xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision 22b044877d239c40c9a932d1ea47d489c507000f)
1 //===-- ObjectFileELF.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ObjectFileELF.h"
10 
11 #include <algorithm>
12 #include <cassert>
13 #include <unordered_map>
14 
15 #include "lldb/Core/FileSpecList.h"
16 #include "lldb/Core/Module.h"
17 #include "lldb/Core/ModuleSpec.h"
18 #include "lldb/Core/PluginManager.h"
19 #include "lldb/Core/Section.h"
20 #include "lldb/Host/FileSystem.h"
21 #include "lldb/Host/LZMA.h"
22 #include "lldb/Symbol/DWARFCallFrameInfo.h"
23 #include "lldb/Symbol/SymbolContext.h"
24 #include "lldb/Target/SectionLoadList.h"
25 #include "lldb/Target/Target.h"
26 #include "lldb/Utility/ArchSpec.h"
27 #include "lldb/Utility/DataBufferHeap.h"
28 #include "lldb/Utility/Log.h"
29 #include "lldb/Utility/RangeMap.h"
30 #include "lldb/Utility/Status.h"
31 #include "lldb/Utility/Stream.h"
32 #include "lldb/Utility/Timer.h"
33 #include "llvm/ADT/IntervalMap.h"
34 #include "llvm/ADT/PointerUnion.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/Object/Decompressor.h"
38 #include "llvm/Support/ARMBuildAttributes.h"
39 #include "llvm/Support/CRC.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/MemoryBuffer.h"
42 #include "llvm/Support/MipsABIFlags.h"
43 
44 #define CASE_AND_STREAM(s, def, width)                                         \
45   case def:                                                                    \
46     s->Printf("%-*s", width, #def);                                            \
47     break;
48 
49 using namespace lldb;
50 using namespace lldb_private;
51 using namespace elf;
52 using namespace llvm::ELF;
53 
54 namespace {
55 
56 // ELF note owner definitions
57 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
58 const char *const LLDB_NT_OWNER_GNU = "GNU";
59 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD";
60 const char *const LLDB_NT_OWNER_NETBSDCORE = "NetBSD-CORE";
61 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD";
62 const char *const LLDB_NT_OWNER_ANDROID = "Android";
63 const char *const LLDB_NT_OWNER_CORE = "CORE";
64 const char *const LLDB_NT_OWNER_LINUX = "LINUX";
65 
66 // ELF note type definitions
67 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01;
68 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
69 
70 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01;
71 const elf_word LLDB_NT_GNU_ABI_SIZE = 16;
72 
73 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
74 
75 const elf_word LLDB_NT_NETBSD_IDENT_TAG = 1;
76 const elf_word LLDB_NT_NETBSD_IDENT_DESCSZ = 4;
77 const elf_word LLDB_NT_NETBSD_IDENT_NAMESZ = 7;
78 const elf_word LLDB_NT_NETBSD_PROCINFO = 1;
79 
80 // GNU ABI note OS constants
81 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00;
82 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01;
83 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
84 
85 //===----------------------------------------------------------------------===//
86 /// \class ELFRelocation
87 /// Generic wrapper for ELFRel and ELFRela.
88 ///
89 /// This helper class allows us to parse both ELFRel and ELFRela relocation
90 /// entries in a generic manner.
91 class ELFRelocation {
92 public:
93   /// Constructs an ELFRelocation entry with a personality as given by @p
94   /// type.
95   ///
96   /// \param type Either DT_REL or DT_RELA.  Any other value is invalid.
97   ELFRelocation(unsigned type);
98 
99   ~ELFRelocation();
100 
101   bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
102 
103   static unsigned RelocType32(const ELFRelocation &rel);
104 
105   static unsigned RelocType64(const ELFRelocation &rel);
106 
107   static unsigned RelocSymbol32(const ELFRelocation &rel);
108 
109   static unsigned RelocSymbol64(const ELFRelocation &rel);
110 
111   static unsigned RelocOffset32(const ELFRelocation &rel);
112 
113   static unsigned RelocOffset64(const ELFRelocation &rel);
114 
115   static unsigned RelocAddend32(const ELFRelocation &rel);
116 
117   static unsigned RelocAddend64(const ELFRelocation &rel);
118 
119 private:
120   typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion;
121 
122   RelocUnion reloc;
123 };
124 
125 ELFRelocation::ELFRelocation(unsigned type) {
126   if (type == DT_REL || type == SHT_REL)
127     reloc = new ELFRel();
128   else if (type == DT_RELA || type == SHT_RELA)
129     reloc = new ELFRela();
130   else {
131     assert(false && "unexpected relocation type");
132     reloc = static_cast<ELFRel *>(nullptr);
133   }
134 }
135 
136 ELFRelocation::~ELFRelocation() {
137   if (reloc.is<ELFRel *>())
138     delete reloc.get<ELFRel *>();
139   else
140     delete reloc.get<ELFRela *>();
141 }
142 
143 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data,
144                           lldb::offset_t *offset) {
145   if (reloc.is<ELFRel *>())
146     return reloc.get<ELFRel *>()->Parse(data, offset);
147   else
148     return reloc.get<ELFRela *>()->Parse(data, offset);
149 }
150 
151 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) {
152   if (rel.reloc.is<ELFRel *>())
153     return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>());
154   else
155     return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>());
156 }
157 
158 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) {
159   if (rel.reloc.is<ELFRel *>())
160     return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>());
161   else
162     return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>());
163 }
164 
165 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) {
166   if (rel.reloc.is<ELFRel *>())
167     return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>());
168   else
169     return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>());
170 }
171 
172 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) {
173   if (rel.reloc.is<ELFRel *>())
174     return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>());
175   else
176     return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>());
177 }
178 
179 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) {
180   if (rel.reloc.is<ELFRel *>())
181     return rel.reloc.get<ELFRel *>()->r_offset;
182   else
183     return rel.reloc.get<ELFRela *>()->r_offset;
184 }
185 
186 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) {
187   if (rel.reloc.is<ELFRel *>())
188     return rel.reloc.get<ELFRel *>()->r_offset;
189   else
190     return rel.reloc.get<ELFRela *>()->r_offset;
191 }
192 
193 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) {
194   if (rel.reloc.is<ELFRel *>())
195     return 0;
196   else
197     return rel.reloc.get<ELFRela *>()->r_addend;
198 }
199 
200 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) {
201   if (rel.reloc.is<ELFRel *>())
202     return 0;
203   else
204     return rel.reloc.get<ELFRela *>()->r_addend;
205 }
206 
207 } // end anonymous namespace
208 
209 static user_id_t SegmentID(size_t PHdrIndex) { return ~PHdrIndex; }
210 
211 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) {
212   // Read all fields.
213   if (data.GetU32(offset, &n_namesz, 3) == nullptr)
214     return false;
215 
216   // The name field is required to be nul-terminated, and n_namesz includes the
217   // terminating nul in observed implementations (contrary to the ELF-64 spec).
218   // A special case is needed for cores generated by some older Linux versions,
219   // which write a note named "CORE" without a nul terminator and n_namesz = 4.
220   if (n_namesz == 4) {
221     char buf[4];
222     if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4)
223       return false;
224     if (strncmp(buf, "CORE", 4) == 0) {
225       n_name = "CORE";
226       *offset += 4;
227       return true;
228     }
229   }
230 
231   const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4));
232   if (cstr == nullptr) {
233     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
234     LLDB_LOGF(log, "Failed to parse note name lacking nul terminator");
235 
236     return false;
237   }
238   n_name = cstr;
239   return true;
240 }
241 
242 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) {
243   const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH;
244   uint32_t endian = header.e_ident[EI_DATA];
245   uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
246   uint32_t fileclass = header.e_ident[EI_CLASS];
247 
248   // If there aren't any elf flags available (e.g core elf file) then return
249   // default
250   // 32 or 64 bit arch (without any architecture revision) based on object file's class.
251   if (header.e_type == ET_CORE) {
252     switch (fileclass) {
253     case llvm::ELF::ELFCLASS32:
254       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
255                                      : ArchSpec::eMIPSSubType_mips32;
256     case llvm::ELF::ELFCLASS64:
257       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
258                                      : ArchSpec::eMIPSSubType_mips64;
259     default:
260       return arch_variant;
261     }
262   }
263 
264   switch (mips_arch) {
265   case llvm::ELF::EF_MIPS_ARCH_1:
266   case llvm::ELF::EF_MIPS_ARCH_2:
267   case llvm::ELF::EF_MIPS_ARCH_32:
268     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
269                                    : ArchSpec::eMIPSSubType_mips32;
270   case llvm::ELF::EF_MIPS_ARCH_32R2:
271     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el
272                                    : ArchSpec::eMIPSSubType_mips32r2;
273   case llvm::ELF::EF_MIPS_ARCH_32R6:
274     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el
275                                    : ArchSpec::eMIPSSubType_mips32r6;
276   case llvm::ELF::EF_MIPS_ARCH_3:
277   case llvm::ELF::EF_MIPS_ARCH_4:
278   case llvm::ELF::EF_MIPS_ARCH_5:
279   case llvm::ELF::EF_MIPS_ARCH_64:
280     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
281                                    : ArchSpec::eMIPSSubType_mips64;
282   case llvm::ELF::EF_MIPS_ARCH_64R2:
283     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el
284                                    : ArchSpec::eMIPSSubType_mips64r2;
285   case llvm::ELF::EF_MIPS_ARCH_64R6:
286     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el
287                                    : ArchSpec::eMIPSSubType_mips64r6;
288   default:
289     break;
290   }
291 
292   return arch_variant;
293 }
294 
295 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) {
296   if (header.e_machine == llvm::ELF::EM_MIPS)
297     return mipsVariantFromElfFlags(header);
298 
299   return LLDB_INVALID_CPUTYPE;
300 }
301 
302 char ObjectFileELF::ID;
303 
304 // Arbitrary constant used as UUID prefix for core files.
305 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C);
306 
307 // Static methods.
308 void ObjectFileELF::Initialize() {
309   PluginManager::RegisterPlugin(GetPluginNameStatic(),
310                                 GetPluginDescriptionStatic(), CreateInstance,
311                                 CreateMemoryInstance, GetModuleSpecifications);
312 }
313 
314 void ObjectFileELF::Terminate() {
315   PluginManager::UnregisterPlugin(CreateInstance);
316 }
317 
318 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() {
319   static ConstString g_name("elf");
320   return g_name;
321 }
322 
323 const char *ObjectFileELF::GetPluginDescriptionStatic() {
324   return "ELF object file reader.";
325 }
326 
327 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp,
328                                           DataBufferSP &data_sp,
329                                           lldb::offset_t data_offset,
330                                           const lldb_private::FileSpec *file,
331                                           lldb::offset_t file_offset,
332                                           lldb::offset_t length) {
333   if (!data_sp) {
334     data_sp = MapFileData(*file, length, file_offset);
335     if (!data_sp)
336       return nullptr;
337     data_offset = 0;
338   }
339 
340   assert(data_sp);
341 
342   if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset))
343     return nullptr;
344 
345   const uint8_t *magic = data_sp->GetBytes() + data_offset;
346   if (!ELFHeader::MagicBytesMatch(magic))
347     return nullptr;
348 
349   // Update the data to contain the entire file if it doesn't already
350   if (data_sp->GetByteSize() < length) {
351     data_sp = MapFileData(*file, length, file_offset);
352     if (!data_sp)
353       return nullptr;
354     data_offset = 0;
355     magic = data_sp->GetBytes();
356   }
357 
358   unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
359   if (address_size == 4 || address_size == 8) {
360     std::unique_ptr<ObjectFileELF> objfile_up(new ObjectFileELF(
361         module_sp, data_sp, data_offset, file, file_offset, length));
362     ArchSpec spec = objfile_up->GetArchitecture();
363     if (spec && objfile_up->SetModulesArchitecture(spec))
364       return objfile_up.release();
365   }
366 
367   return nullptr;
368 }
369 
370 ObjectFile *ObjectFileELF::CreateMemoryInstance(
371     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
372     const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) {
373   if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) {
374     const uint8_t *magic = data_sp->GetBytes();
375     if (ELFHeader::MagicBytesMatch(magic)) {
376       unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
377       if (address_size == 4 || address_size == 8) {
378         std::unique_ptr<ObjectFileELF> objfile_up(
379             new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
380         ArchSpec spec = objfile_up->GetArchitecture();
381         if (spec && objfile_up->SetModulesArchitecture(spec))
382           return objfile_up.release();
383       }
384     }
385   }
386   return nullptr;
387 }
388 
389 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp,
390                                     lldb::addr_t data_offset,
391                                     lldb::addr_t data_length) {
392   if (data_sp &&
393       data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) {
394     const uint8_t *magic = data_sp->GetBytes() + data_offset;
395     return ELFHeader::MagicBytesMatch(magic);
396   }
397   return false;
398 }
399 
400 static uint32_t calc_crc32(uint32_t init, const DataExtractor &data) {
401   return llvm::crc32(
402       init, llvm::makeArrayRef(data.GetDataStart(), data.GetByteSize()));
403 }
404 
405 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32(
406     const ProgramHeaderColl &program_headers, DataExtractor &object_data) {
407 
408   uint32_t core_notes_crc = 0;
409 
410   for (const ELFProgramHeader &H : program_headers) {
411     if (H.p_type == llvm::ELF::PT_NOTE) {
412       const elf_off ph_offset = H.p_offset;
413       const size_t ph_size = H.p_filesz;
414 
415       DataExtractor segment_data;
416       if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) {
417         // The ELF program header contained incorrect data, probably corefile
418         // is incomplete or corrupted.
419         break;
420       }
421 
422       core_notes_crc = calc_crc32(core_notes_crc, segment_data);
423     }
424   }
425 
426   return core_notes_crc;
427 }
428 
429 static const char *OSABIAsCString(unsigned char osabi_byte) {
430 #define _MAKE_OSABI_CASE(x)                                                    \
431   case x:                                                                      \
432     return #x
433   switch (osabi_byte) {
434     _MAKE_OSABI_CASE(ELFOSABI_NONE);
435     _MAKE_OSABI_CASE(ELFOSABI_HPUX);
436     _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
437     _MAKE_OSABI_CASE(ELFOSABI_GNU);
438     _MAKE_OSABI_CASE(ELFOSABI_HURD);
439     _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
440     _MAKE_OSABI_CASE(ELFOSABI_AIX);
441     _MAKE_OSABI_CASE(ELFOSABI_IRIX);
442     _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
443     _MAKE_OSABI_CASE(ELFOSABI_TRU64);
444     _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
445     _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
446     _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
447     _MAKE_OSABI_CASE(ELFOSABI_NSK);
448     _MAKE_OSABI_CASE(ELFOSABI_AROS);
449     _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
450     _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
451     _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
452     _MAKE_OSABI_CASE(ELFOSABI_ARM);
453     _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
454   default:
455     return "<unknown-osabi>";
456   }
457 #undef _MAKE_OSABI_CASE
458 }
459 
460 //
461 // WARNING : This function is being deprecated
462 // It's functionality has moved to ArchSpec::SetArchitecture This function is
463 // only being kept to validate the move.
