(data_sp); 639 elf::ELFHeader header; 640 if (header.Parse(data, &data_offset)) 641 { 642 if (data_sp) 643 { 644 ModuleSpec spec (file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 648 header.e_machine, 649 sub_type, 650 header.e_ident[EI_OSABI]); 651 652 if (spec.GetArchitecture().IsValid()) 653 { 654 llvm::Triple::OSType ostype; 655 llvm::Triple::VendorType vendor; 656 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 657 658 if (log) 659 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 665 // 666 // Validate it is ok to remove GetOsFromOSABI 667 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 668 assert(spec_ostype == ostype); 669 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 670 { 671 if (log) 672 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 673 } 674 675 // Try to get the UUID from the section list. Usually that's at the end, so 676 // map the file in if we don't have it already. 677 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 678 if (section_header_end > data_sp->GetByteSize()) 679 { 680 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 681 data.SetData(data_sp); 682 } 683 684 uint32_t gnu_debuglink_crc = 0; 685 std::string gnu_debuglink_file; 686 SectionHeaderColl section_headers; 687 lldb_private::UUID &uuid = spec.GetUUID(); 688 689 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 690 691 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 692 693 if (log) 694 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 695 696 if (!uuid.IsValid()) 697 { 698 uint32_t core_notes_crc = 0; 699 700 if (!gnu_debuglink_crc) 701 { 702 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 703 "Calculating module crc32 %s with size %" PRIu64 " KiB", 704 file.GetLastPathComponent().AsCString(), 705 (file.GetByteSize()-file_offset)/1024); 706 707 // For core files - which usually don't happen to have a gnu_debuglink, 708 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 709 // Thus we will need to fallback to something simpler. 710 if (header.e_type == llvm::ELF::ET_CORE) 711 { 712 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 713 if (program_headers_end > data_sp->GetByteSize()) 714 { 715 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 716 data.SetData(data_sp); 717 } 718 ProgramHeaderColl program_headers; 719 GetProgramHeaderInfo(program_headers, data, header); 720 721 size_t segment_data_end = 0; 722 for (ProgramHeaderCollConstIter I = program_headers.begin(); 723 I != program_headers.end(); ++I) 724 { 725 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 726 } 727 728 if (segment_data_end > data_sp->GetByteSize()) 729 { 730 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 731 data.SetData(data_sp); 732 } 733 734 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 735 } 736 else 737 { 738 // Need to map entire file into memory to calculate the crc. 739 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 740 data.SetData(data_sp); 741 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 742 } 743 } 744 if (gnu_debuglink_crc) 745 { 746 // Use 4 bytes of crc from the .gnu_debuglink section. 747 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 748 uuid.SetBytes (uuidt, sizeof(uuidt)); 749 } 750 else if (core_notes_crc) 751 { 752 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 753 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 754 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 755 uuid.SetBytes (uuidt, sizeof(uuidt)); 756 } 757 } 758 759 specs.Append(spec); 760 } 761 } 762 } 763 } 764 765 return specs.GetSize() - initial_count; 766 } 767 768 //------------------------------------------------------------------ 769 // PluginInterface protocol 770 //------------------------------------------------------------------ 771 lldb_private::ConstString 772 ObjectFileELF::GetPluginName() 773 { 774 return GetPluginNameStatic(); 775 } 776 777 uint32_t 778 ObjectFileELF::GetPluginVersion() 779 { 780 return m_plugin_version; 781 } 782 //------------------------------------------------------------------ 783 // ObjectFile protocol 784 //------------------------------------------------------------------ 785 786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 787 DataBufferSP& data_sp, 788 lldb::offset_t data_offset, 789 const FileSpec* file, 790 lldb::offset_t file_offset, 791 lldb::offset_t length) : 792 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 793 m_header(), 794 m_uuid(), 795 m_gnu_debuglink_file(), 796 m_gnu_debuglink_crc(0), 797 m_program_headers(), 798 m_section_headers(), 799 m_dynamic_symbols(), 800 m_filespec_ap(), 801 m_entry_point_address(), 802 m_arch_spec() 803 { 804 if (file) 805 m_file = *file; 806 ::memset(&m_header, 0, sizeof(m_header)); 807 } 808 809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 810 DataBufferSP& header_data_sp, 811 const lldb::ProcessSP &process_sp, 812 addr_t header_addr) : 813 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 814 m_header(), 815 m_uuid(), 816 m_gnu_debuglink_file(), 817 m_gnu_debuglink_crc(0), 818 m_program_headers(), 819 m_section_headers(), 820 m_dynamic_symbols(), 821 m_filespec_ap(), 822 m_entry_point_address(), 823 m_arch_spec() 824 { 825 ::memset(&m_header, 0, sizeof(m_header)); 826 } 827 828 ObjectFileELF::~ObjectFileELF() 829 { 830 } 831 832 bool 833 ObjectFileELF::IsExecutable() const 834 { 835 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 836 } 837 838 bool 839 ObjectFileELF::SetLoadAddress (Target &target, 840 lldb::addr_t value, 841 bool value_is_offset) 842 { 843 ModuleSP module_sp = GetModule(); 844 if (module_sp) 845 { 846 size_t num_loaded_sections = 0; 847 SectionList *section_list = GetSectionList (); 848 if (section_list) 849 { 850 if (!value_is_offset) 851 { 852 bool found_offset = false; 853 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 854 { 855 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 856 if (header == nullptr) 857 continue; 858 859 if (header->p_type != PT_LOAD || header->p_offset != 0) 860 continue; 861 862 value = value - header->p_vaddr; 863 found_offset = true; 864 break; 865 } 866 if (!found_offset) 867 return false; 868 } 869 870 const size_t num_sections = section_list->GetSize(); 871 size_t sect_idx = 0; 872 873 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 874 { 875 // Iterate through the object file sections to find all 876 // of the sections that have SHF_ALLOC in their flag bits. 877 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 878 // if (section_sp && !section_sp->IsThreadSpecific()) 879 if (section_sp && section_sp->Test(SHF_ALLOC)) 880 { 881 lldb::addr_t load_addr = section_sp->GetFileAddress() + value; 882 883 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 884 // the bytes are the overflow from the addition. 885 if (GetAddressByteSize() == 4) 886 load_addr &= 0xFFFFFFFF; 887 888 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 889 ++num_loaded_sections; 890 } 891 } 892 return num_loaded_sections > 0; 893 } 894 } 895 return false; 896 } 897 898 ByteOrder 899 ObjectFileELF::GetByteOrder() const 900 { 901 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 902 return eByteOrderBig; 903 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 904 return eByteOrderLittle; 905 return eByteOrderInvalid; 906 } 907 908 uint32_t 909 ObjectFileELF::GetAddressByteSize() const 910 { 911 return m_data.GetAddressByteSize(); 912 } 913 914 // Top 16 bits of the `Symbol` flags are available. 915 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 916 917 AddressClass 918 ObjectFileELF::GetAddressClass (addr_t file_addr) 919 { 920 Symtab* symtab = GetSymtab(); 921 if (!symtab) 922 return eAddressClassUnknown; 923 924 // The address class is determined based on the symtab. Ask it from the object file what 925 // contains the symtab information. 926 ObjectFile* symtab_objfile = symtab->GetObjectFile(); 927 if (symtab_objfile != nullptr && symtab_objfile != this) 928 return symtab_objfile->GetAddressClass(file_addr); 929 930 auto res = ObjectFile::GetAddressClass (file_addr); 931 if (res != eAddressClassCode) 932 return res; 933 934 auto ub = m_address_class_map.upper_bound(file_addr); 935 if (ub == m_address_class_map.begin()) 936 { 937 // No entry in the address class map before the address. Return 938 // default address class for an address in a code section. 939 return eAddressClassCode; 940 } 941 942 // Move iterator to the address class entry preceding address 943 --ub; 944 945 return ub->second; 946 } 947 948 size_t 949 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 950 { 951 return std::distance(m_section_headers.begin(), I) + 1u; 952 } 953 954 size_t 955 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 956 { 957 return std::distance(m_section_headers.begin(), I) + 1u; 958 } 959 960 bool 961 ObjectFileELF::ParseHeader() 962 { 963 lldb::offset_t offset = 0; 964 if (!m_header.Parse(m_data, &offset)) 965 return false; 966 967 if (!IsInMemory()) 968 return true; 969 970 // For in memory object files m_data might not contain the full object file. Try to load it 971 // until the end of the "Section header table" what is at the end of the ELF file. 972 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 973 if (m_data.GetByteSize() < file_size) 974 { 975 ProcessSP process_sp (m_process_wp.lock()); 976 if (!process_sp) 977 return false; 978 979 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 980 if (!data_sp) 981 return false; 982 m_data.SetData(data_sp, 0, file_size); 983 } 984 985 return true; 986 } 987 988 bool 989 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 990 { 991 // Need to parse the section list to get the UUIDs, so make sure that's been done. 992 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 993 return false; 994 995 if (m_uuid.IsValid()) 996 { 997 // We have the full build id uuid. 998 *uuid = m_uuid; 999 return true; 1000 } 1001 else if (GetType() == ObjectFile::eTypeCoreFile) 1002 { 1003 uint32_t core_notes_crc = 0; 1004 1005 if (!ParseProgramHeaders()) 1006 return false; 1007 1008 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 1009 1010 if (core_notes_crc) 1011 { 1012 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 1013 // look different form .gnu_debuglink crc - followed by 4 bytes of note 1014 // segments crc. 1015 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 1016 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1017 } 1018 } 1019 else 1020 { 1021 if (!m_gnu_debuglink_crc) 1022 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1023 if (m_gnu_debuglink_crc) 1024 { 1025 // Use 4 bytes of crc from the .gnu_debuglink section. 