1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/PointerUnion.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/MathExtras.h" 34 35 #define CASE_AND_STREAM(s, def, width) \ 36 case def: s->Printf("%-*s", width, #def); break; 37 38 using namespace lldb; 39 using namespace lldb_private; 40 using namespace elf; 41 using namespace llvm::ELF; 42 43 namespace { 44 45 // ELF note owner definitions 46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 47 const char *const LLDB_NT_OWNER_GNU = "GNU"; 48 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 49 const char *const LLDB_NT_OWNER_CSR = "csr"; 50 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 287 { 288 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 289 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 290 291 switch (mips_arch) 292 { 293 case llvm::ELF::EF_MIPS_ARCH_32: 294 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 295 case llvm::ELF::EF_MIPS_ARCH_32R2: 296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 297 case llvm::ELF::EF_MIPS_ARCH_32R6: 298 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 299 case llvm::ELF::EF_MIPS_ARCH_64: 300 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 301 case llvm::ELF::EF_MIPS_ARCH_64R2: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 303 case llvm::ELF::EF_MIPS_ARCH_64R6: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 305 default: 306 break; 307 } 308 309 return arch_variant; 310 } 311 312 static uint32_t 313 subTypeFromElfHeader(const elf::ELFHeader& header) 314 { 315 if (header.e_machine == llvm::ELF::EM_MIPS) 316 return mipsVariantFromElfFlags (header.e_flags, 317 header.e_ident[EI_DATA]); 318 319 return 320 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 321 kalimbaVariantFromElfFlags(header.e_flags) : 322 LLDB_INVALID_CPUTYPE; 323 } 324 325 //! The kalimba toolchain identifies a code section as being 326 //! one with the SHT_PROGBITS set in the section sh_type and the top 327 //! bit in the 32-bit address field set. 328 static lldb::SectionType 329 kalimbaSectionType( 330 const elf::ELFHeader& header, 331 const elf::ELFSectionHeader& sect_hdr) 332 { 333 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 334 { 335 return eSectionTypeOther; 336 } 337 338 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 339 { 340 return eSectionTypeZeroFill; 341 } 342 343 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 344 { 345 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 346 return KAL_CODE_BIT & sect_hdr.sh_addr ? 347 eSectionTypeCode : eSectionTypeData; 348 } 349 350 return eSectionTypeOther; 351 } 352 353 // Arbitrary constant used as UUID prefix for core files. 354 const uint32_t 355 ObjectFileELF::g_core_uuid_magic(0xE210C); 356 357 //------------------------------------------------------------------ 358 // Static methods. 359 //------------------------------------------------------------------ 360 void 361 ObjectFileELF::Initialize() 362 { 363 PluginManager::RegisterPlugin(GetPluginNameStatic(), 364 GetPluginDescriptionStatic(), 365 CreateInstance, 366 CreateMemoryInstance, 367 GetModuleSpecifications); 368 } 369 370 void 371 ObjectFileELF::Terminate() 372 { 373 PluginManager::UnregisterPlugin(CreateInstance); 374 } 375 376 lldb_private::ConstString 377 ObjectFileELF::GetPluginNameStatic() 378 { 379 static ConstString g_name("elf"); 380 return g_name; 381 } 382 383 const char * 384 ObjectFileELF::GetPluginDescriptionStatic() 385 { 386 return "ELF object file reader."; 387 } 388 389 ObjectFile * 390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 391 DataBufferSP &data_sp, 392 lldb::offset_t data_offset, 393 const lldb_private::FileSpec* file, 394 lldb::offset_t file_offset, 395 lldb::offset_t length) 396 { 397 if (!data_sp) 398 { 399 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 400 data_offset = 0; 401 } 402 403 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 404 { 405 const uint8_t *magic = data_sp->GetBytes() + data_offset; 406 if (ELFHeader::MagicBytesMatch(magic)) 407 { 408 // Update the data to contain the entire file if it doesn't already 409 if (data_sp->GetByteSize() < length) { 410 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 411 data_offset = 0; 412 magic = data_sp->GetBytes(); 413 } 414 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 415 if (address_size == 4 || address_size == 8) 416 { 417 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 418 ArchSpec spec; 419 if (objfile_ap->GetArchitecture(spec) && 420 objfile_ap->SetModulesArchitecture(spec)) 421 return objfile_ap.release(); 422 } 423 } 424 } 425 return NULL; 426 } 427 428 429 ObjectFile* 430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 431 DataBufferSP& data_sp, 432 const lldb::ProcessSP &process_sp, 433 lldb::addr_t header_addr) 434 { 435 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 436 { 437 const uint8_t *magic = data_sp->GetBytes(); 438 if (ELFHeader::MagicBytesMatch(magic)) 439 { 440 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 441 if (address_size == 4 || address_size == 8) 442 { 443 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 444 ArchSpec spec; 445 if (objfile_ap->GetArchitecture(spec) && 446 objfile_ap->SetModulesArchitecture(spec)) 447 return objfile_ap.release(); 448 } 449 } 450 } 451 return NULL; 452 } 453 454 bool 455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 456 lldb::addr_t data_offset, 457 lldb::addr_t data_length) 458 { 459 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 460 { 461 const uint8_t *magic = data_sp->GetBytes() + data_offset; 462 return ELFHeader::MagicBytesMatch(magic); 463 } 464 return false; 465 } 466 467 /* 468 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 469 * 470 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 471 * code or tables extracted from it, as desired without restriction. 472 */ 473 static uint32_t 474 calc_crc32(uint32_t crc, const void *buf, size_t size) 475 { 476 static const uint32_t g_crc32_tab[] = 477 { 478 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 479 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 480 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 481 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 482 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 483 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 484 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 485 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 486 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 487 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 488 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 489 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 490 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 491 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 492 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 493 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 494 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 495 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 496 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 497 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 498 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 499 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 500 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 501 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 502 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 