464 //
465 // TODO : Remove this function
466 static bool GetOsFromOSABI(unsigned char osabi_byte,
467                            llvm::Triple::OSType &ostype) {
468   switch (osabi_byte) {
469   case ELFOSABI_AIX:
470     ostype = llvm::Triple::OSType::AIX;
471     break;
472   case ELFOSABI_FREEBSD:
473     ostype = llvm::Triple::OSType::FreeBSD;
474     break;
475   case ELFOSABI_GNU:
476     ostype = llvm::Triple::OSType::Linux;
477     break;
478   case ELFOSABI_NETBSD:
479     ostype = llvm::Triple::OSType::NetBSD;
480     break;
481   case ELFOSABI_OPENBSD:
482     ostype = llvm::Triple::OSType::OpenBSD;
483     break;
484   case ELFOSABI_SOLARIS:
485     ostype = llvm::Triple::OSType::Solaris;
486     break;
487   default:
488     ostype = llvm::Triple::OSType::UnknownOS;
489   }
490   return ostype != llvm::Triple::OSType::UnknownOS;
491 }
492 
493 size_t ObjectFileELF::GetModuleSpecifications(
494     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
495     lldb::offset_t data_offset, lldb::offset_t file_offset,
496     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
497   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
498 
499   const size_t initial_count = specs.GetSize();
500 
501   if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
502     DataExtractor data;
503     data.SetData(data_sp);
504     elf::ELFHeader header;
505     lldb::offset_t header_offset = data_offset;
506     if (header.Parse(data, &header_offset)) {
507       if (data_sp) {
508         ModuleSpec spec(file);
509 
510         const uint32_t sub_type = subTypeFromElfHeader(header);
511         spec.GetArchitecture().SetArchitecture(
512             eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
513 
514         if (spec.GetArchitecture().IsValid()) {
515           llvm::Triple::OSType ostype;
516           llvm::Triple::VendorType vendor;
517           llvm::Triple::OSType spec_ostype =
518               spec.GetArchitecture().GetTriple().getOS();
519 
520           LLDB_LOGF(log, "ObjectFileELF::%s file '%s' module OSABI: %s",
521                     __FUNCTION__, file.GetPath().c_str(),
522                     OSABIAsCString(header.e_ident[EI_OSABI]));
523 
524           // SetArchitecture should have set the vendor to unknown
525           vendor = spec.GetArchitecture().GetTriple().getVendor();
526           assert(vendor == llvm::Triple::UnknownVendor);
527           UNUSED_IF_ASSERT_DISABLED(vendor);
528 
529           //
530           // Validate it is ok to remove GetOsFromOSABI
531           GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
532           assert(spec_ostype == ostype);
533           if (spec_ostype != llvm::Triple::OSType::UnknownOS) {
534             LLDB_LOGF(log,
535                       "ObjectFileELF::%s file '%s' set ELF module OS type "
536                       "from ELF header OSABI.",
537                       __FUNCTION__, file.GetPath().c_str());
538           }
539 
540           data_sp = MapFileData(file, -1, file_offset);
541           if (data_sp)
542             data.SetData(data_sp);
543           // In case there is header extension in the section #0, the header we
544           // parsed above could have sentinel values for e_phnum, e_shnum, and
545           // e_shstrndx.  In this case we need to reparse the header with a
546           // bigger data source to get the actual values.
547           if (header.HasHeaderExtension()) {
548             lldb::offset_t header_offset = data_offset;
549             header.Parse(data, &header_offset);
550           }
551 
552           uint32_t gnu_debuglink_crc = 0;
553           std::string gnu_debuglink_file;
554           SectionHeaderColl section_headers;
555           lldb_private::UUID &uuid = spec.GetUUID();
556 
557           GetSectionHeaderInfo(section_headers, data, header, uuid,
558                                gnu_debuglink_file, gnu_debuglink_crc,
559                                spec.GetArchitecture());
560 
561           llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple();
562 
563           LLDB_LOGF(log,
564                     "ObjectFileELF::%s file '%s' module set to triple: %s "
565                     "(architecture %s)",
566                     __FUNCTION__, file.GetPath().c_str(),
567                     spec_triple.getTriple().c_str(),
568                     spec.GetArchitecture().GetArchitectureName());
569 
570           if (!uuid.IsValid()) {
571             uint32_t core_notes_crc = 0;
572 
573             if (!gnu_debuglink_crc) {
574               static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
575               lldb_private::Timer scoped_timer(
576                   func_cat,
577                   "Calculating module crc32 %s with size %" PRIu64 " KiB",
578                   file.GetLastPathComponent().AsCString(),
579                   (FileSystem::Instance().GetByteSize(file) - file_offset) /
580                       1024);
581 
582               // For core files - which usually don't happen to have a
583               // gnu_debuglink, and are pretty bulky - calculating whole
584               // contents crc32 would be too much of luxury.  Thus we will need
585               // to fallback to something simpler.
586               if (header.e_type == llvm::ELF::ET_CORE) {
587                 ProgramHeaderColl program_headers;
588                 GetProgramHeaderInfo(program_headers, data, header);
589 
590                 core_notes_crc =
591                     CalculateELFNotesSegmentsCRC32(program_headers, data);
592               } else {
593                 gnu_debuglink_crc = calc_crc32(0, data);
594               }
595             }
596             using u32le = llvm::support::ulittle32_t;
597             if (gnu_debuglink_crc) {
598               // Use 4 bytes of crc from the .gnu_debuglink section.
599               u32le data(gnu_debuglink_crc);
600               uuid = UUID::fromData(&data, sizeof(data));
601             } else if (core_notes_crc) {
602               // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make
603               // it look different form .gnu_debuglink crc followed by 4 bytes
604               // of note segments crc.
605               u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
606               uuid = UUID::fromData(data, sizeof(data));
607             }
608           }
609 
610           specs.Append(spec);
611         }
612       }
613     }
614   }
615 
616   return specs.GetSize() - initial_count;
617 }
618 
619 // PluginInterface protocol
620 lldb_private::ConstString ObjectFileELF::GetPluginName() {
621   return GetPluginNameStatic();
622 }
623 
624 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; }
625 // ObjectFile protocol
626 
627 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
628                              DataBufferSP &data_sp, lldb::offset_t data_offset,
629                              const FileSpec *file, lldb::offset_t file_offset,
630                              lldb::offset_t length)
631     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset) {
632   if (file)
633     m_file = *file;
634 }
635 
636 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
637                              DataBufferSP &header_data_sp,
638                              const lldb::ProcessSP &process_sp,
639                              addr_t header_addr)
640     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp) {}
641 
642 bool ObjectFileELF::IsExecutable() const {
643   return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
644 }
645 
646 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value,
647                                    bool value_is_offset) {
648   ModuleSP module_sp = GetModule();
649   if (module_sp) {
650     size_t num_loaded_sections = 0;
651     SectionList *section_list = GetSectionList();
652     if (section_list) {
653       if (!value_is_offset) {
654         addr_t base = GetBaseAddress().GetFileAddress();
655         if (base == LLDB_INVALID_ADDRESS)
656           return false;
657         value -= base;
658       }
659 
660       const size_t num_sections = section_list->GetSize();
661       size_t sect_idx = 0;
662 
663       for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
664         // Iterate through the object file sections to find all of the sections
665         // that have SHF_ALLOC in their flag bits.
666         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
667         if (section_sp->Test(SHF_ALLOC) ||
668             section_sp->GetType() == eSectionTypeContainer) {
669           lldb::addr_t load_addr = section_sp->GetFileAddress();
670           // We don't want to update the load address of a section with type
671           // eSectionTypeAbsoluteAddress as they already have the absolute load
672           // address already specified
673           if (section_sp->GetType() != eSectionTypeAbsoluteAddress)
674             load_addr += value;
675 
676           // On 32-bit systems the load address have to fit into 4 bytes. The
677           // rest of the bytes are the overflow from the addition.
678           if (GetAddressByteSize() == 4)
679             load_addr &= 0xFFFFFFFF;
680 
681           if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp,
682                                                                 load_addr))
683             ++num_loaded_sections;
684         }
685       }
686       return num_loaded_sections > 0;
687     }
688   }
689   return false;
690 }
691 
692 ByteOrder ObjectFileELF::GetByteOrder() const {
693   if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
694     return eByteOrderBig;
695   if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
696     return eByteOrderLittle;
697   return eByteOrderInvalid;
698 }
699 
700 uint32_t ObjectFileELF::GetAddressByteSize() const {
701   return m_data.GetAddressByteSize();
702 }
703 
704 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) {
705   Symtab *symtab = GetSymtab();
706   if (!symtab)
707     return AddressClass::eUnknown;
708 
709   // The address class is determined based on the symtab. Ask it from the
710   // object file what contains the symtab information.
711   ObjectFile *symtab_objfile = symtab->GetObjectFile();
712   if (symtab_objfile != nullptr && symtab_objfile != this)
713     return symtab_objfile->GetAddressClass(file_addr);
714 
715   auto res = ObjectFile::GetAddressClass(file_addr);
716   if (res != AddressClass::eCode)
717     return res;
718 
719   auto ub = m_address_class_map.upper_bound(file_addr);
720   if (ub == m_address_class_map.begin()) {
721     // No entry in the address class map before the address. Return default
722     // address class for an address in a code section.
723     return AddressClass::eCode;
724   }
725 
726   // Move iterator to the address class entry preceding address
727   --ub;
728 
729   return ub->second;
730 }
731 
732 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) {
733   return std::distance(m_section_headers.begin(), I);
734 }
735 
736 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const {
737   return std::distance(m_section_headers.begin(), I);
738 }
739 
740 bool ObjectFileELF::ParseHeader() {
741   lldb::offset_t offset = 0;
742   return m_header.Parse(m_data, &offset);
743 }
744 
745 UUID ObjectFileELF::GetUUID() {
746   // Need to parse the section list to get the UUIDs, so make sure that's been
747   // done.
748   if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
749     return UUID();
750 
751   if (!m_uuid) {
752     using u32le = llvm::support::ulittle32_t;
753     if (GetType() == ObjectFile::eTypeCoreFile) {
754       uint32_t core_notes_crc = 0;
755 
756       if (!ParseProgramHeaders())
757         return UUID();
758 
759       core_notes_crc =
760           CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
761 
762       if (core_notes_crc) {
763         // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
764         // look different form .gnu_debuglink crc - followed by 4 bytes of note
765         // segments crc.
766         u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
767         m_uuid = UUID::fromData(data, sizeof(data));
768       }
769     } else {
770       if (!m_gnu_debuglink_crc)
771         m_gnu_debuglink_crc = calc_crc32(0, m_data);
772       if (m_gnu_debuglink_crc) {
773         // Use 4 bytes of crc from the .gnu_debuglink section.
774         u32le data(m_gnu_debuglink_crc);
775         m_uuid = UUID::fromData(&data, sizeof(data));
776       }
777     }
778   }
779 
780   return m_uuid;
781 }
782 
783 llvm::Optional<FileSpec> ObjectFileELF::GetDebugLink() {
784   if (m_gnu_debuglink_file.empty())
785     return llvm::None;
786   return FileSpec(m_gnu_debuglink_file);
787 }
788 
789 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) {
790   size_t num_modules = ParseDependentModules();
791   uint32_t num_specs = 0;
792 
793   for (unsigned i = 0; i < num_modules; ++i) {
794     if (files.AppendIfUnique(m_filespec_up->GetFileSpecAtIndex(i)))
795       num_specs++;
796   }
797 
798   return num_specs;
799 }
800 
801 Address ObjectFileELF::GetImageInfoAddress(Target *target) {
802   if (!ParseDynamicSymbols())
803     return Address();
804 
805   SectionList *section_list = GetSectionList();
806   if (!section_list)
807     return Address();
808 
809   // Find the SHT_DYNAMIC (.dynamic) section.
810   SectionSP dynsym_section_sp(
811       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true));
812   if (!dynsym_section_sp)
813     return Address();
814   assert(dynsym_section_sp->GetObjectFile() == this);
815 
816   user_id_t dynsym_id = dynsym_section_sp->GetID();
817   const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
818   if (!dynsym_hdr)
819     return Address();
820 
821   for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) {
822     ELFDynamic &symbol = m_dynamic_symbols[i];
823 
824     if (symbol.d_tag == DT_DEBUG) {
825       // Compute the offset as the number of previous entries plus the size of
826       // d_tag.
827       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
828       return Address(dynsym_section_sp, offset);
829     }
830     // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP
831     // exists in non-PIE.
832     else if ((symbol.d_tag == DT_MIPS_RLD_MAP ||
833               symbol.d_tag == DT_MIPS_RLD_MAP_REL) &&
834              target) {
835       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
836       addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
837       if (dyn_base == LLDB_INVALID_ADDRESS)
838         return Address();
839 
840       Status error;
841       if (symbol.d_tag == DT_MIPS_RLD_MAP) {
842         // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
843         Address addr;
844         if (target->ReadPointerFromMemory(dyn_base + offset, false, error,
845                                           addr))
846           return addr;
847       }
848       if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) {
849         // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
850         // relative to the address of the tag.
851         uint64_t rel_offset;
852         rel_offset = target->ReadUnsignedIntegerFromMemory(
853             dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error);
854         if (error.Success() && rel_offset != UINT64_MAX) {
855           Address addr;
856           addr_t debug_ptr_address =
857               dyn_base + (offset - GetAddressByteSize()) + rel_offset;
858           addr.SetOffset(debug_ptr_address);
859           return addr;
860         }
861       }
862     }
863   }
864 
865   return Address();
866 }
867 
868 lldb_private::Address ObjectFileELF::GetEntryPointAddress() {
869   if (m_entry_point_address.IsValid())
870     return m_entry_point_address;
871 
872   if (!ParseHeader() || !IsExecutable())
873     return m_entry_point_address;
874 
875   SectionList *section_list = GetSectionList();
876   addr_t offset = m_header.e_entry;
877 
878   if (!section_list)
879     m_entry_point_address.SetOffset(offset);
880   else
881     m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
882   return m_entry_point_address;
883 }
884 
885 Address ObjectFileELF::GetBaseAddress() {
886   for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) {
887     const ELFProgramHeader &H = EnumPHdr.value();
888     if (H.p_type != PT_LOAD)
889       continue;
890 
891     return Address(
892         GetSectionList()->FindSectionByID(SegmentID(EnumPHdr.index())), 0);
893   }
894   return LLDB_INVALID_ADDRESS;
895 }
896 
897 // ParseDependentModules
898 size_t ObjectFileELF::ParseDependentModules() {
899   if (m_filespec_up)
900     return m_filespec_up->GetSize();
901 
902   m_filespec_up.reset(new FileSpecList());
903 
904   if (!ParseSectionHeaders())
905     return 0;
906 
907   SectionList *section_list = GetSectionList();
908   if (!section_list)
909     return 0;
910 
911   // Find the SHT_DYNAMIC section.
912   Section *dynsym =
913       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
914           .get();
915   if (!dynsym)
916     return 0;
917   assert(dynsym->GetObjectFile() == this);
918 
919   const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID());
920   if (!header)
921     return 0;
922   // sh_link: section header index of string table used by entries in the
923   // section.
924   Section *dynstr = section_list->FindSectionByID(header->sh_link).get();
925   if (!dynstr)
926     return 0;
927 
928   DataExtractor dynsym_data;
929   DataExtractor dynstr_data;
930   if (ReadSectionData(dynsym, dynsym_data) &&
931       ReadSectionData(dynstr, dynstr_data)) {
932     ELFDynamic symbol;
933     const lldb::offset_t section_size = dynsym_data.GetByteSize();
934     lldb::offset_t offset = 0;
935 
936     // The only type of entries we are concerned with are tagged DT_NEEDED,
937     // yielding the name of a required library.
