1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ObjectFileELF.h" 10 11 #include <algorithm> 12 #include <cassert> 13 #include <unordered_map> 14 15 #include "lldb/Core/FileSpecList.h" 16 #include "lldb/Core/Module.h" 17 #include "lldb/Core/ModuleSpec.h" 18 #include "lldb/Core/PluginManager.h" 19 #include "lldb/Core/Section.h" 20 #include "lldb/Host/FileSystem.h" 21 #include "lldb/Symbol/DWARFCallFrameInfo.h" 22 #include "lldb/Symbol/SymbolContext.h" 23 #include "lldb/Target/SectionLoadList.h" 24 #include "lldb/Target/Target.h" 25 #include "lldb/Utility/ArchSpec.h" 26 #include "lldb/Utility/DataBufferHeap.h" 27 #include "lldb/Utility/Log.h" 28 #include "lldb/Utility/RangeMap.h" 29 #include "lldb/Utility/Status.h" 30 #include "lldb/Utility/Stream.h" 31 #include "lldb/Utility/Timer.h" 32 33 #include "llvm/ADT/IntervalMap.h" 34 #include "llvm/ADT/PointerUnion.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/Object/Decompressor.h" 37 #include "llvm/Support/ARMBuildAttributes.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/MemoryBuffer.h" 40 #include "llvm/Support/MipsABIFlags.h" 41 42 #define CASE_AND_STREAM(s, def, width) \ 43 case def: \ 44 s->Printf("%-*s", width, #def); \ 45 break; 46 47 using namespace lldb; 48 using namespace lldb_private; 49 using namespace elf; 50 using namespace llvm::ELF; 51 52 namespace { 53 54 // ELF note owner definitions 55 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 56 const char *const LLDB_NT_OWNER_GNU = "GNU"; 57 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 58 const char *const LLDB_NT_OWNER_NETBSDCORE = "NetBSD-CORE"; 59 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD"; 60 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 61 const char *const LLDB_NT_OWNER_CORE = "CORE"; 62 const char *const LLDB_NT_OWNER_LINUX = "LINUX"; 63 64 // ELF note type definitions 65 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 66 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 67 68 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 69 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 70 71 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 72 73 const elf_word LLDB_NT_NETBSD_IDENT_TAG = 1; 74 const elf_word LLDB_NT_NETBSD_IDENT_DESCSZ = 4; 75 const elf_word LLDB_NT_NETBSD_IDENT_NAMESZ = 7; 76 const elf_word LLDB_NT_NETBSD_PROCINFO = 1; 77 78 // GNU ABI note OS constants 79 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 80 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 81 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 82 83 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants 84 #define NT_PRSTATUS 1 85 #define NT_PRFPREG 2 86 #define NT_PRPSINFO 3 87 #define NT_TASKSTRUCT 4 88 #define NT_AUXV 6 89 #define NT_SIGINFO 0x53494749 90 #define NT_FILE 0x46494c45 91 #define NT_PRXFPREG 0x46e62b7f 92 #define NT_PPC_VMX 0x100 93 #define NT_PPC_SPE 0x101 94 #define NT_PPC_VSX 0x102 95 #define NT_386_TLS 0x200 96 #define NT_386_IOPERM 0x201 97 #define NT_X86_XSTATE 0x202 98 #define NT_S390_HIGH_GPRS 0x300 99 #define NT_S390_TIMER 0x301 100 #define NT_S390_TODCMP 0x302 101 #define NT_S390_TODPREG 0x303 102 #define NT_S390_CTRS 0x304 103 #define NT_S390_PREFIX 0x305 104 #define NT_S390_LAST_BREAK 0x306 105 #define NT_S390_SYSTEM_CALL 0x307 106 #define NT_S390_TDB 0x308 107 #define NT_S390_VXRS_LOW 0x309 108 #define NT_S390_VXRS_HIGH 0x30a 109 #define NT_ARM_VFP 0x400 110 #define NT_ARM_TLS 0x401 111 #define NT_ARM_HW_BREAK 0x402 112 #define NT_ARM_HW_WATCH 0x403 113 #define NT_ARM_SYSTEM_CALL 0x404 114 #define NT_METAG_CBUF 0x500 115 #define NT_METAG_RPIPE 0x501 116 #define NT_METAG_TLS 0x502 117 118 //===----------------------------------------------------------------------===// 119 /// \class ELFRelocation 120 /// Generic wrapper for ELFRel and ELFRela. 121 /// 122 /// This helper class allows us to parse both ELFRel and ELFRela relocation 123 /// entries in a generic manner. 124 class ELFRelocation { 125 public: 126 /// Constructs an ELFRelocation entry with a personality as given by @p 127 /// type. 128 /// 129 /// \param type Either DT_REL or DT_RELA. Any other value is invalid. 130 ELFRelocation(unsigned type); 131 132 ~ELFRelocation(); 133 134 bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 135 136 static unsigned RelocType32(const ELFRelocation &rel); 137 138 static unsigned RelocType64(const ELFRelocation &rel); 139 140 static unsigned RelocSymbol32(const ELFRelocation &rel); 141 142 static unsigned RelocSymbol64(const ELFRelocation &rel); 143 144 static unsigned RelocOffset32(const ELFRelocation &rel); 145 146 static unsigned RelocOffset64(const ELFRelocation &rel); 147 148 static unsigned RelocAddend32(const ELFRelocation &rel); 149 150 static unsigned RelocAddend64(const ELFRelocation &rel); 151 152 private: 153 typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion; 154 155 RelocUnion reloc; 156 }; 157 158 ELFRelocation::ELFRelocation(unsigned type) { 159 if (type == DT_REL || type == SHT_REL) 160 reloc = new ELFRel(); 161 else if (type == DT_RELA || type == SHT_RELA) 162 reloc = new ELFRela(); 163 else { 164 assert(false && "unexpected relocation type"); 165 reloc = static_cast<ELFRel *>(nullptr); 166 } 167 } 168 169 ELFRelocation::~ELFRelocation() { 170 if (reloc.is<ELFRel *>()) 171 delete reloc.get<ELFRel *>(); 172 else 173 delete reloc.get<ELFRela *>(); 174 } 175 176 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data, 177 lldb::offset_t *offset) { 178 if (reloc.is<ELFRel *>()) 179 return reloc.get<ELFRel *>()->Parse(data, offset); 180 else 181 return reloc.get<ELFRela *>()->Parse(data, offset); 182 } 183 184 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) { 185 if (rel.reloc.is<ELFRel *>()) 186 return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>()); 187 else 188 return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>()); 189 } 190 191 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) { 192 if (rel.reloc.is<ELFRel *>()) 193 return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>()); 194 else 195 return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>()); 196 } 197 198 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) { 199 if (rel.reloc.is<ELFRel *>()) 200 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>()); 201 else 202 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>()); 203 } 204 205 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) { 206 if (rel.reloc.is<ELFRel *>()) 207 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>()); 208 else 209 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>()); 210 } 211 212 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) { 213 if (rel.reloc.is<ELFRel *>()) 214 return rel.reloc.get<ELFRel *>()->r_offset; 215 else 216 return rel.reloc.get<ELFRela *>()->r_offset; 217 } 218 219 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) { 220 if (rel.reloc.is<ELFRel *>()) 221 return rel.reloc.get<ELFRel *>()->r_offset; 222 else 223 return rel.reloc.get<ELFRela *>()->r_offset; 224 } 225 226 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) { 227 if (rel.reloc.is<ELFRel *>()) 228 return 0; 229 else 230 return rel.reloc.get<ELFRela *>()->r_addend; 231 } 232 233 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) { 234 if (rel.reloc.is<ELFRel *>()) 235 return 0; 236 else 237 return rel.reloc.get<ELFRela *>()->r_addend; 238 } 239 240 } // end anonymous namespace 241 242 static user_id_t SegmentID(size_t PHdrIndex) { return ~PHdrIndex; } 243 244 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) { 245 // Read all fields. 246 if (data.GetU32(offset, &n_namesz, 3) == nullptr) 247 return false; 248 249 // The name field is required to be nul-terminated, and n_namesz includes the 250 // terminating nul in observed implementations (contrary to the ELF-64 spec). 251 // A special case is needed for cores generated by some older Linux versions, 252 // which write a note named "CORE" without a nul terminator and n_namesz = 4. 253 if (n_namesz == 4) { 254 char buf[4]; 255 if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4) 256 return false; 257 if (strncmp(buf, "CORE", 4) == 0) { 258 n_name = "CORE"; 259 *offset += 4; 260 return true; 261 } 262 } 263 264 const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4)); 265 if (cstr == nullptr) { 266 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 267 if (log) 268 log->Printf("Failed to parse note name lacking nul terminator"); 269 270 return false; 271 } 272 n_name = cstr; 273 return true; 274 } 275 276 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) { 277 const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH; 278 uint32_t endian = header.e_ident[EI_DATA]; 279 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 280 uint32_t fileclass = header.e_ident[EI_CLASS]; 281 282 // If there aren't any elf flags available (e.g core elf file) then return 283 // default 284 // 32 or 64 bit arch (without any architecture revision) based on object file's class. 285 if (header.e_type == ET_CORE) { 286 switch (fileclass) { 287 case llvm::ELF::ELFCLASS32: 288 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 289 : ArchSpec::eMIPSSubType_mips32; 290 case llvm::ELF::ELFCLASS64: 291 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 292 : ArchSpec::eMIPSSubType_mips64; 293 default: 294 return arch_variant; 295 } 296 } 297 298 switch (mips_arch) { 299 case llvm::ELF::EF_MIPS_ARCH_1: 300 case llvm::ELF::EF_MIPS_ARCH_2: 301 case llvm::ELF::EF_MIPS_ARCH_32: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 303 : ArchSpec::eMIPSSubType_mips32; 304 case llvm::ELF::EF_MIPS_ARCH_32R2: 305 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el 306 : ArchSpec::eMIPSSubType_mips32r2; 307 case llvm::ELF::EF_MIPS_ARCH_32R6: 308 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el 309 : ArchSpec::eMIPSSubType_mips32r6; 310 case llvm::ELF::EF_MIPS_ARCH_3: 311 case llvm::ELF::EF_MIPS_ARCH_4: 312 case llvm::ELF::EF_MIPS_ARCH_5: 313 case llvm::ELF::EF_MIPS_ARCH_64: 314 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 315 : ArchSpec::eMIPSSubType_mips64; 316 case llvm::ELF::EF_MIPS_ARCH_64R2: 317 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el 318 : ArchSpec::eMIPSSubType_mips64r2; 319 case llvm::ELF::EF_MIPS_ARCH_64R6: 320 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el 321 : ArchSpec::eMIPSSubType_mips64r6; 322 default: 323 break; 324 } 325 326 return arch_variant; 327 } 328 329 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) { 330 if (header.e_machine == llvm::ELF::EM_MIPS) 331 return mipsVariantFromElfFlags(header); 332 333 return LLDB_INVALID_CPUTYPE; 334 } 335 336 // Arbitrary constant used as UUID prefix for core files. 337 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C); 338 339 // Static methods. 340 void ObjectFileELF::Initialize() { 341 PluginManager::RegisterPlugin(GetPluginNameStatic(), 342 GetPluginDescriptionStatic(), CreateInstance, 343 CreateMemoryInstance, GetModuleSpecifications); 344 } 345 346 void ObjectFileELF::Terminate() { 347 PluginManager::UnregisterPlugin(CreateInstance); 348 } 349 350 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() { 351 static ConstString g_name("elf"); 352 return g_name; 353 } 354 355 const char *ObjectFileELF::GetPluginDescriptionStatic() { 356 return "ELF object file reader."; 357 } 358 359 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp, 360 DataBufferSP &data_sp, 361 lldb::offset_t data_offset, 362 const lldb_private::FileSpec *file, 363 lldb::offset_t file_offset, 364 lldb::offset_t length) { 365 if (!data_sp) { 366 data_sp = MapFileData(*file, length, file_offset); 367 if (!data_sp) 368 return nullptr; 369 data_offset = 0; 370 } 371 372 assert(data_sp); 373 374 if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset)) 375 return nullptr; 376 377 const uint8_t *magic = data_sp->GetBytes() + data_offset; 378 if (!ELFHeader::MagicBytesMatch(magic)) 379 return nullptr; 380 381 // Update the data to contain the entire file if it doesn't already 382 if (data_sp->GetByteSize() < length) { 383 data_sp = MapFileData(*file, length, file_offset); 384 if (!data_sp) 385 return nullptr; 386 data_offset = 0; 387 magic = data_sp->GetBytes(); 388 } 389 390 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 391 if (address_size == 4 || address_size == 8) { 392 std::unique_ptr<ObjectFileELF> objfile_up(new ObjectFileELF( 393 module_sp, data_sp, data_offset, file, file_offset, length)); 394 ArchSpec spec = objfile_up->GetArchitecture(); 395 if (spec && objfile_up->SetModulesArchitecture(spec)) 396 return objfile_up.release(); 397 } 398 399 return nullptr; 400 } 401 402 ObjectFile *ObjectFileELF::CreateMemoryInstance( 403 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 404 const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) { 405 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) { 406 const uint8_t *magic = data_sp->GetBytes(); 407 if (ELFHeader::MagicBytesMatch(magic)) { 408 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 409 if (address_size == 4 || address_size == 8) { 410 std::unique_ptr<ObjectFileELF> objfile_up( 411 new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 412 ArchSpec spec = objfile_up->GetArchitecture(); 413 if (spec && objfile_up->SetModulesArchitecture(spec)) 414 return objfile_up.release(); 415 } 416 } 417 } 418 return nullptr; 419 } 420 421 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp, 422 lldb::addr_t data_offset, 423 lldb::addr_t data_length) { 424 if (data_sp && 425 data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { 426 const uint8_t *magic = data_sp->GetBytes() + data_offset; 427 return ELFHeader::MagicBytesMatch(magic); 428 } 429 return false; 430 } 431 432 /* 433 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 434 * 435 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 436 * code or tables extracted from it, as desired without restriction. 