503 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 504 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 505 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 506 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 507 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 508 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 509 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 510 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 511 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 512 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 513 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 514 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 515 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 516 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 517 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 518 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 519 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 520 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 521 }; 522 const uint8_t *p = (const uint8_t *)buf; 523 524 crc = crc ^ ~0U; 525 while (size--) 526 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 527 return crc ^ ~0U; 528 } 529 530 static uint32_t 531 calc_gnu_debuglink_crc32(const void *buf, size_t size) 532 { 533 return calc_crc32(0U, buf, size); 534 } 535 536 uint32_t 537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 538 DataExtractor& object_data) 539 { 540 typedef ProgramHeaderCollConstIter Iter; 541 542 uint32_t core_notes_crc = 0; 543 544 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 545 { 546 if (I->p_type == llvm::ELF::PT_NOTE) 547 { 548 const elf_off ph_offset = I->p_offset; 549 const size_t ph_size = I->p_filesz; 550 551 DataExtractor segment_data; 552 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 553 { 554 // The ELF program header contained incorrect data, 555 // probably corefile is incomplete or corrupted. 556 break; 557 } 558 559 core_notes_crc = calc_crc32(core_notes_crc, 560 segment_data.GetDataStart(), 561 segment_data.GetByteSize()); 562 } 563 } 564 565 return core_notes_crc; 566 } 567 568 static const char* 569 OSABIAsCString (unsigned char osabi_byte) 570 { 571 #define _MAKE_OSABI_CASE(x) case x: return #x 572 switch (osabi_byte) 573 { 574 _MAKE_OSABI_CASE(ELFOSABI_NONE); 575 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 576 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 577 _MAKE_OSABI_CASE(ELFOSABI_GNU); 578 _MAKE_OSABI_CASE(ELFOSABI_HURD); 579 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 580 _MAKE_OSABI_CASE(ELFOSABI_AIX); 581 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 582 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 583 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 584 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 585 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 586 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 587 _MAKE_OSABI_CASE(ELFOSABI_NSK); 588 _MAKE_OSABI_CASE(ELFOSABI_AROS); 589 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 590 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 591 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 592 _MAKE_OSABI_CASE(ELFOSABI_ARM); 593 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 594 default: 595 return "<unknown-osabi>"; 596 } 597 #undef _MAKE_OSABI_CASE 598 } 599 600 // 601 // WARNING : This function is being deprecated 602 // It's functionality has moved to ArchSpec::SetArchitecture 603 // This function is only being kept to validate the move. 604 // 605 // TODO : Remove this function 606 static bool 607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 608 { 609 switch (osabi_byte) 610 { 611 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 612 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 613 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 614 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 615 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 616 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 617 default: 618 ostype = llvm::Triple::OSType::UnknownOS; 619 } 620 return ostype != llvm::Triple::OSType::UnknownOS; 621 } 622 623 size_t 624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 625 lldb::DataBufferSP& data_sp, 626 lldb::offset_t data_offset, 627 lldb::offset_t file_offset, 628 lldb::offset_t length, 629 lldb_private::ModuleSpecList &specs) 630 { 631 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 632 633 const size_t initial_count = specs.GetSize(); 634 635 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 636 { 637 DataExtractor data; 638 data.SetData(data_sp); 639 elf::ELFHeader header; 640 if (header.Parse(data, &data_offset)) 641 { 642 if (data_sp) 643 { 644 ModuleSpec spec (file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 648 header.e_machine, 649 sub_type, 650 header.e_ident[EI_OSABI]); 651 652 if (spec.GetArchitecture().IsValid()) 653 { 654 llvm::Triple::OSType ostype; 655 llvm::Triple::VendorType vendor; 656 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 657 658 if (log) 659 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 665 // 666 // Validate it is ok to remove GetOsFromOSABI 667 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 668 assert(spec_ostype == ostype); 669 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 670 { 671 if (log) 672 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 673 } 674 675 // Try to get the UUID from the section list. Usually that's at the end, so 676 // map the file in if we don't have it already. 677 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 678 if (section_header_end > data_sp->GetByteSize()) 679 { 680 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 681 data.SetData(data_sp); 682 } 683 684 uint32_t gnu_debuglink_crc = 0; 685 std::string gnu_debuglink_file; 686 SectionHeaderColl section_headers; 687 lldb_private::UUID &uuid = spec.GetUUID(); 688 689 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 690 691 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 692 693 if (log) 694 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 695 696 if (!uuid.IsValid()) 697 { 698 uint32_t core_notes_crc = 0; 699 700 if (!gnu_debuglink_crc) 701 { 702 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 703 "Calculating module crc32 %s with size %" PRIu64 " KiB", 704 file.GetLastPathComponent().AsCString(), 705 (file.GetByteSize()-file_offset)/1024); 706 707 // For core files - which usually don't happen to have a gnu_debuglink, 708 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 709 // Thus we will need to fallback to something simpler. 710 if (header.e_type == llvm::ELF::ET_CORE) 711 { 712 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 713 if (program_headers_end > data_sp->GetByteSize()) 714 { 715 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 716 data.SetData(data_sp); 717 } 718 ProgramHeaderColl program_headers; 719 GetProgramHeaderInfo(program_headers, data, header); 720 721 size_t segment_data_end = 0; 722 for (ProgramHeaderCollConstIter I = program_headers.begin(); 723 I != program_headers.end(); ++I) 724 { 725 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 726 } 727 728 if (segment_data_end > data_sp->GetByteSize()) 729 { 730 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 731 data.SetData(data_sp); 732 } 733 734 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 735 } 736 else 737 { 738 // Need to map entire file into memory to calculate the crc. 739 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 740 data.SetData(data_sp); 741 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 742 } 743 } 744 if (gnu_debuglink_crc) 745 { 746 // Use 4 bytes of crc from the .gnu_debuglink section. 