938     while (offset < section_size) {
939       if (!symbol.Parse(dynsym_data, &offset))
940         break;
941 
942       if (symbol.d_tag != DT_NEEDED)
943         continue;
944 
945       uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
946       const char *lib_name = dynstr_data.PeekCStr(str_index);
947       FileSpec file_spec(lib_name);
948       FileSystem::Instance().Resolve(file_spec);
949       m_filespec_up->Append(file_spec);
950     }
951   }
952 
953   return m_filespec_up->GetSize();
954 }
955 
956 // GetProgramHeaderInfo
957 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
958                                            DataExtractor &object_data,
959                                            const ELFHeader &header) {
960   // We have already parsed the program headers
961   if (!program_headers.empty())
962     return program_headers.size();
963 
964   // If there are no program headers to read we are done.
965   if (header.e_phnum == 0)
966     return 0;
967 
968   program_headers.resize(header.e_phnum);
969   if (program_headers.size() != header.e_phnum)
970     return 0;
971 
972   const size_t ph_size = header.e_phnum * header.e_phentsize;
973   const elf_off ph_offset = header.e_phoff;
974   DataExtractor data;
975   if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
976     return 0;
977 
978   uint32_t idx;
979   lldb::offset_t offset;
980   for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) {
981     if (!program_headers[idx].Parse(data, &offset))
982       break;
983   }
984 
985   if (idx < program_headers.size())
986     program_headers.resize(idx);
987 
988   return program_headers.size();
989 }
990 
991 // ParseProgramHeaders
992 bool ObjectFileELF::ParseProgramHeaders() {
993   return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0;
994 }
995 
996 lldb_private::Status
997 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data,
998                                            lldb_private::ArchSpec &arch_spec,
999                                            lldb_private::UUID &uuid) {
1000   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1001   Status error;
1002 
1003   lldb::offset_t offset = 0;
1004 
1005   while (true) {
1006     // Parse the note header.  If this fails, bail out.
1007     const lldb::offset_t note_offset = offset;
1008     ELFNote note = ELFNote();
1009     if (!note.Parse(data, &offset)) {
1010       // We're done.
1011       return error;
1012     }
1013 
1014     LLDB_LOGF(log, "ObjectFileELF::%s parsing note name='%s', type=%" PRIu32,
1015               __FUNCTION__, note.n_name.c_str(), note.n_type);
1016 
1017     // Process FreeBSD ELF notes.
1018     if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1019         (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1020         (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) {
1021       // Pull out the min version info.
1022       uint32_t version_info;
1023       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1024         error.SetErrorString("failed to read FreeBSD ABI note payload");
1025         return error;
1026       }
1027 
1028       // Convert the version info into a major/minor number.
1029       const uint32_t version_major = version_info / 100000;
1030       const uint32_t version_minor = (version_info / 1000) % 100;
1031 
1032       char os_name[32];
1033       snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32,
1034                version_major, version_minor);
1035 
1036       // Set the elf OS version to FreeBSD.  Also clear the vendor.
1037       arch_spec.GetTriple().setOSName(os_name);
1038       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1039 
1040       LLDB_LOGF(log,
1041                 "ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32
1042                 ".%" PRIu32,
1043                 __FUNCTION__, version_major, version_minor,
1044                 static_cast<uint32_t>(version_info % 1000));
1045     }
1046     // Process GNU ELF notes.
1047     else if (note.n_name == LLDB_NT_OWNER_GNU) {
1048       switch (note.n_type) {
1049       case LLDB_NT_GNU_ABI_TAG:
1050         if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) {
1051           // Pull out the min OS version supporting the ABI.
1052           uint32_t version_info[4];
1053           if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) ==
1054               nullptr) {
1055             error.SetErrorString("failed to read GNU ABI note payload");
1056             return error;
1057           }
1058 
1059           // Set the OS per the OS field.
1060           switch (version_info[0]) {
1061           case LLDB_NT_GNU_ABI_OS_LINUX:
1062             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1063             arch_spec.GetTriple().setVendor(
1064                 llvm::Triple::VendorType::UnknownVendor);
1065             LLDB_LOGF(log,
1066                       "ObjectFileELF::%s detected Linux, min version %" PRIu32
1067                       ".%" PRIu32 ".%" PRIu32,
1068                       __FUNCTION__, version_info[1], version_info[2],
1069                       version_info[3]);
1070             // FIXME we have the minimal version number, we could be propagating
1071             // that.  version_info[1] = OS Major, version_info[2] = OS Minor,
1072             // version_info[3] = Revision.
1073             break;
1074           case LLDB_NT_GNU_ABI_OS_HURD:
1075             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1076             arch_spec.GetTriple().setVendor(
1077                 llvm::Triple::VendorType::UnknownVendor);
1078             LLDB_LOGF(log,
1079                       "ObjectFileELF::%s detected Hurd (unsupported), min "
1080                       "version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1081                       __FUNCTION__, version_info[1], version_info[2],
1082                       version_info[3]);
1083             break;
1084           case LLDB_NT_GNU_ABI_OS_SOLARIS:
1085             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris);
1086             arch_spec.GetTriple().setVendor(
1087                 llvm::Triple::VendorType::UnknownVendor);
1088             LLDB_LOGF(log,
1089                       "ObjectFileELF::%s detected Solaris, min version %" PRIu32
1090                       ".%" PRIu32 ".%" PRIu32,
1091                       __FUNCTION__, version_info[1], version_info[2],
1092                       version_info[3]);
1093             break;
1094           default:
1095             LLDB_LOGF(log,
1096                       "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32
1097                       ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1098                       __FUNCTION__, version_info[0], version_info[1],
1099                       version_info[2], version_info[3]);
1100             break;
1101           }
1102         }
1103         break;
1104 
1105       case LLDB_NT_GNU_BUILD_ID_TAG:
1106         // Only bother processing this if we don't already have the uuid set.
1107         if (!uuid.IsValid()) {
1108           // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a
1109           // build-id of a different length. Accept it as long as it's at least
1110           // 4 bytes as it will be better than our own crc32.
1111           if (note.n_descsz >= 4) {
1112             if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) {
1113               // Save the build id as the UUID for the module.
1114               uuid = UUID::fromData(buf, note.n_descsz);
1115             } else {
1116               error.SetErrorString("failed to read GNU_BUILD_ID note payload");
1117               return error;
1118             }
1119           }
1120         }
1121         break;
1122       }
1123       if (arch_spec.IsMIPS() &&
1124           arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1125         // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform
1126         arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1127     }
1128     // Process NetBSD ELF executables and shared libraries
1129     else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1130              (note.n_type == LLDB_NT_NETBSD_IDENT_TAG) &&
1131              (note.n_descsz == LLDB_NT_NETBSD_IDENT_DESCSZ) &&
1132              (note.n_namesz == LLDB_NT_NETBSD_IDENT_NAMESZ)) {
1133       // Pull out the version info.
1134       uint32_t version_info;
1135       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1136         error.SetErrorString("failed to read NetBSD ABI note payload");
1137         return error;
1138       }
1139       // Convert the version info into a major/minor/patch number.
1140       //     #define __NetBSD_Version__ MMmmrrpp00
1141       //
1142       //     M = major version
1143       //     m = minor version; a minor number of 99 indicates current.
1144       //     r = 0 (since NetBSD 3.0 not used)
1145       //     p = patchlevel
1146       const uint32_t version_major = version_info / 100000000;
1147       const uint32_t version_minor = (version_info % 100000000) / 1000000;
1148       const uint32_t version_patch = (version_info % 10000) / 100;
1149       // Set the elf OS version to NetBSD.  Also clear the vendor.
1150       arch_spec.GetTriple().setOSName(
1151           llvm::formatv("netbsd{0}.{1}.{2}", version_major, version_minor,
1152                         version_patch).str());
1153       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1154     }
1155     // Process NetBSD ELF core(5) notes
1156     else if ((note.n_name == LLDB_NT_OWNER_NETBSDCORE) &&
1157              (note.n_type == LLDB_NT_NETBSD_PROCINFO)) {
1158       // Set the elf OS version to NetBSD.  Also clear the vendor.
1159       arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD);
1160       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1161     }
1162     // Process OpenBSD ELF notes.
1163     else if (note.n_name == LLDB_NT_OWNER_OPENBSD) {
1164       // Set the elf OS version to OpenBSD.  Also clear the vendor.
1165       arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD);
1166       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1167     } else if (note.n_name == LLDB_NT_OWNER_ANDROID) {
1168       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1169       arch_spec.GetTriple().setEnvironment(
1170           llvm::Triple::EnvironmentType::Android);
1171     } else if (note.n_name == LLDB_NT_OWNER_LINUX) {
1172       // This is sometimes found in core files and usually contains extended
1173       // register info
1174       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1175     } else if (note.n_name == LLDB_NT_OWNER_CORE) {
1176       // Parse the NT_FILE to look for stuff in paths to shared libraries As
1177       // the contents look like this in a 64 bit ELF core file: count     =
1178       // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index
1179       // start              end                file_ofs           path =====
1180       // 0x0000000000401000 0x0000000000000000 /tmp/a.out [  1]
1181       // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [
1182       // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1183       // [  3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000
1184       // /lib/x86_64-linux-gnu/libc-2.19.so [  4] 0x00007fa79cba8000
1185       // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-
1186       // gnu/libc-2.19.so [  5] 0x00007fa79cda7000 0x00007fa79cdab000
1187       // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [  6]
1188       // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64
1189       // -linux-gnu/libc-2.19.so [  7] 0x00007fa79cdb2000 0x00007fa79cdd5000
1190       // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [  8]
1191       // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64
1192       // -linux-gnu/ld-2.19.so [  9] 0x00007fa79cfd5000 0x00007fa79cfd6000
1193       // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs
1194       // the count, page_size, start, end, file_ofs are uint32_t For reference:
1195       // see readelf source code (in binutils).
1196       if (note.n_type == NT_FILE) {
1197         uint64_t count = data.GetAddress(&offset);
1198         const char *cstr;
1199         data.GetAddress(&offset); // Skip page size
1200         offset += count * 3 *
1201                   data.GetAddressByteSize(); // Skip all start/end/file_ofs
1202         for (size_t i = 0; i < count; ++i) {
1203           cstr = data.GetCStr(&offset);
1204           if (cstr == nullptr) {
1205             error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read "
1206                                            "at an offset after the end "
1207                                            "(GetCStr returned nullptr)",
1208                                            __FUNCTION__);
1209             return error;
1210           }
1211           llvm::StringRef path(cstr);
1212           if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) {
1213             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1214             break;
1215           }
1216         }
1217         if (arch_spec.IsMIPS() &&
1218             arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1219           // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some
1220           // cases (e.g. compile with -nostdlib) Hence set OS to Linux
1221           arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1222       }
1223     }
1224 
1225     // Calculate the offset of the next note just in case "offset" has been
1226     // used to poke at the contents of the note data
1227     offset = note_offset + note.GetByteSize();
1228   }
1229 
1230   return error;
1231 }
1232 
1233 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length,
1234                                        ArchSpec &arch_spec) {
1235   lldb::offset_t Offset = 0;
1236 
1237   uint8_t FormatVersion = data.GetU8(&Offset);
1238   if (FormatVersion != llvm::ARMBuildAttrs::Format_Version)
1239     return;
1240 
1241   Offset = Offset + sizeof(uint32_t); // Section Length
1242   llvm::StringRef VendorName = data.GetCStr(&Offset);
1243 
1244   if (VendorName != "aeabi")
1245     return;
1246 
1247   if (arch_spec.GetTriple().getEnvironment() ==
1248       llvm::Triple::UnknownEnvironment)
1249     arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1250 
1251   while (Offset < length) {
1252     uint8_t Tag = data.GetU8(&Offset);
1253     uint32_t Size = data.GetU32(&Offset);
1254 
1255     if (Tag != llvm::ARMBuildAttrs::File || Size == 0)
1256       continue;
1257 
1258     while (Offset < length) {
1259       uint64_t Tag = data.GetULEB128(&Offset);
1260       switch (Tag) {
1261       default:
1262         if (Tag < 32)
1263           data.GetULEB128(&Offset);
1264         else if (Tag % 2 == 0)
1265           data.GetULEB128(&Offset);
1266         else
1267           data.GetCStr(&Offset);
1268 
1269         break;
1270 
1271       case llvm::ARMBuildAttrs::CPU_raw_name:
1272       case llvm::ARMBuildAttrs::CPU_name:
1273         data.GetCStr(&Offset);
1274 
1275         break;
1276 
1277       case llvm::ARMBuildAttrs::ABI_VFP_args: {
1278         uint64_t VFPArgs = data.GetULEB128(&Offset);
1279 
1280         if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) {
1281           if (arch_spec.GetTriple().getEnvironment() ==
1282                   llvm::Triple::UnknownEnvironment ||
1283               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF)
1284             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1285 
1286           arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1287         } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) {
1288           if (arch_spec.GetTriple().getEnvironment() ==
1289                   llvm::Triple::UnknownEnvironment ||
1290               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI)
1291             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF);
1292 
1293           arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1294         }
1295 
1296         break;
1297       }
1298       }
1299     }
1300   }
1301 }
1302 
1303 // GetSectionHeaderInfo
1304 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1305                                            DataExtractor &object_data,
1306                                            const elf::ELFHeader &header,
1307                                            lldb_private::UUID &uuid,
1308                                            std::string &gnu_debuglink_file,
1309                                            uint32_t &gnu_debuglink_crc,
1310                                            ArchSpec &arch_spec) {
1311   // Don't reparse the section headers if we already did that.
1312   if (!section_headers.empty())
1313     return section_headers.size();
1314 
1315   // Only initialize the arch_spec to okay defaults if they're not already set.
1316   // We'll refine this with note data as we parse the notes.
1317   if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) {
1318     llvm::Triple::OSType ostype;
1319     llvm::Triple::OSType spec_ostype;
1320     const uint32_t sub_type = subTypeFromElfHeader(header);
1321     arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type,
1322                               header.e_ident[EI_OSABI]);
1323 
1324     // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is
1325     // determined based on EI_OSABI flag and the info extracted from ELF notes
1326     // (see RefineModuleDetailsFromNote). However in some cases that still
1327     // might be not enough: for example a shared library might not have any
1328     // notes at all and have EI_OSABI flag set to System V, as result the OS
1329     // will be set to UnknownOS.
1330     GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
1331     spec_ostype = arch_spec.GetTriple().getOS();
1332     assert(spec_ostype == ostype);
1333     UNUSED_IF_ASSERT_DISABLED(spec_ostype);
1334   }
1335 
1336   if (arch_spec.GetMachine() == llvm::Triple::mips ||
1337       arch_spec.GetMachine() == llvm::Triple::mipsel ||
1338       arch_spec.GetMachine() == llvm::Triple::mips64 ||
1339       arch_spec.GetMachine() == llvm::Triple::mips64el) {
1340     switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) {
1341     case llvm::ELF::EF_MIPS_MICROMIPS:
1342       arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips);
1343       break;
1344     case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1345       arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16);
1346       break;
1347     case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1348       arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx);
1349       break;
1350     default:
1351       break;
1352     }
1353   }
1354 
1355   if (arch_spec.GetMachine() == llvm::Triple::arm ||
1356       arch_spec.GetMachine() == llvm::Triple::thumb) {
1357     if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
1358       arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1359     else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
1360       arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1361   }
1362 
1363   // If there are no section headers we are done.