1026 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1027 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1028 } 1029 } 1030 1031 if (m_uuid.IsValid()) 1032 { 1033 *uuid = m_uuid; 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 lldb_private::FileSpecList 1041 ObjectFileELF::GetDebugSymbolFilePaths() 1042 { 1043 FileSpecList file_spec_list; 1044 1045 if (!m_gnu_debuglink_file.empty()) 1046 { 1047 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1048 file_spec_list.Append (file_spec); 1049 } 1050 return file_spec_list; 1051 } 1052 1053 uint32_t 1054 ObjectFileELF::GetDependentModules(FileSpecList &files) 1055 { 1056 size_t num_modules = ParseDependentModules(); 1057 uint32_t num_specs = 0; 1058 1059 for (unsigned i = 0; i < num_modules; ++i) 1060 { 1061 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1062 num_specs++; 1063 } 1064 1065 return num_specs; 1066 } 1067 1068 Address 1069 ObjectFileELF::GetImageInfoAddress(Target *target) 1070 { 1071 if (!ParseDynamicSymbols()) 1072 return Address(); 1073 1074 SectionList *section_list = GetSectionList(); 1075 if (!section_list) 1076 return Address(); 1077 1078 // Find the SHT_DYNAMIC (.dynamic) section. 1079 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1080 if (!dynsym_section_sp) 1081 return Address(); 1082 assert (dynsym_section_sp->GetObjectFile() == this); 1083 1084 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1085 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1086 if (!dynsym_hdr) 1087 return Address(); 1088 1089 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1090 { 1091 ELFDynamic &symbol = m_dynamic_symbols[i]; 1092 1093 if (symbol.d_tag == DT_DEBUG) 1094 { 1095 // Compute the offset as the number of previous entries plus the 1096 // size of d_tag. 1097 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1098 return Address(dynsym_section_sp, offset); 1099 } 1100 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP exists in non-PIE. 1101 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target) 1102 { 1103 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1104 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1105 if (dyn_base == LLDB_INVALID_ADDRESS) 1106 return Address(); 1107 1108 Error error; 1109 if (symbol.d_tag == DT_MIPS_RLD_MAP) 1110 { 1111 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1112 Address addr; 1113 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1114 return addr; 1115 } 1116 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) 1117 { 1118 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, relative to the address of the tag. 1119 uint64_t rel_offset; 1120 rel_offset = target->ReadUnsignedIntegerFromMemory(dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1121 if (error.Success() && rel_offset != UINT64_MAX) 1122 { 1123 Address addr; 1124 addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1125 addr.SetOffset (debug_ptr_address); 1126 return addr; 1127 } 1128 } 1129 } 1130 } 1131 1132 return Address(); 1133 } 1134 1135 lldb_private::Address 1136 ObjectFileELF::GetEntryPointAddress () 1137 { 1138 if (m_entry_point_address.IsValid()) 1139 return m_entry_point_address; 1140 1141 if (!ParseHeader() || !IsExecutable()) 1142 return m_entry_point_address; 1143 1144 SectionList *section_list = GetSectionList(); 1145 addr_t offset = m_header.e_entry; 1146 1147 if (!section_list) 1148 m_entry_point_address.SetOffset(offset); 1149 else 1150 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1151 return m_entry_point_address; 1152 } 1153 1154 //---------------------------------------------------------------------- 1155 // ParseDependentModules 1156 //---------------------------------------------------------------------- 1157 size_t 1158 ObjectFileELF::ParseDependentModules() 1159 { 1160 if (m_filespec_ap.get()) 1161 return m_filespec_ap->GetSize(); 1162 1163 m_filespec_ap.reset(new FileSpecList()); 1164 1165 if (!ParseSectionHeaders()) 1166 return 0; 1167 1168 SectionList *section_list = GetSectionList(); 1169 if (!section_list) 1170 return 0; 1171 1172 // Find the SHT_DYNAMIC section. 1173 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1174 if (!dynsym) 1175 return 0; 1176 assert (dynsym->GetObjectFile() == this); 1177 1178 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1179 if (!header) 1180 return 0; 1181 // sh_link: section header index of string table used by entries in the section. 1182 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1183 if (!dynstr) 1184 return 0; 1185 1186 DataExtractor dynsym_data; 1187 DataExtractor dynstr_data; 1188 if (ReadSectionData(dynsym, dynsym_data) && 1189 ReadSectionData(dynstr, dynstr_data)) 1190 { 1191 ELFDynamic symbol; 1192 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1193 lldb::offset_t offset = 0; 1194 1195 // The only type of entries we are concerned with are tagged DT_NEEDED, 1196 // yielding the name of a required library. 1197 while (offset < section_size) 1198 { 1199 if (!symbol.Parse(dynsym_data, &offset)) 1200 break; 1201 1202 if (symbol.d_tag != DT_NEEDED) 1203 continue; 1204 1205 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1206 const char *lib_name = dynstr_data.PeekCStr(str_index); 1207 m_filespec_ap->Append(FileSpec(lib_name, true)); 1208 } 1209 } 1210 1211 return m_filespec_ap->GetSize(); 1212 } 1213 1214 //---------------------------------------------------------------------- 1215 // GetProgramHeaderInfo 1216 //---------------------------------------------------------------------- 1217 size_t 1218 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1219 DataExtractor &object_data, 1220 const ELFHeader &header) 1221 { 1222 // We have already parsed the program headers 1223 if (!program_headers.empty()) 1224 return program_headers.size(); 1225 1226 // If there are no program headers to read we are done. 1227 if (header.e_phnum == 0) 1228 return 0; 1229 1230 program_headers.resize(header.e_phnum); 1231 if (program_headers.size() != header.e_phnum) 1232 return 0; 1233 1234 const size_t ph_size = header.e_phnum * header.e_phentsize; 1235 const elf_off ph_offset = header.e_phoff; 1236 DataExtractor data; 1237 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1238 return 0; 1239 1240 uint32_t idx; 1241 lldb::offset_t offset; 1242 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1243 { 1244 if (program_headers[idx].Parse(data, &offset) == false) 1245 break; 1246 } 1247 1248 if (idx < program_headers.size()) 1249 program_headers.resize(idx); 1250 1251 return program_headers.size(); 1252 1253 } 1254 1255 //---------------------------------------------------------------------- 1256 // ParseProgramHeaders 1257 //---------------------------------------------------------------------- 1258 size_t 1259 ObjectFileELF::ParseProgramHeaders() 1260 { 1261 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1262 } 1263 1264 lldb_private::Error 1265 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1266 { 1267 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1268 Error error; 1269 1270 lldb::offset_t offset = 0; 1271 1272 while (true) 1273 { 1274 // Parse the note header. If this fails, bail out. 1275 ELFNote note = ELFNote(); 1276 if (!note.Parse(data, &offset)) 1277 { 1278 // We're done. 1279 return error; 1280 } 1281 1282 // If a tag processor handles the tag, it should set processed to true, and 1283 // the loop will assume the tag processing has moved entirely past the note's payload. 1284 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1285 bool processed = false; 1286 1287 if (log) 1288 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1289 1290 // Process FreeBSD ELF notes. 1291 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1292 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1293 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1294 { 1295 // We'll consume the payload below. 1296 processed = true; 1297 1298 // Pull out the min version info. 1299 uint32_t version_info; 1300 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1301 { 1302 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1303 return error; 1304 } 1305 1306 // Convert the version info into a major/minor number. 1307 const uint32_t version_major = version_info / 100000; 1308 const uint32_t version_minor = (version_info / 1000) % 100; 1309 1310 char os_name[32]; 1311 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1312 1313 // Set the elf OS version to FreeBSD. Also clear the vendor. 1314 arch_spec.GetTriple ().setOSName (os_name); 1315 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1316 1317 if (log) 1318 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1319 } 1320 // Process GNU ELF notes. 1321 else if (note.n_name == LLDB_NT_OWNER_GNU) 1322 { 1323 switch (note.n_type) 1324 { 1325 case LLDB_NT_GNU_ABI_TAG: 1326 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1327 { 1328 // We'll consume the payload below. 1329 processed = true; 1330 1331 // Pull out the min OS version supporting the ABI. 1332 uint32_t version_info[4]; 1333 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1334 { 1335 error.SetErrorString ("failed to read GNU ABI note payload"); 1336 return error; 1337 } 1338 1339 // Set the OS per the OS field. 1340 switch (version_info[0]) 1341 { 1342 case LLDB_NT_GNU_ABI_OS_LINUX: 1343 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1344 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1345 if (log) 1346 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1347 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1348 break; 1349 case LLDB_NT_GNU_ABI_OS_HURD: 1350 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1351 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1352 if (log) 1353 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1354 break; 1355 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1356 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1357 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1358 if (log) 1359 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1360 break; 1361 default: 1362 if (log) 1363 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1364 break; 1365 } 1366 } 1367 break; 1368 1369 case LLDB_NT_GNU_BUILD_ID_TAG: 1370 // Only bother processing this if we don't already have the uuid set. 1371 if (!uuid.IsValid()) 1372 { 1373 // We'll consume the payload below. 