437 */ 438 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) { 439 static const uint32_t g_crc32_tab[] = { 440 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 441 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 442 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 443 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 444 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 445 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 446 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 447 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 448 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 449 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 450 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 451 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 452 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 453 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 454 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 455 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 456 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 457 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 458 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 459 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 460 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 461 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 462 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 463 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 464 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 465 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 466 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 467 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 468 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 469 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 470 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 471 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 472 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 473 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 474 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 475 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 476 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 477 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 478 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 479 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 480 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 481 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 482 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d}; 483 const uint8_t *p = (const uint8_t *)buf; 484 485 crc = crc ^ ~0U; 486 while (size--) 487 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 488 return crc ^ ~0U; 489 } 490 491 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) { 492 return calc_crc32(0U, buf, size); 493 } 494 495 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32( 496 const ProgramHeaderColl &program_headers, DataExtractor &object_data) { 497 498 uint32_t core_notes_crc = 0; 499 500 for (const ELFProgramHeader &H : program_headers) { 501 if (H.p_type == llvm::ELF::PT_NOTE) { 502 const elf_off ph_offset = H.p_offset; 503 const size_t ph_size = H.p_filesz; 504 505 DataExtractor segment_data; 506 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) { 507 // The ELF program header contained incorrect data, probably corefile 508 // is incomplete or corrupted. 509 break; 510 } 511 512 core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(), 513 segment_data.GetByteSize()); 514 } 515 } 516 517 return core_notes_crc; 518 } 519 520 static const char *OSABIAsCString(unsigned char osabi_byte) { 521 #define _MAKE_OSABI_CASE(x) \ 522 case x: \ 523 return #x 524 switch (osabi_byte) { 525 _MAKE_OSABI_CASE(ELFOSABI_NONE); 526 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 527 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 528 _MAKE_OSABI_CASE(ELFOSABI_GNU); 529 _MAKE_OSABI_CASE(ELFOSABI_HURD); 530 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 531 _MAKE_OSABI_CASE(ELFOSABI_AIX); 532 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 533 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 534 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 535 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 536 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 537 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 538 _MAKE_OSABI_CASE(ELFOSABI_NSK); 539 _MAKE_OSABI_CASE(ELFOSABI_AROS); 540 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 541 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 542 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 543 _MAKE_OSABI_CASE(ELFOSABI_ARM); 544 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 545 default: 546 return "<unknown-osabi>"; 547 } 548 #undef _MAKE_OSABI_CASE 549 } 550 551 // 552 // WARNING : This function is being deprecated 553 // It's functionality has moved to ArchSpec::SetArchitecture This function is 554 // only being kept to validate the move. 555 // 556 // TODO : Remove this function 557 static bool GetOsFromOSABI(unsigned char osabi_byte, 558 llvm::Triple::OSType &ostype) { 559 switch (osabi_byte) { 560 case ELFOSABI_AIX: 561 ostype = llvm::Triple::OSType::AIX; 562 break; 563 case ELFOSABI_FREEBSD: 564 ostype = llvm::Triple::OSType::FreeBSD; 565 break; 566 case ELFOSABI_GNU: 567 ostype = llvm::Triple::OSType::Linux; 568 break; 569 case ELFOSABI_NETBSD: 570 ostype = llvm::Triple::OSType::NetBSD; 571 break; 572 case ELFOSABI_OPENBSD: 573 ostype = llvm::Triple::OSType::OpenBSD; 574 break; 575 case ELFOSABI_SOLARIS: 576 ostype = llvm::Triple::OSType::Solaris; 577 break; 578 default: 579 ostype = llvm::Triple::OSType::UnknownOS; 580 } 581 return ostype != llvm::Triple::OSType::UnknownOS; 582 } 583 584 size_t ObjectFileELF::GetModuleSpecifications( 585 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 586 lldb::offset_t data_offset, lldb::offset_t file_offset, 587 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 588 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 589 590 const size_t initial_count = specs.GetSize(); 591 592 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 593 DataExtractor data; 594 data.SetData(data_sp); 595 elf::ELFHeader header; 596 lldb::offset_t header_offset = data_offset; 597 if (header.Parse(data, &header_offset)) { 598 if (data_sp) { 599 ModuleSpec spec(file); 600 601 const uint32_t sub_type = subTypeFromElfHeader(header); 602 spec.GetArchitecture().SetArchitecture( 603 eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 604 605 if (spec.GetArchitecture().IsValid()) { 606 llvm::Triple::OSType ostype; 607 llvm::Triple::VendorType vendor; 608 llvm::Triple::OSType spec_ostype = 609 spec.GetArchitecture().GetTriple().getOS(); 610 611 if (log) 612 log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s", 613 __FUNCTION__, file.GetPath().c_str(), 614 OSABIAsCString(header.e_ident[EI_OSABI])); 615 616 // SetArchitecture should have set the vendor to unknown 617 vendor = spec.GetArchitecture().GetTriple().getVendor(); 618 assert(vendor == llvm::Triple::UnknownVendor); 619 UNUSED_IF_ASSERT_DISABLED(vendor); 620 621 // 622 // Validate it is ok to remove GetOsFromOSABI 623 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 624 assert(spec_ostype == ostype); 625 if (spec_ostype != llvm::Triple::OSType::UnknownOS) { 626 if (log) 627 log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type " 628 "from ELF header OSABI.", 629 __FUNCTION__, file.GetPath().c_str()); 630 } 631 632 data_sp = MapFileData(file, -1, file_offset); 633 if (data_sp) 634 data.SetData(data_sp); 635 // In case there is header extension in the section #0, the header we 636 // parsed above could have sentinel values for e_phnum, e_shnum, and 637 // e_shstrndx. In this case we need to reparse the header with a 638 // bigger data source to get the actual values. 639 if (header.HasHeaderExtension()) { 640 lldb::offset_t header_offset = data_offset; 641 header.Parse(data, &header_offset); 642 } 643 644 uint32_t gnu_debuglink_crc = 0; 645 std::string gnu_debuglink_file; 646 SectionHeaderColl section_headers; 647 lldb_private::UUID &uuid = spec.GetUUID(); 648 649 GetSectionHeaderInfo(section_headers, data, header, uuid, 650 gnu_debuglink_file, gnu_debuglink_crc, 651 spec.GetArchitecture()); 652 653 llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple(); 654 655 if (log) 656 log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s " 657 "(architecture %s)", 658 __FUNCTION__, file.GetPath().c_str(), 659 spec_triple.getTriple().c_str(), 660 spec.GetArchitecture().GetArchitectureName()); 661 662 if (!uuid.IsValid()) { 663 uint32_t core_notes_crc = 0; 664 665 if (!gnu_debuglink_crc) { 666 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 667 lldb_private::Timer scoped_timer( 668 func_cat, 669 "Calculating module crc32 %s with size %" PRIu64 " KiB", 670 file.GetLastPathComponent().AsCString(), 671 (FileSystem::Instance().GetByteSize(file) - file_offset) / 672 1024); 673 674 // For core files - which usually don't happen to have a 675 // gnu_debuglink, and are pretty bulky - calculating whole 676 // contents crc32 would be too much of luxury. Thus we will need 677 // to fallback to something simpler. 678 if (header.e_type == llvm::ELF::ET_CORE) { 679 ProgramHeaderColl program_headers; 680 GetProgramHeaderInfo(program_headers, data, header); 681 682 core_notes_crc = 683 CalculateELFNotesSegmentsCRC32(program_headers, data); 684 } else { 685 gnu_debuglink_crc = calc_gnu_debuglink_crc32( 686 data.GetDataStart(), data.GetByteSize()); 687 } 688 } 689 using u32le = llvm::support::ulittle32_t; 690 if (gnu_debuglink_crc) { 691 // Use 4 bytes of crc from the .gnu_debuglink section. 692 u32le data(gnu_debuglink_crc); 693 uuid = UUID::fromData(&data, sizeof(data)); 694 } else if (core_notes_crc) { 695 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make 696 // it look different form .gnu_debuglink crc followed by 4 bytes 697 // of note segments crc. 698 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 699 uuid = UUID::fromData(data, sizeof(data)); 700 } 701 } 702 703 specs.Append(spec); 704 } 705 } 706 } 707 } 708 709 return specs.GetSize() - initial_count; 710 } 711 712 // PluginInterface protocol 713 lldb_private::ConstString ObjectFileELF::GetPluginName() { 714 return GetPluginNameStatic(); 715 } 716 717 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; } 718 // ObjectFile protocol 719 720 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 721 DataBufferSP &data_sp, lldb::offset_t data_offset, 722 const FileSpec *file, lldb::offset_t file_offset, 723 lldb::offset_t length) 724 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 725 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 726 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 727 m_filespec_up(), m_entry_point_address(), m_arch_spec() { 728 if (file) 729 m_file = *file; 730 ::memset(&m_header, 0, sizeof(m_header)); 731 } 732 733 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 734 DataBufferSP &header_data_sp, 735 const lldb::ProcessSP &process_sp, 736 addr_t header_addr) 737 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 738 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 739 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 740 m_filespec_up(), m_entry_point_address(), m_arch_spec() { 741 ::memset(&m_header, 0, sizeof(m_header)); 742 } 743 744 ObjectFileELF::~ObjectFileELF() {} 745 746 bool ObjectFileELF::IsExecutable() const { 747 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 748 } 749 750 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value, 751 bool value_is_offset) { 752 ModuleSP module_sp = GetModule(); 753 if (module_sp) { 754 size_t num_loaded_sections = 0; 755 SectionList *section_list = GetSectionList(); 756 if (section_list) { 757 if (!value_is_offset) { 758 addr_t base = GetBaseAddress().GetFileAddress(); 759 if (base == LLDB_INVALID_ADDRESS) 760 return false; 761 value -= base; 762 } 763 764 const size_t num_sections = section_list->GetSize(); 765 size_t sect_idx = 0; 766 767 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 768 // Iterate through the object file sections to find all of the sections 769 // that have SHF_ALLOC in their flag bits. 770 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 771 if (section_sp->Test(SHF_ALLOC) || 772 section_sp->GetType() == eSectionTypeContainer) { 773 lldb::addr_t load_addr = section_sp->GetFileAddress(); 774 // We don't want to update the load address of a section with type 775 // eSectionTypeAbsoluteAddress as they already have the absolute load 776 // address already specified 777 if (section_sp->GetType() != eSectionTypeAbsoluteAddress) 778 load_addr += value; 779 780 // On 32-bit systems the load address have to fit into 4 bytes. The 781 // rest of the bytes are the overflow from the addition. 782 if (GetAddressByteSize() == 4) 783 load_addr &= 0xFFFFFFFF; 784 785 if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp, 786 load_addr)) 787 ++num_loaded_sections; 788 } 789 } 790 return num_loaded_sections > 0; 791 } 792 } 793 return false; 794 } 795 796 ByteOrder ObjectFileELF::GetByteOrder() const { 797 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 798 return eByteOrderBig; 799 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 800 return eByteOrderLittle; 801 return eByteOrderInvalid; 802 } 803 804 uint32_t ObjectFileELF::GetAddressByteSize() const { 805 return m_data.GetAddressByteSize(); 806 } 807 808 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) { 809 Symtab *symtab = GetSymtab(); 810 if (!symtab) 811 return AddressClass::eUnknown; 812 813 // The address class is determined based on the symtab. Ask it from the 814 // object file what contains the symtab information. 815 ObjectFile *symtab_objfile = symtab->GetObjectFile(); 816 if (symtab_objfile != nullptr && symtab_objfile != this) 817 return symtab_objfile->GetAddressClass(file_addr); 818 819 auto res = ObjectFile::GetAddressClass(file_addr); 820 if (res != AddressClass::eCode) 821 return res; 822 823 auto ub = m_address_class_map.upper_bound(file_addr); 824 if (ub == m_address_class_map.begin()) { 825 // No entry in the address class map before the address. Return default 826 // address class for an address in a code section. 827 return AddressClass::eCode; 828 } 829 830 // Move iterator to the address class entry preceding address 831 --ub; 832 833 return ub->second; 834 } 835 836 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) { 837 return std::distance(m_section_headers.begin(), I); 838 } 839 840 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const { 841 return std::distance(m_section_headers.begin(), I); 842 } 843 844 bool ObjectFileELF::ParseHeader() { 845 lldb::offset_t offset = 0; 846 return m_header.Parse(m_data, &offset); 847 } 848 849 UUID ObjectFileELF::GetUUID() { 850 // Need to parse the section list to get the UUIDs, so make sure that's been 851 // done. 852 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 853 return UUID(); 854 855 if (!m_uuid) { 856 using u32le = llvm::support::ulittle32_t; 857 if (GetType() == ObjectFile::eTypeCoreFile) { 858 uint32_t core_notes_crc = 0; 859 860 if (!ParseProgramHeaders()) 861 return UUID(); 862 863 core_notes_crc = 864 CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 865 866 if (core_notes_crc) { 867 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 868 // look different form .gnu_debuglink crc - followed by 4 bytes of note 869 // segments crc. 870 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 871 m_uuid = UUID::fromData(data, sizeof(data)); 872 } 873 } else { 874 if (!m_gnu_debuglink_crc) 875 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32(m_data.GetDataStart(), 876 m_data.GetByteSize()); 877 if (m_gnu_debuglink_crc) { 878 // Use 4 bytes of crc from the .gnu_debuglink section. 