747 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 748 uuid.SetBytes (uuidt, sizeof(uuidt)); 749 } 750 else if (core_notes_crc) 751 { 752 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 753 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 754 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 755 uuid.SetBytes (uuidt, sizeof(uuidt)); 756 } 757 } 758 759 specs.Append(spec); 760 } 761 } 762 } 763 } 764 765 return specs.GetSize() - initial_count; 766 } 767 768 //------------------------------------------------------------------ 769 // PluginInterface protocol 770 //------------------------------------------------------------------ 771 lldb_private::ConstString 772 ObjectFileELF::GetPluginName() 773 { 774 return GetPluginNameStatic(); 775 } 776 777 uint32_t 778 ObjectFileELF::GetPluginVersion() 779 { 780 return m_plugin_version; 781 } 782 //------------------------------------------------------------------ 783 // ObjectFile protocol 784 //------------------------------------------------------------------ 785 786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 787 DataBufferSP& data_sp, 788 lldb::offset_t data_offset, 789 const FileSpec* file, 790 lldb::offset_t file_offset, 791 lldb::offset_t length) : 792 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 793 m_header(), 794 m_uuid(), 795 m_gnu_debuglink_file(), 796 m_gnu_debuglink_crc(0), 797 m_program_headers(), 798 m_section_headers(), 799 m_dynamic_symbols(), 800 m_filespec_ap(), 801 m_entry_point_address(), 802 m_arch_spec() 803 { 804 if (file) 805 m_file = *file; 806 ::memset(&m_header, 0, sizeof(m_header)); 807 } 808 809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 810 DataBufferSP& header_data_sp, 811 const lldb::ProcessSP &process_sp, 812 addr_t header_addr) : 813 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 814 m_header(), 815 m_uuid(), 816 m_gnu_debuglink_file(), 817 m_gnu_debuglink_crc(0), 818 m_program_headers(), 819 m_section_headers(), 820 m_dynamic_symbols(), 821 m_filespec_ap(), 822 m_entry_point_address(), 823 m_arch_spec() 824 { 825 ::memset(&m_header, 0, sizeof(m_header)); 826 } 827 828 ObjectFileELF::~ObjectFileELF() 829 { 830 } 831 832 bool 833 ObjectFileELF::IsExecutable() const 834 { 835 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 836 } 837 838 bool 839 ObjectFileELF::SetLoadAddress (Target &target, 840 lldb::addr_t value, 841 bool value_is_offset) 842 { 843 ModuleSP module_sp = GetModule(); 844 if (module_sp) 845 { 846 size_t num_loaded_sections = 0; 847 SectionList *section_list = GetSectionList (); 848 if (section_list) 849 { 850 if (!value_is_offset) 851 { 852 bool found_offset = false; 853 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 854 { 855 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 856 if (header == nullptr) 857 continue; 858 859 if (header->p_type != PT_LOAD || header->p_offset != 0) 860 continue; 861 862 value = value - header->p_vaddr; 863 found_offset = true; 864 break; 865 } 866 if (!found_offset) 867 return false; 868 } 869 870 const size_t num_sections = section_list->GetSize(); 871 size_t sect_idx = 0; 872 873 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 874 { 875 // Iterate through the object file sections to find all 876 // of the sections that have SHF_ALLOC in their flag bits. 877 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 878 // if (section_sp && !section_sp->IsThreadSpecific()) 879 if (section_sp && section_sp->Test(SHF_ALLOC)) 880 { 881 lldb::addr_t load_addr = section_sp->GetFileAddress() + value; 882 883 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 884 // the bytes are the overflow from the addition. 885 if (GetAddressByteSize() == 4) 886 load_addr &= 0xFFFFFFFF; 887 888 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 889 ++num_loaded_sections; 890 } 891 } 892 return num_loaded_sections > 0; 893 } 894 } 895 return false; 896 } 897 898 ByteOrder 899 ObjectFileELF::GetByteOrder() const 900 { 901 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 902 return eByteOrderBig; 903 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 904 return eByteOrderLittle; 905 return eByteOrderInvalid; 906 } 907 908 uint32_t 909 ObjectFileELF::GetAddressByteSize() const 910 { 911 return m_data.GetAddressByteSize(); 912 } 913 914 // Top 16 bits of the `Symbol` flags are available. 915 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 916 917 AddressClass 918 ObjectFileELF::GetAddressClass (addr_t file_addr) 919 { 920 Symtab* symtab = GetSymtab(); 921 if (!symtab) 922 return eAddressClassUnknown; 923 924 // The address class is determined based on the symtab. Ask it from the object file what 925 // contains the symtab information. 926 ObjectFile* symtab_objfile = symtab->GetObjectFile(); 927 if (symtab_objfile != nullptr && symtab_objfile != this) 928 return symtab_objfile->GetAddressClass(file_addr); 929 930 auto res = ObjectFile::GetAddressClass (file_addr); 931 if (res != eAddressClassCode) 932 return res; 933 934 auto ub = m_address_class_map.upper_bound(file_addr); 935 if (ub == m_address_class_map.begin()) 936 { 937 // No entry in the address class map before the address. Return 938 // default address class for an address in a code section. 939 return eAddressClassCode; 940 } 941 942 // Move iterator to the address class entry preceding address 943 --ub; 944 945 return ub->second; 946 } 947 948 size_t 949 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 950 { 951 return std::distance(m_section_headers.begin(), I) + 1u; 952 } 953 954 size_t 955 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 956 { 957 return std::distance(m_section_headers.begin(), I) + 1u; 958 } 959 960 bool 961 ObjectFileELF::ParseHeader() 962 { 963 lldb::offset_t offset = 0; 964 if (!m_header.Parse(m_data, &offset)) 965 return false; 966 967 if (!IsInMemory()) 968 return true; 969 970 // For in memory object files m_data might not contain the full object file. Try to load it 971 // until the end of the "Section header table" what is at the end of the ELF file. 972 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 973 if (m_data.GetByteSize() < file_size) 974 { 975 ProcessSP process_sp (m_process_wp.lock()); 976 if (!process_sp) 977 return false; 978 979 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 980 if (!data_sp) 981 return false; 982 m_data.SetData(data_sp, 0, file_size); 983 } 984 985 return true; 986 } 987 988 bool 989 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 990 { 991 // Need to parse the section list to get the UUIDs, so make sure that's been done. 992 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 993 return false; 994 995 if (m_uuid.IsValid()) 996 { 997 // We have the full build id uuid. 998 *uuid = m_uuid; 999 return true; 1000 } 1001 else if (GetType() == ObjectFile::eTypeCoreFile) 1002 { 1003 uint32_t core_notes_crc = 0; 1004 1005 if (!ParseProgramHeaders()) 1006 return false; 1007 1008 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 1009 1010 if (core_notes_crc) 1011 { 1012 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 1013 // look different form .gnu_debuglink crc - followed by 4 bytes of note 1014 // segments crc. 1015 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 1016 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1017 } 1018 } 1019 else 1020 { 1021 if (!m_gnu_debuglink_crc) 1022 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1023 if (m_gnu_debuglink_crc) 1024 { 1025 // Use 4 bytes of crc from the .gnu_debuglink section. 