1364   if (header.e_shnum == 0)
1365     return 0;
1366 
1367   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1368 
1369   section_headers.resize(header.e_shnum);
1370   if (section_headers.size() != header.e_shnum)
1371     return 0;
1372 
1373   const size_t sh_size = header.e_shnum * header.e_shentsize;
1374   const elf_off sh_offset = header.e_shoff;
1375   DataExtractor sh_data;
1376   if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size)
1377     return 0;
1378 
1379   uint32_t idx;
1380   lldb::offset_t offset;
1381   for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) {
1382     if (!section_headers[idx].Parse(sh_data, &offset))
1383       break;
1384   }
1385   if (idx < section_headers.size())
1386     section_headers.resize(idx);
1387 
1388   const unsigned strtab_idx = header.e_shstrndx;
1389   if (strtab_idx && strtab_idx < section_headers.size()) {
1390     const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1391     const size_t byte_size = sheader.sh_size;
1392     const Elf64_Off offset = sheader.sh_offset;
1393     lldb_private::DataExtractor shstr_data;
1394 
1395     if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) {
1396       for (SectionHeaderCollIter I = section_headers.begin();
1397            I != section_headers.end(); ++I) {
1398         static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink");
1399         const ELFSectionHeaderInfo &sheader = *I;
1400         const uint64_t section_size =
1401             sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1402         ConstString name(shstr_data.PeekCStr(I->sh_name));
1403 
1404         I->section_name = name;
1405 
1406         if (arch_spec.IsMIPS()) {
1407           uint32_t arch_flags = arch_spec.GetFlags();
1408           DataExtractor data;
1409           if (sheader.sh_type == SHT_MIPS_ABIFLAGS) {
1410 
1411             if (section_size && (data.SetData(object_data, sheader.sh_offset,
1412                                               section_size) == section_size)) {
1413               // MIPS ASE Mask is at offset 12 in MIPS.abiflags section
1414               lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0
1415               arch_flags |= data.GetU32(&offset);
1416 
1417               // The floating point ABI is at offset 7
1418               offset = 7;
1419               switch (data.GetU8(&offset)) {
1420               case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY:
1421                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY;
1422                 break;
1423               case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE:
1424                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE;
1425                 break;
1426               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE:
1427                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE;
1428                 break;
1429               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT:
1430                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT;
1431                 break;
1432               case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64:
1433                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64;
1434                 break;
1435               case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX:
1436                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX;
1437                 break;
1438               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64:
1439                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64;
1440                 break;
1441               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A:
1442                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A;
1443                 break;
1444               }
1445             }
1446           }
1447           // Settings appropriate ArchSpec ABI Flags
1448           switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) {
1449           case llvm::ELF::EF_MIPS_ABI_O32:
1450             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1451             break;
1452           case EF_MIPS_ABI_O64:
1453             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64;
1454             break;
1455           case EF_MIPS_ABI_EABI32:
1456             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32;
1457             break;
1458           case EF_MIPS_ABI_EABI64:
1459             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64;
1460             break;
1461           default:
1462             // ABI Mask doesn't cover N32 and N64 ABI.
1463             if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64)
1464               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64;
1465             else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1466               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1467             break;
1468           }
1469           arch_spec.SetFlags(arch_flags);
1470         }
1471 
1472         if (arch_spec.GetMachine() == llvm::Triple::arm ||
1473             arch_spec.GetMachine() == llvm::Triple::thumb) {
1474           DataExtractor data;
1475 
1476           if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 &&
1477               data.SetData(object_data, sheader.sh_offset, section_size) == section_size)
1478             ParseARMAttributes(data, section_size, arch_spec);
1479         }
1480 
1481         if (name == g_sect_name_gnu_debuglink) {
1482           DataExtractor data;
1483           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1484                                             section_size) == section_size)) {
1485             lldb::offset_t gnu_debuglink_offset = 0;
1486             gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset);
1487             gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4);
1488             data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1489           }
1490         }
1491 
1492         // Process ELF note section entries.
1493         bool is_note_header = (sheader.sh_type == SHT_NOTE);
1494 
1495         // The section header ".note.android.ident" is stored as a
1496         // PROGBITS type header but it is actually a note header.
1497         static ConstString g_sect_name_android_ident(".note.android.ident");
1498         if (!is_note_header && name == g_sect_name_android_ident)
1499           is_note_header = true;
1500 
1501         if (is_note_header) {
1502           // Allow notes to refine module info.
1503           DataExtractor data;
1504           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1505                                             section_size) == section_size)) {
1506             Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid);
1507             if (error.Fail()) {
1508               LLDB_LOGF(log, "ObjectFileELF::%s ELF note processing failed: %s",
1509                         __FUNCTION__, error.AsCString());
1510             }
1511           }
1512         }
1513       }
1514 
1515       // Make any unknown triple components to be unspecified unknowns.
1516       if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1517         arch_spec.GetTriple().setVendorName(llvm::StringRef());
1518       if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1519         arch_spec.GetTriple().setOSName(llvm::StringRef());
1520 
1521       return section_headers.size();
1522     }
1523   }
1524 
1525   section_headers.clear();
1526   return 0;
1527 }
1528 
1529 llvm::StringRef
1530 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const {
1531   size_t pos = symbol_name.find('@');
1532   return symbol_name.substr(0, pos);
1533 }
1534 
1535 // ParseSectionHeaders
1536 size_t ObjectFileELF::ParseSectionHeaders() {
1537   return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid,
1538                               m_gnu_debuglink_file, m_gnu_debuglink_crc,
1539                               m_arch_spec);
1540 }
1541 
1542 const ObjectFileELF::ELFSectionHeaderInfo *
1543 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) {
1544   if (!ParseSectionHeaders())
1545     return nullptr;
1546 
1547   if (id < m_section_headers.size())
1548     return &m_section_headers[id];
1549 
1550   return nullptr;
1551 }
1552 
1553 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) {
1554   if (!name || !name[0] || !ParseSectionHeaders())
1555     return 0;
1556   for (size_t i = 1; i < m_section_headers.size(); ++i)
1557     if (m_section_headers[i].section_name == ConstString(name))
1558       return i;
1559   return 0;
1560 }
1561 
1562 static SectionType GetSectionTypeFromName(llvm::StringRef Name) {
1563   if (Name.consume_front(".debug_") || Name.consume_front(".zdebug_")) {
1564     return llvm::StringSwitch<SectionType>(Name)
1565         .Case("abbrev", eSectionTypeDWARFDebugAbbrev)
1566         .Case("abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo)
1567         .Case("addr", eSectionTypeDWARFDebugAddr)
1568         .Case("aranges", eSectionTypeDWARFDebugAranges)
1569         .Case("cu_index", eSectionTypeDWARFDebugCuIndex)
1570         .Case("frame", eSectionTypeDWARFDebugFrame)
1571         .Case("info", eSectionTypeDWARFDebugInfo)
1572         .Case("info.dwo", eSectionTypeDWARFDebugInfoDwo)
1573         .Cases("line", "line.dwo", eSectionTypeDWARFDebugLine)
1574         .Cases("line_str", "line_str.dwo", eSectionTypeDWARFDebugLineStr)
1575         .Case("loc", eSectionTypeDWARFDebugLoc)
1576         .Case("loc.dwo", eSectionTypeDWARFDebugLocDwo)
1577         .Case("loclists", eSectionTypeDWARFDebugLocLists)
1578         .Case("loclists.dwo", eSectionTypeDWARFDebugLocListsDwo)
1579         .Case("macinfo", eSectionTypeDWARFDebugMacInfo)
1580         .Cases("macro", "macro.dwo", eSectionTypeDWARFDebugMacro)
1581         .Case("names", eSectionTypeDWARFDebugNames)
1582         .Case("pubnames", eSectionTypeDWARFDebugPubNames)
1583         .Case("pubtypes", eSectionTypeDWARFDebugPubTypes)
1584         .Case("ranges", eSectionTypeDWARFDebugRanges)
1585         .Case("rnglists", eSectionTypeDWARFDebugRngLists)
1586         .Case("rnglists.dwo", eSectionTypeDWARFDebugRngListsDwo)
1587         .Case("str", eSectionTypeDWARFDebugStr)
1588         .Case("str.dwo", eSectionTypeDWARFDebugStrDwo)
1589         .Case("str_offsets", eSectionTypeDWARFDebugStrOffsets)
1590         .Case("str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo)
1591         .Case("types", eSectionTypeDWARFDebugTypes)
1592         .Case("types.dwo", eSectionTypeDWARFDebugTypesDwo)
1593         .Default(eSectionTypeOther);
1594   }
1595   return llvm::StringSwitch<SectionType>(Name)
1596       .Case(".ARM.exidx", eSectionTypeARMexidx)
1597       .Case(".ARM.extab", eSectionTypeARMextab)
1598       .Cases(".bss", ".tbss", eSectionTypeZeroFill)
1599       .Cases(".data", ".tdata", eSectionTypeData)
1600       .Case(".eh_frame", eSectionTypeEHFrame)
1601       .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink)
1602       .Case(".gosymtab", eSectionTypeGoSymtab)
1603       .Case(".text", eSectionTypeCode)
1604       .Default(eSectionTypeOther);
1605 }
1606 
1607 SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const {
1608   switch (H.sh_type) {
1609   case SHT_PROGBITS:
1610     if (H.sh_flags & SHF_EXECINSTR)
1611       return eSectionTypeCode;
1612     break;
1613   case SHT_SYMTAB:
1614     return eSectionTypeELFSymbolTable;
1615   case SHT_DYNSYM:
1616     return eSectionTypeELFDynamicSymbols;
1617   case SHT_RELA:
1618   case SHT_REL:
1619     return eSectionTypeELFRelocationEntries;
1620   case SHT_DYNAMIC:
1621     return eSectionTypeELFDynamicLinkInfo;
1622   }
1623   return GetSectionTypeFromName(H.section_name.GetStringRef());
1624 }
1625 
1626 static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) {
1627   switch (Type) {
1628   case eSectionTypeData:
1629   case eSectionTypeZeroFill:
1630     return arch.GetDataByteSize();
1631   case eSectionTypeCode:
1632     return arch.GetCodeByteSize();
1633   default:
1634     return 1;
1635   }
1636 }
1637 
1638 static Permissions GetPermissions(const ELFSectionHeader &H) {
1639   Permissions Perm = Permissions(0);
1640   if (H.sh_flags & SHF_ALLOC)
1641     Perm |= ePermissionsReadable;
1642   if (H.sh_flags & SHF_WRITE)
1643     Perm |= ePermissionsWritable;
1644   if (H.sh_flags & SHF_EXECINSTR)
1645     Perm |= ePermissionsExecutable;
1646   return Perm;
1647 }
1648 
1649 static Permissions GetPermissions(const ELFProgramHeader &H) {
1650   Permissions Perm = Permissions(0);
1651   if (H.p_flags & PF_R)
1652     Perm |= ePermissionsReadable;
1653   if (H.p_flags & PF_W)
1654     Perm |= ePermissionsWritable;
1655   if (H.p_flags & PF_X)
1656     Perm |= ePermissionsExecutable;
1657   return Perm;
1658 }
1659 
1660 namespace {
1661 
1662 using VMRange = lldb_private::Range<addr_t, addr_t>;
1663 
1664 struct SectionAddressInfo {
1665   SectionSP Segment;
1666   VMRange Range;
1667 };
1668 
1669 // (Unlinked) ELF object files usually have 0 for every section address, meaning
1670 // we need to compute synthetic addresses in order for "file addresses" from
1671 // different sections to not overlap. This class handles that logic.
1672 class VMAddressProvider {
1673   using VMMap = llvm::IntervalMap<addr_t, SectionSP, 4,
1674                                        llvm::IntervalMapHalfOpenInfo<addr_t>>;
1675 
1676   ObjectFile::Type ObjectType;
1677   addr_t NextVMAddress = 0;
1678   VMMap::Allocator Alloc;
1679   VMMap Segments = VMMap(Alloc);
1680   VMMap Sections = VMMap(Alloc);
1681   lldb_private::Log *Log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES);
1682   size_t SegmentCount = 0;
1683   std::string SegmentName;
1684 
1685   VMRange GetVMRange(const ELFSectionHeader &H) {
1686     addr_t Address = H.sh_addr;
1687     addr_t Size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0;
1688     if (ObjectType == ObjectFile::Type::eTypeObjectFile && Segments.empty() && (H.sh_flags & SHF_ALLOC)) {
1689       NextVMAddress =
1690           llvm::alignTo(NextVMAddress, std::max<addr_t>(H.sh_addralign, 1));
1691       Address = NextVMAddress;
1692       NextVMAddress += Size;
1693     }
1694     return VMRange(Address, Size);
1695   }
1696 
1697 public:
1698   VMAddressProvider(ObjectFile::Type Type, llvm::StringRef SegmentName)
1699       : ObjectType(Type), SegmentName(std::string(SegmentName)) {}
1700 
1701   std::string GetNextSegmentName() const {
1702     return llvm::formatv("{0}[{1}]", SegmentName, SegmentCount).str();
1703   }
1704 
1705   llvm::Optional<VMRange> GetAddressInfo(const ELFProgramHeader &H) {
1706     if (H.p_memsz == 0) {
1707       LLDB_LOG(Log, "Ignoring zero-sized {0} segment. Corrupt object file?",
1708                SegmentName);
1709       return llvm::None;
1710     }
1711 
1712     if (Segments.overlaps(H.p_vaddr, H.p_vaddr + H.p_memsz)) {
1713       LLDB_LOG(Log, "Ignoring overlapping {0} segment. Corrupt object file?",
1714                SegmentName);
1715       return llvm::None;
1716     }
1717     return VMRange(H.p_vaddr, H.p_memsz);
1718   }
1719 
1720   llvm::Optional<SectionAddressInfo> GetAddressInfo(const ELFSectionHeader &H) {
1721     VMRange Range = GetVMRange(H);
1722     SectionSP Segment;
1723     auto It = Segments.find(Range.GetRangeBase());
1724     if ((H.sh_flags & SHF_ALLOC) && It.valid()) {
1725       addr_t MaxSize;
1726       if (It.start() <= Range.GetRangeBase()) {
1727         MaxSize = It.stop() - Range.GetRangeBase();
1728         Segment = *It;
1729       } else
1730         MaxSize = It.start() - Range.GetRangeBase();
1731       if (Range.GetByteSize() > MaxSize) {
1732         LLDB_LOG(Log, "Shortening section crossing segment boundaries. "
1733                       "Corrupt object file?");
1734         Range.SetByteSize(MaxSize);
1735       }
1736     }
1737     if (Range.GetByteSize() > 0 &&
1738         Sections.overlaps(Range.GetRangeBase(), Range.GetRangeEnd())) {
1739       LLDB_LOG(Log, "Ignoring overlapping section. Corrupt object file?");
1740       return llvm::None;
1741     }
1742     if (Segment)
1743       Range.Slide(-Segment->GetFileAddress());
1744     return SectionAddressInfo{Segment, Range};
1745   }
1746 
1747   void AddSegment(const VMRange &Range, SectionSP Seg) {
1748     Segments.insert(Range.GetRangeBase(), Range.GetRangeEnd(), std::move(Seg));
1749     ++SegmentCount;
1750   }
1751 
1752   void AddSection(SectionAddressInfo Info, SectionSP Sect) {
1753     if (Info.Range.GetByteSize() == 0)
1754       return;
1755     if (Info.Segment)
1756       Info.Range.Slide(Info.Segment->GetFileAddress());
1757     Sections.insert(Info.Range.GetRangeBase(), Info.Range.GetRangeEnd(),
1758                     std::move(Sect));
1759   }
1760 };
1761 }
1762 
1763 void ObjectFileELF::CreateSections(SectionList &unified_section_list) {
1764   if (m_sections_up)
1765     return;
1766 
1767   m_sections_up = std::make_unique<SectionList>();
1768   VMAddressProvider regular_provider(GetType(), "PT_LOAD");
1769   VMAddressProvider tls_provider(GetType(), "PT_TLS");
1770 
1771   for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) {
1772     const ELFProgramHeader &PHdr = EnumPHdr.value();
1773     if (PHdr.p_type != PT_LOAD && PHdr.p_type != PT_TLS)
1774       continue;
1775 
1776     VMAddressProvider &provider =
1777         PHdr.p_type == PT_TLS ? tls_provider : regular_provider;
1778     auto InfoOr = provider.GetAddressInfo(PHdr);
1779     if (!InfoOr)
1780       continue;
1781 
1782     uint32_t Log2Align = llvm::Log2_64(std::max<elf_xword>(PHdr.p_align, 1));
1783     SectionSP Segment = std::make_shared<Section>(
1784         GetModule(), this, SegmentID(EnumPHdr.index()),
1785         ConstString(provider.GetNextSegmentName()), eSectionTypeContainer,
1786         InfoOr->GetRangeBase(), InfoOr->GetByteSize(), PHdr.p_offset,
1787         PHdr.p_filesz, Log2Align, /*flags*/ 0);
1788     Segment->SetPermissions(GetPermissions(PHdr));
1789     Segment->SetIsThreadSpecific(PHdr.p_type == PT_TLS);
1790     m_sections_up->AddSection(Segment);
1791 
1792     provider.AddSegment(*InfoOr, std::move(Segment));
1793   }
1794 
1795   ParseSectionHeaders();
1796   if (m_section_headers.empty())
1797     return;
1798 
1799   for (SectionHeaderCollIter I = std::next(m_section_headers.begin());
1800        I != m_section_headers.end(); ++I) {
1801     const ELFSectionHeaderInfo &header = *I;
1802 
1803     ConstString &name = I->section_name;
1804     const uint64_t file_size =
1805         header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1806 
1807     VMAddressProvider &provider =
1808         header.sh_flags & SHF_TLS ? tls_provider : regular_provider;
1809     auto InfoOr = provider.GetAddressInfo(header);
1810     if (!InfoOr)
1811       continue;
1812 
1813     SectionType sect_type = GetSectionType(header);
1814 
1815     const uint32_t target_bytes_size =
1816         GetTargetByteSize(sect_type, m_arch_spec);
1817 
1818     elf::elf_xword log2align =
1819         (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign);