1374 processed = true; 1375 1376 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1377 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1378 { 1379 uint8_t uuidbuf[20]; 1380 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1381 { 1382 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1383 return error; 1384 } 1385 1386 // Save the build id as the UUID for the module. 1387 uuid.SetBytes (uuidbuf, note.n_descsz); 1388 } 1389 } 1390 break; 1391 } 1392 } 1393 // Process NetBSD ELF notes. 1394 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1395 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1396 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1397 { 1398 1399 // We'll consume the payload below. 1400 processed = true; 1401 1402 // Pull out the min version info. 1403 uint32_t version_info; 1404 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1405 { 1406 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1407 return error; 1408 } 1409 1410 // Set the elf OS version to NetBSD. Also clear the vendor. 1411 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1412 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1413 1414 if (log) 1415 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1416 } 1417 // Process CSR kalimba notes 1418 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1419 (note.n_name == LLDB_NT_OWNER_CSR)) 1420 { 1421 // We'll consume the payload below. 1422 processed = true; 1423 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1424 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1425 1426 // TODO At some point the description string could be processed. 1427 // It could provide a steer towards the kalimba variant which 1428 // this ELF targets. 1429 if(note.n_descsz) 1430 { 1431 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1432 (void)cstr; 1433 } 1434 } 1435 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1436 { 1437 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1438 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1439 } 1440 1441 if (!processed) 1442 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1443 } 1444 1445 return error; 1446 } 1447 1448 1449 //---------------------------------------------------------------------- 1450 // GetSectionHeaderInfo 1451 //---------------------------------------------------------------------- 1452 size_t 1453 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1454 lldb_private::DataExtractor &object_data, 1455 const elf::ELFHeader &header, 1456 lldb_private::UUID &uuid, 1457 std::string &gnu_debuglink_file, 1458 uint32_t &gnu_debuglink_crc, 1459 ArchSpec &arch_spec) 1460 { 1461 // Don't reparse the section headers if we already did that. 1462 if (!section_headers.empty()) 1463 return section_headers.size(); 1464 1465 // Only initialize the arch_spec to okay defaults if they're not already set. 1466 // We'll refine this with note data as we parse the notes. 1467 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1468 { 1469 llvm::Triple::OSType ostype; 1470 llvm::Triple::OSType spec_ostype; 1471 const uint32_t sub_type = subTypeFromElfHeader(header); 1472 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1473 // 1474 // Validate if it is ok to remove GetOsFromOSABI 1475 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1476 spec_ostype = arch_spec.GetTriple ().getOS (); 1477 assert(spec_ostype == ostype); 1478 } 1479 1480 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1481 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1482 { 1483 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) 1484 { 1485 case llvm::ELF::EF_MIPS_MICROMIPS: 1486 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips); 1487 break; 1488 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1489 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16); 1490 break; 1491 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1492 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx); 1493 break; 1494 default: 1495 break; 1496 } 1497 } 1498 1499 // If there are no section headers we are done. 1500 if (header.e_shnum == 0) 1501 return 0; 1502 1503 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1504 1505 section_headers.resize(header.e_shnum); 1506 if (section_headers.size() != header.e_shnum) 1507 return 0; 1508 1509 const size_t sh_size = header.e_shnum * header.e_shentsize; 1510 const elf_off sh_offset = header.e_shoff; 1511 DataExtractor sh_data; 1512 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1513 return 0; 1514 1515 uint32_t idx; 1516 lldb::offset_t offset; 1517 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1518 { 1519 if (section_headers[idx].Parse(sh_data, &offset) == false) 1520 break; 1521 } 1522 if (idx < section_headers.size()) 1523 section_headers.resize(idx); 1524 1525 const unsigned strtab_idx = header.e_shstrndx; 1526 if (strtab_idx && strtab_idx < section_headers.size()) 1527 { 1528 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1529 const size_t byte_size = sheader.sh_size; 1530 const Elf64_Off offset = sheader.sh_offset; 1531 lldb_private::DataExtractor shstr_data; 1532 1533 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1534 { 1535 for (SectionHeaderCollIter I = section_headers.begin(); 1536 I != section_headers.end(); ++I) 1537 { 1538 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1539 const ELFSectionHeaderInfo &sheader = *I; 1540 const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1541 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1542 1543 I->section_name = name; 1544 1545 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1546 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1547 { 1548 uint32_t arch_flags = arch_spec.GetFlags (); 1549 DataExtractor data; 1550 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) 1551 { 1552 1553 if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size)) 1554 { 1555 lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0 1556 arch_flags |= data.GetU32 (&ase_offset); 1557 } 1558 } 1559 // Settings appropriate ArchSpec ABI Flags 1560 if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) 1561 { 1562 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1563 } 1564 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI_O32) 1565 { 1566 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1567 } 1568 arch_spec.SetFlags (arch_flags); 1569 } 1570 1571 if (name == g_sect_name_gnu_debuglink) 1572 { 1573 DataExtractor data; 1574 if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size)) 1575 { 1576 lldb::offset_t gnu_debuglink_offset = 0; 1577 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1578 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1579 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1580 } 1581 } 1582 1583 // Process ELF note section entries. 1584 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1585 1586 // The section header ".note.android.ident" is stored as a 1587 // PROGBITS type header but it is actually a note header. 1588 static ConstString g_sect_name_android_ident (".note.android.ident"); 1589 if (!is_note_header && name == g_sect_name_android_ident) 1590 is_note_header = true; 1591 1592 if (is_note_header) 1593 { 1594 // Allow notes to refine module info. 1595 DataExtractor data; 1596 if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size)) 1597 { 1598 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1599 if (error.Fail ()) 1600 { 1601 if (log) 1602 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1603 } 1604 } 1605 } 1606 } 1607 1608 return section_headers.size(); 1609 } 1610 } 1611 1612 section_headers.clear(); 1613 return 0; 1614 } 1615 1616 size_t 1617 ObjectFileELF::GetProgramHeaderCount() 1618 { 1619 return ParseProgramHeaders(); 1620 } 1621 1622 const elf::ELFProgramHeader * 1623 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1624 { 1625 if (!id || !ParseProgramHeaders()) 1626 return NULL; 1627 1628 if (--id < m_program_headers.size()) 1629 return &m_program_headers[id]; 1630 1631 return NULL; 1632 } 1633 1634 DataExtractor 1635 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1636 { 1637 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1638 if (segment_header == NULL) 1639 return DataExtractor(); 1640 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1641 } 1642 1643 std::string 1644 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1645 { 1646 size_t pos = symbol_name.find('@'); 1647 return symbol_name.substr(0, pos).str(); 1648 } 1649 1650 //---------------------------------------------------------------------- 1651 // ParseSectionHeaders 1652 //---------------------------------------------------------------------- 1653 size_t 1654 ObjectFileELF::ParseSectionHeaders() 1655 { 1656 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1657 } 1658 1659 const ObjectFileELF::ELFSectionHeaderInfo * 1660 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1661 { 1662 if (!id || !ParseSectionHeaders()) 1663 return NULL; 1664 1665 if (--id < m_section_headers.size()) 1666 return &m_section_headers[id]; 1667 1668 return NULL; 1669 } 1670 1671 lldb::user_id_t 1672 ObjectFileELF::GetSectionIndexByName(const char* name) 1673 { 1674 if (!name || !name[0] || !ParseSectionHeaders()) 1675 return 0; 1676 for (size_t i = 1; i < m_section_headers.size(); ++i) 1677 if (m_section_headers[i].section_name == ConstString(name)) 1678 return i; 1679 return 0; 1680 } 1681 1682 void 1683 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1684 { 1685 if (!m_sections_ap.get() && ParseSectionHeaders()) 1686 { 1687 m_sections_ap.reset(new SectionList()); 1688 1689 for (SectionHeaderCollIter I = m_section_headers.begin(); 1690 I != m_section_headers.end(); ++I) 1691 { 1692 const ELFSectionHeaderInfo &header = *I; 1693 