1026 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1027 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1028 } 1029 } 1030 1031 if (m_uuid.IsValid()) 1032 { 1033 *uuid = m_uuid; 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 lldb_private::FileSpecList 1041 ObjectFileELF::GetDebugSymbolFilePaths() 1042 { 1043 FileSpecList file_spec_list; 1044 1045 if (!m_gnu_debuglink_file.empty()) 1046 { 1047 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1048 file_spec_list.Append (file_spec); 1049 } 1050 return file_spec_list; 1051 } 1052 1053 uint32_t 1054 ObjectFileELF::GetDependentModules(FileSpecList &files) 1055 { 1056 size_t num_modules = ParseDependentModules(); 1057 uint32_t num_specs = 0; 1058 1059 for (unsigned i = 0; i < num_modules; ++i) 1060 { 1061 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1062 num_specs++; 1063 } 1064 1065 return num_specs; 1066 } 1067 1068 Address 1069 ObjectFileELF::GetImageInfoAddress(Target *target) 1070 { 1071 if (!ParseDynamicSymbols()) 1072 return Address(); 1073 1074 SectionList *section_list = GetSectionList(); 1075 if (!section_list) 1076 return Address(); 1077 1078 // Find the SHT_DYNAMIC (.dynamic) section. 1079 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1080 if (!dynsym_section_sp) 1081 return Address(); 1082 assert (dynsym_section_sp->GetObjectFile() == this); 1083 1084 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1085 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1086 if (!dynsym_hdr) 1087 return Address(); 1088 1089 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1090 { 1091 ELFDynamic &symbol = m_dynamic_symbols[i]; 1092 1093 if (symbol.d_tag == DT_DEBUG) 1094 { 1095 // Compute the offset as the number of previous entries plus the 1096 // size of d_tag. 1097 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1098 return Address(dynsym_section_sp, offset); 1099 } 1100 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP exists in non-PIE. 1101 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target) 1102 { 1103 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1104 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1105 if (dyn_base == LLDB_INVALID_ADDRESS) 1106 return Address(); 1107 1108 Error error; 1109 if (symbol.d_tag == DT_MIPS_RLD_MAP) 1110 { 1111 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1112 Address addr; 1113 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1114 return addr; 1115 } 1116 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) 1117 { 1118 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, relative to the address of the tag. 1119 uint64_t rel_offset; 1120 rel_offset = target->ReadUnsignedIntegerFromMemory(dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1121 if (error.Success() && rel_offset != UINT64_MAX) 1122 { 1123 Address addr; 1124 addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1125 addr.SetOffset (debug_ptr_address); 1126 return addr; 1127 } 1128 } 1129 } 1130 } 1131 1132 return Address(); 1133 } 1134 1135 lldb_private::Address 1136 ObjectFileELF::GetEntryPointAddress () 1137 { 1138 if (m_entry_point_address.IsValid()) 1139 return m_entry_point_address; 1140 1141 if (!ParseHeader() || !IsExecutable()) 1142 return m_entry_point_address; 1143 1144 SectionList *section_list = GetSectionList(); 1145 addr_t offset = m_header.e_entry; 1146 1147 if (!section_list) 1148 m_entry_point_address.SetOffset(offset); 1149 else 1150 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1151 return m_entry_point_address; 1152 } 1153 1154 //---------------------------------------------------------------------- 1155 // ParseDependentModules 1156 //---------------------------------------------------------------------- 1157 size_t 1158 ObjectFileELF::ParseDependentModules() 1159 { 1160 if (m_filespec_ap.get()) 1161 return m_filespec_ap->GetSize(); 1162 1163 m_filespec_ap.reset(new FileSpecList()); 1164 1165 if (!ParseSectionHeaders()) 1166 return 0; 1167 1168 SectionList *section_list = GetSectionList(); 1169 if (!section_list) 1170 return 0; 1171 1172 // Find the SHT_DYNAMIC section. 1173 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1174 if (!dynsym) 1175 return 0; 1176 assert (dynsym->GetObjectFile() == this); 1177 1178 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1179 if (!header) 1180 return 0; 1181 // sh_link: section header index of string table used by entries in the section. 1182 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1183 if (!dynstr) 1184 return 0; 1185 1186 DataExtractor dynsym_data; 1187 DataExtractor dynstr_data; 1188 if (ReadSectionData(dynsym, dynsym_data) && 1189 ReadSectionData(dynstr, dynstr_data)) 1190 { 1191 ELFDynamic symbol; 1192 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1193 lldb::offset_t offset = 0; 1194 1195 // The only type of entries we are concerned with are tagged DT_NEEDED, 1196 // yielding the name of a required library. 1197 while (offset < section_size) 1198 { 1199 if (!symbol.Parse(dynsym_data, &offset)) 1200 break; 1201 1202 if (symbol.d_tag != DT_NEEDED) 1203 continue; 1204 1205 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1206 const char *lib_name = dynstr_data.PeekCStr(str_index); 1207 m_filespec_ap->Append(FileSpec(lib_name, true)); 1208 } 1209 } 1210 1211 return m_filespec_ap->GetSize(); 1212 } 1213 1214 //---------------------------------------------------------------------- 1215 // GetProgramHeaderInfo 1216 //---------------------------------------------------------------------- 1217 size_t 1218 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1219 DataExtractor &object_data, 1220 const ELFHeader &header) 1221 { 1222 // We have already parsed the program headers 1223 if (!program_headers.empty()) 1224 return program_headers.size(); 1225 1226 // If there are no program headers to read we are done. 1227 if (header.e_phnum == 0) 1228 return 0; 1229 1230 program_headers.resize(header.e_phnum); 1231 if (program_headers.size() != header.e_phnum) 1232 return 0; 1233 1234 const size_t ph_size = header.e_phnum * header.e_phentsize; 1235 const elf_off ph_offset = header.e_phoff; 1236 DataExtractor data; 1237 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1238 return 0; 1239 1240 uint32_t idx; 1241 lldb::offset_t offset; 1242 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1243 { 1244 if (program_headers[idx].Parse(data, &offset) == false) 1245 break; 1246 } 1247 1248 if (idx < program_headers.size()) 1249 program_headers.resize(idx); 1250 1251 return program_headers.size(); 1252 1253 } 1254 1255 //---------------------------------------------------------------------- 1256 // ParseProgramHeaders 1257 //---------------------------------------------------------------------- 1258 size_t 1259 ObjectFileELF::ParseProgramHeaders() 1260 { 1261 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1262 } 1263 1264 lldb_private::Error 1265 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1266 { 1267 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1268 Error error; 1269 1270 lldb::offset_t offset = 0; 1271 1272 while (true) 1273 { 1274 // Parse the note header. If this fails, bail out. 1275 ELFNote note = ELFNote(); 1276 if (!note.Parse(data, &offset)) 1277 { 1278 // We're done. 1279 return error; 1280 } 1281 1282 // If a tag processor handles the tag, it should set processed to true, and 1283 // the loop will assume the tag processing has moved entirely past the note's payload. 