1820 
1821     SectionSP section_sp(new Section(
1822         InfoOr->Segment, GetModule(), // Module to which this section belongs.
1823         this,            // ObjectFile to which this section belongs and should
1824                          // read section data from.
1825         SectionIndex(I), // Section ID.
1826         name,            // Section name.
1827         sect_type,       // Section type.
1828         InfoOr->Range.GetRangeBase(), // VM address.
1829         InfoOr->Range.GetByteSize(),  // VM size in bytes of this section.
1830         header.sh_offset,             // Offset of this section in the file.
1831         file_size,           // Size of the section as found in the file.
1832         log2align,           // Alignment of the section
1833         header.sh_flags,     // Flags for this section.
1834         target_bytes_size)); // Number of host bytes per target byte
1835 
1836     section_sp->SetPermissions(GetPermissions(header));
1837     section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS);
1838     (InfoOr->Segment ? InfoOr->Segment->GetChildren() : *m_sections_up)
1839         .AddSection(section_sp);
1840     provider.AddSection(std::move(*InfoOr), std::move(section_sp));
1841   }
1842 
1843   // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the
1844   // unified section list.
1845   if (GetType() != eTypeDebugInfo)
1846     unified_section_list = *m_sections_up;
1847 
1848   // If there's a .gnu_debugdata section, we'll try to read the .symtab that's
1849   // embedded in there and replace the one in the original object file (if any).
1850   // If there's none in the orignal object file, we add it to it.
1851   if (auto gdd_obj_file = GetGnuDebugDataObjectFile()) {
1852     if (auto gdd_objfile_section_list = gdd_obj_file->GetSectionList()) {
1853       if (SectionSP symtab_section_sp =
1854               gdd_objfile_section_list->FindSectionByType(
1855                   eSectionTypeELFSymbolTable, true)) {
1856         SectionSP module_section_sp = unified_section_list.FindSectionByType(
1857             eSectionTypeELFSymbolTable, true);
1858         if (module_section_sp)
1859           unified_section_list.ReplaceSection(module_section_sp->GetID(),
1860                                               symtab_section_sp);
1861         else
1862           unified_section_list.AddSection(symtab_section_sp);
1863       }
1864     }
1865   }
1866 }
1867 
1868 std::shared_ptr<ObjectFileELF> ObjectFileELF::GetGnuDebugDataObjectFile() {
1869   if (m_gnu_debug_data_object_file != nullptr)
1870     return m_gnu_debug_data_object_file;
1871 
1872   SectionSP section =
1873       GetSectionList()->FindSectionByName(ConstString(".gnu_debugdata"));
1874   if (!section)
1875     return nullptr;
1876 
1877   if (!lldb_private::lzma::isAvailable()) {
1878     GetModule()->ReportWarning(
1879         "No LZMA support found for reading .gnu_debugdata section");
1880     return nullptr;
1881   }
1882 
1883   // Uncompress the data
1884   DataExtractor data;
1885   section->GetSectionData(data);
1886   llvm::SmallVector<uint8_t, 0> uncompressedData;
1887   auto err = lldb_private::lzma::uncompress(data.GetData(), uncompressedData);
1888   if (err) {
1889     GetModule()->ReportWarning(
1890         "An error occurred while decompression the section %s: %s",
1891         section->GetName().AsCString(), llvm::toString(std::move(err)).c_str());
1892     return nullptr;
1893   }
1894 
1895   // Construct ObjectFileELF object from decompressed buffer
1896   DataBufferSP gdd_data_buf(
1897       new DataBufferHeap(uncompressedData.data(), uncompressedData.size()));
1898   auto fspec = GetFileSpec().CopyByAppendingPathComponent(
1899       llvm::StringRef("gnu_debugdata"));
1900   m_gnu_debug_data_object_file.reset(new ObjectFileELF(
1901       GetModule(), gdd_data_buf, 0, &fspec, 0, gdd_data_buf->GetByteSize()));
1902 
1903   // This line is essential; otherwise a breakpoint can be set but not hit.
1904   m_gnu_debug_data_object_file->SetType(ObjectFile::eTypeDebugInfo);
1905 
1906   ArchSpec spec = m_gnu_debug_data_object_file->GetArchitecture();
1907   if (spec && m_gnu_debug_data_object_file->SetModulesArchitecture(spec))
1908     return m_gnu_debug_data_object_file;
1909 
1910   return nullptr;
1911 }
1912 
1913 // Find the arm/aarch64 mapping symbol character in the given symbol name.
1914 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we
1915 // recognize cases when the mapping symbol prefixed by an arbitrary string
1916 // because if a symbol prefix added to each symbol in the object file with
1917 // objcopy then the mapping symbols are also prefixed.
1918 static char FindArmAarch64MappingSymbol(const char *symbol_name) {
1919   if (!symbol_name)
1920     return '\0';
1921 
1922   const char *dollar_pos = ::strchr(symbol_name, '$');
1923   if (!dollar_pos || dollar_pos[1] == '\0')
1924     return '\0';
1925 
1926   if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
1927     return dollar_pos[1];
1928   return '\0';
1929 }
1930 
1931 #define STO_MIPS_ISA (3 << 6)
1932 #define STO_MICROMIPS (2 << 6)
1933 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS)
1934 
1935 // private
1936 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id,
1937                                      SectionList *section_list,
1938                                      const size_t num_symbols,
1939                                      const DataExtractor &symtab_data,
1940                                      const DataExtractor &strtab_data) {
1941   ELFSymbol symbol;
1942   lldb::offset_t offset = 0;
1943 
1944   static ConstString text_section_name(".text");
1945   static ConstString init_section_name(".init");
1946   static ConstString fini_section_name(".fini");
1947   static ConstString ctors_section_name(".ctors");
1948   static ConstString dtors_section_name(".dtors");
1949 
1950   static ConstString data_section_name(".data");
1951   static ConstString rodata_section_name(".rodata");
1952   static ConstString rodata1_section_name(".rodata1");
1953   static ConstString data2_section_name(".data1");
1954   static ConstString bss_section_name(".bss");
1955   static ConstString opd_section_name(".opd"); // For ppc64
1956 
1957   // On Android the oatdata and the oatexec symbols in the oat and odex files
1958   // covers the full .text section what causes issues with displaying unusable
1959   // symbol name to the user and very slow unwinding speed because the
1960   // instruction emulation based unwind plans try to emulate all instructions
1961   // in these symbols. Don't add these symbols to the symbol list as they have
1962   // no use for the debugger and they are causing a lot of trouble. Filtering
1963   // can't be restricted to Android because this special object file don't
1964   // contain the note section specifying the environment to Android but the
1965   // custom extension and file name makes it highly unlikely that this will
1966   // collide with anything else.
1967   ConstString file_extension = m_file.GetFileNameExtension();
1968   bool skip_oatdata_oatexec =
1969       file_extension == ".oat" || file_extension == ".odex";
1970 
1971   ArchSpec arch = GetArchitecture();
1972   ModuleSP module_sp(GetModule());
1973   SectionList *module_section_list =
1974       module_sp ? module_sp->GetSectionList() : nullptr;
1975 
1976   // Local cache to avoid doing a FindSectionByName for each symbol. The "const
1977   // char*" key must came from a ConstString object so they can be compared by
1978   // pointer
1979   std::unordered_map<const char *, lldb::SectionSP> section_name_to_section;
1980 
1981   unsigned i;
1982   for (i = 0; i < num_symbols; ++i) {
1983     if (!symbol.Parse(symtab_data, &offset))
1984       break;
1985 
1986     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1987     if (!symbol_name)
1988       symbol_name = "";
1989 
1990     // No need to add non-section symbols that have no names
1991     if (symbol.getType() != STT_SECTION &&
1992         (symbol_name == nullptr || symbol_name[0] == '\0'))
1993       continue;
1994 
1995     // Skipping oatdata and oatexec sections if it is requested. See details
1996     // above the definition of skip_oatdata_oatexec for the reasons.
1997     if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 ||
1998                                  ::strcmp(symbol_name, "oatexec") == 0))
1999       continue;
2000 
2001     SectionSP symbol_section_sp;
2002     SymbolType symbol_type = eSymbolTypeInvalid;
2003     Elf64_Half shndx = symbol.st_shndx;
2004 
2005     switch (shndx) {
2006     case SHN_ABS:
2007       symbol_type = eSymbolTypeAbsolute;
2008       break;
2009     case SHN_UNDEF:
2010       symbol_type = eSymbolTypeUndefined;
2011       break;
2012     default:
2013       symbol_section_sp = section_list->FindSectionByID(shndx);
2014       break;
2015     }
2016 
2017     // If a symbol is undefined do not process it further even if it has a STT
2018     // type
2019     if (symbol_type != eSymbolTypeUndefined) {
2020       switch (symbol.getType()) {
2021       default:
2022       case STT_NOTYPE:
2023         // The symbol's type is not specified.
2024         break;
2025 
2026       case STT_OBJECT:
2027         // The symbol is associated with a data object, such as a variable, an
2028         // array, etc.
2029         symbol_type = eSymbolTypeData;
2030         break;
2031 
2032       case STT_FUNC:
2033         // The symbol is associated with a function or other executable code.
2034         symbol_type = eSymbolTypeCode;
2035         break;
2036 
2037       case STT_SECTION:
2038         // The symbol is associated with a section. Symbol table entries of
2039         // this type exist primarily for relocation and normally have STB_LOCAL
2040         // binding.
2041         break;
2042 
2043       case STT_FILE:
2044         // Conventionally, the symbol's name gives the name of the source file
2045         // associated with the object file. A file symbol has STB_LOCAL
2046         // binding, its section index is SHN_ABS, and it precedes the other
2047         // STB_LOCAL symbols for the file, if it is present.
2048         symbol_type = eSymbolTypeSourceFile;
2049         break;
2050 
2051       case STT_GNU_IFUNC:
2052         // The symbol is associated with an indirect function. The actual
2053         // function will be resolved if it is referenced.
2054         symbol_type = eSymbolTypeResolver;
2055         break;
2056       }
2057     }
2058 
2059     if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) {
2060       if (symbol_section_sp) {
2061         ConstString sect_name = symbol_section_sp->GetName();
2062         if (sect_name == text_section_name || sect_name == init_section_name ||
2063             sect_name == fini_section_name || sect_name == ctors_section_name ||
2064             sect_name == dtors_section_name) {
2065           symbol_type = eSymbolTypeCode;
2066         } else if (sect_name == data_section_name ||
2067                    sect_name == data2_section_name ||
2068                    sect_name == rodata_section_name ||
2069                    sect_name == rodata1_section_name ||
2070                    sect_name == bss_section_name) {
2071           symbol_type = eSymbolTypeData;
2072         }
2073       }
2074     }
2075 
2076     int64_t symbol_value_offset = 0;
2077     uint32_t additional_flags = 0;
2078 
2079     if (arch.IsValid()) {
2080       if (arch.GetMachine() == llvm::Triple::arm) {
2081         if (symbol.getBinding() == STB_LOCAL) {
2082           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2083           if (symbol_type == eSymbolTypeCode) {
2084             switch (mapping_symbol) {
2085             case 'a':
2086               // $a[.<any>]* - marks an ARM instruction sequence
2087               m_address_class_map[symbol.st_value] = AddressClass::eCode;
2088               break;
2089             case 'b':
2090             case 't':
2091               // $b[.<any>]* - marks a THUMB BL instruction sequence
2092               // $t[.<any>]* - marks a THUMB instruction sequence
2093               m_address_class_map[symbol.st_value] =
2094                   AddressClass::eCodeAlternateISA;
2095               break;
2096             case 'd':
2097               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2098               m_address_class_map[symbol.st_value] = AddressClass::eData;
2099               break;
2100             }
2101           }
2102           if (mapping_symbol)
2103             continue;
2104         }
2105       } else if (arch.GetMachine() == llvm::Triple::aarch64) {
2106         if (symbol.getBinding() == STB_LOCAL) {
2107           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2108           if (symbol_type == eSymbolTypeCode) {
2109             switch (mapping_symbol) {
2110             case 'x':
2111               // $x[.<any>]* - marks an A64 instruction sequence
2112               m_address_class_map[symbol.st_value] = AddressClass::eCode;
2113               break;
2114             case 'd':
2115               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2116               m_address_class_map[symbol.st_value] = AddressClass::eData;
2117               break;
2118             }
2119           }
2120           if (mapping_symbol)
2121             continue;
2122         }
2123       }
2124 
2125       if (arch.GetMachine() == llvm::Triple::arm) {
2126         if (symbol_type == eSymbolTypeCode) {
2127           if (symbol.st_value & 1) {
2128             // Subtracting 1 from the address effectively unsets the low order
2129             // bit, which results in the address actually pointing to the
2130             // beginning of the symbol. This delta will be used below in
2131             // conjunction with symbol.st_value to produce the final
2132             // symbol_value that we store in the symtab.