1694 ConstString& name = I->section_name; 1695 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1696 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1697 1698 static ConstString g_sect_name_text (".text"); 1699 static ConstString g_sect_name_data (".data"); 1700 static ConstString g_sect_name_bss (".bss"); 1701 static ConstString g_sect_name_tdata (".tdata"); 1702 static ConstString g_sect_name_tbss (".tbss"); 1703 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1704 static ConstString g_sect_name_dwarf_debug_addr (".debug_addr"); 1705 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1706 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1707 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1708 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1709 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1710 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1711 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1712 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1713 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1714 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1715 static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets"); 1716 static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo"); 1717 static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo"); 1718 static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo"); 1719 static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo"); 1720 static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo"); 1721 static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo"); 1722 static ConstString g_sect_name_eh_frame (".eh_frame"); 1723 static ConstString g_sect_name_arm_exidx (".ARM.exidx"); 1724 static ConstString g_sect_name_arm_extab (".ARM.extab"); 1725 static ConstString g_sect_name_go_symtab (".gosymtab"); 1726 1727 SectionType sect_type = eSectionTypeOther; 1728 1729 bool is_thread_specific = false; 1730 1731 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1732 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1733 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1734 else if (name == g_sect_name_tdata) 1735 { 1736 sect_type = eSectionTypeData; 1737 is_thread_specific = true; 1738 } 1739 else if (name == g_sect_name_tbss) 1740 { 1741 sect_type = eSectionTypeZeroFill; 1742 is_thread_specific = true; 1743 } 1744 // .debug_abbrev – Abbreviations used in the .debug_info section 1745 // .debug_aranges – Lookup table for mapping addresses to compilation units 1746 // .debug_frame – Call frame information 1747 // .debug_info – The core DWARF information section 1748 // .debug_line – Line number information 1749 // .debug_loc – Location lists used in DW_AT_location attributes 1750 // .debug_macinfo – Macro information 1751 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1752 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1753 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1754 // .debug_str – String table used in .debug_info 1755 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1756 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1757 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1758 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1759 else if (name == g_sect_name_dwarf_debug_addr) sect_type = eSectionTypeDWARFDebugAddr; 1760 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1761 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1762 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1763 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1764 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1765 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1766 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1767 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1768 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1769 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1770 else if (name == g_sect_name_dwarf_debug_str_offsets) sect_type = eSectionTypeDWARFDebugStrOffsets; 1771 else if (name == g_sect_name_dwarf_debug_abbrev_dwo) sect_type = eSectionTypeDWARFDebugAbbrev; 1772 else if (name == g_sect_name_dwarf_debug_info_dwo) sect_type = eSectionTypeDWARFDebugInfo; 1773 else if (name == g_sect_name_dwarf_debug_line_dwo) sect_type = eSectionTypeDWARFDebugLine; 1774 else if (name == g_sect_name_dwarf_debug_loc_dwo) sect_type = eSectionTypeDWARFDebugLoc; 1775 else if (name == g_sect_name_dwarf_debug_str_dwo) sect_type = eSectionTypeDWARFDebugStr; 1776 else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets; 1777 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1778 else if (name == g_sect_name_arm_exidx) sect_type = eSectionTypeARMexidx; 1779 else if (name == g_sect_name_arm_extab) sect_type = eSectionTypeARMextab; 1780 else if (name == g_sect_name_go_symtab) sect_type = eSectionTypeGoSymtab; 1781 1782 switch (header.sh_type) 1783 { 1784 case SHT_SYMTAB: 1785 assert (sect_type == eSectionTypeOther); 1786 sect_type = eSectionTypeELFSymbolTable; 1787 break; 1788 case SHT_DYNSYM: 1789 assert (sect_type == eSectionTypeOther); 1790 sect_type = eSectionTypeELFDynamicSymbols; 1791 break; 1792 case SHT_RELA: 1793 case SHT_REL: 1794 assert (sect_type == eSectionTypeOther); 1795 sect_type = eSectionTypeELFRelocationEntries; 1796 break; 1797 case SHT_DYNAMIC: 1798 assert (sect_type == eSectionTypeOther); 1799 sect_type = eSectionTypeELFDynamicLinkInfo; 1800 break; 1801 } 1802 1803 if (eSectionTypeOther == sect_type) 1804 { 1805 // the kalimba toolchain assumes that ELF section names are free-form. It does 1806 // support linkscripts which (can) give rise to various arbitrarily named 1807 // sections being "Code" or "Data". 1808 sect_type = kalimbaSectionType(m_header, header); 1809 } 1810 1811 const uint32_t target_bytes_size = 1812 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1813 m_arch_spec.GetDataByteSize() : 1814 eSectionTypeCode == sect_type ? 1815 m_arch_spec.GetCodeByteSize() : 1; 1816 1817 elf::elf_xword log2align = (header.sh_addralign==0) 1818 ? 0 1819 : llvm::Log2_64(header.sh_addralign); 1820 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1821 this, // ObjectFile to which this section belongs and should read section data from. 1822 SectionIndex(I), // Section ID. 1823 name, // Section name. 1824 sect_type, // Section type. 1825 header.sh_addr, // VM address. 1826 vm_size, // VM size in bytes of this section. 1827 header.sh_offset, // Offset of this section in the file. 1828 file_size, // Size of the section as found in the file. 1829 log2align, // Alignment of the section 1830 header.sh_flags, // Flags for this section. 1831 target_bytes_size));// Number of host bytes per target byte 1832 1833 if (is_thread_specific) 1834 section_sp->SetIsThreadSpecific (is_thread_specific); 1835 m_sections_ap->AddSection(section_sp); 1836 } 1837 } 1838 1839 if (m_sections_ap.get()) 1840 { 1841 if (GetType() == eTypeDebugInfo) 1842 { 1843 static const SectionType g_sections[] = 1844 { 1845 eSectionTypeDWARFDebugAbbrev, 1846 eSectionTypeDWARFDebugAddr, 1847 eSectionTypeDWARFDebugAranges, 1848 eSectionTypeDWARFDebugFrame, 1849 eSectionTypeDWARFDebugInfo, 1850 eSectionTypeDWARFDebugLine, 1851 eSectionTypeDWARFDebugLoc, 1852 eSectionTypeDWARFDebugMacInfo, 1853 eSectionTypeDWARFDebugPubNames, 1854 eSectionTypeDWARFDebugPubTypes, 1855 eSectionTypeDWARFDebugRanges, 1856 eSectionTypeDWARFDebugStr, 1857 eSectionTypeDWARFDebugStrOffsets, 1858 eSectionTypeELFSymbolTable, 1859 }; 1860 SectionList *elf_section_list = m_sections_ap.get(); 1861 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1862 { 1863 SectionType section_type = g_sections[idx]; 1864 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1865 if (section_sp) 1866 { 1867 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1868 if (module_section_sp) 1869 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1870 else 1871 unified_section_list.AddSection (section_sp); 1872 } 1873 } 1874 } 1875 else 1876 { 1877 unified_section_list = *m_sections_ap; 1878 } 1879 } 1880 } 1881 1882 // Find the arm/aarch64 mapping symbol character in the given symbol name. Mapping symbols have the 1883 // form of "$<char>[.<any>]*". Additionally we recognize cases when the mapping symbol prefixed by 1884 // an arbitrary string because if a symbol prefix added to each symbol in the object file with 1885 // objcopy then the mapping symbols are also prefixed. 1886 static char 1887 FindArmAarch64MappingSymbol(const char* symbol_name) 1888 { 1889 if (!symbol_name) 1890 return '\0'; 1891 1892 const char* dollar_pos = ::strchr(symbol_name, '$'); 1893 if (!dollar_pos || dollar_pos[1] == '\0') 1894 return '\0'; 1895 1896 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 1897 return dollar_pos[1]; 1898 return '\0'; 1899 } 1900 1901 #define STO_MIPS_ISA (3 << 6) 1902 #define STO_MICROMIPS (2 << 6) 1903 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER) & STO_MIPS_ISA) == STO_MICROMIPS) 1904 1905 // private 1906 unsigned 1907 ObjectFileELF::ParseSymbols (Symtab *symtab, 1908 user_id_t start_id, 1909 SectionList *section_list, 1910 const size_t num_symbols, 1911 const DataExtractor &symtab_data, 1912 const DataExtractor &strtab_data) 1913 { 1914 ELFSymbol symbol; 1915 lldb::offset_t offset = 0; 1916 1917 static ConstString text_section_name(".text"); 1918 static ConstString init_section_name(".init"); 1919 static ConstString fini_section_name(".fini"); 1920 static ConstString ctors_section_name(".ctors"); 1921 static ConstString dtors_section_name(".dtors"); 1922 1923 static ConstString data_section_name(".data"); 1924 static ConstString rodata_section_name(".rodata"); 1925 static ConstString rodata1_section_name(".rodata1"); 1926 static ConstString data2_section_name(".data1"); 1927 static ConstString bss_section_name(".bss"); 1928 static ConstString opd_section_name(".opd"); // For ppc64 1929 1930 // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full 1931 // .text section what causes issues with displaying unusable symbol name to the user and very 1932 // slow unwinding speed because the instruction emulation based unwind plans try to emulate all 1933 // instructions in these symbols. Don't add these symbols to the symbol list as they have no 1934 // use for the debugger and they are causing a lot of trouble. 