1284 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1285 bool processed = false; 1286 1287 if (log) 1288 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1289 1290 // Process FreeBSD ELF notes. 1291 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1292 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1293 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1294 { 1295 // We'll consume the payload below. 1296 processed = true; 1297 1298 // Pull out the min version info. 1299 uint32_t version_info; 1300 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1301 { 1302 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1303 return error; 1304 } 1305 1306 // Convert the version info into a major/minor number. 1307 const uint32_t version_major = version_info / 100000; 1308 const uint32_t version_minor = (version_info / 1000) % 100; 1309 1310 char os_name[32]; 1311 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1312 1313 // Set the elf OS version to FreeBSD. Also clear the vendor. 1314 arch_spec.GetTriple ().setOSName (os_name); 1315 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1316 1317 if (log) 1318 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1319 } 1320 // Process GNU ELF notes. 1321 else if (note.n_name == LLDB_NT_OWNER_GNU) 1322 { 1323 switch (note.n_type) 1324 { 1325 case LLDB_NT_GNU_ABI_TAG: 1326 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1327 { 1328 // We'll consume the payload below. 1329 processed = true; 1330 1331 // Pull out the min OS version supporting the ABI. 1332 uint32_t version_info[4]; 1333 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1334 { 1335 error.SetErrorString ("failed to read GNU ABI note payload"); 1336 return error; 1337 } 1338 1339 // Set the OS per the OS field. 1340 switch (version_info[0]) 1341 { 1342 case LLDB_NT_GNU_ABI_OS_LINUX: 1343 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1344 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1345 if (log) 1346 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1347 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1348 break; 1349 case LLDB_NT_GNU_ABI_OS_HURD: 1350 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1351 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1352 if (log) 1353 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1354 break; 1355 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1356 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1357 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1358 if (log) 1359 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1360 break; 1361 default: 1362 if (log) 1363 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1364 break; 1365 } 1366 } 1367 break; 1368 1369 case LLDB_NT_GNU_BUILD_ID_TAG: 1370 // Only bother processing this if we don't already have the uuid set. 1371 if (!uuid.IsValid()) 1372 { 1373 // We'll consume the payload below. 1374 processed = true; 1375 1376 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1377 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1378 { 1379 uint8_t uuidbuf[20]; 1380 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1381 { 1382 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1383 return error; 1384 } 1385 1386 // Save the build id as the UUID for the module. 1387 uuid.SetBytes (uuidbuf, note.n_descsz); 1388 } 1389 } 1390 break; 1391 } 1392 } 1393 // Process NetBSD ELF notes. 1394 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1395 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1396 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1397 { 1398 1399 // We'll consume the payload below. 1400 processed = true; 1401 1402 // Pull out the min version info. 1403 uint32_t version_info; 1404 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1405 { 1406 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1407 return error; 1408 } 1409 1410 // Set the elf OS version to NetBSD. Also clear the vendor. 1411 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1412 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1413 1414 if (log) 1415 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1416 } 1417 // Process CSR kalimba notes 1418 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1419 (note.n_name == LLDB_NT_OWNER_CSR)) 1420 { 1421 // We'll consume the payload below. 1422 processed = true; 1423 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1424 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1425 1426 // TODO At some point the description string could be processed. 1427 // It could provide a steer towards the kalimba variant which 1428 // this ELF targets. 1429 if(note.n_descsz) 1430 { 1431 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1432 (void)cstr; 1433 } 1434 } 1435 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1436 { 1437 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1438 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1439 } 1440 1441 if (!processed) 1442 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1443 } 1444 1445 return error; 1446 } 1447 1448 1449 //---------------------------------------------------------------------- 1450 // GetSectionHeaderInfo 1451 //---------------------------------------------------------------------- 1452 size_t 1453 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1454 lldb_private::DataExtractor &object_data, 1455 const elf::ELFHeader &header, 1456 lldb_private::UUID &uuid, 1457 std::string &gnu_debuglink_file, 1458 uint32_t &gnu_debuglink_crc, 1459 ArchSpec &arch_spec) 1460 { 1461 // Don't reparse the section headers if we already did that. 1462 if (!section_headers.empty()) 1463 return section_headers.size(); 1464 1465 // Only initialize the arch_spec to okay defaults if they're not already set. 1466 // We'll refine this with note data as we parse the notes. 1467 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1468 { 1469 llvm::Triple::OSType ostype; 1470 llvm::Triple::OSType spec_ostype; 1471 const uint32_t sub_type = subTypeFromElfHeader(header); 1472 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1473 // 1474 // Validate if it is ok to remove GetOsFromOSABI 1475 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1476 spec_ostype = arch_spec.GetTriple ().getOS (); 1477 assert(spec_ostype == ostype); 1478 } 1479 1480 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1481 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1482 { 1483 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) 1484 { 1485 case llvm::ELF::EF_MIPS_MICROMIPS: 1486 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips); 1487 break; 1488 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1489 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16); 1490 break; 1491 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1492 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx); 1493 break; 1494 default: 1495 break; 1496 } 1497 } 1498 1499 // If there are no section