879 u32le data(m_gnu_debuglink_crc); 880 m_uuid = UUID::fromData(&data, sizeof(data)); 881 } 882 } 883 } 884 885 return m_uuid; 886 } 887 888 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() { 889 FileSpecList file_spec_list; 890 891 if (!m_gnu_debuglink_file.empty()) { 892 FileSpec file_spec(m_gnu_debuglink_file); 893 file_spec_list.Append(file_spec); 894 } 895 return file_spec_list; 896 } 897 898 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) { 899 size_t num_modules = ParseDependentModules(); 900 uint32_t num_specs = 0; 901 902 for (unsigned i = 0; i < num_modules; ++i) { 903 if (files.AppendIfUnique(m_filespec_up->GetFileSpecAtIndex(i))) 904 num_specs++; 905 } 906 907 return num_specs; 908 } 909 910 Address ObjectFileELF::GetImageInfoAddress(Target *target) { 911 if (!ParseDynamicSymbols()) 912 return Address(); 913 914 SectionList *section_list = GetSectionList(); 915 if (!section_list) 916 return Address(); 917 918 // Find the SHT_DYNAMIC (.dynamic) section. 919 SectionSP dynsym_section_sp( 920 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)); 921 if (!dynsym_section_sp) 922 return Address(); 923 assert(dynsym_section_sp->GetObjectFile() == this); 924 925 user_id_t dynsym_id = dynsym_section_sp->GetID(); 926 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 927 if (!dynsym_hdr) 928 return Address(); 929 930 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) { 931 ELFDynamic &symbol = m_dynamic_symbols[i]; 932 933 if (symbol.d_tag == DT_DEBUG) { 934 // Compute the offset as the number of previous entries plus the size of 935 // d_tag. 936 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 937 return Address(dynsym_section_sp, offset); 938 } 939 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP 940 // exists in non-PIE. 941 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || 942 symbol.d_tag == DT_MIPS_RLD_MAP_REL) && 943 target) { 944 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 945 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 946 if (dyn_base == LLDB_INVALID_ADDRESS) 947 return Address(); 948 949 Status error; 950 if (symbol.d_tag == DT_MIPS_RLD_MAP) { 951 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 952 Address addr; 953 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, 954 addr)) 955 return addr; 956 } 957 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) { 958 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, 959 // relative to the address of the tag. 960 uint64_t rel_offset; 961 rel_offset = target->ReadUnsignedIntegerFromMemory( 962 dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 963 if (error.Success() && rel_offset != UINT64_MAX) { 964 Address addr; 965 addr_t debug_ptr_address = 966 dyn_base + (offset - GetAddressByteSize()) + rel_offset; 967 addr.SetOffset(debug_ptr_address); 968 return addr; 969 } 970 } 971 } 972 } 973 974 return Address(); 975 } 976 977 lldb_private::Address ObjectFileELF::GetEntryPointAddress() { 978 if (m_entry_point_address.IsValid()) 979 return m_entry_point_address; 980 981 if (!ParseHeader() || !IsExecutable()) 982 return m_entry_point_address; 983 984 SectionList *section_list = GetSectionList(); 985 addr_t offset = m_header.e_entry; 986 987 if (!section_list) 988 m_entry_point_address.SetOffset(offset); 989 else 990 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 991 return m_entry_point_address; 992 } 993 994 Address ObjectFileELF::GetBaseAddress() { 995 for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) { 996 const ELFProgramHeader &H = EnumPHdr.value(); 997 if (H.p_type != PT_LOAD) 998 continue; 999 1000 return Address( 1001 GetSectionList()->FindSectionByID(SegmentID(EnumPHdr.index())), 0); 1002 } 1003 return LLDB_INVALID_ADDRESS; 1004 } 1005 1006 // ParseDependentModules 1007 size_t ObjectFileELF::ParseDependentModules() { 1008 if (m_filespec_up) 1009 return m_filespec_up->GetSize(); 1010 1011 m_filespec_up.reset(new FileSpecList()); 1012 1013 if (!ParseSectionHeaders()) 1014 return 0; 1015 1016 SectionList *section_list = GetSectionList(); 1017 if (!section_list) 1018 return 0; 1019 1020 // Find the SHT_DYNAMIC section. 1021 Section *dynsym = 1022 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 1023 .get(); 1024 if (!dynsym) 1025 return 0; 1026 assert(dynsym->GetObjectFile() == this); 1027 1028 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID()); 1029 if (!header) 1030 return 0; 1031 // sh_link: section header index of string table used by entries in the 1032 // section. 1033 Section *dynstr = section_list->FindSectionByID(header->sh_link).get(); 1034 if (!dynstr) 1035 return 0; 1036 1037 DataExtractor dynsym_data; 1038 DataExtractor dynstr_data; 1039 if (ReadSectionData(dynsym, dynsym_data) && 1040 ReadSectionData(dynstr, dynstr_data)) { 1041 ELFDynamic symbol; 1042 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1043 lldb::offset_t offset = 0; 1044 1045 // The only type of entries we are concerned with are tagged DT_NEEDED, 1046 // yielding the name of a required library. 1047 while (offset < section_size) { 1048 if (!symbol.Parse(dynsym_data, &offset)) 1049 break; 1050 1051 if (symbol.d_tag != DT_NEEDED) 1052 continue; 1053 1054 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1055 const char *lib_name = dynstr_data.PeekCStr(str_index); 1056 FileSpec file_spec(lib_name); 1057 FileSystem::Instance().Resolve(file_spec); 1058 m_filespec_up->Append(file_spec); 1059 } 1060 } 1061 1062 return m_filespec_up->GetSize(); 1063 } 1064 1065 // GetProgramHeaderInfo 1066 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1067 DataExtractor &object_data, 1068 const ELFHeader &header) { 1069 // We have already parsed the program headers 1070 if (!program_headers.empty()) 1071 return program_headers.size(); 1072 1073 // If there are no program headers to read we are done. 1074 if (header.e_phnum == 0) 1075 return 0; 1076 1077 program_headers.resize(header.e_phnum); 1078 if (program_headers.size() != header.e_phnum) 1079 return 0; 1080 1081 const size_t ph_size = header.e_phnum * header.e_phentsize; 1082 const elf_off ph_offset = header.e_phoff; 1083 DataExtractor data; 1084 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1085 return 0; 1086 1087 uint32_t idx; 1088 lldb::offset_t offset; 1089 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) { 1090 if (!program_headers[idx].Parse(data, &offset)) 1091 break; 1092 } 1093 1094 if (idx < program_headers.size()) 1095 program_headers.resize(idx); 1096 1097 return program_headers.size(); 1098 } 1099 1100 // ParseProgramHeaders 1101 bool ObjectFileELF::ParseProgramHeaders() { 1102 return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0; 1103 } 1104 1105 lldb_private::Status 1106 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data, 1107 lldb_private::ArchSpec &arch_spec, 1108 lldb_private::UUID &uuid) { 1109 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1110 Status error; 1111 1112 lldb::offset_t offset = 0; 1113 1114 while (true) { 1115 // Parse the note header. If this fails, bail out. 1116 const lldb::offset_t note_offset = offset; 1117 ELFNote note = ELFNote(); 1118 if (!note.Parse(data, &offset)) { 1119 // We're done. 1120 return error; 1121 } 1122 1123 if (log) 1124 log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, 1125 __FUNCTION__, note.n_name.c_str(), note.n_type); 1126 1127 // Process FreeBSD ELF notes. 1128 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1129 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1130 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) { 1131 // Pull out the min version info. 1132 uint32_t version_info; 1133 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1134 error.SetErrorString("failed to read FreeBSD ABI note payload"); 1135 return error; 1136 } 1137 1138 // Convert the version info into a major/minor number. 1139 const uint32_t version_major = version_info / 100000; 1140 const uint32_t version_minor = (version_info / 1000) % 100; 1141 1142 char os_name[32]; 1143 snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32, 1144 version_major, version_minor); 1145 1146 // Set the elf OS version to FreeBSD. Also clear the vendor. 1147 arch_spec.GetTriple().setOSName(os_name); 1148 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1149 1150 if (log) 1151 log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 1152 ".%" PRIu32, 1153 __FUNCTION__, version_major, version_minor, 1154 static_cast<uint32_t>(version_info % 1000)); 1155 } 1156 // Process GNU ELF notes. 1157 else if (note.n_name == LLDB_NT_OWNER_GNU) { 1158 switch (note.n_type) { 1159 case LLDB_NT_GNU_ABI_TAG: 1160 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) { 1161 // Pull out the min OS version supporting the ABI. 1162 uint32_t version_info[4]; 1163 if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) == 1164 nullptr) { 1165 error.SetErrorString("failed to read GNU ABI note payload"); 1166 return error; 1167 } 1168 1169 // Set the OS per the OS field. 1170 switch (version_info[0]) { 1171 case LLDB_NT_GNU_ABI_OS_LINUX: 1172 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1173 arch_spec.GetTriple().setVendor( 1174 llvm::Triple::VendorType::UnknownVendor); 1175 if (log) 1176 log->Printf( 1177 "ObjectFileELF::%s detected Linux, min version %" PRIu32 1178 ".%" PRIu32 ".%" PRIu32, 1179 __FUNCTION__, version_info[1], version_info[2], 1180 version_info[3]); 1181 // FIXME we have the minimal version number, we could be propagating 1182 // that. version_info[1] = OS Major, version_info[2] = OS Minor, 1183 // version_info[3] = Revision. 1184 break; 1185 case LLDB_NT_GNU_ABI_OS_HURD: 1186 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1187 arch_spec.GetTriple().setVendor( 1188 llvm::Triple::VendorType::UnknownVendor); 1189 if (log) 1190 log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min " 1191 "version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1192 __FUNCTION__, version_info[1], version_info[2], 1193 version_info[3]); 1194 break; 1195 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1196 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris); 1197 arch_spec.GetTriple().setVendor( 1198 llvm::Triple::VendorType::UnknownVendor); 1199 if (log) 1200 log->Printf( 1201 "ObjectFileELF::%s detected Solaris, min version %" PRIu32 1202 ".%" PRIu32 ".%" PRIu32, 1203 __FUNCTION__, version_info[1], version_info[2], 1204 version_info[3]); 1205 break; 1206 default: 1207 if (log) 1208 log->Printf( 1209 "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 1210 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1211 __FUNCTION__, version_info[0], version_info[1], 1212 version_info[2], version_info[3]); 1213 break; 1214 } 1215 } 1216 break; 1217 1218 case LLDB_NT_GNU_BUILD_ID_TAG: 1219 // Only bother processing this if we don't already have the uuid set. 1220 if (!uuid.IsValid()) { 1221 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a 1222 // build-id of a different length. Accept it as long as it's at least 1223 // 4 bytes as it will be better than our own crc32. 1224 if (note.n_descsz >= 4) { 1225 if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) { 1226 // Save the build id as the UUID for the module. 1227 uuid = UUID::fromData(buf, note.n_descsz); 1228 } else { 1229 error.SetErrorString("failed to read GNU_BUILD_ID note payload"); 1230 return error; 1231 } 1232 } 1233 } 1234 break; 1235 } 1236 if (arch_spec.IsMIPS() && 1237 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1238 // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform 1239 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1240 } 1241 // Process NetBSD ELF executables and shared libraries 1242 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1243 (note.n_type == LLDB_NT_NETBSD_IDENT_TAG) && 1244 (note.n_descsz == LLDB_NT_NETBSD_IDENT_DESCSZ) && 1245 (note.n_namesz == LLDB_NT_NETBSD_IDENT_NAMESZ)) { 1246 // Pull out the version info. 1247 uint32_t version_info; 1248 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1249 error.SetErrorString("failed to read NetBSD ABI note payload"); 1250 return error; 1251 } 1252 // Convert the version info into a major/minor/patch number. 1253 // #define __NetBSD_Version__ MMmmrrpp00 1254 // 1255 // M = major version 1256 // m = minor version; a minor number of 99 indicates current. 1257 // r = 0 (since NetBSD 3.0 not used) 1258 // p = patchlevel 1259 const uint32_t version_major = version_info / 100000000; 1260 const uint32_t version_minor = (version_info % 100000000) / 1000000; 1261 const uint32_t version_patch = (version_info % 10000) / 100; 1262 // Set the elf OS version to NetBSD. Also clear the vendor. 1263 arch_spec.GetTriple().setOSName( 1264 llvm::formatv("netbsd{0}.{1}.{2}", version_major, version_minor, 1265 version_patch).str()); 1266 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1267 } 1268 // Process NetBSD ELF core(5) notes 1269 else if ((note.n_name == LLDB_NT_OWNER_NETBSDCORE) && 1270 (note.n_type == LLDB_NT_NETBSD_PROCINFO)) { 1271 // Set the elf OS version to NetBSD. Also clear the vendor. 1272 arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD); 1273 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1274 } 1275 // Process OpenBSD ELF notes. 1276 else if (note.n_name == LLDB_NT_OWNER_OPENBSD) { 1277 // Set the elf OS version to OpenBSD. Also clear the vendor. 1278 arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD); 1279 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1280 } else if (note.n_name == LLDB_NT_OWNER_ANDROID) { 1281 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1282 arch_spec.GetTriple().setEnvironment( 1283 llvm::Triple::EnvironmentType::Android); 1284 } else if (note.n_name == LLDB_NT_OWNER_LINUX) { 1285 // This is sometimes found in core files and usually contains extended 1286 // register info 1287 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1288 } else if (note.n_name == LLDB_NT_OWNER_CORE) { 1289 // Parse the NT_FILE to look for stuff in paths to shared libraries As 1290 // the contents look like this in a 64 bit ELF core file: count = 1291 // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index 1292 // start end file_ofs path ===== 1293 // 0x0000000000401000 0x0000000000000000 /tmp/a.out [ 1] 1294 // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [ 1295 // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out 1296 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 1297 // /lib/x86_64-linux-gnu/libc-2.19.so [ 4] 0x00007fa79cba8000 1298 // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux- 1299 // gnu/libc-2.19.so [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 1300 // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [ 6] 1301 // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64 1302 // -linux-gnu/libc-2.19.so [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 1303 // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [ 8] 1304 // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64 1305 // -linux-gnu/ld-2.19.so [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 1306 // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs 1307 // the count, page_size, start, end, file_ofs are uint32_t For reference: 1308 // see readelf source code (in binutils). 