1935 // Filtering can't be restricted to Android because this special object file don't contain the 1936 // note section specifying the environment to Android but the custom extension and file name 1937 // makes it highly unlikely that this will collide with anything else. 1938 bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat"); 1939 1940 unsigned i; 1941 for (i = 0; i < num_symbols; ++i) 1942 { 1943 if (symbol.Parse(symtab_data, &offset) == false) 1944 break; 1945 1946 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1947 1948 // No need to add non-section symbols that have no names 1949 if (symbol.getType() != STT_SECTION && 1950 (symbol_name == NULL || symbol_name[0] == '\0')) 1951 continue; 1952 1953 // Skipping oatdata and oatexec sections if it is requested. See details above the 1954 // definition of skip_oatdata_oatexec for the reasons. 1955 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) 1956 continue; 1957 1958 SectionSP symbol_section_sp; 1959 SymbolType symbol_type = eSymbolTypeInvalid; 1960 Elf64_Half symbol_idx = symbol.st_shndx; 1961 1962 switch (symbol_idx) 1963 { 1964 case SHN_ABS: 1965 symbol_type = eSymbolTypeAbsolute; 1966 break; 1967 case SHN_UNDEF: 1968 symbol_type = eSymbolTypeUndefined; 1969 break; 1970 default: 1971 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1972 break; 1973 } 1974 1975 // If a symbol is undefined do not process it further even if it has a STT type 1976 if (symbol_type != eSymbolTypeUndefined) 1977 { 1978 switch (symbol.getType()) 1979 { 1980 default: 1981 case STT_NOTYPE: 1982 // The symbol's type is not specified. 1983 break; 1984 1985 case STT_OBJECT: 1986 // The symbol is associated with a data object, such as a variable, 1987 // an array, etc. 1988 symbol_type = eSymbolTypeData; 1989 break; 1990 1991 case STT_FUNC: 1992 // The symbol is associated with a function or other executable code. 1993 symbol_type = eSymbolTypeCode; 1994 break; 1995 1996 case STT_SECTION: 1997 // The symbol is associated with a section. Symbol table entries of 1998 // this type exist primarily for relocation and normally have 1999 // STB_LOCAL binding. 2000 break; 2001 2002 case STT_FILE: 2003 // Conventionally, the symbol's name gives the name of the source 2004 // file associated with the object file. A file symbol has STB_LOCAL 2005 // binding, its section index is SHN_ABS, and it precedes the other 2006 // STB_LOCAL symbols for the file, if it is present. 2007 symbol_type = eSymbolTypeSourceFile; 2008 break; 2009 2010 case STT_GNU_IFUNC: 2011 // The symbol is associated with an indirect function. The actual 2012 // function will be resolved if it is referenced. 2013 symbol_type = eSymbolTypeResolver; 2014 break; 2015 } 2016 } 2017 2018 if (symbol_type == eSymbolTypeInvalid) 2019 { 2020 if (symbol_section_sp) 2021 { 2022 const ConstString §_name = symbol_section_sp->GetName(); 2023 if (sect_name == text_section_name || 2024 sect_name == init_section_name || 2025 sect_name == fini_section_name || 2026 sect_name == ctors_section_name || 2027 sect_name == dtors_section_name) 2028 { 2029 symbol_type = eSymbolTypeCode; 2030 } 2031 else if (sect_name == data_section_name || 2032 sect_name == data2_section_name || 2033 sect_name == rodata_section_name || 2034 sect_name == rodata1_section_name || 2035 sect_name == bss_section_name) 2036 { 2037 symbol_type = eSymbolTypeData; 2038 } 2039 } 2040 } 2041 2042 int64_t symbol_value_offset = 0; 2043 uint32_t additional_flags = 0; 2044 2045 ArchSpec arch; 2046 if (GetArchitecture(arch)) 2047 { 2048 if (arch.GetMachine() == llvm::Triple::arm) 2049 { 2050 if (symbol.getBinding() == STB_LOCAL) 2051 { 2052 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2053 if (symbol_type == eSymbolTypeCode) 2054 { 2055 switch (mapping_symbol) 2056 { 2057 case 'a': 2058 // $a[.<any>]* - marks an ARM instruction sequence 2059 m_address_class_map[symbol.st_value] = eAddressClassCode; 2060 break; 2061 case 'b': 2062 case 't': 2063 // $b[.<any>]* - marks a THUMB BL instruction sequence 2064 // $t[.<any>]* - marks a THUMB instruction sequence 2065 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2066 break; 2067 case 'd': 2068 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2069 m_address_class_map[symbol.st_value] = eAddressClassData; 2070 break; 2071 } 2072 } 2073 if (mapping_symbol) 2074 continue; 2075 } 2076 } 2077 else if (arch.GetMachine() == llvm::Triple::aarch64) 2078 { 2079 if (symbol.getBinding() == STB_LOCAL) 2080 { 2081 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2082 if (symbol_type == eSymbolTypeCode) 2083 { 2084 switch (mapping_symbol) 2085 { 2086 case 'x': 2087 // $x[.<any>]* - marks an A64 instruction sequence 2088 m_address_class_map[symbol.st_value] = eAddressClassCode; 2089 break; 2090 case 'd': 2091 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2092 m_address_class_map[symbol.st_value] = eAddressClassData; 2093 break; 2094 } 2095 } 2096 if (mapping_symbol) 2097 continue; 2098 } 2099 } 2100 2101 if (arch.GetMachine() == llvm::Triple::arm) 2102 { 2103 if (symbol_type == eSymbolTypeCode) 2104 { 2105 if (symbol.st_value & 1) 2106 { 2107 // Subtracting 1 from the address effectively unsets 2108 // the low order bit, which results in the address 2109 // actually pointing to the beginning of the symbol. 2110 // This delta will be used below in conjunction with 2111 // symbol.st_value to produce the final symbol_value 2112 // that we store in the symtab. 2113 symbol_value_offset = -1; 2114 additional_flags = ARM_ELF_SYM_IS_THUMB; 2115 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 2116 } 2117 else 2118 { 2119 // This address is ARM 2120 m_address_class_map[symbol.st_value] = eAddressClassCode; 2121 } 2122 } 2123 } 2124 2125 /* 2126 * MIPS: 2127 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for MIPS). 2128 * This allows processer to switch between microMIPS and MIPS without any need 2129 * for special mode-control register. However, apart from .debug_line, none of 2130 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use st_other 2131 * flag to check whether the symbol is microMIPS and then set the address class 2132 * accordingly. 2133 */ 2134 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2135 if (llvm_arch == llvm::Triple::mips || llvm_arch == llvm::Triple::mipsel 2136 || llvm_arch == llvm::Triple::mips64 || llvm_arch == llvm::Triple::mips64el) 2137 { 2138 if (IS_MICROMIPS(symbol.st_other)) 2139 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2140 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) 2141 { 2142 symbol.st_value = symbol.st_value & (~1ull); 2143 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2144 } 2145 else 2146 { 2147 if (symbol_type == eSymbolTypeCode) 2148 m_address_class_map[symbol.st_value] = eAddressClassCode; 2149 else if (symbol_type == eSymbolTypeData) 2150 m_address_class_map[symbol.st_value] = eAddressClassData; 2151 else 2152 m_address_class_map[symbol.st_value] = eAddressClassUnknown; 2153 } 2154 } 2155 } 2156 2157 // symbol_value_offset may contain 0 for ARM symbols or -1 for 2158 // THUMB symbols. See above for more details. 2159 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2160 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2161 symbol_value -= symbol_section_sp->GetFileAddress(); 2162 2163 if (symbol_section_sp) 2164 { 2165 ModuleSP module_sp(GetModule()); 2166 if (module_sp) 2167 { 2168 SectionList *module_section_list = module_sp->GetSectionList(); 2169 if (module_section_list && module_section_list != section_list) 2170 { 2171 const ConstString §_name = symbol_section_sp->GetName(); 2172 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 2173 if (section_sp && section_sp->GetFileSize()) 2174 { 2175 symbol_section_sp = section_sp; 2176 } 2177 } 2178 } 2179 } 2180 2181 bool is_global = symbol.getBinding() == STB_GLOBAL; 2182 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2183 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2184 2185 llvm::StringRef symbol_ref(symbol_name); 2186 2187 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2188 size_t version_pos = symbol_ref.find('@'); 2189 bool has_suffix = version_pos != llvm::StringRef::npos; 2190 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2191 Mangled mangled(ConstString(symbol_bare), is_mangled); 2192 2193 // Now append the suffix back to mangled and unmangled names. Only do it if the 2194 // demangling was successful (string is not empty). 2195 if (has_suffix) 2196 { 2197 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2198 2199 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2200 if (! mangled_name.empty()) 2201 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2202 2203 ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2204 llvm::StringRef demangled_name = demangled.GetStringRef(); 2205 if (!demangled_name.empty()) 2206 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2207 } 2208 2209 Symbol dc_symbol( 2210 i + start_id, // ID is the original symbol table index. 2211 mangled, 2212 symbol_type, // Type of this symbol 2213 is_global, // Is this globally visible? 2214 false, // Is this symbol debug info? 2215 false, // Is this symbol a trampoline? 2216 false, // Is this symbol artificial? 2217 AddressRange( 2218 symbol_section_sp, // Section in which this symbol is defined or null. 2219 symbol_value, // Offset in section or symbol value. 2220 symbol.st_size), // Size in bytes of this symbol. 2221 symbol.st_size != 0, // Size is valid if it is not 0 2222 has_suffix, // Contains linker annotations? 2223 flags); // Symbol flags. 2224 symtab->AddSymbol(dc_symbol); 2225 } 2226 return i; 2227 } 2228 2229 unsigned 2230 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 2231 { 2232 if (symtab->GetObjectFile() != this) 2233 { 2234 // If the symbol table section is owned by a different object file, have it do the 2235 // parsing. 2236 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2237 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2238 } 2239 2240 // Get section list for this object file. 2241 SectionList *section_list = m_sections_ap.get(); 2242 if (!section_list) 2243 return 0; 2244 2245 user_id_t symtab_id = symtab->GetID(); 2246 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2247 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2248 symtab_hdr->sh_type == SHT_DYNSYM); 2249 2250 // sh_link: section header index of associated string table. 