headers we are done. 1500 if (header.e_shnum == 0) 1501 return 0; 1502 1503 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1504 1505 section_headers.resize(header.e_shnum); 1506 if (section_headers.size() != header.e_shnum) 1507 return 0; 1508 1509 const size_t sh_size = header.e_shnum * header.e_shentsize; 1510 const elf_off sh_offset = header.e_shoff; 1511 DataExtractor sh_data; 1512 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1513 return 0; 1514 1515 uint32_t idx; 1516 lldb::offset_t offset; 1517 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1518 { 1519 if (section_headers[idx].Parse(sh_data, &offset) == false) 1520 break; 1521 } 1522 if (idx < section_headers.size()) 1523 section_headers.resize(idx); 1524 1525 const unsigned strtab_idx = header.e_shstrndx; 1526 if (strtab_idx && strtab_idx < section_headers.size()) 1527 { 1528 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1529 const size_t byte_size = sheader.sh_size; 1530 const Elf64_Off offset = sheader.sh_offset; 1531 lldb_private::DataExtractor shstr_data; 1532 1533 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1534 { 1535 for (SectionHeaderCollIter I = section_headers.begin(); 1536 I != section_headers.end(); ++I) 1537 { 1538 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1539 const ELFSectionHeaderInfo &sheader = *I; 1540 const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1541 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1542 1543 I->section_name = name; 1544 1545 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1546 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1547 { 1548 uint32_t arch_flags = arch_spec.GetFlags (); 1549 DataExtractor data; 1550 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) 1551 { 1552 1553 if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size)) 1554 { 1555 lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0 1556 arch_flags |= data.GetU32 (&ase_offset); 1557 } 1558 } 1559 // Settings appropriate ArchSpec ABI Flags 1560 if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) 1561 { 1562 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1563 } 1564 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI_O32) 1565 { 1566 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1567 } 1568 arch_spec.SetFlags (arch_flags); 1569 } 1570 1571 if (name == g_sect_name_gnu_debuglink) 1572 { 1573 DataExtractor data; 1574 if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size)) 1575 { 1576 lldb::offset_t gnu_debuglink_offset = 0; 1577 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1578 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1579 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1580 } 1581 } 1582 1583 // Process ELF note section entries. 1584 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1585 1586 // The section header ".note.android.ident" is stored as a 1587 // PROGBITS type header but it is actually a note header. 1588 static ConstString g_sect_name_android_ident (".note.android.ident"); 1589 if (!is_note_header && name == g_sect_name_android_ident) 1590 is_note_header = true; 1591 1592 if (is_note_header) 1593 { 1594 // Allow notes to refine module info. 1595 DataExtractor data; 1596 if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size)) 1597 { 1598 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1599 if (error.Fail ()) 1600 { 1601 if (log) 1602 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1603 } 1604 } 1605 } 1606 } 1607 1608 return section_headers.size(); 1609 } 1610 } 1611 1612 section_headers.clear(); 1613 return 0; 1614 } 1615 1616 size_t 1617 ObjectFileELF::GetProgramHeaderCount() 1618 { 1619 return ParseProgramHeaders(); 1620 } 1621 1622 const elf::ELFProgramHeader * 1623 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1624 { 1625 if (!id || !ParseProgramHeaders()) 1626 return NULL; 1627 1628 if (--id < m_program_headers.size()) 1629 return &m_program_headers[id]; 1630 1631 return NULL; 1632 } 1633 1634 DataExtractor 1635 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1636 { 1637 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1638 if (segment_header == NULL) 1639 return DataExtractor(); 1640 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1641 } 1642 1643 std::string 1644 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1645 { 1646 size_t pos = symbol_name.find('@'); 1647 return symbol_name.substr(0, pos).str(); 1648 } 1649 1650 //---------------------------------------------------------------------- 1651 // ParseSectionHeaders 1652 //---------------------------------------------------------------------- 1653 size_t 1654 ObjectFileELF::ParseSectionHeaders() 1655 { 1656 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1657 } 1658 1659 const ObjectFileELF::ELFSectionHeaderInfo * 1660 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1661 { 1662 if (!id || !ParseSectionHeaders()) 1663 return NULL; 1664 1665 if (--id < m_section_headers.size()) 1666 return &m_section_headers[id]; 1667 1668 return NULL; 1669 } 1670 1671 lldb::user_id_t 1672 ObjectFileELF::GetSectionIndexByName(const char* name) 1673 { 1674 if (!name || !name[0] || !ParseSectionHeaders()) 1675 return 0; 1676 for (size_t i = 1; i < m_section_headers.size(); ++i) 1677 if (m_section_headers[i].section_name == ConstString(name)) 1678 return i; 1679 return 0; 1680 } 1681 1682 void 1683 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1684 { 1685 if (!m_sections_ap.get() && ParseSectionHeaders()) 1686 { 1687 m_sections_ap.reset(new SectionList()); 1688 1689 for (SectionHeaderCollIter I = m_section_headers.begin(); 1690 I != m_section_headers.end(); ++I) 1691 { 1692 const ELFSectionHeaderInfo &header = *I; 1693 1694 ConstString& name = I->section_name; 1695 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1696 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1697 1698 static ConstString g_sect_name_text (".text"); 1699 static ConstString g_sect_name_data (".data"); 1700 static ConstString g_sect_name_bss (".bss"); 1701 static ConstString g_sect_name_tdata (".tdata"); 1702 static ConstString g_sect_name_tbss (".tbss"); 1703 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1704 static ConstString g_sect_name_dwarf_debug_addr (".debug_addr"); 1705 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1706 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1707 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1708 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1709 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1710 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1711 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1712 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1713 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1714 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1715 static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets"); 1716 static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo"); 1717 static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo"); 1718 static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo"); 1719 static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo"); 1720 static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo"); 1721 static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo"); 1722 static ConstString g_sect_name_eh_frame (".eh_frame"); 1723 1724 SectionType sect_type = eSectionTypeOther; 