1309 if (note.n_type == NT_FILE) { 1310 uint64_t count = data.GetAddress(&offset); 1311 const char *cstr; 1312 data.GetAddress(&offset); // Skip page size 1313 offset += count * 3 * 1314 data.GetAddressByteSize(); // Skip all start/end/file_ofs 1315 for (size_t i = 0; i < count; ++i) { 1316 cstr = data.GetCStr(&offset); 1317 if (cstr == nullptr) { 1318 error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read " 1319 "at an offset after the end " 1320 "(GetCStr returned nullptr)", 1321 __FUNCTION__); 1322 return error; 1323 } 1324 llvm::StringRef path(cstr); 1325 if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) { 1326 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1327 break; 1328 } 1329 } 1330 if (arch_spec.IsMIPS() && 1331 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1332 // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some 1333 // cases (e.g. compile with -nostdlib) Hence set OS to Linux 1334 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1335 } 1336 } 1337 1338 // Calculate the offset of the next note just in case "offset" has been 1339 // used to poke at the contents of the note data 1340 offset = note_offset + note.GetByteSize(); 1341 } 1342 1343 return error; 1344 } 1345 1346 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, 1347 ArchSpec &arch_spec) { 1348 lldb::offset_t Offset = 0; 1349 1350 uint8_t FormatVersion = data.GetU8(&Offset); 1351 if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) 1352 return; 1353 1354 Offset = Offset + sizeof(uint32_t); // Section Length 1355 llvm::StringRef VendorName = data.GetCStr(&Offset); 1356 1357 if (VendorName != "aeabi") 1358 return; 1359 1360 if (arch_spec.GetTriple().getEnvironment() == 1361 llvm::Triple::UnknownEnvironment) 1362 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1363 1364 while (Offset < length) { 1365 uint8_t Tag = data.GetU8(&Offset); 1366 uint32_t Size = data.GetU32(&Offset); 1367 1368 if (Tag != llvm::ARMBuildAttrs::File || Size == 0) 1369 continue; 1370 1371 while (Offset < length) { 1372 uint64_t Tag = data.GetULEB128(&Offset); 1373 switch (Tag) { 1374 default: 1375 if (Tag < 32) 1376 data.GetULEB128(&Offset); 1377 else if (Tag % 2 == 0) 1378 data.GetULEB128(&Offset); 1379 else 1380 data.GetCStr(&Offset); 1381 1382 break; 1383 1384 case llvm::ARMBuildAttrs::CPU_raw_name: 1385 case llvm::ARMBuildAttrs::CPU_name: 1386 data.GetCStr(&Offset); 1387 1388 break; 1389 1390 case llvm::ARMBuildAttrs::ABI_VFP_args: { 1391 uint64_t VFPArgs = data.GetULEB128(&Offset); 1392 1393 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) { 1394 if (arch_spec.GetTriple().getEnvironment() == 1395 llvm::Triple::UnknownEnvironment || 1396 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) 1397 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1398 1399 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1400 } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) { 1401 if (arch_spec.GetTriple().getEnvironment() == 1402 llvm::Triple::UnknownEnvironment || 1403 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) 1404 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); 1405 1406 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1407 } 1408 1409 break; 1410 } 1411 } 1412 } 1413 } 1414 } 1415 1416 // GetSectionHeaderInfo 1417 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1418 DataExtractor &object_data, 1419 const elf::ELFHeader &header, 1420 lldb_private::UUID &uuid, 1421 std::string &gnu_debuglink_file, 1422 uint32_t &gnu_debuglink_crc, 1423 ArchSpec &arch_spec) { 1424 // Don't reparse the section headers if we already did that. 1425 if (!section_headers.empty()) 1426 return section_headers.size(); 1427 1428 // Only initialize the arch_spec to okay defaults if they're not already set. 1429 // We'll refine this with note data as we parse the notes. 1430 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) { 1431 llvm::Triple::OSType ostype; 1432 llvm::Triple::OSType spec_ostype; 1433 const uint32_t sub_type = subTypeFromElfHeader(header); 1434 arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type, 1435 header.e_ident[EI_OSABI]); 1436 1437 // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is 1438 // determined based on EI_OSABI flag and the info extracted from ELF notes 1439 // (see RefineModuleDetailsFromNote). However in some cases that still 1440 // might be not enough: for example a shared library might not have any 1441 // notes at all and have EI_OSABI flag set to System V, as result the OS 1442 // will be set to UnknownOS. 1443 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 1444 spec_ostype = arch_spec.GetTriple().getOS(); 1445 assert(spec_ostype == ostype); 1446 UNUSED_IF_ASSERT_DISABLED(spec_ostype); 1447 } 1448 1449 if (arch_spec.GetMachine() == llvm::Triple::mips || 1450 arch_spec.GetMachine() == llvm::Triple::mipsel || 1451 arch_spec.GetMachine() == llvm::Triple::mips64 || 1452 arch_spec.GetMachine() == llvm::Triple::mips64el) { 1453 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) { 1454 case llvm::ELF::EF_MIPS_MICROMIPS: 1455 arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips); 1456 break; 1457 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1458 arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16); 1459 break; 1460 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1461 arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx); 1462 break; 1463 default: 1464 break; 1465 } 1466 } 1467 1468 if (arch_spec.GetMachine() == llvm::Triple::arm || 1469 arch_spec.GetMachine() == llvm::Triple::thumb) { 1470 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) 1471 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1472 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) 1473 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1474 } 1475 1476 // If there are no section headers we are done. 1477 if (header.e_shnum == 0) 1478 return 0; 1479 1480 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1481 1482 section_headers.resize(header.e_shnum); 1483 if (section_headers.size() != header.e_shnum) 1484 return 0; 1485 1486 const size_t sh_size = header.e_shnum * header.e_shentsize; 1487 const elf_off sh_offset = header.e_shoff; 1488 DataExtractor sh_data; 1489 if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size) 1490 return 0; 1491 1492 uint32_t idx; 1493 lldb::offset_t offset; 1494 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) { 1495 if (!section_headers[idx].Parse(sh_data, &offset)) 1496 break; 1497 } 1498 if (idx < section_headers.size()) 1499 section_headers.resize(idx); 1500 1501 const unsigned strtab_idx = header.e_shstrndx; 1502 if (strtab_idx && strtab_idx < section_headers.size()) { 1503 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1504 const size_t byte_size = sheader.sh_size; 1505 const Elf64_Off offset = sheader.sh_offset; 1506 lldb_private::DataExtractor shstr_data; 1507 1508 if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) { 1509 for (SectionHeaderCollIter I = section_headers.begin(); 1510 I != section_headers.end(); ++I) { 1511 static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink"); 1512 const ELFSectionHeaderInfo &sheader = *I; 1513 const uint64_t section_size = 1514 sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1515 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1516 1517 I->section_name = name; 1518 1519 if (arch_spec.IsMIPS()) { 1520 uint32_t arch_flags = arch_spec.GetFlags(); 1521 DataExtractor data; 1522 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) { 1523 1524 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1525 section_size) == section_size)) { 1526 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section 1527 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 1528 arch_flags |= data.GetU32(&offset); 1529 1530 // The floating point ABI is at offset 7 1531 offset = 7; 1532 switch (data.GetU8(&offset)) { 1533 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY: 1534 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; 1535 break; 1536 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE: 1537 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; 1538 break; 1539 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE: 1540 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; 1541 break; 1542 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT: 1543 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; 1544 break; 1545 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64: 1546 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; 1547 break; 1548 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX: 1549 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; 1550 break; 1551 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64: 1552 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; 1553 break; 1554 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A: 1555 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; 1556 break; 1557 } 1558 } 1559 } 1560 // Settings appropriate ArchSpec ABI Flags 1561 switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) { 1562 case llvm::ELF::EF_MIPS_ABI_O32: 1563 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1564 break; 1565 case EF_MIPS_ABI_O64: 1566 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; 1567 break; 1568 case EF_MIPS_ABI_EABI32: 1569 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; 1570 break; 1571 case EF_MIPS_ABI_EABI64: 1572 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; 1573 break; 1574 default: 1575 // ABI Mask doesn't cover N32 and N64 ABI. 1576 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) 1577 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; 1578 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) 1579 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1580 break; 1581 } 1582 arch_spec.SetFlags(arch_flags); 1583 } 1584 1585 if (arch_spec.GetMachine() == llvm::Triple::arm || 1586 arch_spec.GetMachine() == llvm::Triple::thumb) { 1587 DataExtractor data; 1588 1589 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && 1590 data.SetData(object_data, sheader.sh_offset, section_size) == section_size) 1591 ParseARMAttributes(data, section_size, arch_spec); 1592 } 1593 1594 if (name == g_sect_name_gnu_debuglink) { 1595 DataExtractor data; 1596 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1597 section_size) == section_size)) { 1598 lldb::offset_t gnu_debuglink_offset = 0; 1599 gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset); 1600 gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4); 1601 data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1602 } 1603 } 1604 1605 // Process ELF note section entries. 1606 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1607 1608 // The section header ".note.android.ident" is stored as a 1609 // PROGBITS type header but it is actually a note header. 1610 static ConstString g_sect_name_android_ident(".note.android.ident"); 1611 if (!is_note_header && name == g_sect_name_android_ident) 1612 is_note_header = true; 1613 1614 if (is_note_header) { 1615 // Allow notes to refine module info. 1616 DataExtractor data; 1617 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1618 section_size) == section_size)) { 1619 Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid); 1620 if (error.Fail()) { 1621 if (log) 1622 log->Printf("ObjectFileELF::%s ELF note processing failed: %s", 1623 __FUNCTION__, error.AsCString()); 1624 } 1625 } 1626 } 1627 } 1628 1629 // Make any unknown triple components to be unspecified unknowns. 1630 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) 1631 arch_spec.GetTriple().setVendorName(llvm::StringRef()); 1632 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) 1633 arch_spec.GetTriple().setOSName(llvm::StringRef()); 1634 1635 return section_headers.size(); 1636 } 1637 } 1638 1639 section_headers.clear(); 1640 return 0; 1641 } 1642 1643 llvm::StringRef 1644 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const { 1645 size_t pos = symbol_name.find('@'); 1646 return symbol_name.substr(0, pos); 1647 } 1648 1649 // ParseSectionHeaders 1650 size_t ObjectFileELF::ParseSectionHeaders() { 1651 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, 1652 m_gnu_debuglink_file, m_gnu_debuglink_crc, 1653 m_arch_spec); 1654 } 1655 1656 const ObjectFileELF::ELFSectionHeaderInfo * 1657 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) { 1658 if (!ParseSectionHeaders()) 1659 return nullptr; 1660 1661 if (id < m_section_headers.size()) 1662 return &m_section_headers[id]; 1663 1664 return nullptr; 1665 } 1666 1667 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) { 1668 if (!name || !name[0] || !ParseSectionHeaders()) 1669 return 0; 1670 for (size_t i = 1; i < m_section_headers.size(); ++i) 1671 if (m_section_headers[i].section_name == ConstString(name)) 1672 return i; 1673 return 0; 1674 } 1675 1676 static SectionType GetSectionTypeFromName(llvm::StringRef Name) { 1677 return llvm::StringSwitch<SectionType>(Name) 1678 .Case(".ARM.exidx", eSectionTypeARMexidx) 1679 .Case(".ARM.extab", eSectionTypeARMextab) 1680 .Cases(".bss", ".tbss", eSectionTypeZeroFill) 1681 .Cases(".data", ".tdata", eSectionTypeData) 1682 .Case(".debug_abbrev", eSectionTypeDWARFDebugAbbrev) 1683 .Case(".debug_abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo) 1684 .Case(".debug_addr", eSectionTypeDWARFDebugAddr) 1685 .Case(".debug_aranges", eSectionTypeDWARFDebugAranges) 1686 .Case(".debug_cu_index", eSectionTypeDWARFDebugCuIndex) 1687 .Case(".debug_frame", eSectionTypeDWARFDebugFrame) 1688 .Case(".debug_info", eSectionTypeDWARFDebugInfo) 1689 .Case(".debug_info.dwo", eSectionTypeDWARFDebugInfoDwo) 1690 .Cases(".debug_line", ".debug_line.dwo", eSectionTypeDWARFDebugLine) 1691 .Cases(".debug_line_str", ".debug_line_str.dwo", 1692 eSectionTypeDWARFDebugLineStr) 1693 .Cases(".debug_loc", ".debug_loc.dwo", eSectionTypeDWARFDebugLoc) 1694 .Cases(".debug_loclists", ".debug_loclists.dwo", 1695 eSectionTypeDWARFDebugLocLists) 1696 .Case(".debug_macinfo", eSectionTypeDWARFDebugMacInfo) 1697 .Cases(".debug_macro", ".debug_macro.dwo", eSectionTypeDWARFDebugMacro) 1698 .Case(".debug_names", eSectionTypeDWARFDebugNames) 1699 .Case(".debug_pubnames", eSectionTypeDWARFDebugPubNames) 1700 .Case(".debug_pubtypes", eSectionTypeDWARFDebugPubTypes) 1701 .Case(".debug_ranges", eSectionTypeDWARFDebugRanges) 1702 .Case(".debug_rnglists", eSectionTypeDWARFDebugRngLists) 1703 .Case(".debug_str", eSectionTypeDWARFDebugStr) 1704 .Case(".debug_str.dwo", eSectionTypeDWARFDebugStrDwo) 1705 .Case(".debug_str_offsets", eSectionTypeDWARFDebugStrOffsets) 1706 .Case(".debug_str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo) 1707 .Case(".debug_types", eSectionTypeDWARFDebugTypes) 1708 .Case(".eh_frame", eSectionTypeEHFrame) 1709 .