2251 // Section ID's are ones based. 2252 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2253 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2254 2255 if (symtab && strtab) 2256 { 2257 assert (symtab->GetObjectFile() == this); 2258 assert (strtab->GetObjectFile() == this); 2259 2260 DataExtractor symtab_data; 2261 DataExtractor strtab_data; 2262 if (ReadSectionData(symtab, symtab_data) && 2263 ReadSectionData(strtab, strtab_data)) 2264 { 2265 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2266 2267 return ParseSymbols(symbol_table, start_id, section_list, 2268 num_symbols, symtab_data, strtab_data); 2269 } 2270 } 2271 2272 return 0; 2273 } 2274 2275 size_t 2276 ObjectFileELF::ParseDynamicSymbols() 2277 { 2278 if (m_dynamic_symbols.size()) 2279 return m_dynamic_symbols.size(); 2280 2281 SectionList *section_list = GetSectionList(); 2282 if (!section_list) 2283 return 0; 2284 2285 // Find the SHT_DYNAMIC section. 2286 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2287 if (!dynsym) 2288 return 0; 2289 assert (dynsym->GetObjectFile() == this); 2290 2291 ELFDynamic symbol; 2292 DataExtractor dynsym_data; 2293 if (ReadSectionData(dynsym, dynsym_data)) 2294 { 2295 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2296 lldb::offset_t cursor = 0; 2297 2298 while (cursor < section_size) 2299 { 2300 if (!symbol.Parse(dynsym_data, &cursor)) 2301 break; 2302 2303 m_dynamic_symbols.push_back(symbol); 2304 } 2305 } 2306 2307 return m_dynamic_symbols.size(); 2308 } 2309 2310 const ELFDynamic * 2311 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2312 { 2313 if (!ParseDynamicSymbols()) 2314 return NULL; 2315 2316 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2317 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2318 for ( ; I != E; ++I) 2319 { 2320 ELFDynamic *symbol = &*I; 2321 2322 if (symbol->d_tag == tag) 2323 return symbol; 2324 } 2325 2326 return NULL; 2327 } 2328 2329 unsigned 2330 ObjectFileELF::PLTRelocationType() 2331 { 2332 // DT_PLTREL 2333 // This member specifies the type of relocation entry to which the 2334 // procedure linkage table refers. The d_val member holds DT_REL or 2335 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2336 // must use the same relocation. 2337 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2338 2339 if (symbol) 2340 return symbol->d_val; 2341 2342 return 0; 2343 } 2344 2345 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2346 // 0th entry in the plt table is usually a resolution entry which have different size in some 2347 // architectures then the rest of the plt entries. 2348 static std::pair<uint64_t, uint64_t> 2349 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2350 { 2351 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2352 2353 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2354 // So round the entsize up by the alignment if addralign is set. 2355 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2356 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2357 2358 if (plt_entsize == 0) 2359 { 2360 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2361 // entries based on the number of entries and the size of the plt section with the 2362 // assumption that the size of the 0th entry is at least as big as the size of the normal 2363 // entries and it isn't much bigger then that. 2364 if (plt_hdr->sh_addralign) 2365 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2366 else 2367 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2368 } 2369 2370 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2371 2372 return std::make_pair(plt_entsize, plt_offset); 2373 } 2374 2375 static unsigned 2376 ParsePLTRelocations(Symtab *symbol_table, 2377 user_id_t start_id, 2378 unsigned rel_type, 2379 const ELFHeader *hdr, 2380 const ELFSectionHeader *rel_hdr, 2381 const ELFSectionHeader *plt_hdr, 2382 const ELFSectionHeader *sym_hdr, 2383 const lldb::SectionSP &plt_section_sp, 2384 DataExtractor &rel_data, 2385 DataExtractor &symtab_data, 2386 DataExtractor &strtab_data) 2387 { 2388 ELFRelocation rel(rel_type); 2389 ELFSymbol symbol; 2390 lldb::offset_t offset = 0; 2391 2392 uint64_t plt_offset, plt_entsize; 2393 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2394 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2395 2396 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2397 reloc_info_fn reloc_type; 2398 reloc_info_fn reloc_symbol; 2399 2400 if (hdr->Is32Bit()) 2401 { 2402 reloc_type = ELFRelocation::RelocType32; 2403 reloc_symbol = ELFRelocation::RelocSymbol32; 2404 } 2405 else 2406 { 2407 reloc_type = ELFRelocation::RelocType64; 2408 reloc_symbol = ELFRelocation::RelocSymbol64; 2409 } 2410 2411 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2412 unsigned i; 2413 for (i = 0; i < num_relocations; ++i) 2414 { 2415 if (rel.Parse(rel_data, &offset) == false) 2416 break; 2417 2418 if (reloc_type(rel) != slot_type) 2419 continue; 2420 2421 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2422 if (!symbol.Parse(symtab_data, &symbol_offset)) 2423 break; 2424 2425 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2426 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2427 uint64_t plt_index = plt_offset + i * plt_entsize; 2428 2429 Symbol jump_symbol( 2430 i + start_id, // Symbol table index 2431 symbol_name, // symbol name. 2432 is_mangled, // is the symbol name mangled? 2433 eSymbolTypeTrampoline, // Type of this symbol 2434 false, // Is this globally visible? 2435 false, // Is this symbol debug info? 2436 true, // Is this symbol a trampoline? 2437 true, // Is this symbol artificial? 2438 plt_section_sp, // Section in which this symbol is defined or null. 2439 plt_index, // Offset in section or symbol value. 2440 plt_entsize, // Size in bytes of this symbol. 2441 true, // Size is valid 2442 false, // Contains linker annotations? 2443 0); // Symbol flags. 2444 2445 symbol_table->AddSymbol(jump_symbol); 2446 } 2447 2448 return i; 2449 } 2450 2451 unsigned 2452 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2453 user_id_t start_id, 2454 const ELFSectionHeaderInfo *rel_hdr, 2455 user_id_t rel_id) 2456 { 2457 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2458 2459 // The link field points to the associated symbol table. The info field 2460 // points to the section holding the plt. 2461 user_id_t symtab_id = rel_hdr->sh_link; 2462 user_id_t plt_id = rel_hdr->sh_info; 2463 2464 // If the link field doesn't point to the appropriate symbol name table then 2465 // try to find it by name as some compiler don't fill in the link fields. 2466 if (!symtab_id) 2467 symtab_id = GetSectionIndexByName(".dynsym"); 2468 if (!plt_id) 2469 plt_id = GetSectionIndexByName(".plt"); 2470 2471 if (!symtab_id || !plt_id) 2472 return 0; 2473 2474 // Section ID's are ones based; 2475 symtab_id++; 2476 plt_id++; 2477 2478 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2479 if (!plt_hdr) 2480 return 0; 2481 2482 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2483 if (!sym_hdr) 2484 return 0; 2485 2486 SectionList *section_list = m_sections_ap.get(); 2487 if (!section_list) 2488 return 0; 2489 2490 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2491 if (!rel_section) 2492 return 0; 2493 2494 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2495 if (!plt_section_sp) 2496 return 0; 2497 2498 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2499 if (!symtab) 2500 return 0; 2501 2502 // sh_link points to associated string table. 2503 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2504 if (!strtab) 2505 return 0; 2506 2507 DataExtractor rel_data; 2508 if (!ReadSectionData(rel_section, rel_data)) 2509 return 0; 2510 2511 DataExtractor symtab_data; 2512 if (!ReadSectionData(symtab, symtab_data)) 2513 return 0; 2514 2515 DataExtractor strtab_data; 2516 if (!ReadSectionData(strtab, strtab_data)) 2517 return 0; 2518 2519 unsigned rel_type = PLTRelocationType(); 2520 if (!rel_type) 2521 return 0; 2522 2523 return ParsePLTRelocations (symbol_table, 2524 start_id, 2525 rel_type, 2526 &m_header, 2527 rel_hdr, 2528 plt_hdr, 2529 sym_hdr, 2530 plt_section_sp, 2531 rel_data, 2532 symtab_data, 2533 strtab_data); 2534 } 2535 2536 unsigned 2537 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2538 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2539 DataExtractor &rel_data, DataExtractor &symtab_data, 2540 DataExtractor &debug_data, Section* rel_section) 2541 { 2542 ELFRelocation rel(rel_hdr->sh_type); 2543 lldb::addr_t offset = 0; 2544 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2545 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2546 reloc_info_fn reloc_type; 2547 reloc_info_fn reloc_symbol; 2548 2549 if (hdr->Is32Bit()) 2550 { 2551 reloc_type = ELFRelocation::RelocType32; 2552 reloc_symbol = ELFRelocation::RelocSymbol32; 2553 } 2554 else 2555 { 2556 reloc_type = ELFRelocation::RelocType64; 2557 reloc_symbol = ELFRelocation::RelocSymbol64; 2558 } 2559 2560 for (unsigned i = 0; i < num_relocations; ++i) 2561 { 2562 if (rel.Parse(rel_data, &offset) == false) 2563 break; 2564 2565 Symbol* symbol = NULL; 2566 2567 if (hdr->Is32Bit()) 2568 { 2569 switch (reloc_type(rel)) { 2570 case R_386_32: 2571 case R_386_PC32: 2572 default: 2573 assert(false && "unexpected relocation type"); 2574 } 2575 } else { 2576 switch (reloc_type(rel)) { 2577 case R_X86_64_64: 2578 { 2579 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2580 if (symbol) 2581 { 2582 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2583 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2584 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2585 *dst = value + ELFRelocation::RelocAddend64(rel); 2586 } 2587 break; 2588 } 2589 case R_X86_64_32: 2590 case R_X86_64_32S: 2591 { 2592 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2593 if (symbol) 2594 { 2595 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2596 value += ELFRelocation::RelocAddend32(rel); 2597 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2598 (reloc_type(rel) == R_X86_64_32S && 2599 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2600 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2601 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2602 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2603 *dst = truncated_addr; 2604 } 2605 break; 2606 } 2607 case R_X86_64_PC32: 2608 default: 2609 assert(false && "unexpected relocation type"); 2610 } 2611 } 2612 } 2613 2614 return 0; 2615 } 2616 2617 unsigned 2618 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2619 { 2620 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2621 2622 // Parse in the section list if needed. 