1725 1726 bool is_thread_specific = false; 1727 1728 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1729 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1730 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1731 else if (name == g_sect_name_tdata) 1732 { 1733 sect_type = eSectionTypeData; 1734 is_thread_specific = true; 1735 } 1736 else if (name == g_sect_name_tbss) 1737 { 1738 sect_type = eSectionTypeZeroFill; 1739 is_thread_specific = true; 1740 } 1741 // .debug_abbrev – Abbreviations used in the .debug_info section 1742 // .debug_aranges – Lookup table for mapping addresses to compilation units 1743 // .debug_frame – Call frame information 1744 // .debug_info – The core DWARF information section 1745 // .debug_line – Line number information 1746 // .debug_loc – Location lists used in DW_AT_location attributes 1747 // .debug_macinfo – Macro information 1748 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1749 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1750 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1751 // .debug_str – String table used in .debug_info 1752 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1753 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1754 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1755 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1756 else if (name == g_sect_name_dwarf_debug_addr) sect_type = eSectionTypeDWARFDebugAddr; 1757 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1758 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1759 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1760 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1761 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1762 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1763 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1764 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1765 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1766 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1767 else if (name == g_sect_name_dwarf_debug_str_offsets) sect_type = eSectionTypeDWARFDebugStrOffsets; 1768 else if (name == g_sect_name_dwarf_debug_abbrev_dwo) sect_type = eSectionTypeDWARFDebugAbbrev; 1769 else if (name == g_sect_name_dwarf_debug_info_dwo) sect_type = eSectionTypeDWARFDebugInfo; 1770 else if (name == g_sect_name_dwarf_debug_line_dwo) sect_type = eSectionTypeDWARFDebugLine; 1771 else if (name == g_sect_name_dwarf_debug_loc_dwo) sect_type = eSectionTypeDWARFDebugLoc; 1772 else if (name == g_sect_name_dwarf_debug_str_dwo) sect_type = eSectionTypeDWARFDebugStr; 1773 else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets; 1774 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1775 1776 switch (header.sh_type) 1777 { 1778 case SHT_SYMTAB: 1779 assert (sect_type == eSectionTypeOther); 1780 sect_type = eSectionTypeELFSymbolTable; 1781 break; 1782 case SHT_DYNSYM: 1783 assert (sect_type == eSectionTypeOther); 1784 sect_type = eSectionTypeELFDynamicSymbols; 1785 break; 1786 case SHT_RELA: 1787 case SHT_REL: 1788 assert (sect_type == eSectionTypeOther); 1789 sect_type = eSectionTypeELFRelocationEntries; 1790 break; 1791 case SHT_DYNAMIC: 1792 assert (sect_type == eSectionTypeOther); 1793 sect_type = eSectionTypeELFDynamicLinkInfo; 1794 break; 1795 } 1796 1797 if (eSectionTypeOther == sect_type) 1798 { 1799 // the kalimba toolchain assumes that ELF section names are free-form. It does 1800 // support linkscripts which (can) give rise to various arbitrarily named 1801 // sections being "Code" or "Data". 1802 sect_type = kalimbaSectionType(m_header, header); 1803 } 1804 1805 const uint32_t target_bytes_size = 1806 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1807 m_arch_spec.GetDataByteSize() : 1808 eSectionTypeCode == sect_type ? 1809 m_arch_spec.GetCodeByteSize() : 1; 1810 1811 elf::elf_xword log2align = (header.sh_addralign==0) 1812 ? 0 1813 : llvm::Log2_64(header.sh_addralign); 1814 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1815 this, // ObjectFile to which this section belongs and should read section data from. 1816 SectionIndex(I), // Section ID. 1817 name, // Section name. 1818 sect_type, // Section type. 1819 header.sh_addr, // VM address. 1820 vm_size, // VM size in bytes of this section. 1821 header.sh_offset, // Offset of this section in the file. 1822 file_size, // Size of the section as found in the file. 1823 log2align, // Alignment of the section 1824 header.sh_flags, // Flags for this section. 1825 target_bytes_size));// Number of host bytes per target byte 1826 1827 if (is_thread_specific) 1828 section_sp->SetIsThreadSpecific (is_thread_specific); 1829 m_sections_ap->AddSection(section_sp); 1830 } 1831 } 1832 1833 if (m_sections_ap.get()) 1834 { 1835 if (GetType() == eTypeDebugInfo) 1836 { 1837 static const SectionType g_sections[] = 1838 { 1839 eSectionTypeDWARFDebugAbbrev, 1840 eSectionTypeDWARFDebugAddr, 1841 eSectionTypeDWARFDebugAranges, 1842 eSectionTypeDWARFDebugFrame, 1843 eSectionTypeDWARFDebugInfo, 1844 eSectionTypeDWARFDebugLine, 1845 eSectionTypeDWARFDebugLoc, 1846 eSectionTypeDWARFDebugMacInfo, 1847 eSectionTypeDWARFDebugPubNames, 1848 eSectionTypeDWARFDebugPubTypes, 1849 eSectionTypeDWARFDebugRanges, 1850 eSectionTypeDWARFDebugStr, 1851 eSectionTypeDWARFDebugStrOffsets, 1852 eSectionTypeELFSymbolTable, 1853 }; 1854 SectionList *elf_section_list = m_sections_ap.get(); 1855 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1856 { 1857 SectionType section_type = g_sections[idx]; 1858 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1859 if (section_sp) 1860 { 1861 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1862 if (module_section_sp) 1863 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1864 else 1865 unified_section_list.AddSection (section_sp); 1866 } 1867 } 1868 } 1869 else 1870 { 1871 unified_section_list = *m_sections_ap; 1872 } 1873 } 1874 } 1875 1876 // Find the arm/aarch64 mapping symbol character in the given symbol name. Mapping symbols have the 1877 // form of "$<char>[.<any>]*". Additionally we recognize cases when the mapping symbol prefixed by 1878 // an arbitrary string because if a symbol prefix added to each symbol in the object file with 1879 // objcopy then the mapping symbols are also prefixed. 1880 static char 1881 FindArmAarch64MappingSymbol(const char* symbol_name) 1882 { 1883 if (!symbol_name) 1884 return '\0'; 1885 1886 const char* dollar_pos = ::strchr(symbol_name, '$'); 1887 if (!dollar_pos || dollar_pos[1] == '\0') 1888 return '\0'; 1889 1890 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 1891 return dollar_pos[1]; 1892 return '\0'; 1893 } 1894 1895 // private 1896 unsigned 1897 ObjectFileELF::ParseSymbols (Symtab *symtab, 1898 user_id_t start_id, 1899 SectionList *section_list, 1900 const size_t num_symbols, 1901 const DataExtractor &symtab_data, 1902 const DataExtractor &strtab_data) 1903 { 1904 ELFSymbol symbol; 1905 lldb::offset_t offset = 0; 1906 1907 static ConstString text_section_name(".text"); 1908 static ConstString init_section_name(".init"); 1909 static ConstString fini_section_name(".fini"); 1910 static ConstString ctors_section_name(".ctors"); 1911 static ConstString dtors_section_name(".dtors"); 1912 1913 static ConstString data_section_name(".data"); 1914 static ConstString rodata_section_name(".rodata"); 1915 static ConstString rodata1_section_name(".rodata1"); 1916 static ConstString data2_section_name(".data1"); 1917 static ConstString bss_section_name(".bss"); 1918 static ConstString opd_section_name(".opd"); // For ppc64 1919 1920 // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full 1921 // .text section what causes issues with displaying unusable symbol name to the user and very 1922 // slow unwinding speed because the instruction emulation based unwind plans try to emulate all 1923 // instructions in these symbols. Don't add these symbols to the symbol list as they have no 1924 // use for the debugger and they are causing a lot of trouble. 