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink) 1710 .Case(".gosymtab", eSectionTypeGoSymtab) 1711 .Case(".text", eSectionTypeCode) 1712 .Default(eSectionTypeOther); 1713 } 1714 1715 SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const { 1716 switch (H.sh_type) { 1717 case SHT_PROGBITS: 1718 if (H.sh_flags & SHF_EXECINSTR) 1719 return eSectionTypeCode; 1720 break; 1721 case SHT_SYMTAB: 1722 return eSectionTypeELFSymbolTable; 1723 case SHT_DYNSYM: 1724 return eSectionTypeELFDynamicSymbols; 1725 case SHT_RELA: 1726 case SHT_REL: 1727 return eSectionTypeELFRelocationEntries; 1728 case SHT_DYNAMIC: 1729 return eSectionTypeELFDynamicLinkInfo; 1730 } 1731 return GetSectionTypeFromName(H.section_name.GetStringRef()); 1732 } 1733 1734 static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) { 1735 switch (Type) { 1736 case eSectionTypeData: 1737 case eSectionTypeZeroFill: 1738 return arch.GetDataByteSize(); 1739 case eSectionTypeCode: 1740 return arch.GetCodeByteSize(); 1741 default: 1742 return 1; 1743 } 1744 } 1745 1746 static Permissions GetPermissions(const ELFSectionHeader &H) { 1747 Permissions Perm = Permissions(0); 1748 if (H.sh_flags & SHF_ALLOC) 1749 Perm |= ePermissionsReadable; 1750 if (H.sh_flags & SHF_WRITE) 1751 Perm |= ePermissionsWritable; 1752 if (H.sh_flags & SHF_EXECINSTR) 1753 Perm |= ePermissionsExecutable; 1754 return Perm; 1755 } 1756 1757 static Permissions GetPermissions(const ELFProgramHeader &H) { 1758 Permissions Perm = Permissions(0); 1759 if (H.p_flags & PF_R) 1760 Perm |= ePermissionsReadable; 1761 if (H.p_flags & PF_W) 1762 Perm |= ePermissionsWritable; 1763 if (H.p_flags & PF_X) 1764 Perm |= ePermissionsExecutable; 1765 return Perm; 1766 } 1767 1768 namespace { 1769 1770 using VMRange = lldb_private::Range<addr_t, addr_t>; 1771 1772 struct SectionAddressInfo { 1773 SectionSP Segment; 1774 VMRange Range; 1775 }; 1776 1777 // (Unlinked) ELF object files usually have 0 for every section address, meaning 1778 // we need to compute synthetic addresses in order for "file addresses" from 1779 // different sections to not overlap. This class handles that logic. 1780 class VMAddressProvider { 1781 using VMMap = llvm::IntervalMap<addr_t, SectionSP, 4, 1782 llvm::IntervalMapHalfOpenInfo<addr_t>>; 1783 1784 ObjectFile::Type ObjectType; 1785 addr_t NextVMAddress = 0; 1786 VMMap::Allocator Alloc; 1787 VMMap Segments = VMMap(Alloc); 1788 VMMap Sections = VMMap(Alloc); 1789 lldb_private::Log *Log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES); 1790 1791 VMRange GetVMRange(const ELFSectionHeader &H) { 1792 addr_t Address = H.sh_addr; 1793 addr_t Size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0; 1794 if (ObjectType == ObjectFile::Type::eTypeObjectFile && Segments.empty() && (H.sh_flags & SHF_ALLOC)) { 1795 NextVMAddress = 1796 llvm::alignTo(NextVMAddress, std::max<addr_t>(H.sh_addralign, 1)); 1797 Address = NextVMAddress; 1798 NextVMAddress += Size; 1799 } 1800 return VMRange(Address, Size); 1801 } 1802 1803 public: 1804 VMAddressProvider(ObjectFile::Type Type) : ObjectType(Type) {} 1805 1806 llvm::Optional<VMRange> GetAddressInfo(const ELFProgramHeader &H) { 1807 if (H.p_memsz == 0) { 1808 LLDB_LOG(Log, 1809 "Ignoring zero-sized PT_LOAD segment. Corrupt object file?"); 1810 return llvm::None; 1811 } 1812 1813 if (Segments.overlaps(H.p_vaddr, H.p_vaddr + H.p_memsz)) { 1814 LLDB_LOG(Log, 1815 "Ignoring overlapping PT_LOAD segment. Corrupt object file?"); 1816 return llvm::None; 1817 } 1818 return VMRange(H.p_vaddr, H.p_memsz); 1819 } 1820 1821 llvm::Optional<SectionAddressInfo> GetAddressInfo(const ELFSectionHeader &H) { 1822 VMRange Range = GetVMRange(H); 1823 SectionSP Segment; 1824 auto It = Segments.find(Range.GetRangeBase()); 1825 if ((H.sh_flags & SHF_ALLOC) && It.valid()) { 1826 addr_t MaxSize; 1827 if (It.start() <= Range.GetRangeBase()) { 1828 MaxSize = It.stop() - Range.GetRangeBase(); 1829 Segment = *It; 1830 } else 1831 MaxSize = It.start() - Range.GetRangeBase(); 1832 if (Range.GetByteSize() > MaxSize) { 1833 LLDB_LOG(Log, "Shortening section crossing segment boundaries. " 1834 "Corrupt object file?"); 1835 Range.SetByteSize(MaxSize); 1836 } 1837 } 1838 if (Range.GetByteSize() > 0 && 1839 Sections.overlaps(Range.GetRangeBase(), Range.GetRangeEnd())) { 1840 LLDB_LOG(Log, "Ignoring overlapping section. Corrupt object file?"); 1841 return llvm::None; 1842 } 1843 if (Segment) 1844 Range.Slide(-Segment->GetFileAddress()); 1845 return SectionAddressInfo{Segment, Range}; 1846 } 1847 1848 void AddSegment(const VMRange &Range, SectionSP Seg) { 1849 Segments.insert(Range.GetRangeBase(), Range.GetRangeEnd(), std::move(Seg)); 1850 } 1851 1852 void AddSection(SectionAddressInfo Info, SectionSP Sect) { 1853 if (Info.Range.GetByteSize() == 0) 1854 return; 1855 if (Info.Segment) 1856 Info.Range.Slide(Info.Segment->GetFileAddress()); 1857 Sections.insert(Info.Range.GetRangeBase(), Info.Range.GetRangeEnd(), 1858 std::move(Sect)); 1859 } 1860 }; 1861 } 1862 1863 void ObjectFileELF::CreateSections(SectionList &unified_section_list) { 1864 if (m_sections_up) 1865 return; 1866 1867 m_sections_up = llvm::make_unique<SectionList>(); 1868 VMAddressProvider address_provider(GetType()); 1869 1870 size_t LoadID = 0; 1871 for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) { 1872 const ELFProgramHeader &PHdr = EnumPHdr.value(); 1873 if (PHdr.p_type != PT_LOAD) 1874 continue; 1875 1876 auto InfoOr = address_provider.GetAddressInfo(PHdr); 1877 if (!InfoOr) 1878 continue; 1879 1880 ConstString Name(("PT_LOAD[" + llvm::Twine(LoadID++) + "]").str()); 1881 uint32_t Log2Align = llvm::Log2_64(std::max<elf_xword>(PHdr.p_align, 1)); 1882 SectionSP Segment = std::make_shared<Section>( 1883 GetModule(), this, SegmentID(EnumPHdr.index()), Name, 1884 eSectionTypeContainer, InfoOr->GetRangeBase(), InfoOr->GetByteSize(), 1885 PHdr.p_offset, PHdr.p_filesz, Log2Align, /*flags*/ 0); 1886 Segment->SetPermissions(GetPermissions(PHdr)); 1887 m_sections_up->AddSection(Segment); 1888 1889 address_provider.AddSegment(*InfoOr, std::move(Segment)); 1890 } 1891 1892 ParseSectionHeaders(); 1893 if (m_section_headers.empty()) 1894 return; 1895 1896 for (SectionHeaderCollIter I = std::next(m_section_headers.begin()); 1897 I != m_section_headers.end(); ++I) { 1898 const ELFSectionHeaderInfo &header = *I; 1899 1900 ConstString &name = I->section_name; 1901 const uint64_t file_size = 1902 header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1903 1904 auto InfoOr = address_provider.GetAddressInfo(header); 1905 if (!InfoOr) 1906 continue; 1907 1908 SectionType sect_type = GetSectionType(header); 1909 1910 const uint32_t target_bytes_size = 1911 GetTargetByteSize(sect_type, m_arch_spec); 1912 1913 elf::elf_xword log2align = 1914 (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign); 1915 1916 SectionSP section_sp(new Section( 1917 InfoOr->Segment, GetModule(), // Module to which this section belongs. 1918 this, // ObjectFile to which this section belongs and should 1919 // read section data from. 1920 SectionIndex(I), // Section ID. 1921 name, // Section name. 1922 sect_type, // Section type. 1923 InfoOr->Range.GetRangeBase(), // VM address. 1924 InfoOr->Range.GetByteSize(), // VM size in bytes of this section. 1925 header.sh_offset, // Offset of this section in the file. 1926 file_size, // Size of the section as found in the file. 1927 log2align, // Alignment of the section 1928 header.sh_flags, // Flags for this section. 1929 target_bytes_size)); // Number of host bytes per target byte 1930 1931 section_sp->SetPermissions(GetPermissions(header)); 1932 section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS); 1933 (InfoOr->Segment ? InfoOr->Segment->GetChildren() : *m_sections_up) 1934 .AddSection(section_sp); 1935 address_provider.AddSection(std::move(*InfoOr), std::move(section_sp)); 1936 } 1937 1938 // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the 1939 // unified section list. 1940 if (GetType() != eTypeDebugInfo) 1941 unified_section_list = *m_sections_up; 1942 } 1943 1944 // Find the arm/aarch64 mapping symbol character in the given symbol name. 1945 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we 1946 // recognize cases when the mapping symbol prefixed by an arbitrary string 1947 // because if a symbol prefix added to each symbol in the object file with 1948 // objcopy then the mapping symbols are also prefixed. 1949 static char FindArmAarch64MappingSymbol(const char *symbol_name) { 1950 if (!symbol_name) 1951 return '\0'; 1952 1953 const char *dollar_pos = ::strchr(symbol_name, '$'); 1954 if (!dollar_pos || dollar_pos[1] == '\0') 1955 return '\0'; 1956 1957 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 1958 return dollar_pos[1]; 1959 return '\0'; 1960 } 1961 1962 #define STO_MIPS_ISA (3 << 6) 1963 #define STO_MICROMIPS (2 << 6) 1964 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS) 1965 1966 // private 1967 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id, 1968 SectionList *section_list, 1969 const size_t num_symbols, 1970 const DataExtractor &symtab_data, 1971 const DataExtractor &strtab_data) { 1972 ELFSymbol symbol; 1973 lldb::offset_t offset = 0; 1974 1975 static ConstString text_section_name(".text"); 1976 static ConstString init_section_name(".init"); 1977 static ConstString fini_section_name(".fini"); 1978 static ConstString ctors_section_name(".ctors"); 1979 static ConstString dtors_section_name(".dtors"); 1980 1981 static ConstString data_section_name(".data"); 1982 static ConstString rodata_section_name(".rodata"); 1983 static ConstString rodata1_section_name(".rodata1"); 1984 static ConstString data2_section_name(".data1"); 1985 static ConstString bss_section_name(".bss"); 1986 static ConstString opd_section_name(".opd"); // For ppc64 1987 1988 // On Android the oatdata and the oatexec symbols in the oat and odex files 1989 // covers the full .text section what causes issues with displaying unusable 1990 // symbol name to the user and very slow unwinding speed because the 1991 // instruction emulation based unwind plans try to emulate all instructions 1992 // in these symbols. Don't add these symbols to the symbol list as they have 1993 // no use for the debugger and they are causing a lot of trouble. Filtering 1994 // can't be restricted to Android because this special object file don't 1995 // contain the note section specifying the environment to Android but the 1996 // custom extension and file name makes it highly unlikely that this will 1997 // collide with anything else. 1998 ConstString file_extension = m_file.GetFileNameExtension(); 1999 bool skip_oatdata_oatexec = 2000 file_extension == ".oat" || file_extension == ".odex"; 2001 2002 ArchSpec arch = GetArchitecture(); 2003 ModuleSP module_sp(GetModule()); 2004 SectionList *module_section_list = 2005 module_sp ? module_sp->GetSectionList() : nullptr; 2006 2007 // Local cache to avoid doing a FindSectionByName for each symbol. The "const 2008 // char*" key must came from a ConstString object so they can be compared by 2009 // pointer 2010 std::unordered_map<const char *, lldb::SectionSP> section_name_to_section; 2011 2012 unsigned i; 2013 for (i = 0; i < num_symbols; ++i) { 2014 if (!symbol.Parse(symtab_data, &offset)) 2015 break; 2016 2017 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2018 if (!symbol_name) 2019 symbol_name = ""; 2020 2021 // No need to add non-section symbols that have no names 2022 if (symbol.getType() != STT_SECTION && 2023 (symbol_name == nullptr || symbol_name[0] == '\0')) 2024 continue; 2025 2026 // Skipping oatdata and oatexec sections if it is requested. See details 2027 // above the definition of skip_oatdata_oatexec for the reasons. 2028 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || 2029 ::strcmp(symbol_name, "oatexec") == 0)) 2030 continue; 2031 2032 SectionSP symbol_section_sp; 2033 SymbolType symbol_type = eSymbolTypeInvalid; 2034 Elf64_Half shndx = symbol.st_shndx; 2035 2036 switch (shndx) { 2037 case SHN_ABS: 2038 symbol_type = eSymbolTypeAbsolute; 2039 break; 2040 case SHN_UNDEF: 2041 symbol_type = eSymbolTypeUndefined; 2042 break; 2043 default: 2044 symbol_section_sp = section_list->FindSectionByID(shndx); 2045 break; 2046 } 2047 2048 // If a symbol is undefined do not process it further even if it has a STT 2049 // type 2050 if (symbol_type != eSymbolTypeUndefined) { 2051 switch (symbol.getType()) { 2052 default: 2053 case STT_NOTYPE: 2054 // The symbol's type is not specified. 2055 break; 2056 2057 case STT_OBJECT: 2058 // The symbol is associated with a data object, such as a variable, an 2059 // array, etc. 2060 symbol_type = eSymbolTypeData; 2061 break; 2062 2063 case STT_FUNC: 2064 // The symbol is associated with a function or other executable code. 2065 symbol_type = eSymbolTypeCode; 2066 break; 2067 2068 case STT_SECTION: 2069 // The symbol is associated with a section. Symbol table entries of 2070 // this type exist primarily for relocation and normally have STB_LOCAL 2071 // binding. 2072 break; 2073 2074 case STT_FILE: 2075 // Conventionally, the symbol's name gives the name of the source file 2076 // associated with the object file. A file symbol has STB_LOCAL 2077 // binding, its section index is SHN_ABS, and it precedes the other 2078 // STB_LOCAL symbols for the file, if it is present. 2079 symbol_type = eSymbolTypeSourceFile; 2080 break; 2081 2082 case STT_GNU_IFUNC: 2083 // The symbol is associated with an indirect function. The actual 2084 // function will be resolved if it is referenced. 