2133             symbol_value_offset = -1;
2134             m_address_class_map[symbol.st_value ^ 1] =
2135                 AddressClass::eCodeAlternateISA;
2136           } else {
2137             // This address is ARM
2138             m_address_class_map[symbol.st_value] = AddressClass::eCode;
2139           }
2140         }
2141       }
2142 
2143       /*
2144        * MIPS:
2145        * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for
2146        * MIPS).
2147        * This allows processor to switch between microMIPS and MIPS without any
2148        * need
2149        * for special mode-control register. However, apart from .debug_line,
2150        * none of
2151        * the ELF/DWARF sections set the ISA bit (for symbol or section). Use
2152        * st_other
2153        * flag to check whether the symbol is microMIPS and then set the address
2154        * class
2155        * accordingly.
2156       */
2157       if (arch.IsMIPS()) {
2158         if (IS_MICROMIPS(symbol.st_other))
2159           m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2160         else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) {
2161           symbol.st_value = symbol.st_value & (~1ull);
2162           m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2163         } else {
2164           if (symbol_type == eSymbolTypeCode)
2165             m_address_class_map[symbol.st_value] = AddressClass::eCode;
2166           else if (symbol_type == eSymbolTypeData)
2167             m_address_class_map[symbol.st_value] = AddressClass::eData;
2168           else
2169             m_address_class_map[symbol.st_value] = AddressClass::eUnknown;
2170         }
2171       }
2172     }
2173 
2174     // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB
2175     // symbols. See above for more details.
2176     uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2177 
2178     if (symbol_section_sp == nullptr && shndx == SHN_ABS &&
2179         symbol.st_size != 0) {
2180       // We don't have a section for a symbol with non-zero size. Create a new
2181       // section for it so the address range covered by the symbol is also
2182       // covered by the module (represented through the section list). It is
2183       // needed so module lookup for the addresses covered by this symbol will
2184       // be successfull. This case happens for absolute symbols.
2185       ConstString fake_section_name(std::string(".absolute.") + symbol_name);
2186       symbol_section_sp =
2187           std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name,
2188                                     eSectionTypeAbsoluteAddress, symbol_value,
2189                                     symbol.st_size, 0, 0, 0, SHF_ALLOC);
2190 
2191       module_section_list->AddSection(symbol_section_sp);
2192       section_list->AddSection(symbol_section_sp);
2193     }
2194 
2195     if (symbol_section_sp &&
2196         CalculateType() != ObjectFile::Type::eTypeObjectFile)
2197       symbol_value -= symbol_section_sp->GetFileAddress();
2198 
2199     if (symbol_section_sp && module_section_list &&
2200         module_section_list != section_list) {
2201       ConstString sect_name = symbol_section_sp->GetName();
2202       auto section_it = section_name_to_section.find(sect_name.GetCString());
2203       if (section_it == section_name_to_section.end())
2204         section_it =
2205             section_name_to_section
2206                 .emplace(sect_name.GetCString(),
2207                          module_section_list->FindSectionByName(sect_name))
2208                 .first;
2209       if (section_it->second)
2210         symbol_section_sp = section_it->second;
2211     }
2212 
2213     bool is_global = symbol.getBinding() == STB_GLOBAL;
2214     uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2215     llvm::StringRef symbol_ref(symbol_name);
2216 
2217     // Symbol names may contain @VERSION suffixes. Find those and strip them
2218     // temporarily.
2219     size_t version_pos = symbol_ref.find('@');
2220     bool has_suffix = version_pos != llvm::StringRef::npos;
2221     llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2222     Mangled mangled(symbol_bare);
2223 
2224     // Now append the suffix back to mangled and unmangled names. Only do it if
2225     // the demangling was successful (string is not empty).
2226     if (has_suffix) {
2227       llvm::StringRef suffix = symbol_ref.substr(version_pos);
2228 
2229       llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2230       if (!mangled_name.empty())
2231         mangled.SetMangledName(ConstString((mangled_name + suffix).str()));
2232 
2233       ConstString demangled = mangled.GetDemangledName();
2234       llvm::StringRef demangled_name = demangled.GetStringRef();
2235       if (!demangled_name.empty())
2236         mangled.SetDemangledName(ConstString((demangled_name + suffix).str()));
2237     }
2238 
2239     // In ELF all symbol should have a valid size but it is not true for some
2240     // function symbols coming from hand written assembly. As none of the
2241     // function symbol should have 0 size we try to calculate the size for
2242     // these symbols in the symtab with saying that their original size is not
2243     // valid.
2244     bool symbol_size_valid =
2245         symbol.st_size != 0 || symbol.getType() != STT_FUNC;
2246 
2247     Symbol dc_symbol(
2248         i + start_id, // ID is the original symbol table index.
2249         mangled,
2250         symbol_type,                    // Type of this symbol
2251         is_global,                      // Is this globally visible?
2252         false,                          // Is this symbol debug info?
2253         false,                          // Is this symbol a trampoline?
2254         false,                          // Is this symbol artificial?
2255         AddressRange(symbol_section_sp, // Section in which this symbol is
2256                                         // defined or null.
2257                      symbol_value,      // Offset in section or symbol value.
2258                      symbol.st_size),   // Size in bytes of this symbol.
2259         symbol_size_valid,              // Symbol size is valid
2260         has_suffix,                     // Contains linker annotations?
2261         flags);                         // Symbol flags.
2262     if (symbol.getBinding() == STB_WEAK)
2263       dc_symbol.SetIsWeak(true);
2264     symtab->AddSymbol(dc_symbol);
2265   }
2266   return i;
2267 }
2268 
2269 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table,
2270                                          user_id_t start_id,
2271                                          lldb_private::Section *symtab) {
2272   if (symtab->GetObjectFile() != this) {
2273     // If the symbol table section is owned by a different object file, have it
2274     // do the parsing.
2275     ObjectFileELF *obj_file_elf =
2276         static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2277     return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab);
2278   }
2279 
2280   // Get section list for this object file.
2281   SectionList *section_list = m_sections_up.get();
2282   if (!section_list)
2283     return 0;
2284 
2285   user_id_t symtab_id = symtab->GetID();
2286   const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2287   assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2288          symtab_hdr->sh_type == SHT_DYNSYM);
2289 
2290   // sh_link: section header index of associated string table.
2291   user_id_t strtab_id = symtab_hdr->sh_link;
2292   Section *strtab = section_list->FindSectionByID(strtab_id).get();
2293 
2294   if (symtab && strtab) {
2295     assert(symtab->GetObjectFile() == this);
2296     assert(strtab->GetObjectFile() == this);
2297 
2298     DataExtractor symtab_data;
2299     DataExtractor strtab_data;
2300     if (ReadSectionData(symtab, symtab_data) &&
2301         ReadSectionData(strtab, strtab_data)) {
2302       size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2303 
2304       return ParseSymbols(symbol_table, start_id, section_list, num_symbols,
2305                           symtab_data, strtab_data);
2306     }
2307   }
2308 
2309   return 0;
2310 }
2311 
2312 size_t ObjectFileELF::ParseDynamicSymbols() {
2313   if (m_dynamic_symbols.size())
2314     return m_dynamic_symbols.size();
2315 
2316   SectionList *section_list = GetSectionList();
2317   if (!section_list)
2318     return 0;
2319 
2320   // Find the SHT_DYNAMIC section.
2321   Section *dynsym =
2322       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
2323           .get();
2324   if (!dynsym)
2325     return 0;
2326   assert(dynsym->GetObjectFile() == this);
2327 
2328   ELFDynamic symbol;
2329   DataExtractor dynsym_data;
2330   if (ReadSectionData(dynsym, dynsym_data)) {
2331     const lldb::offset_t section_size = dynsym_data.GetByteSize();
2332     lldb::offset_t cursor = 0;
2333 
2334     while (cursor < section_size) {
2335       if (!symbol.Parse(dynsym_data, &cursor))
2336         break;
2337 
2338       m_dynamic_symbols.push_back(symbol);
2339     }
2340   }
2341 
2342   return m_dynamic_symbols.size();
2343 }
2344 
2345 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) {
2346   if (!ParseDynamicSymbols())
2347     return nullptr;
2348 
2349   DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2350   DynamicSymbolCollIter E = m_dynamic_symbols.end();
2351   for (; I != E; ++I) {
2352     ELFDynamic *symbol = &*I;
2353 
2354     if (symbol->d_tag == tag)
2355       return symbol;
2356   }
2357 
2358   return nullptr;
2359 }
2360 
2361 unsigned ObjectFileELF::PLTRelocationType() {
2362   // DT_PLTREL
2363   //  This member specifies the type of relocation entry to which the
2364   //  procedure linkage table refers. The d_val member holds DT_REL or
2365   //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2366   //  must use the same relocation.
2367   const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2368 
2369   if (symbol)
2370     return symbol->d_val;
2371 
2372   return 0;
2373 }
2374 
2375 // Returns the size of the normal plt entries and the offset of the first
2376 // normal plt entry. The 0th entry in the plt table is usually a resolution
2377 // entry which have different size in some architectures then the rest of the
2378 // plt entries.
2379 static std::pair<uint64_t, uint64_t>
2380 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr,
2381                          const ELFSectionHeader *plt_hdr) {
2382   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2383 
2384   // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are
2385   // 16 bytes. So round the entsize up by the alignment if addralign is set.
2386   elf_xword plt_entsize =
2387       plt_hdr->sh_addralign
2388           ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign)
2389           : plt_hdr->sh_entsize;
2390 
2391   // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly.
2392   // PLT entries relocation code in general requires multiple instruction and
2393   // should be greater than 4 bytes in most cases. Try to guess correct size
2394   // just in case.
2395   if (plt_entsize <= 4) {
2396     // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the
2397     // size of the plt entries based on the number of entries and the size of
2398     // the plt section with the assumption that the size of the 0th entry is at
2399     // least as big as the size of the normal entries and it isn't much bigger
2400     // then that.
2401     if (plt_hdr->sh_addralign)
2402       plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign /
2403                     (num_relocations + 1) * plt_hdr->sh_addralign;
2404     else
2405       plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2406   }
2407 
2408   elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2409 
2410   return std::make_pair(plt_entsize, plt_offset);
2411 }
2412 
2413 static unsigned ParsePLTRelocations(
2414     Symtab *symbol_table, user_id_t start_id, unsigned rel_type,
2415     const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2416     const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr,
2417     const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data,
2418     DataExtractor &symtab_data, DataExtractor &strtab_data) {
2419   ELFRelocation rel(rel_type);
2420   ELFSymbol symbol;
2421   lldb::offset_t offset = 0;
2422 
2423   uint64_t plt_offset, plt_entsize;
2424   std::tie(plt_entsize, plt_offset) =
2425       GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2426   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2427 
2428   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2429   reloc_info_fn reloc_type;
2430   reloc_info_fn reloc_symbol;
2431 
2432   if (hdr->Is32Bit()) {
2433     reloc_type = ELFRelocation::RelocType32;
2434     reloc_symbol = ELFRelocation::RelocSymbol32;
2435   } else {
2436     reloc_type = ELFRelocation::RelocType64;
2437     reloc_symbol = ELFRelocation::RelocSymbol64;
2438   }
2439 
2440   unsigned slot_type = hdr->GetRelocationJumpSlotType();
2441   unsigned i;
2442   for (i = 0; i < num_relocations; ++i) {
2443     if (!rel.Parse(rel_data, &offset))
2444       break;
2445 
2446     if (reloc_type(rel) != slot_type)
2447       continue;
2448 
2449     lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2450     if (!symbol.Parse(symtab_data, &symbol_offset))
2451       break;
2452 
2453     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2454     uint64_t plt_index = plt_offset + i * plt_entsize;
2455 
2456     Symbol jump_symbol(
2457         i + start_id,          // Symbol table index
2458         symbol_name,           // symbol name.
2459         eSymbolTypeTrampoline, // Type of this symbol
2460         false,                 // Is this globally visible?
2461         false,                 // Is this symbol debug info?
2462         true,                  // Is this symbol a trampoline?
2463         true,                  // Is this symbol artificial?
2464         plt_section_sp, // Section in which this symbol is defined or null.
2465         plt_index,      // Offset in section or symbol value.
2466         plt_entsize,    // Size in bytes of this symbol.
2467         true,           // Size is valid
2468         false,          // Contains linker annotations?
2469         0);             // Symbol flags.
2470 
2471     symbol_table->AddSymbol(jump_symbol);
2472   }
2473 
2474   return i;
2475 }
2476 
2477 unsigned
2478 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id,
2479                                       const ELFSectionHeaderInfo *rel_hdr,
2480                                       user_id_t rel_id) {
2481   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2482 
2483   // The link field points to the associated symbol table.
2484   user_id_t symtab_id = rel_hdr->sh_link;
2485 
2486   // If the link field doesn't point to the appropriate symbol name table then
2487   // try to find it by name as some compiler don't fill in the link fields.
2488   if (!symtab_id)
2489     symtab_id = GetSectionIndexByName(".dynsym");
2490 
2491   // Get PLT section.  We cannot use rel_hdr->sh_info, since current linkers
2492   // point that to the .got.plt or .got section instead of .plt.
2493   user_id_t plt_id = GetSectionIndexByName(".plt");
2494 
2495   if (!symtab_id || !plt_id)
2496     return 0;
2497 
2498   const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2499   if (!plt_hdr)
2500     return 0;
2501 
2502   const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2503   if (!sym_hdr)
2504     return 0;
2505 
2506   SectionList *section_list = m_sections_up.get();
2507   if (!section_list)
2508     return 0;
2509 
2510   Section *rel_section = section_list->FindSectionByID(rel_id).get();
2511   if (!rel_section)
2512     return 0;
2513 
2514   SectionSP plt_section_sp(section_list->FindSectionByID(plt_id));
2515   if (!plt_section_sp)
2516     return 0;
2517 
2518   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2519   if (!symtab)
2520     return 0;
2521 
2522   // sh_link points to associated string table.