2623 SectionList *section_list = GetSectionList(); 2624 if (!section_list) 2625 return 0; 2626 2627 // Section ID's are ones based. 2628 user_id_t symtab_id = rel_hdr->sh_link + 1; 2629 user_id_t debug_id = rel_hdr->sh_info + 1; 2630 2631 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2632 if (!symtab_hdr) 2633 return 0; 2634 2635 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2636 if (!debug_hdr) 2637 return 0; 2638 2639 Section *rel = section_list->FindSectionByID(rel_id).get(); 2640 if (!rel) 2641 return 0; 2642 2643 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2644 if (!symtab) 2645 return 0; 2646 2647 Section *debug = section_list->FindSectionByID(debug_id).get(); 2648 if (!debug) 2649 return 0; 2650 2651 DataExtractor rel_data; 2652 DataExtractor symtab_data; 2653 DataExtractor debug_data; 2654 2655 if (ReadSectionData(rel, rel_data) && 2656 ReadSectionData(symtab, symtab_data) && 2657 ReadSectionData(debug, debug_data)) 2658 { 2659 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2660 rel_data, symtab_data, debug_data, debug); 2661 } 2662 2663 return 0; 2664 } 2665 2666 Symtab * 2667 ObjectFileELF::GetSymtab() 2668 { 2669 ModuleSP module_sp(GetModule()); 2670 if (!module_sp) 2671 return NULL; 2672 2673 // We always want to use the main object file so we (hopefully) only have one cached copy 2674 // of our symtab, dynamic sections, etc. 2675 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2676 if (module_obj_file && module_obj_file != this) 2677 return module_obj_file->GetSymtab(); 2678 2679 if (m_symtab_ap.get() == NULL) 2680 { 2681 SectionList *section_list = module_sp->GetSectionList(); 2682 if (!section_list) 2683 return NULL; 2684 2685 uint64_t symbol_id = 0; 2686 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2687 2688 // Sharable objects and dynamic executables usually have 2 distinct symbol 2689 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2690 // version of the symtab that only contains global symbols. The information found 2691 // in the dynsym is therefore also found in the symtab, while the reverse is not 2692 // necessarily true. 2693 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2694 if (!symtab) 2695 { 2696 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2697 // then use the dynsym section which should always be there. 2698 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2699 } 2700 if (symtab) 2701 { 2702 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2703 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2704 } 2705 2706 // DT_JMPREL 2707 // If present, this entry's d_ptr member holds the address of relocation 2708 // entries associated solely with the procedure linkage table. Separating 2709 // these relocation entries lets the dynamic linker ignore them during 2710 // process initialization, if lazy binding is enabled. If this entry is 2711 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2712 // also be present. 2713 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2714 if (symbol) 2715 { 2716 // Synthesize trampoline symbols to help navigate the PLT. 2717 addr_t addr = symbol->d_ptr; 2718 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2719 if (reloc_section) 2720 { 2721 user_id_t reloc_id = reloc_section->GetID(); 2722 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2723 assert(reloc_header); 2724 2725 if (m_symtab_ap == nullptr) 2726 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 2727 2728 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2729 } 2730 } 2731 2732 // If we still don't have any symtab then create an empty instance to avoid do the section 2733 // lookup next time. 2734 if (m_symtab_ap == nullptr) 2735 m_symtab_ap.reset(new Symtab(this)); 2736 2737 m_symtab_ap->CalculateSymbolSizes(); 2738 } 2739 2740 for (SectionHeaderCollIter I = m_section_headers.begin(); 2741 I != m_section_headers.end(); ++I) 2742 { 2743 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2744 { 2745 if (CalculateType() == eTypeObjectFile) 2746 { 2747 const char *section_name = I->section_name.AsCString(""); 2748 if (strstr(section_name, ".rela.debug") || 2749 strstr(section_name, ".rel.debug")) 2750 { 2751 const ELFSectionHeader &reloc_header = *I; 2752 user_id_t reloc_id = SectionIndex(I); 2753 RelocateDebugSections(&reloc_header, reloc_id); 2754 } 2755 } 2756 } 2757 } 2758 return m_symtab_ap.get(); 2759 } 2760 2761 Symbol * 2762 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2763 { 2764 if (!m_symtab_ap.get()) 2765 return nullptr; // GetSymtab() should be called first. 2766 2767 const SectionList *section_list = GetSectionList(); 2768 if (!section_list) 2769 return nullptr; 2770 2771 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2772 { 2773 AddressRange range; 2774 if (eh_frame->GetAddressRange (so_addr, range)) 2775 { 2776 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2777 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2778 if (symbol) 2779 return symbol; 2780 2781 // Note that a (stripped) symbol won't be found by GetSymtab()... 2782 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2783 if (eh_sym_section_sp.get()) 2784 { 2785 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2786 addr_t offset = file_addr - section_base; 2787 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2788 2789 Symbol eh_symbol( 2790 symbol_id, // Symbol table index. 2791 "???", // Symbol name. 2792 false, // Is the symbol name mangled? 2793 eSymbolTypeCode, // Type of this symbol. 2794 true, // Is this globally visible? 2795 false, // Is this symbol debug info? 2796 false, // Is this symbol a trampoline? 2797 true, // Is this symbol artificial? 2798 eh_sym_section_sp, // Section in which this symbol is defined or null. 2799 offset, // Offset in section or symbol value. 2800 range.GetByteSize(), // Size in bytes of this symbol. 2801 true, // Size is valid. 2802 false, // Contains linker annotations? 2803 0); // Symbol flags. 2804 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2805 return m_symtab_ap->SymbolAtIndex(symbol_id); 2806 } 2807 } 2808 } 2809 return nullptr; 2810 } 2811 2812 2813 bool 2814 ObjectFileELF::IsStripped () 2815 { 2816 // TODO: determine this for ELF 2817 return false; 2818 } 2819 2820 //===----------------------------------------------------------------------===// 2821 // Dump 2822 // 2823 // Dump the specifics of the runtime file container (such as any headers 2824 // segments, sections, etc). 2825 //---------------------------------------------------------------------- 2826 void 2827 ObjectFileELF::Dump(Stream *s) 2828 { 2829 DumpELFHeader(s, m_header); 2830 s->EOL(); 2831 DumpELFProgramHeaders(s); 2832 s->EOL(); 2833 DumpELFSectionHeaders(s); 2834 s->EOL(); 2835 SectionList *section_list = GetSectionList(); 2836 if (section_list) 2837 section_list->Dump(s, NULL, true, UINT32_MAX); 2838 Symtab *symtab = GetSymtab(); 2839 if (symtab) 2840 symtab->Dump(s, NULL, eSortOrderNone); 2841 s->EOL(); 2842 DumpDependentModules(s); 2843 s->EOL(); 2844 } 2845 2846 //---------------------------------------------------------------------- 2847 // DumpELFHeader 2848 // 2849 // Dump the ELF header to the specified output stream 2850 //---------------------------------------------------------------------- 2851 void 2852 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2853 { 2854 s->PutCString("ELF Header\n"); 2855 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2856 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2857 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2858 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2859 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2860 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2861 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2862 2863 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2864 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2865 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2866 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2867 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2868 2869 s->Printf("e_type = 0x%4.4x ", header.e_type); 2870 DumpELFHeader_e_type(s, header.e_type); 2871 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2872 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2873 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2874 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2875 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2876 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2877 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2878 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2879 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2880 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2881 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2882 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2883 } 2884 2885 //---------------------------------------------------------------------- 2886 // DumpELFHeader_e_type 2887 // 2888 // Dump an token value for the ELF header member e_type 2889 //---------------------------------------------------------------------- 2890 void 2891 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2892 { 2893 switch (e_type) 2894 { 2895 case ET_NONE: *s << "ET_NONE"; break; 2896 case ET_REL: *s << "ET_REL"; break; 2897 case ET_EXEC: *s << "ET_EXEC"; break; 2898 case ET_DYN: *s << "ET_DYN"; break; 2899 case ET_CORE: *s << "ET_CORE"; break; 2900 default: 2901 break; 2902 } 2903 } 2904 2905 //---------------------------------------------------------------------- 2906 // DumpELFHeader_e_ident_EI_DATA 2907 // 2908 // Dump an token value for the ELF header member e_ident[EI_DATA] 2909 //---------------------------------------------------------------------- 2910 void 2911 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2912 { 2913 switch (ei_data) 2914 { 2915 case ELFDATANONE: *s << "ELFDATANONE"; break; 2916 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2917 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2918 default: 2919 break; 2920 } 2921 } 2922 2923 2924 //---------------------------------------------------------------------- 2925 // DumpELFProgramHeader 2926 // 2927 // Dump a single ELF program header to the specified output stream 2928 //---------------------------------------------------------------------- 2929 void 2930 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2931 { 2932 DumpELFProgramHeader_p_type(s, ph.p_type); 2933 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2934 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2935 2936 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2937 s->Printf(") %8.8" PRIx64, ph.p_align); 2938 } 2939 2940 //---------------------------------------------------------------------- 2941 // DumpELFProgramHeader_p_type 2942 // 2943 // Dump an token value for the ELF program header member p_type which 2944 // describes the type of the program header 2945 // ---------------------------------------------------------------------- 2946 void 2947 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2948 { 2949 const int kStrWidth = 15; 2950 switch (p_type) 2951 { 2952 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2953 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2954 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2955 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2956 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2957 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2958 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2959 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2960 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2961 default: 2962 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2963 break; 2964 } 2965 } 2966 2967 2968 //---------------------------------------------------------------------- 2969 // DumpELFProgramHeader_p_flags 2970 // 2971 // Dump an token value for the ELF program header member p_flags 2972 //---------------------------------------------------------------------- 2973 void 2974 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2975 { 2976 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2977 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2978 << ((p_flags & PF_W) ? "PF_W" : " ") 2979 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2980 << ((p_flags & PF_R) ? "PF_R" : " "); 2981 } 2982 2983 //---------------------------------------------------------------------- 2984 // DumpELFProgramHeaders 2985 // 2986 // Dump all of the ELF program header to the specified output stream 2987 //---------------------------------------------------------------------- 2988 void 2989 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2990 { 2991 if (!ParseProgramHeaders()) 2992 return; 2993 2994 s->PutCString("Program Headers\n"); 2995 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2996 "p_filesz p_memsz p_flags p_align\n"); 2997 s->PutCString("==== --------------- -------- -------- -------- " 2998 "-------- -------- ------------------------- --------\n"); 2999 3000 uint32_t idx = 0; 3001 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 3002 I != m_program_headers.end(); ++I, ++idx) 3003 { 3004 s->Printf("[%2u] ", idx); 3005 ObjectFileELF::DumpELFProgramHeader(s, *I); 3006 s->EOL(); 3007 } 3008 } 3009 3010 //---------------------------------------------------------------------- 3011 // DumpELFSectionHeader 3012 // 3013 // Dump a single ELF section header to the specified output stream 3014 //---------------------------------------------------------------------- 3015 void 3016 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 3017 { 3018 s->Printf("%8.8x ", sh.sh_name); 3019 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3020 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3021 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3022 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 3023 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3024 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3025 } 3026 3027 //---------------------------------------------------------------------- 3028 // DumpELFSectionHeader_sh_type 3029 // 3030 // Dump an token value for the ELF section header member sh_type which 3031 // describes the type of the section 3032 //---------------------------------------------------------------------- 3033 void 3034 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 3035 { 3036 const int kStrWidth = 12; 3037 switch (sh_type) 3038 { 3039 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 3040 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 3041 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 3042 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 3043 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 3044 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 3045 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 3046 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 3047 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 3048 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 3049 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 3050 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 3051 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 3052 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 3053 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 3054 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 3055 default: 3056 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3057 break; 3058 } 3059 } 3060 3061 //---------------------------------------------------------------------- 3062 // DumpELFSectionHeader_sh_flags 3063 // 3064 // Dump an token value for the ELF section header member sh_flags 3065 //---------------------------------------------------------------------- 3066 void 3067 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 3068 { 3069 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3070 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3071 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3072 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3073 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3074 } 3075 3076 //---------------------------------------------------------------------- 3077 // DumpELFSectionHeaders 3078 // 3079 // Dump all of the ELF section header to the specified output stream 3080 //---------------------------------------------------------------------- 3081 void 3082 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 3083 { 3084 if (!ParseSectionHeaders()) 3085 return; 3086 3087 s->PutCString("Section Headers\n"); 3088 s->PutCString("IDX name type flags " 3089 "addr offset size link info addralgn " 3090 "entsize Name\n"); 3091 s->PutCString("==== -------- ------------ -------------------------------- " 3092 "-------- -------- -------- -------- -------- -------- " 3093 "-------- ====================\n"); 3094 3095 uint32_t idx = 0; 3096 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3097 I != m_section_headers.end(); ++I, ++idx) 3098 { 3099 s->Printf("[%2u] ", idx); 3100 ObjectFileELF::DumpELFSectionHeader(s, *I); 3101 const char* section_name = I->section_name.AsCString(""); 3102 if (section_name) 3103 *s << ' ' << section_name << "\n"; 3104 } 3105 } 3106 3107 void 3108 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 3109 { 3110 size_t num_modules = ParseDependentModules(); 3111 3112 if (num_modules > 0) 3113 { 3114 s->PutCString("Dependent Modules:\n"); 3115 for (unsigned i = 0; i < num_modules; ++i) 3116 { 3117 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3118 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3119 } 3120 } 3121 } 3122 3123 bool 3124 ObjectFileELF::GetArchitecture (ArchSpec &arch) 3125 { 3126 if (!ParseHeader()) 3127 return false; 3128 3129 if (m_section_headers.empty()) 3130 { 3131 // Allow elf notes to be parsed which may affect the detected architecture. 3132 ParseSectionHeaders(); 3133 } 3134 3135 arch = m_arch_spec; 3136 return true; 3137 } 3138 3139 ObjectFile::Type 3140 ObjectFileELF::CalculateType() 3141 { 3142 switch (m_header.e_type) 3143 { 3144 case llvm::ELF::ET_NONE: 3145 // 0 - No file type 3146 return eTypeUnknown; 3147 3148 case llvm::ELF::ET_REL: 3149 // 1 - Relocatable file 3150 return eTypeObjectFile; 3151 3152 case llvm::ELF::ET_EXEC: 3153 // 2 - Executable file 3154 return eTypeExecutable; 3155 3156 case llvm::ELF::ET_DYN: 3157 // 3 - Shared object file 3158 return eTypeSharedLibrary; 3159 3160 case ET_CORE: 3161 // 4 - Core file 3162 return eTypeCoreFile; 3163 3164 default: 3165 break; 3166 } 3167 return eTypeUnknown; 3168 } 3169 3170 ObjectFile::Strata 3171 ObjectFileELF::CalculateStrata() 3172 { 3173 switch (m_header.e_type) 3174 { 3175 case llvm::ELF::ET_NONE: 3176 // 0 - No file type 3177 return eStrataUnknown; 3178 3179 case llvm::ELF::ET_REL: 3180 // 1 - Relocatable file 3181 return eStrataUnknown; 3182 3183 case llvm::ELF::ET_EXEC: 3184 // 2 - Executable file 3185 // TODO: is there any way to detect that an executable is a kernel 3186 // related executable by inspecting the program headers, section 3187 // headers, symbols, or any other flag bits??? 3188 return eStrataUser; 3189 3190 case llvm::ELF::ET_DYN: 3191 // 3 - Shared object file 3192 // TODO: is there any way to detect that an shared library is a kernel 3193 // related executable by inspecting the program headers, section 3194 // headers, symbols, or any other flag bits??? 3195 return eStrataUnknown; 3196 3197 case ET_CORE: 3198 // 4 - Core file 3199 // TODO: is there any way to detect that an core file is a kernel 3200 // related executable by inspecting the program headers, section 3201 // headers, symbols, or any other flag bits??? 3202 return eStrataUnknown; 3203 3204 default: 3205 break; 3206 } 3207 return eStrataUnknown; 3208 } 3209 3210