2085 symbol_type = eSymbolTypeResolver; 2086 break; 2087 } 2088 } 2089 2090 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) { 2091 if (symbol_section_sp) { 2092 ConstString sect_name = symbol_section_sp->GetName(); 2093 if (sect_name == text_section_name || sect_name == init_section_name || 2094 sect_name == fini_section_name || sect_name == ctors_section_name || 2095 sect_name == dtors_section_name) { 2096 symbol_type = eSymbolTypeCode; 2097 } else if (sect_name == data_section_name || 2098 sect_name == data2_section_name || 2099 sect_name == rodata_section_name || 2100 sect_name == rodata1_section_name || 2101 sect_name == bss_section_name) { 2102 symbol_type = eSymbolTypeData; 2103 } 2104 } 2105 } 2106 2107 int64_t symbol_value_offset = 0; 2108 uint32_t additional_flags = 0; 2109 2110 if (arch.IsValid()) { 2111 if (arch.GetMachine() == llvm::Triple::arm) { 2112 if (symbol.getBinding() == STB_LOCAL) { 2113 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2114 if (symbol_type == eSymbolTypeCode) { 2115 switch (mapping_symbol) { 2116 case 'a': 2117 // $a[.<any>]* - marks an ARM instruction sequence 2118 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2119 break; 2120 case 'b': 2121 case 't': 2122 // $b[.<any>]* - marks a THUMB BL instruction sequence 2123 // $t[.<any>]* - marks a THUMB instruction sequence 2124 m_address_class_map[symbol.st_value] = 2125 AddressClass::eCodeAlternateISA; 2126 break; 2127 case 'd': 2128 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2129 m_address_class_map[symbol.st_value] = AddressClass::eData; 2130 break; 2131 } 2132 } 2133 if (mapping_symbol) 2134 continue; 2135 } 2136 } else if (arch.GetMachine() == llvm::Triple::aarch64) { 2137 if (symbol.getBinding() == STB_LOCAL) { 2138 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2139 if (symbol_type == eSymbolTypeCode) { 2140 switch (mapping_symbol) { 2141 case 'x': 2142 // $x[.<any>]* - marks an A64 instruction sequence 2143 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2144 break; 2145 case 'd': 2146 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2147 m_address_class_map[symbol.st_value] = AddressClass::eData; 2148 break; 2149 } 2150 } 2151 if (mapping_symbol) 2152 continue; 2153 } 2154 } 2155 2156 if (arch.GetMachine() == llvm::Triple::arm) { 2157 if (symbol_type == eSymbolTypeCode) { 2158 if (symbol.st_value & 1) { 2159 // Subtracting 1 from the address effectively unsets the low order 2160 // bit, which results in the address actually pointing to the 2161 // beginning of the symbol. This delta will be used below in 2162 // conjunction with symbol.st_value to produce the final 2163 // symbol_value that we store in the symtab. 2164 symbol_value_offset = -1; 2165 m_address_class_map[symbol.st_value ^ 1] = 2166 AddressClass::eCodeAlternateISA; 2167 } else { 2168 // This address is ARM 2169 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2170 } 2171 } 2172 } 2173 2174 /* 2175 * MIPS: 2176 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for 2177 * MIPS). 2178 * This allows processor to switch between microMIPS and MIPS without any 2179 * need 2180 * for special mode-control register. However, apart from .debug_line, 2181 * none of 2182 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use 2183 * st_other 2184 * flag to check whether the symbol is microMIPS and then set the address 2185 * class 2186 * accordingly. 2187 */ 2188 if (arch.IsMIPS()) { 2189 if (IS_MICROMIPS(symbol.st_other)) 2190 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2191 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) { 2192 symbol.st_value = symbol.st_value & (~1ull); 2193 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2194 } else { 2195 if (symbol_type == eSymbolTypeCode) 2196 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2197 else if (symbol_type == eSymbolTypeData) 2198 m_address_class_map[symbol.st_value] = AddressClass::eData; 2199 else 2200 m_address_class_map[symbol.st_value] = AddressClass::eUnknown; 2201 } 2202 } 2203 } 2204 2205 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB 2206 // symbols. See above for more details. 2207 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2208 2209 if (symbol_section_sp == nullptr && shndx == SHN_ABS && 2210 symbol.st_size != 0) { 2211 // We don't have a section for a symbol with non-zero size. Create a new 2212 // section for it so the address range covered by the symbol is also 2213 // covered by the module (represented through the section list). It is 2214 // needed so module lookup for the addresses covered by this symbol will 2215 // be successfull. This case happens for absolute symbols. 2216 ConstString fake_section_name(std::string(".absolute.") + symbol_name); 2217 symbol_section_sp = 2218 std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name, 2219 eSectionTypeAbsoluteAddress, symbol_value, 2220 symbol.st_size, 0, 0, 0, SHF_ALLOC); 2221 2222 module_section_list->AddSection(symbol_section_sp); 2223 section_list->AddSection(symbol_section_sp); 2224 } 2225 2226 if (symbol_section_sp && 2227 CalculateType() != ObjectFile::Type::eTypeObjectFile) 2228 symbol_value -= symbol_section_sp->GetFileAddress(); 2229 2230 if (symbol_section_sp && module_section_list && 2231 module_section_list != section_list) { 2232 ConstString sect_name = symbol_section_sp->GetName(); 2233 auto section_it = section_name_to_section.find(sect_name.GetCString()); 2234 if (section_it == section_name_to_section.end()) 2235 section_it = 2236 section_name_to_section 2237 .emplace(sect_name.GetCString(), 2238 module_section_list->FindSectionByName(sect_name)) 2239 .first; 2240 if (section_it->second) 2241 symbol_section_sp = section_it->second; 2242 } 2243 2244 bool is_global = symbol.getBinding() == STB_GLOBAL; 2245 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2246 bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z'); 2247 2248 llvm::StringRef symbol_ref(symbol_name); 2249 2250 // Symbol names may contain @VERSION suffixes. Find those and strip them 2251 // temporarily. 2252 size_t version_pos = symbol_ref.find('@'); 2253 bool has_suffix = version_pos != llvm::StringRef::npos; 2254 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2255 Mangled mangled(ConstString(symbol_bare), is_mangled); 2256 2257 // Now append the suffix back to mangled and unmangled names. Only do it if 2258 // the demangling was successful (string is not empty). 2259 if (has_suffix) { 2260 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2261 2262 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2263 if (!mangled_name.empty()) 2264 mangled.SetMangledName(ConstString((mangled_name + suffix).str())); 2265 2266 ConstString demangled = 2267 mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2268 llvm::StringRef demangled_name = demangled.GetStringRef(); 2269 if (!demangled_name.empty()) 2270 mangled.SetDemangledName(ConstString((demangled_name + suffix).str())); 2271 } 2272 2273 // In ELF all symbol should have a valid size but it is not true for some 2274 // function symbols coming from hand written assembly. As none of the 2275 // function symbol should have 0 size we try to calculate the size for 2276 // these symbols in the symtab with saying that their original size is not 2277 // valid. 2278 bool symbol_size_valid = 2279 symbol.st_size != 0 || symbol.getType() != STT_FUNC; 2280 2281 Symbol dc_symbol( 2282 i + start_id, // ID is the original symbol table index. 2283 mangled, 2284 symbol_type, // Type of this symbol 2285 is_global, // Is this globally visible? 2286 false, // Is this symbol debug info? 2287 false, // Is this symbol a trampoline? 2288 false, // Is this symbol artificial? 2289 AddressRange(symbol_section_sp, // Section in which this symbol is 2290 // defined or null. 2291 symbol_value, // Offset in section or symbol value. 2292 symbol.st_size), // Size in bytes of this symbol. 2293 symbol_size_valid, // Symbol size is valid 2294 has_suffix, // Contains linker annotations? 2295 flags); // Symbol flags. 2296 symtab->AddSymbol(dc_symbol); 2297 } 2298 return i; 2299 } 2300 2301 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, 2302 user_id_t start_id, 2303 lldb_private::Section *symtab) { 2304 if (symtab->GetObjectFile() != this) { 2305 // If the symbol table section is owned by a different object file, have it 2306 // do the parsing. 2307 ObjectFileELF *obj_file_elf = 2308 static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2309 return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab); 2310 } 2311 2312 // Get section list for this object file. 2313 SectionList *section_list = m_sections_up.get(); 2314 if (!section_list) 2315 return 0; 2316 2317 user_id_t symtab_id = symtab->GetID(); 2318 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2319 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2320 symtab_hdr->sh_type == SHT_DYNSYM); 2321 2322 // sh_link: section header index of associated string table. 2323 user_id_t strtab_id = symtab_hdr->sh_link; 2324 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2325 2326 if (symtab && strtab) { 2327 assert(symtab->GetObjectFile() == this); 2328 assert(strtab->GetObjectFile() == this); 2329 2330 DataExtractor symtab_data; 2331 DataExtractor strtab_data; 2332 if (ReadSectionData(symtab, symtab_data) && 2333 ReadSectionData(strtab, strtab_data)) { 2334 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2335 2336 return ParseSymbols(symbol_table, start_id, section_list, num_symbols, 2337 symtab_data, strtab_data); 2338 } 2339 } 2340 2341 return 0; 2342 } 2343 2344 size_t ObjectFileELF::ParseDynamicSymbols() { 2345 if (m_dynamic_symbols.size()) 2346 return m_dynamic_symbols.size(); 2347 2348 SectionList *section_list = GetSectionList(); 2349 if (!section_list) 2350 return 0; 2351 2352 // Find the SHT_DYNAMIC section. 2353 Section *dynsym = 2354 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 2355 .get(); 2356 if (!dynsym) 2357 return 0; 2358 assert(dynsym->GetObjectFile() == this); 2359 2360 ELFDynamic symbol; 2361 DataExtractor dynsym_data; 2362 if (ReadSectionData(dynsym, dynsym_data)) { 2363 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2364 lldb::offset_t cursor = 0; 2365 2366 while (cursor < section_size) { 2367 if (!symbol.Parse(dynsym_data, &cursor)) 2368 break; 2369 2370 m_dynamic_symbols.push_back(symbol); 2371 } 2372 } 2373 2374 return m_dynamic_symbols.size(); 2375 } 2376 2377 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) { 2378 if (!ParseDynamicSymbols()) 2379 return nullptr; 2380 2381 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2382 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2383 for (; I != E; ++I) { 2384 ELFDynamic *symbol = &*I; 2385 2386 if (symbol->d_tag == tag) 2387 return symbol; 2388 } 2389 2390 return nullptr; 2391 } 2392 2393 unsigned ObjectFileELF::PLTRelocationType() { 2394 // DT_PLTREL 2395 // This member specifies the type of relocation entry to which the 2396 // procedure linkage table refers. The d_val member holds DT_REL or 2397 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2398 // must use the same relocation. 2399 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2400 2401 if (symbol) 2402 return symbol->d_val; 2403 2404 return 0; 2405 } 2406 2407 // Returns the size of the normal plt entries and the offset of the first 2408 // normal plt entry. The 0th entry in the plt table is usually a resolution 2409 // entry which have different size in some architectures then the rest of the 2410 // plt entries. 2411 static std::pair<uint64_t, uint64_t> 2412 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr, 2413 const ELFSectionHeader *plt_hdr) { 2414 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2415 2416 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 2417 // 16 bytes. So round the entsize up by the alignment if addralign is set. 2418 elf_xword plt_entsize = 2419 plt_hdr->sh_addralign 2420 ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign) 2421 : plt_hdr->sh_entsize; 2422 2423 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. 2424 // PLT entries relocation code in general requires multiple instruction and 2425 // should be greater than 4 bytes in most cases. Try to guess correct size 2426 // just in case. 2427 if (plt_entsize <= 4) { 2428 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the 2429 // size of the plt entries based on the number of entries and the size of 2430 // the plt section with the assumption that the size of the 0th entry is at 2431 // least as big as the size of the normal entries and it isn't much bigger 2432 // then that. 2433 if (plt_hdr->sh_addralign) 2434 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / 2435 (num_relocations + 1) * plt_hdr->sh_addralign; 2436 else 2437 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2438 } 2439 2440 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2441 2442 return std::make_pair(plt_entsize, plt_offset); 2443 } 2444 2445 static unsigned ParsePLTRelocations( 2446 Symtab *symbol_table, user_id_t start_id, unsigned rel_type, 2447 const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2448 const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, 2449 const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, 2450 DataExtractor &symtab_data, DataExtractor &strtab_data) { 2451 ELFRelocation rel(rel_type); 2452 ELFSymbol symbol; 2453 lldb::offset_t offset = 0; 2454 2455 uint64_t plt_offset, plt_entsize; 2456 std::tie(plt_entsize, plt_offset) = 2457 GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2458 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2459 2460 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2461 reloc_info_fn reloc_type; 2462 reloc_info_fn reloc_symbol; 2463 2464 if (hdr->Is32Bit()) { 2465 reloc_type = ELFRelocation::RelocType32; 2466 reloc_symbol = ELFRelocation::RelocSymbol32; 2467 } else { 2468 reloc_type = ELFRelocation::RelocType64; 2469 reloc_symbol = ELFRelocation::RelocSymbol64; 2470 } 2471 2472 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2473 unsigned i; 2474 for (i = 0; i < num_relocations; ++i) { 2475 if (!rel.Parse(rel_data, &offset)) 2476 break; 2477 2478 if (reloc_type(rel) != slot_type) 2479 continue; 2480 2481 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2482 if (!symbol.Parse(symtab_data, &symbol_offset)) 2483 break; 2484 2485 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2486 bool is_mangled = 2487 symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2488 uint64_t plt_index = plt_offset + i * plt_entsize; 2489 2490 Symbol jump_symbol( 2491 i + start_id, // Symbol table index 2492 symbol_name, // symbol name. 2493 is_mangled, // is the symbol name mangled? 2494 eSymbolTypeTrampoline, // Type of this symbol 2495 false, // Is this globally visible? 2496 false, // Is this symbol debug info? 2497 true, // Is this symbol a trampoline? 2498 true, // Is this symbol artificial? 2499 plt_section_sp, // Section in which this symbol is defined or null. 2500 plt_index, // Offset in section or symbol value. 2501 plt_entsize, // Size in bytes of this symbol. 2502 true, // Size is valid 2503 false, // Contains linker annotations? 2504 0); // Symbol flags. 