2523   Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link).get();
2524   if (!strtab)
2525     return 0;
2526 
2527   DataExtractor rel_data;
2528   if (!ReadSectionData(rel_section, rel_data))
2529     return 0;
2530 
2531   DataExtractor symtab_data;
2532   if (!ReadSectionData(symtab, symtab_data))
2533     return 0;
2534 
2535   DataExtractor strtab_data;
2536   if (!ReadSectionData(strtab, strtab_data))
2537     return 0;
2538 
2539   unsigned rel_type = PLTRelocationType();
2540   if (!rel_type)
2541     return 0;
2542 
2543   return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header,
2544                              rel_hdr, plt_hdr, sym_hdr, plt_section_sp,
2545                              rel_data, symtab_data, strtab_data);
2546 }
2547 
2548 unsigned ObjectFileELF::ApplyRelocations(
2549     Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2550     const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2551     DataExtractor &rel_data, DataExtractor &symtab_data,
2552     DataExtractor &debug_data, Section *rel_section) {
2553   ELFRelocation rel(rel_hdr->sh_type);
2554   lldb::addr_t offset = 0;
2555   const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2556   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2557   reloc_info_fn reloc_type;
2558   reloc_info_fn reloc_symbol;
2559 
2560   if (hdr->Is32Bit()) {
2561     reloc_type = ELFRelocation::RelocType32;
2562     reloc_symbol = ELFRelocation::RelocSymbol32;
2563   } else {
2564     reloc_type = ELFRelocation::RelocType64;
2565     reloc_symbol = ELFRelocation::RelocSymbol64;
2566   }
2567 
2568   for (unsigned i = 0; i < num_relocations; ++i) {
2569     if (!rel.Parse(rel_data, &offset))
2570       break;
2571 
2572     Symbol *symbol = nullptr;
2573 
2574     if (hdr->Is32Bit()) {
2575       switch (reloc_type(rel)) {
2576       case R_386_32:
2577       case R_386_PC32:
2578       default:
2579         // FIXME: This asserts with this input:
2580         //
2581         // foo.cpp
2582         // int main(int argc, char **argv) { return 0; }
2583         //
2584         // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o
2585         //
2586         // and running this on the foo.o module.
2587         assert(false && "unexpected relocation type");
2588       }
2589     } else {
2590       switch (reloc_type(rel)) {
2591       case R_AARCH64_ABS64:
2592       case R_X86_64_64: {
2593         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2594         if (symbol) {
2595           addr_t value = symbol->GetAddressRef().GetFileAddress();
2596           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2597           uint64_t *dst = reinterpret_cast<uint64_t *>(
2598               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2599               ELFRelocation::RelocOffset64(rel));
2600           uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel);
2601           memcpy(dst, &val_offset, sizeof(uint64_t));
2602         }
2603         break;
2604       }
2605       case R_X86_64_32:
2606       case R_X86_64_32S:
2607       case R_AARCH64_ABS32: {
2608         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2609         if (symbol) {
2610           addr_t value = symbol->GetAddressRef().GetFileAddress();
2611           value += ELFRelocation::RelocAddend32(rel);
2612           if ((reloc_type(rel) == R_X86_64_32 && (value > UINT32_MAX)) ||
2613               (reloc_type(rel) == R_X86_64_32S &&
2614                ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN)) ||
2615               (reloc_type(rel) == R_AARCH64_ABS32 &&
2616                ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN))) {
2617             Log *log =
2618                 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES);
2619             LLDB_LOGF(log, "Failed to apply debug info relocations");
2620             break;
2621           }
2622           uint32_t truncated_addr = (value & 0xFFFFFFFF);
2623           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2624           uint32_t *dst = reinterpret_cast<uint32_t *>(
2625               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2626               ELFRelocation::RelocOffset32(rel));
2627           memcpy(dst, &truncated_addr, sizeof(uint32_t));
2628         }
2629         break;
2630       }
2631       case R_X86_64_PC32:
2632       default:
2633         assert(false && "unexpected relocation type");
2634       }
2635     }
2636   }
2637 
2638   return 0;
2639 }
2640 
2641 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr,
2642                                               user_id_t rel_id,
2643                                               lldb_private::Symtab *thetab) {
2644   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2645 
2646   // Parse in the section list if needed.
2647   SectionList *section_list = GetSectionList();
2648   if (!section_list)
2649     return 0;
2650 
2651   user_id_t symtab_id = rel_hdr->sh_link;
2652   user_id_t debug_id = rel_hdr->sh_info;
2653 
2654   const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2655   if (!symtab_hdr)
2656     return 0;
2657 
2658   const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2659   if (!debug_hdr)
2660     return 0;
2661 
2662   Section *rel = section_list->FindSectionByID(rel_id).get();
2663   if (!rel)
2664     return 0;
2665 
2666   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2667   if (!symtab)
2668     return 0;
2669 
2670   Section *debug = section_list->FindSectionByID(debug_id).get();
2671   if (!debug)
2672     return 0;
2673 
2674   DataExtractor rel_data;
2675   DataExtractor symtab_data;
2676   DataExtractor debug_data;
2677 
2678   if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) &&
2679       GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) &&
2680       GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) {
2681     ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr,
2682                      rel_data, symtab_data, debug_data, debug);
2683   }
2684 
2685   return 0;
2686 }
2687 
2688 Symtab *ObjectFileELF::GetSymtab() {
2689   ModuleSP module_sp(GetModule());
2690   if (!module_sp)
2691     return nullptr;
2692 
2693   // We always want to use the main object file so we (hopefully) only have one
2694   // cached copy of our symtab, dynamic sections, etc.
2695   ObjectFile *module_obj_file = module_sp->GetObjectFile();
2696   if (module_obj_file && module_obj_file != this)
2697     return module_obj_file->GetSymtab();
2698 
2699   if (m_symtab_up == nullptr) {
2700     SectionList *section_list = module_sp->GetSectionList();
2701     if (!section_list)
2702       return nullptr;
2703 
2704     uint64_t symbol_id = 0;
2705     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2706 
2707     // Sharable objects and dynamic executables usually have 2 distinct symbol
2708     // tables, one named ".symtab", and the other ".dynsym". The dynsym is a
2709     // smaller version of the symtab that only contains global symbols. The
2710     // information found in the dynsym is therefore also found in the symtab,
2711     // while the reverse is not necessarily true.
2712     Section *symtab =
2713         section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get();
2714     if (symtab) {
2715       m_symtab_up.reset(new Symtab(symtab->GetObjectFile()));
2716       symbol_id += ParseSymbolTable(m_symtab_up.get(), symbol_id, symtab);
2717     }
2718 
2719     // The symtab section is non-allocable and can be stripped, while the
2720     // .dynsym section which should always be always be there. To support the
2721     // minidebuginfo case we parse .dynsym when there's a .gnu_debuginfo
2722     // section, nomatter if .symtab was already parsed or not. This is because
2723     // minidebuginfo normally removes the .symtab symbols which have their
2724     // matching .dynsym counterparts.
2725     if (!symtab ||
2726         GetSectionList()->FindSectionByName(ConstString(".gnu_debugdata"))) {
2727       Section *dynsym =
2728           section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true)
2729               .get();
2730       if (dynsym) {
2731         if (!m_symtab_up)
2732           m_symtab_up.reset(new Symtab(dynsym->GetObjectFile()));
2733         symbol_id += ParseSymbolTable(m_symtab_up.get(), symbol_id, dynsym);
2734       }
2735     }
2736 
2737     // DT_JMPREL
2738     //      If present, this entry's d_ptr member holds the address of
2739     //      relocation
2740     //      entries associated solely with the procedure linkage table.
2741     //      Separating
2742     //      these relocation entries lets the dynamic linker ignore them during
2743     //      process initialization, if lazy binding is enabled. If this entry is
2744     //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2745     //      also be present.
2746     const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2747     if (symbol) {
2748       // Synthesize trampoline symbols to help navigate the PLT.
2749       addr_t addr = symbol->d_ptr;
2750       Section *reloc_section =
2751           section_list->FindSectionContainingFileAddress(addr).get();
2752       if (reloc_section) {
2753         user_id_t reloc_id = reloc_section->GetID();
2754         const ELFSectionHeaderInfo *reloc_header =
2755             GetSectionHeaderByIndex(reloc_id);
2756         assert(reloc_header);
2757 
2758         if (m_symtab_up == nullptr)
2759           m_symtab_up.reset(new Symtab(reloc_section->GetObjectFile()));
2760 
2761         ParseTrampolineSymbols(m_symtab_up.get(), symbol_id, reloc_header,
2762                                reloc_id);
2763       }
2764     }
2765 
2766     if (DWARFCallFrameInfo *eh_frame =
2767             GetModule()->GetUnwindTable().GetEHFrameInfo()) {
2768       if (m_symtab_up == nullptr)
2769         m_symtab_up.reset(new Symtab(this));
2770       ParseUnwindSymbols(m_symtab_up.get(), eh_frame);
2771     }
2772 
2773     // If we still don't have any symtab then create an empty instance to avoid
2774     // do the section lookup next time.
2775     if (m_symtab_up == nullptr)
2776       m_symtab_up.reset(new Symtab(this));
2777 
2778     // In the event that there's no symbol entry for the entry point we'll
2779     // artifically create one. We delegate to the symtab object the figuring
2780     // out of the proper size, this will usually make it span til the next
2781     // symbol it finds in the section. This means that if there are missing
2782     // symbols the entry point might span beyond its function definition.
2783     // We're fine with this as it doesn't make it worse than not having a
2784     // symbol entry at all.
2785     if (CalculateType() == eTypeExecutable) {
2786       ArchSpec arch = GetArchitecture();
2787       auto entry_point_addr = GetEntryPointAddress();
2788       bool is_valid_entry_point =
2789           entry_point_addr.IsValid() && entry_point_addr.IsSectionOffset();
2790       addr_t entry_point_file_addr = entry_point_addr.GetFileAddress();
2791       if (is_valid_entry_point && !m_symtab_up->FindSymbolContainingFileAddress(
2792                                       entry_point_file_addr)) {
2793         uint64_t symbol_id = m_symtab_up->GetNumSymbols();
2794         Symbol symbol(symbol_id,
2795                       GetNextSyntheticSymbolName().GetCString(), // Symbol name.
2796                       eSymbolTypeCode, // Type of this symbol.
2797                       true,            // Is this globally visible?
2798                       false,           // Is this symbol debug info?
2799                       false,           // Is this symbol a trampoline?
2800                       true,            // Is this symbol artificial?
2801                       entry_point_addr.GetSection(), // Section where this
2802                                                      // symbol is defined.
2803                       0,     // Offset in section or symbol value.
2804                       0,     // Size.
2805                       false, // Size is valid.
2806                       false, // Contains linker annotations?
2807                       0);    // Symbol flags.
2808         m_symtab_up->AddSymbol(symbol);
2809         // When the entry point is arm thumb we need to explicitly set its
2810         // class address to reflect that. This is important because expression
2811         // evaluation relies on correctly setting a breakpoint at this
2812         // address.
2813         if (arch.GetMachine() == llvm::Triple::arm &&
2814             (entry_point_file_addr & 1))
2815           m_address_class_map[entry_point_file_addr ^ 1] =
2816               AddressClass::eCodeAlternateISA;
2817         else
2818           m_address_class_map[entry_point_file_addr] = AddressClass::eCode;
2819       }
2820     }
2821 
2822     m_symtab_up->CalculateSymbolSizes();
2823   }
2824 
2825   return m_symtab_up.get();
2826 }
2827 
2828 void ObjectFileELF::RelocateSection(lldb_private::Section *section)
2829 {
2830   static const char *debug_prefix = ".debug";
2831 
2832   // Set relocated bit so we stop getting called, regardless of whether we
2833   // actually relocate.
2834   section->SetIsRelocated(true);
2835 
2836   // We only relocate in ELF relocatable files
2837   if (CalculateType() != eTypeObjectFile)
2838     return;
2839 
2840   const char *section_name = section->GetName().GetCString();
2841   // Can't relocate that which can't be named
2842   if (section_name == nullptr)
2843     return;
2844 
2845   // We don't relocate non-debug sections at the moment
2846   if (strncmp(section_name, debug_prefix, strlen(debug_prefix)))
2847     return;
2848 
2849   // Relocation section names to look for
2850   std::string needle = std::string(".rel") + section_name;
2851   std::string needlea = std::string(".rela") + section_name;
2852 
2853   for (SectionHeaderCollIter I = m_section_headers.begin();
2854        I != m_section_headers.end(); ++I) {
2855     if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) {
2856       const char *hay_name = I->section_name.GetCString();
2857       if (hay_name == nullptr)
2858         continue;
2859       if (needle == hay_name || needlea == hay_name) {
2860         const ELFSectionHeader &reloc_header = *I;
2861         user_id_t reloc_id = SectionIndex(I);
2862         RelocateDebugSections(&reloc_header, reloc_id, GetSymtab());
2863         break;
2864       }
2865     }
2866   }
2867 }
2868 
2869 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table,
2870                                        DWARFCallFrameInfo *eh_frame) {
2871   SectionList *section_list = GetSectionList();
2872   if (!section_list)
2873     return;
2874 
2875   // First we save the new symbols into a separate list and add them to the
2876   // symbol table after we colleced all symbols we want to add. This is
2877   // neccessary because adding a new symbol invalidates the internal index of
2878   // the symtab what causing the next lookup to be slow because it have to
2879   // recalculate the index first.
2880   std::vector<Symbol> new_symbols;
2881 
2882   eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols](
2883       lldb::addr_t file_addr, uint32_t size, dw_offset_t) {
2884     Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr);
2885     if (symbol) {
2886       if (!symbol->GetByteSizeIsValid()) {
2887         symbol->SetByteSize(size);
2888         symbol->SetSizeIsSynthesized(true);
2889       }
2890     } else {
2891       SectionSP section_sp =
2892           section_list->FindSectionContainingFileAddress(file_addr);
2893       if (section_sp) {
2894         addr_t offset = file_addr - section_sp->GetFileAddress();
2895         const char *symbol_name = GetNextSyntheticSymbolName().GetCString();
2896         uint64_t symbol_id = symbol_table->GetNumSymbols();
2897         Symbol eh_symbol(
2898             symbol_id,       // Symbol table index.
2899             symbol_name,     // Symbol name.
2900             eSymbolTypeCode, // Type of this symbol.
2901             true,            // Is this globally visible?
2902             false,           // Is this symbol debug info?
2903             false,           // Is this symbol a trampoline?
2904             true,            // Is this symbol artificial?
2905             section_sp,      // Section in which this symbol is defined or null.
2906             offset,          // Offset in section or symbol value.
2907             0,     // Size:          Don't specify the size as an FDE can
2908             false, // Size is valid: cover multiple symbols.
2909             false, // Contains linker annotations?
2910             0);    // Symbol flags.
2911         new_symbols.push_back(eh_symbol);
2912       }
2913     }
2914     return true;
2915   });
2916 
2917   for (const Symbol &s : new_symbols)
2918     symbol_table->AddSymbol(s);
2919 }
2920 
2921 bool ObjectFileELF::IsStripped() {
2922   // TODO: determine this for ELF
2923   return false;
2924 }
2925 
2926 //===----------------------------------------------------------------------===//
2927 // Dump
2928 //
2929 // Dump the specifics of the runtime file container (such as any headers
2930 // segments, sections, etc).