2505 2506 symbol_table->AddSymbol(jump_symbol); 2507 } 2508 2509 return i; 2510 } 2511 2512 unsigned 2513 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id, 2514 const ELFSectionHeaderInfo *rel_hdr, 2515 user_id_t rel_id) { 2516 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2517 2518 // The link field points to the associated symbol table. 2519 user_id_t symtab_id = rel_hdr->sh_link; 2520 2521 // If the link field doesn't point to the appropriate symbol name table then 2522 // try to find it by name as some compiler don't fill in the link fields. 2523 if (!symtab_id) 2524 symtab_id = GetSectionIndexByName(".dynsym"); 2525 2526 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers 2527 // point that to the .got.plt or .got section instead of .plt. 2528 user_id_t plt_id = GetSectionIndexByName(".plt"); 2529 2530 if (!symtab_id || !plt_id) 2531 return 0; 2532 2533 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2534 if (!plt_hdr) 2535 return 0; 2536 2537 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2538 if (!sym_hdr) 2539 return 0; 2540 2541 SectionList *section_list = m_sections_up.get(); 2542 if (!section_list) 2543 return 0; 2544 2545 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2546 if (!rel_section) 2547 return 0; 2548 2549 SectionSP plt_section_sp(section_list->FindSectionByID(plt_id)); 2550 if (!plt_section_sp) 2551 return 0; 2552 2553 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2554 if (!symtab) 2555 return 0; 2556 2557 // sh_link points to associated string table. 2558 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link).get(); 2559 if (!strtab) 2560 return 0; 2561 2562 DataExtractor rel_data; 2563 if (!ReadSectionData(rel_section, rel_data)) 2564 return 0; 2565 2566 DataExtractor symtab_data; 2567 if (!ReadSectionData(symtab, symtab_data)) 2568 return 0; 2569 2570 DataExtractor strtab_data; 2571 if (!ReadSectionData(strtab, strtab_data)) 2572 return 0; 2573 2574 unsigned rel_type = PLTRelocationType(); 2575 if (!rel_type) 2576 return 0; 2577 2578 return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header, 2579 rel_hdr, plt_hdr, sym_hdr, plt_section_sp, 2580 rel_data, symtab_data, strtab_data); 2581 } 2582 2583 unsigned ObjectFileELF::ApplyRelocations( 2584 Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2585 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2586 DataExtractor &rel_data, DataExtractor &symtab_data, 2587 DataExtractor &debug_data, Section *rel_section) { 2588 ELFRelocation rel(rel_hdr->sh_type); 2589 lldb::addr_t offset = 0; 2590 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2591 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2592 reloc_info_fn reloc_type; 2593 reloc_info_fn reloc_symbol; 2594 2595 if (hdr->Is32Bit()) { 2596 reloc_type = ELFRelocation::RelocType32; 2597 reloc_symbol = ELFRelocation::RelocSymbol32; 2598 } else { 2599 reloc_type = ELFRelocation::RelocType64; 2600 reloc_symbol = ELFRelocation::RelocSymbol64; 2601 } 2602 2603 for (unsigned i = 0; i < num_relocations; ++i) { 2604 if (!rel.Parse(rel_data, &offset)) 2605 break; 2606 2607 Symbol *symbol = nullptr; 2608 2609 if (hdr->Is32Bit()) { 2610 switch (reloc_type(rel)) { 2611 case R_386_32: 2612 case R_386_PC32: 2613 default: 2614 // FIXME: This asserts with this input: 2615 // 2616 // foo.cpp 2617 // int main(int argc, char **argv) { return 0; } 2618 // 2619 // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o 2620 // 2621 // and running this on the foo.o module. 2622 assert(false && "unexpected relocation type"); 2623 } 2624 } else { 2625 switch (reloc_type(rel)) { 2626 case R_AARCH64_ABS64: 2627 case R_X86_64_64: { 2628 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2629 if (symbol) { 2630 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2631 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2632 uint64_t *dst = reinterpret_cast<uint64_t *>( 2633 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2634 ELFRelocation::RelocOffset64(rel)); 2635 uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel); 2636 memcpy(dst, &val_offset, sizeof(uint64_t)); 2637 } 2638 break; 2639 } 2640 case R_X86_64_32: 2641 case R_X86_64_32S: 2642 case R_AARCH64_ABS32: { 2643 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2644 if (symbol) { 2645 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2646 value += ELFRelocation::RelocAddend32(rel); 2647 if ((reloc_type(rel) == R_X86_64_32 && (value > UINT32_MAX)) || 2648 (reloc_type(rel) == R_X86_64_32S && 2649 ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN)) || 2650 (reloc_type(rel) == R_AARCH64_ABS32 && 2651 ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN))) { 2652 Log *log = 2653 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES); 2654 log->Printf("Failed to apply debug info relocations"); 2655 break; 2656 } 2657 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2658 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2659 uint32_t *dst = reinterpret_cast<uint32_t *>( 2660 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2661 ELFRelocation::RelocOffset32(rel)); 2662 memcpy(dst, &truncated_addr, sizeof(uint32_t)); 2663 } 2664 break; 2665 } 2666 case R_X86_64_PC32: 2667 default: 2668 assert(false && "unexpected relocation type"); 2669 } 2670 } 2671 } 2672 2673 return 0; 2674 } 2675 2676 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, 2677 user_id_t rel_id, 2678 lldb_private::Symtab *thetab) { 2679 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2680 2681 // Parse in the section list if needed. 2682 SectionList *section_list = GetSectionList(); 2683 if (!section_list) 2684 return 0; 2685 2686 user_id_t symtab_id = rel_hdr->sh_link; 2687 user_id_t debug_id = rel_hdr->sh_info; 2688 2689 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2690 if (!symtab_hdr) 2691 return 0; 2692 2693 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2694 if (!debug_hdr) 2695 return 0; 2696 2697 Section *rel = section_list->FindSectionByID(rel_id).get(); 2698 if (!rel) 2699 return 0; 2700 2701 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2702 if (!symtab) 2703 return 0; 2704 2705 Section *debug = section_list->FindSectionByID(debug_id).get(); 2706 if (!debug) 2707 return 0; 2708 2709 DataExtractor rel_data; 2710 DataExtractor symtab_data; 2711 DataExtractor debug_data; 2712 2713 if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) && 2714 GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) && 2715 GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) { 2716 ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr, 2717 rel_data, symtab_data, debug_data, debug); 2718 } 2719 2720 return 0; 2721 } 2722 2723 Symtab *ObjectFileELF::GetSymtab() { 2724 ModuleSP module_sp(GetModule()); 2725 if (!module_sp) 2726 return nullptr; 2727 2728 // We always want to use the main object file so we (hopefully) only have one 2729 // cached copy of our symtab, dynamic sections, etc. 2730 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2731 if (module_obj_file && module_obj_file != this) 2732 return module_obj_file->GetSymtab(); 2733 2734 if (m_symtab_up == nullptr) { 2735 SectionList *section_list = module_sp->GetSectionList(); 2736 if (!section_list) 2737 return nullptr; 2738 2739 uint64_t symbol_id = 0; 2740 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2741 2742 // Sharable objects and dynamic executables usually have 2 distinct symbol 2743 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a 2744 // smaller version of the symtab that only contains global symbols. The 2745 // information found in the dynsym is therefore also found in the symtab, 2746 // while the reverse is not necessarily true. 2747 Section *symtab = 2748 section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get(); 2749 if (!symtab) { 2750 // The symtab section is non-allocable and can be stripped, so if it 2751 // doesn't exist then use the dynsym section which should always be 2752 // there. 2753 symtab = 2754 section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true) 2755 .get(); 2756 } 2757 if (symtab) { 2758 m_symtab_up.reset(new Symtab(symtab->GetObjectFile())); 2759 symbol_id += ParseSymbolTable(m_symtab_up.get(), symbol_id, symtab); 2760 } 2761 2762 // DT_JMPREL 2763 // If present, this entry's d_ptr member holds the address of 2764 // relocation 2765 // entries associated solely with the procedure linkage table. 2766 // Separating 2767 // these relocation entries lets the dynamic linker ignore them during 2768 // process initialization, if lazy binding is enabled. If this entry is 2769 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2770 // also be present. 2771 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2772 if (symbol) { 2773 // Synthesize trampoline symbols to help navigate the PLT. 2774 addr_t addr = symbol->d_ptr; 2775 Section *reloc_section = 2776 section_list->FindSectionContainingFileAddress(addr).get(); 2777 if (reloc_section) { 2778 user_id_t reloc_id = reloc_section->GetID(); 2779 const ELFSectionHeaderInfo *reloc_header = 2780 GetSectionHeaderByIndex(reloc_id); 2781 assert(reloc_header); 2782 2783 if (m_symtab_up == nullptr) 2784 m_symtab_up.reset(new Symtab(reloc_section->GetObjectFile())); 2785 2786 ParseTrampolineSymbols(m_symtab_up.get(), symbol_id, reloc_header, 2787 reloc_id); 2788 } 2789 } 2790 2791 if (DWARFCallFrameInfo *eh_frame = 2792 GetModule()->GetUnwindTable().GetEHFrameInfo()) { 2793 if (m_symtab_up == nullptr) 2794 m_symtab_up.reset(new Symtab(this)); 2795 ParseUnwindSymbols(m_symtab_up.get(), eh_frame); 2796 } 2797 2798 // If we still don't have any symtab then create an empty instance to avoid 2799 // do the section lookup next time. 2800 if (m_symtab_up == nullptr) 2801 m_symtab_up.reset(new Symtab(this)); 2802 2803 m_symtab_up->CalculateSymbolSizes(); 2804 } 2805 2806 return m_symtab_up.get(); 2807 } 2808 2809 void ObjectFileELF::RelocateSection(lldb_private::Section *section) 2810 { 2811 static const char *debug_prefix = ".debug"; 2812 2813 // Set relocated bit so we stop getting called, regardless of whether we 2814 // actually relocate. 2815 section->SetIsRelocated(true); 2816 2817 // We only relocate in ELF relocatable files 2818 if (CalculateType() != eTypeObjectFile) 2819 return; 2820 2821 const char *section_name = section->GetName().GetCString(); 2822 // Can't relocate that which can't be named 2823 if (section_name == nullptr) 2824 return; 2825 2826 // We don't relocate non-debug sections at the moment 2827 if (strncmp(section_name, debug_prefix, strlen(debug_prefix))) 2828 return; 2829 2830 // Relocation section names to look for 2831 std::string needle = std::string(".rel") + section_name; 2832 std::string needlea = std::string(".rela") + section_name; 2833 2834 for (SectionHeaderCollIter I = m_section_headers.begin(); 2835 I != m_section_headers.end(); ++I) { 2836 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) { 2837 const char *hay_name = I->section_name.GetCString(); 2838 if (hay_name == nullptr) 2839 continue; 2840 if (needle == hay_name || needlea == hay_name) { 2841 const ELFSectionHeader &reloc_header = *I; 2842 user_id_t reloc_id = SectionIndex(I); 2843 RelocateDebugSections(&reloc_header, reloc_id, GetSymtab()); 2844 break; 2845 } 2846 } 2847 } 2848 } 2849 2850 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, 2851 DWARFCallFrameInfo *eh_frame) { 2852 SectionList *section_list = GetSectionList(); 2853 if (!section_list) 2854 return; 2855 2856 // First we save the new symbols into a separate list and add them to the 2857 // symbol table after we colleced all symbols we want to add. This is 2858 // neccessary because adding a new symbol invalidates the internal index of 2859 // the symtab what causing the next lookup to be slow because it have to 2860 // recalculate the index first. 2861 std::vector<Symbol> new_symbols; 2862 2863 eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols]( 2864 lldb::addr_t file_addr, uint32_t size, dw_offset_t) { 2865 Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr); 2866 if (symbol) { 2867 if (!symbol->GetByteSizeIsValid()) { 2868 symbol->SetByteSize(size); 2869 symbol->SetSizeIsSynthesized(true); 2870 } 2871 } else { 2872 SectionSP section_sp = 2873 section_list->FindSectionContainingFileAddress(file_addr); 2874 if (section_sp) { 2875 addr_t offset = file_addr - section_sp->GetFileAddress(); 2876 const char *symbol_name = GetNextSyntheticSymbolName().GetCString(); 2877 uint64_t symbol_id = symbol_table->GetNumSymbols(); 2878 Symbol eh_symbol( 2879 symbol_id, // Symbol table index. 2880 symbol_name, // Symbol name. 2881 false, // Is the symbol name mangled? 2882 eSymbolTypeCode, // Type of this symbol. 2883 true, // Is this globally visible? 2884 false, // Is this symbol debug info? 2885 false, // Is this symbol a trampoline? 2886 true, // Is this symbol artificial? 2887 section_sp, // Section in which this symbol is defined or null. 2888 offset, // Offset in section or symbol value. 2889 0, // Size: Don't specify the size as an FDE can 2890 false, // Size is valid: cover multiple symbols. 2891 false, // Contains linker annotations? 2892 0); // Symbol flags. 2893 new_symbols.push_back(eh_symbol); 2894 } 2895 } 2896 return true; 2897 }); 2898 2899 for (const Symbol &s : new_symbols) 2900 symbol_table->AddSymbol(s); 2901 } 2902 2903 bool ObjectFileELF::IsStripped() { 2904 // TODO: determine this for ELF 2905 return false; 2906 } 2907 2908 //===----------------------------------------------------------------------===// 2909 // Dump 2910 // 2911 // Dump the specifics of the runtime file container (such as any headers 2912 // segments, sections, etc). 2913 void ObjectFileELF::Dump(Stream *s) { 2914 ModuleSP module_sp(GetModule()); 2915 if (!module_sp) { 2916 return; 2917 } 2918 2919 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2920 s->Printf("%p: ", static_cast<void *>(this)); 2921 s->Indent(); 2922 s->PutCString("ObjectFileELF"); 2923 2924 ArchSpec header_arch = GetArchitecture(); 2925 2926 *s << ", file = '" << m_file 2927 << "', arch = " << header_arch.GetArchitectureName() << "\n"; 2928 2929 DumpELFHeader(s, m_header); 2930 s->EOL(); 2931 DumpELFProgramHeaders(s); 2932 s->EOL(); 2933 DumpELFSectionHeaders(s); 2934 s->EOL(); 2935 SectionList *section_list = GetSectionList(); 2936 if (section_list) 2937 section_list->Dump(s, nullptr, true, UINT32_MAX); 2938 Symtab *symtab = GetSymtab(); 2939 if (symtab) 2940 symtab->Dump(s, nullptr, eSortOrderNone); 2941 s->EOL(); 2942 DumpDependentModules(s); 2943 s->EOL(); 2944 } 2945 2946 // DumpELFHeader 2947 // 2948 // Dump the ELF header to the specified output stream 2949 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) { 2950 s->PutCString("ELF Header\n"); 2951 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2952 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], 2953 header.e_ident[EI_MAG1]); 2954 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], 2955 header.e_ident[EI_MAG2]); 2956 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], 2957 header.e_ident[EI_MAG3]); 2958 2959 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2960 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2961 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2962 s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2963 s->Printf("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2964 2965 s->Printf("e_type = 0x%4.4x ", header.e_type); 2966 DumpELFHeader_e_type(s, header.e_type); 2967 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2968 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2969 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2970 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2971 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2972 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2973 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2974 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2975 s->Printf("e_phnum = 0x%8.8x\n", header.e_phnum); 2976 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2977 s->Printf("e_shnum = 0x%8.8x\n", header.e_shnum); 2978 s->Printf("e_shstrndx = 0x%8.8x\n", header.e_shstrndx); 2979 } 2980 2981 // DumpELFHeader_e_type 2982 // 2983 // Dump an token value for the ELF header member e_type 2984 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) { 2985 switch (e_type) { 2986 case ET_NONE: 2987 *s << "ET_NONE"; 2988 break; 2989 case ET_REL: 2990 *s << "ET_REL"; 2991 break; 2992 case ET_EXEC: 2993 *s << "ET_EXEC"; 2994 break; 2995 case ET_DYN: 2996 *s << "ET_DYN"; 2997 break; 2998 case ET_CORE: 2999 *s << "ET_CORE"; 3000 break; 3001 default: 3002 break; 3003 } 3004 } 3005 3006 // DumpELFHeader_e_ident_EI_DATA 3007 // 3008 // Dump an token value for the ELF header member e_ident[EI_DATA] 3009 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, 3010 unsigned char ei_data) { 3011 switch (ei_data) { 3012 case ELFDATANONE: 3013 *s << "ELFDATANONE"; 3014 break; 3015 case ELFDATA2LSB: 3016 *s << "ELFDATA2LSB - Little Endian"; 3017 break; 3018 case ELFDATA2MSB: 3019 *s << "ELFDATA2MSB - Big Endian"; 3020 break; 3021 default: 3022 break; 3023 } 3024 } 3025 3026 // DumpELFProgramHeader 3027 // 3028 // Dump a single ELF program header to the specified output stream 3029 void ObjectFileELF::DumpELFProgramHeader(Stream *s, 3030 const ELFProgramHeader &ph) { 3031 DumpELFProgramHeader_p_type(s, ph.p_type); 3032 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, 3033 ph.p_vaddr, ph.p_paddr); 3034 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, 3035 ph.p_flags); 3036 3037 DumpELFProgramHeader_p_flags(s, ph.p_flags); 3038 s->Printf(") %8.8" PRIx64, ph.p_align); 3039 } 3040 3041 // DumpELFProgramHeader_p_type 3042 // 3043 // Dump an token value for the ELF program header member p_type which describes 3044 // the type of the program header 3045 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) { 3046 const int kStrWidth = 15; 3047 switch (p_type) { 3048 CASE_AND_STREAM(s, PT_NULL, kStrWidth); 3049 CASE_AND_STREAM(s, PT_LOAD, kStrWidth); 3050 CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth); 3051 CASE_AND_STREAM(s, PT_INTERP, kStrWidth); 3052 CASE_AND_STREAM(s, PT_NOTE, kStrWidth); 3053 CASE_AND_STREAM(s, PT_SHLIB, kStrWidth); 3054 CASE_AND_STREAM(s, PT_PHDR, kStrWidth); 3055 CASE_AND_STREAM(s, PT_TLS, kStrWidth); 3056 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 3057 default: 3058 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 3059 break; 3060 } 3061 } 3062 3063 // DumpELFProgramHeader_p_flags 3064 // 3065 // Dump an token value for the ELF program header member p_flags 3066 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) { 3067 *s << ((p_flags & PF_X) ? "PF_X" : " ") 3068 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 3069 << ((p_flags & PF_W) ? "PF_W" : " ") 3070 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 3071 << ((p_flags & PF_R) ? "PF_R" : " "); 3072 } 3073 3074 // DumpELFProgramHeaders 3075 // 3076 // Dump all of the ELF program header to the specified output stream 3077 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) { 3078 if (!ParseProgramHeaders()) 3079 return; 3080 3081 s->PutCString("Program Headers\n"); 3082 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 3083 "p_filesz p_memsz p_flags p_align\n"); 3084 s->PutCString("==== --------------- -------- -------- -------- " 3085 "-------- -------- ------------------------- --------\n"); 3086 3087 for (const auto &H : llvm::enumerate(m_program_headers)) { 3088 s->Format("[{0,2}] ", H.index()); 3089 ObjectFileELF::DumpELFProgramHeader(s, H.value()); 3090 s->EOL(); 3091 } 3092 } 3093 3094 // DumpELFSectionHeader 3095 // 3096 // Dump a single ELF section header to the specified output stream 3097 void ObjectFileELF::DumpELFSectionHeader(Stream *s, 3098 const ELFSectionHeaderInfo &sh) { 3099 s->Printf("%8.8x ", sh.sh_name); 3100 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3101 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3102 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3103 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, 3104 sh.sh_offset, sh.sh_size); 3105 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3106 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3107 } 3108 3109 // DumpELFSectionHeader_sh_type 3110 // 3111 // Dump an token value for the ELF section header member sh_type which 3112 // describes the type of the section 3113 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) { 3114 const int kStrWidth = 12; 3115 switch (sh_type) { 3116 CASE_AND_STREAM(s, SHT_NULL, kStrWidth); 3117 CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth); 3118 CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth); 3119 CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth); 3120 CASE_AND_STREAM(s, SHT_RELA, kStrWidth); 3121 CASE_AND_STREAM(s, SHT_HASH, kStrWidth); 3122 CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth); 3123 CASE_AND_STREAM(s, SHT_NOTE, kStrWidth); 3124 CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth); 3125 CASE_AND_STREAM(s, SHT_REL, kStrWidth); 3126 CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth); 3127 CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth); 3128 CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth); 3129 CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth); 3130 CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth); 3131 CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth); 3132 default: 3133 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3134 break; 3135 } 3136 } 3137 3138 // DumpELFSectionHeader_sh_flags 3139 // 3140 // Dump an token value for the ELF section header member sh_flags 3141 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, 3142 elf_xword sh_flags) { 3143 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3144 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3145 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3146 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3147 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3148 } 3149 3150 // DumpELFSectionHeaders 3151 // 3152 // Dump all of the ELF section header to the specified output stream 3153 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) { 3154 if (!ParseSectionHeaders()) 3155 return; 3156 3157 s->PutCString("Section Headers\n"); 3158 s->PutCString("IDX name type flags " 3159 "addr offset size link info addralgn " 3160 "entsize Name\n"); 3161 s->PutCString("==== -------- ------------ -------------------------------- " 3162 "-------- -------- -------- -------- -------- -------- " 3163 "-------- ====================\n"); 3164 3165 uint32_t idx = 0; 3166 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3167 I != m_section_headers.end(); ++I, ++idx) { 3168 s->Printf("[%2u] ", idx); 3169 ObjectFileELF::DumpELFSectionHeader(s, *I); 3170 const char *section_name = I->section_name.AsCString(""); 3171 if (section_name) 3172 *s << ' ' << section_name << "\n"; 3173 } 3174 } 3175 3176 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) { 3177 size_t num_modules = ParseDependentModules(); 3178 3179 if (num_modules > 0) { 3180 s->PutCString("Dependent Modules:\n"); 3181 for (unsigned i = 0; i < num_modules; ++i) { 3182 const FileSpec &spec = m_filespec_up->GetFileSpecAtIndex(i); 3183 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3184 } 3185 } 3186 } 3187 3188 ArchSpec ObjectFileELF::GetArchitecture() { 3189 if (!ParseHeader()) 3190 return ArchSpec(); 3191 3192 if (m_section_headers.empty()) { 3193 // Allow elf notes to be parsed which may affect the detected architecture. 3194 ParseSectionHeaders(); 3195 } 3196 3197 if (CalculateType() == eTypeCoreFile && 3198 !m_arch_spec.TripleOSWasSpecified()) { 3199 // Core files don't have section headers yet they have PT_NOTE program 3200 // headers that might shed more light on the architecture 3201 for (const elf::ELFProgramHeader &H : ProgramHeaders()) { 3202 if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0) 3203 continue; 3204 DataExtractor data; 3205 if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) { 3206 UUID uuid; 3207 RefineModuleDetailsFromNote(data, m_arch_spec, uuid); 3208 } 3209 } 3210 } 3211 return m_arch_spec; 3212 } 3213 3214 ObjectFile::Type ObjectFileELF::CalculateType() { 3215 switch (m_header.e_type) { 3216 case llvm::ELF::ET_NONE: 3217 // 0 - No file type 3218 return eTypeUnknown; 3219 3220 case llvm::ELF::ET_REL: 3221 // 1 - Relocatable file 3222 return eTypeObjectFile; 3223 3224 case llvm::ELF::ET_EXEC: 3225 // 2 - Executable file 3226 return eTypeExecutable; 3227 3228 case llvm::ELF::ET_DYN: 3229 // 3 - Shared object file 3230 return eTypeSharedLibrary; 3231 3232 case ET_CORE: 3233 // 4 - Core file 3234 return eTypeCoreFile; 3235 3236 default: 3237 break; 3238 } 3239 return eTypeUnknown; 3240 } 3241 3242 ObjectFile::Strata ObjectFileELF::CalculateStrata() { 3243 switch (m_header.e_type) { 3244 case llvm::ELF::ET_NONE: 3245 // 0 - No file type 3246 return eStrataUnknown; 3247 3248 case llvm::ELF::ET_REL: 3249 // 1 - Relocatable file 3250 return eStrataUnknown; 3251 3252 case llvm::ELF::ET_EXEC: 3253 // 2 - Executable file 3254 // TODO: is there any way to detect that an executable is a kernel 3255 // related executable by inspecting the program headers, section headers, 3256 // symbols, or any other flag bits??? 3257 return eStrataUser; 3258 3259 case llvm::ELF::ET_DYN: 3260 // 3 - Shared object file 3261 // TODO: is there any way to detect that an shared library is a kernel 3262 // related executable by inspecting the program headers, section headers, 3263 // symbols, or any other flag bits??? 3264 return eStrataUnknown; 3265 3266 case ET_CORE: 3267 // 4 - Core file 3268 // TODO: is there any way to detect that an core file is a kernel 3269 // related executable by inspecting the program headers, section headers, 3270 // symbols, or any other flag bits??? 3271 return eStrataUnknown; 3272 3273 default: 3274 break; 3275 } 3276 return eStrataUnknown; 3277 } 3278 3279 size_t ObjectFileELF::ReadSectionData(Section *section, 3280 lldb::offset_t section_offset, void *dst, 3281 size_t dst_len) { 3282 // If some other objectfile owns this data, pass this to them. 3283 if (section->GetObjectFile() != this) 3284 return section->GetObjectFile()->ReadSectionData(section, section_offset, 3285 dst, dst_len); 3286 3287 if (!section->Test(SHF_COMPRESSED)) 3288 return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len); 3289 3290 // For compressed sections we need to read to full data to be able to 3291 // decompress. 3292 DataExtractor data; 3293 ReadSectionData(section, data); 3294 return data.CopyData(section_offset, dst_len, dst); 3295 } 3296 3297 size_t ObjectFileELF::ReadSectionData(Section *section, 3298 DataExtractor §ion_data) { 3299 // If some other objectfile owns this data, pass this to them. 3300 if (section->GetObjectFile() != this) 3301 return section->GetObjectFile()->ReadSectionData(section, section_data); 3302 3303 size_t result = ObjectFile::ReadSectionData(section, section_data); 3304 if (result == 0 || !section->Test(SHF_COMPRESSED)) 3305 return result; 3306 3307 auto Decompressor = llvm::object::Decompressor::create( 3308 section->GetName().GetStringRef(), 3309 {reinterpret_cast<const char *>(section_data.GetDataStart()), 3310 size_t(section_data.GetByteSize())}, 3311 GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8); 3312 if (!Decompressor) { 3313 GetModule()->ReportWarning( 3314 "Unable to initialize decompressor for section '%s': %s", 3315 section->GetName().GetCString(), 3316 llvm::toString(Decompressor.takeError()).c_str()); 3317 section_data.Clear(); 3318 return 0; 3319 } 3320 3321 auto buffer_sp = 3322 std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0); 3323 if (auto error = Decompressor->decompress( 3324 {reinterpret_cast<char *>(buffer_sp->GetBytes()), 3325 size_t(buffer_sp->GetByteSize())})) { 3326 GetModule()->ReportWarning( 3327 "Decompression of section '%s' failed: %s", 3328 section->GetName().GetCString(), 3329 llvm::toString(std::move(error)).c_str()); 3330 section_data.Clear(); 3331 return 0; 3332 } 3333 3334 section_data.SetData(buffer_sp); 3335 return buffer_sp->GetByteSize(); 3336 } 3337 3338 llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() { 3339 ParseProgramHeaders(); 3340 return m_program_headers; 3341 } 3342 3343 DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) { 3344 return DataExtractor(m_data, H.p_offset, H.p_filesz); 3345 } 3346 3347 bool ObjectFileELF::AnySegmentHasPhysicalAddress() { 3348 for (const ELFProgramHeader &H : ProgramHeaders()) { 3349 if (H.p_paddr != 0) 3350 return true; 3351 } 3352 return false; 3353 } 3354 3355 std::vector<ObjectFile::LoadableData> 3356 ObjectFileELF::GetLoadableData(Target &target) { 3357 // Create a list of loadable data from loadable segments, using physical 3358 // addresses if they aren't all null 3359 std::vector<LoadableData> loadables; 3360 bool should_use_paddr = AnySegmentHasPhysicalAddress(); 3361 for (const ELFProgramHeader &H : ProgramHeaders()) { 3362 LoadableData loadable; 3363 if (H.p_type != llvm::ELF::PT_LOAD) 3364 continue; 3365 loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr; 3366 if (loadable.Dest == LLDB_INVALID_ADDRESS) 3367 continue; 3368 if (H.p_filesz == 0) 3369 continue; 3370 auto segment_data = GetSegmentData(H); 3371 loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(), 3372 segment_data.GetByteSize()); 3373 loadables.push_back(loadable); 3374 } 3375 return loadables; 3376 } 3377