2931 void ObjectFileELF::Dump(Stream *s) {
2932   ModuleSP module_sp(GetModule());
2933   if (!module_sp) {
2934     return;
2935   }
2936 
2937   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2938   s->Printf("%p: ", static_cast<void *>(this));
2939   s->Indent();
2940   s->PutCString("ObjectFileELF");
2941 
2942   ArchSpec header_arch = GetArchitecture();
2943 
2944   *s << ", file = '" << m_file
2945      << "', arch = " << header_arch.GetArchitectureName() << "\n";
2946 
2947   DumpELFHeader(s, m_header);
2948   s->EOL();
2949   DumpELFProgramHeaders(s);
2950   s->EOL();
2951   DumpELFSectionHeaders(s);
2952   s->EOL();
2953   SectionList *section_list = GetSectionList();
2954   if (section_list)
2955     section_list->Dump(s, nullptr, true, UINT32_MAX);
2956   Symtab *symtab = GetSymtab();
2957   if (symtab)
2958     symtab->Dump(s, nullptr, eSortOrderNone);
2959   s->EOL();
2960   DumpDependentModules(s);
2961   s->EOL();
2962 }
2963 
2964 // DumpELFHeader
2965 //
2966 // Dump the ELF header to the specified output stream
2967 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) {
2968   s->PutCString("ELF Header\n");
2969   s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2970   s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1],
2971             header.e_ident[EI_MAG1]);
2972   s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2],
2973             header.e_ident[EI_MAG2]);
2974   s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3],
2975             header.e_ident[EI_MAG3]);
2976 
2977   s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2978   s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2979   DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2980   s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2981   s->Printf("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2982 
2983   s->Printf("e_type      = 0x%4.4x ", header.e_type);
2984   DumpELFHeader_e_type(s, header.e_type);
2985   s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2986   s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2987   s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2988   s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2989   s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2990   s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2991   s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2992   s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2993   s->Printf("e_phnum     = 0x%8.8x\n", header.e_phnum);
2994   s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2995   s->Printf("e_shnum     = 0x%8.8x\n", header.e_shnum);
2996   s->Printf("e_shstrndx  = 0x%8.8x\n", header.e_shstrndx);
2997 }
2998 
2999 // DumpELFHeader_e_type
3000 //
3001 // Dump an token value for the ELF header member e_type
3002 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) {
3003   switch (e_type) {
3004   case ET_NONE:
3005     *s << "ET_NONE";
3006     break;
3007   case ET_REL:
3008     *s << "ET_REL";
3009     break;
3010   case ET_EXEC:
3011     *s << "ET_EXEC";
3012     break;
3013   case ET_DYN:
3014     *s << "ET_DYN";
3015     break;
3016   case ET_CORE:
3017     *s << "ET_CORE";
3018     break;
3019   default:
3020     break;
3021   }
3022 }
3023 
3024 // DumpELFHeader_e_ident_EI_DATA
3025 //
3026 // Dump an token value for the ELF header member e_ident[EI_DATA]
3027 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s,
3028                                                   unsigned char ei_data) {
3029   switch (ei_data) {
3030   case ELFDATANONE:
3031     *s << "ELFDATANONE";
3032     break;
3033   case ELFDATA2LSB:
3034     *s << "ELFDATA2LSB - Little Endian";
3035     break;
3036   case ELFDATA2MSB:
3037     *s << "ELFDATA2MSB - Big Endian";
3038     break;
3039   default:
3040     break;
3041   }
3042 }
3043 
3044 // DumpELFProgramHeader
3045 //
3046 // Dump a single ELF program header to the specified output stream
3047 void ObjectFileELF::DumpELFProgramHeader(Stream *s,
3048                                          const ELFProgramHeader &ph) {
3049   DumpELFProgramHeader_p_type(s, ph.p_type);
3050   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset,
3051             ph.p_vaddr, ph.p_paddr);
3052   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz,
3053             ph.p_flags);
3054 
3055   DumpELFProgramHeader_p_flags(s, ph.p_flags);
3056   s->Printf(") %8.8" PRIx64, ph.p_align);
3057 }
3058 
3059 // DumpELFProgramHeader_p_type
3060 //
3061 // Dump an token value for the ELF program header member p_type which describes
3062 // the type of the program header
3063 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) {
3064   const int kStrWidth = 15;
3065   switch (p_type) {
3066     CASE_AND_STREAM(s, PT_NULL, kStrWidth);
3067     CASE_AND_STREAM(s, PT_LOAD, kStrWidth);
3068     CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth);
3069     CASE_AND_STREAM(s, PT_INTERP, kStrWidth);
3070     CASE_AND_STREAM(s, PT_NOTE, kStrWidth);
3071     CASE_AND_STREAM(s, PT_SHLIB, kStrWidth);
3072     CASE_AND_STREAM(s, PT_PHDR, kStrWidth);
3073     CASE_AND_STREAM(s, PT_TLS, kStrWidth);
3074     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3075   default:
3076     s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
3077     break;
3078   }
3079 }
3080 
3081 // DumpELFProgramHeader_p_flags
3082 //
3083 // Dump an token value for the ELF program header member p_flags
3084 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) {
3085   *s << ((p_flags & PF_X) ? "PF_X" : "    ")
3086      << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3087      << ((p_flags & PF_W) ? "PF_W" : "    ")
3088      << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3089      << ((p_flags & PF_R) ? "PF_R" : "    ");
3090 }
3091 
3092 // DumpELFProgramHeaders
3093 //
3094 // Dump all of the ELF program header to the specified output stream
3095 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) {
3096   if (!ParseProgramHeaders())
3097     return;
3098 
3099   s->PutCString("Program Headers\n");
3100   s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
3101                 "p_filesz p_memsz  p_flags                   p_align\n");
3102   s->PutCString("==== --------------- -------- -------- -------- "
3103                 "-------- -------- ------------------------- --------\n");
3104 
3105   for (const auto &H : llvm::enumerate(m_program_headers)) {
3106     s->Format("[{0,2}] ", H.index());
3107     ObjectFileELF::DumpELFProgramHeader(s, H.value());
3108     s->EOL();
3109   }
3110 }
3111 
3112 // DumpELFSectionHeader
3113 //
3114 // Dump a single ELF section header to the specified output stream
3115 void ObjectFileELF::DumpELFSectionHeader(Stream *s,
3116                                          const ELFSectionHeaderInfo &sh) {
3117   s->Printf("%8.8x ", sh.sh_name);
3118   DumpELFSectionHeader_sh_type(s, sh.sh_type);
3119   s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
3120   DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
3121   s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr,
3122             sh.sh_offset, sh.sh_size);
3123   s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
3124   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3125 }
3126 
3127 // DumpELFSectionHeader_sh_type
3128 //
3129 // Dump an token value for the ELF section header member sh_type which
3130 // describes the type of the section
3131 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) {
3132   const int kStrWidth = 12;
3133   switch (sh_type) {
3134     CASE_AND_STREAM(s, SHT_NULL, kStrWidth);
3135     CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth);
3136     CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth);
3137     CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth);
3138     CASE_AND_STREAM(s, SHT_RELA, kStrWidth);
3139     CASE_AND_STREAM(s, SHT_HASH, kStrWidth);
3140     CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth);
3141     CASE_AND_STREAM(s, SHT_NOTE, kStrWidth);
3142     CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth);
3143     CASE_AND_STREAM(s, SHT_REL, kStrWidth);
3144     CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth);
3145     CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth);
3146     CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth);
3147     CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth);
3148     CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth);
3149     CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth);
3150   default:
3151     s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3152     break;
3153   }
3154 }
3155 
3156 // DumpELFSectionHeader_sh_flags
3157 //
3158 // Dump an token value for the ELF section header member sh_flags
3159 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s,
3160                                                   elf_xword sh_flags) {
3161   *s << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
3162      << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3163      << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
3164      << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3165      << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
3166 }
3167 
3168 // DumpELFSectionHeaders
3169 //
3170 // Dump all of the ELF section header to the specified output stream
3171 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) {
3172   if (!ParseSectionHeaders())
3173     return;
3174 
3175   s->PutCString("Section Headers\n");
3176   s->PutCString("IDX  name     type         flags                            "
3177                 "addr     offset   size     link     info     addralgn "
3178                 "entsize  Name\n");
3179   s->PutCString("==== -------- ------------ -------------------------------- "
3180                 "-------- -------- -------- -------- -------- -------- "
3181                 "-------- ====================\n");
3182 
3183   uint32_t idx = 0;
3184   for (SectionHeaderCollConstIter I = m_section_headers.begin();
3185        I != m_section_headers.end(); ++I, ++idx) {
3186     s->Printf("[%2u] ", idx);
3187     ObjectFileELF::DumpELFSectionHeader(s, *I);
3188     const char *section_name = I->section_name.AsCString("");
3189     if (section_name)
3190       *s << ' ' << section_name << "\n";
3191   }
3192 }
3193 
3194 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) {
3195   size_t num_modules = ParseDependentModules();
3196 
3197   if (num_modules > 0) {
3198     s->PutCString("Dependent Modules:\n");
3199     for (unsigned i = 0; i < num_modules; ++i) {
3200       const FileSpec &spec = m_filespec_up->GetFileSpecAtIndex(i);
3201       s->Printf("   %s\n", spec.GetFilename().GetCString());
3202     }
3203   }
3204 }
3205 
3206 ArchSpec ObjectFileELF::GetArchitecture() {
3207   if (!ParseHeader())
3208     return ArchSpec();
3209 
3210   if (m_section_headers.empty()) {
3211     // Allow elf notes to be parsed which may affect the detected architecture.
3212     ParseSectionHeaders();
3213   }
3214 
3215   if (CalculateType() == eTypeCoreFile &&
3216       !m_arch_spec.TripleOSWasSpecified()) {
3217     // Core files don't have section headers yet they have PT_NOTE program
3218     // headers that might shed more light on the architecture
3219     for (const elf::ELFProgramHeader &H : ProgramHeaders()) {
3220       if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0)
3221         continue;
3222       DataExtractor data;
3223       if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) {
3224         UUID uuid;
3225         RefineModuleDetailsFromNote(data, m_arch_spec, uuid);
3226       }
3227     }
3228   }
3229   return m_arch_spec;
3230 }
3231 
3232 ObjectFile::Type ObjectFileELF::CalculateType() {
3233   switch (m_header.e_type) {
3234   case llvm::ELF::ET_NONE:
3235     // 0 - No file type
3236     return eTypeUnknown;
3237 
3238   case llvm::ELF::ET_REL:
3239     // 1 - Relocatable file
3240     return eTypeObjectFile;
3241 
3242   case llvm::ELF::ET_EXEC:
3243     // 2 - Executable file
3244     return eTypeExecutable;
3245 
3246   case llvm::ELF::ET_DYN:
3247     // 3 - Shared object file
3248     return eTypeSharedLibrary;
3249 
3250   case ET_CORE:
3251     // 4 - Core file
3252     return eTypeCoreFile;
3253 
3254   default:
3255     break;
3256   }
3257   return eTypeUnknown;
3258 }
3259 
3260 ObjectFile::Strata ObjectFileELF::CalculateStrata() {
3261   switch (m_header.e_type) {
3262   case llvm::ELF::ET_NONE:
3263     // 0 - No file type
3264     return eStrataUnknown;
3265 
3266   case llvm::ELF::ET_REL:
3267     // 1 - Relocatable file
3268     return eStrataUnknown;
3269 
3270   case llvm::ELF::ET_EXEC:
3271     // 2 - Executable file
3272     // TODO: is there any way to detect that an executable is a kernel
3273     // related executable by inspecting the program headers, section headers,
3274     // symbols, or any other flag bits???
3275     return eStrataUser;
3276 
3277   case llvm::ELF::ET_DYN:
3278     // 3 - Shared object file
3279     // TODO: is there any way to detect that an shared library is a kernel
3280     // related executable by inspecting the program headers, section headers,
3281     // symbols, or any other flag bits???
3282     return eStrataUnknown;
3283 
3284   case ET_CORE:
3285     // 4 - Core file
3286     // TODO: is there any way to detect that an core file is a kernel
3287     // related executable by inspecting the program headers, section headers,
3288     // symbols, or any other flag bits???
3289     return eStrataUnknown;
3290 
3291   default:
3292     break;
3293   }
3294   return eStrataUnknown;
3295 }
3296 
3297 size_t ObjectFileELF::ReadSectionData(Section *section,
3298                        lldb::offset_t section_offset, void *dst,
3299                        size_t dst_len) {
3300   // If some other objectfile owns this data, pass this to them.
3301   if (section->GetObjectFile() != this)
3302     return section->GetObjectFile()->ReadSectionData(section, section_offset,
3303                                                      dst, dst_len);
3304 
3305   if (!section->Test(SHF_COMPRESSED))
3306     return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len);
3307 
3308   // For compressed sections we need to read to full data to be able to
3309   // decompress.
3310   DataExtractor data;
3311   ReadSectionData(section, data);
3312   return data.CopyData(section_offset, dst_len, dst);
3313 }
3314 
3315 size_t ObjectFileELF::ReadSectionData(Section *section,
3316                                       DataExtractor &section_data) {
3317   // If some other objectfile owns this data, pass this to them.
3318   if (section->GetObjectFile() != this)
3319     return section->GetObjectFile()->ReadSectionData(section, section_data);
3320 
3321   size_t result = ObjectFile::ReadSectionData(section, section_data);
3322   if (result == 0 || !llvm::object::Decompressor::isCompressedELFSection(
3323                          section->Get(), section->GetName().GetStringRef()))
3324     return result;
3325 
3326   auto Decompressor = llvm::object::Decompressor::create(
3327       section->GetName().GetStringRef(),
3328       {reinterpret_cast<const char *>(section_data.GetDataStart()),
3329        size_t(section_data.GetByteSize())},
3330       GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8);
3331   if (!Decompressor) {
3332     GetModule()->ReportWarning(
3333         "Unable to initialize decompressor for section '%s': %s",
3334         section->GetName().GetCString(),
3335         llvm::toString(Decompressor.takeError()).c_str());
3336     section_data.Clear();
3337     return 0;
3338   }
3339 
3340   auto buffer_sp =
3341       std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0);
3342   if (auto error = Decompressor->decompress(
3343           {reinterpret_cast<char *>(buffer_sp->GetBytes()),
3344            size_t(buffer_sp->GetByteSize())})) {
3345     GetModule()->ReportWarning(
3346         "Decompression of section '%s' failed: %s",
3347         section->GetName().GetCString(),
3348         llvm::toString(std::move(error)).c_str());
3349     section_data.Clear();
3350     return 0;
3351   }
3352 
3353   section_data.SetData(buffer_sp);
3354   return buffer_sp->GetByteSize();
3355 }
3356 
3357 llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() {
3358   ParseProgramHeaders();
3359   return m_program_headers;
3360 }
3361 
3362 DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) {
3363   return DataExtractor(m_data, H.p_offset, H.p_filesz);
3364 }
3365 
3366 bool ObjectFileELF::AnySegmentHasPhysicalAddress() {
3367   for (const ELFProgramHeader &H : ProgramHeaders()) {
3368     if (H.p_paddr != 0)
3369       return true;
3370   }
3371   return false;
3372 }
3373 
3374 std::vector<ObjectFile::LoadableData>
3375 ObjectFileELF::GetLoadableData(Target &target) {
3376   // Create a list of loadable data from loadable segments, using physical
3377   // addresses if they aren't all null
3378   std::vector<LoadableData> loadables;
3379   bool should_use_paddr = AnySegmentHasPhysicalAddress();
3380   for (const ELFProgramHeader &H : ProgramHeaders()) {
3381     LoadableData loadable;
3382     if (H.p_type != llvm::ELF::PT_LOAD)
3383       continue;
3384     loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr;
3385     if (loadable.Dest == LLDB_INVALID_ADDRESS)
3386       continue;
3387     if (H.p_filesz == 0)
3388       continue;
3389     auto segment_data = GetSegmentData(H);
3390     loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(),
3391                                                 segment_data.GetByteSize());
3392     loadables.push_back(loadable);
3393   }
3394   return loadables;
3395 }
3396