1925 // Filtering can't be restricted to Android because this special object file don't contain the 1926 // note section specifying the environment to Android but the custom extension and file name 1927 // makes it highly unlikely that this will collide with anything else. 1928 bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat"); 1929 1930 unsigned i; 1931 for (i = 0; i < num_symbols; ++i) 1932 { 1933 if (symbol.Parse(symtab_data, &offset) == false) 1934 break; 1935 1936 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1937 1938 // No need to add non-section symbols that have no names 1939 if (symbol.getType() != STT_SECTION && 1940 (symbol_name == NULL || symbol_name[0] == '\0')) 1941 continue; 1942 1943 // Skipping oatdata and oatexec sections if it is requested. See details above the 1944 // definition of skip_oatdata_oatexec for the reasons. 1945 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) 1946 continue; 1947 1948 SectionSP symbol_section_sp; 1949 SymbolType symbol_type = eSymbolTypeInvalid; 1950 Elf64_Half symbol_idx = symbol.st_shndx; 1951 1952 switch (symbol_idx) 1953 { 1954 case SHN_ABS: 1955 symbol_type = eSymbolTypeAbsolute; 1956 break; 1957 case SHN_UNDEF: 1958 symbol_type = eSymbolTypeUndefined; 1959 break; 1960 default: 1961 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1962 break; 1963 } 1964 1965 // If a symbol is undefined do not process it further even if it has a STT type 1966 if (symbol_type != eSymbolTypeUndefined) 1967 { 1968 switch (symbol.getType()) 1969 { 1970 default: 1971 case STT_NOTYPE: 1972 // The symbol's type is not specified. 1973 break; 1974 1975 case STT_OBJECT: 1976 // The symbol is associated with a data object, such as a variable, 1977 // an array, etc. 1978 symbol_type = eSymbolTypeData; 1979 break; 1980 1981 case STT_FUNC: 1982 // The symbol is associated with a function or other executable code. 1983 symbol_type = eSymbolTypeCode; 1984 break; 1985 1986 case STT_SECTION: 1987 // The symbol is associated with a section. Symbol table entries of 1988 // this type exist primarily for relocation and normally have 1989 // STB_LOCAL binding. 1990 break; 1991 1992 case STT_FILE: 1993 // Conventionally, the symbol's name gives the name of the source 1994 // file associated with the object file. A file symbol has STB_LOCAL 1995 // binding, its section index is SHN_ABS, and it precedes the other 1996 // STB_LOCAL symbols for the file, if it is present. 1997 symbol_type = eSymbolTypeSourceFile; 1998 break; 1999 2000 case STT_GNU_IFUNC: 2001 // The symbol is associated with an indirect function. The actual 2002 // function will be resolved if it is referenced. 2003 symbol_type = eSymbolTypeResolver; 2004 break; 2005 } 2006 } 2007 2008 if (symbol_type == eSymbolTypeInvalid) 2009 { 2010 if (symbol_section_sp) 2011 { 2012 const ConstString §_name = symbol_section_sp->GetName(); 2013 if (sect_name == text_section_name || 2014 sect_name == init_section_name || 2015 sect_name == fini_section_name || 2016 sect_name == ctors_section_name || 2017 sect_name == dtors_section_name) 2018 { 2019 symbol_type = eSymbolTypeCode; 2020 } 2021 else if (sect_name == data_section_name || 2022 sect_name == data2_section_name || 2023 sect_name == rodata_section_name || 2024 sect_name == rodata1_section_name || 2025 sect_name == bss_section_name) 2026 { 2027 symbol_type = eSymbolTypeData; 2028 } 2029 } 2030 } 2031 2032 int64_t symbol_value_offset = 0; 2033 uint32_t additional_flags = 0; 2034 2035 ArchSpec arch; 2036 if (GetArchitecture(arch)) 2037 { 2038 if (arch.GetMachine() == llvm::Triple::arm) 2039 { 2040 if (symbol.getBinding() == STB_LOCAL) 2041 { 2042 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2043 if (symbol_type == eSymbolTypeCode) 2044 { 2045 switch (mapping_symbol) 2046 { 2047 case 'a': 2048 // $a[.<any>]* - marks an ARM instruction sequence 2049 m_address_class_map[symbol.st_value] = eAddressClassCode; 2050 break; 2051 case 'b': 2052 case 't': 2053 // $b[.<any>]* - marks a THUMB BL instruction sequence 2054 // $t[.<any>]* - marks a THUMB instruction sequence 2055 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2056 break; 2057 case 'd': 2058 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2059 m_address_class_map[symbol.st_value] = eAddressClassData; 2060 break; 2061 } 2062 } 2063 if (mapping_symbol) 2064 continue; 2065 } 2066 } 2067 else if (arch.GetMachine() == llvm::Triple::aarch64) 2068 { 2069 if (symbol.getBinding() == STB_LOCAL) 2070 { 2071 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2072 if (symbol_type == eSymbolTypeCode) 2073 { 2074 switch (mapping_symbol) 2075 { 2076 case 'x': 2077 // $x[.<any>]* - marks an A64 instruction sequence 2078 m_address_class_map[symbol.st_value] = eAddressClassCode; 2079 break; 2080 case 'd': 2081 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2082 m_address_class_map[symbol.st_value] = eAddressClassData; 2083 break; 2084 } 2085 } 2086 if (mapping_symbol) 2087 continue; 2088 } 2089 } 2090 2091 if (arch.GetMachine() == llvm::Triple::arm) 2092 { 2093 if (symbol_type == eSymbolTypeCode) 2094 { 2095 if (symbol.st_value & 1) 2096 { 2097 // Subtracting 1 from the address effectively unsets 2098 // the low order bit, which results in the address 2099 // actually pointing to the beginning of the symbol. 2100 // This delta will be used below in conjunction with 2101 // symbol.st_value to produce the final symbol_value 2102 // that we store in the symtab. 2103 symbol_value_offset = -1; 2104 additional_flags = ARM_ELF_SYM_IS_THUMB; 2105 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 2106 } 2107 else 2108 { 2109 // This address is ARM 2110 m_address_class_map[symbol.st_value] = eAddressClassCode; 2111 } 2112 } 2113 } 2114 } 2115 2116 // symbol_value_offset may contain 0 for ARM symbols or -1 for 2117 // THUMB symbols. See above for more details. 2118 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2119 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2120 symbol_value -= symbol_section_sp->GetFileAddress(); 2121 2122 if (symbol_section_sp) 2123 { 2124 ModuleSP module_sp(GetModule()); 2125 if (module_sp) 2126 { 2127 SectionList *module_section_list = module_sp->GetSectionList(); 2128 if (module_section_list && module_section_list != section_list) 2129 { 2130 const ConstString §_name = symbol_section_sp->GetName(); 2131 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 2132 if (section_sp && section_sp->GetFileSize()) 2133 { 2134 symbol_section_sp = section_sp; 2135 } 2136 } 2137 } 2138 } 2139 2140 bool is_global = symbol.getBinding() == STB_GLOBAL; 2141 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2142 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2143 2144 llvm::StringRef symbol_ref(symbol_name); 2145 2146 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2147 size_t version_pos = symbol_ref.find('@'); 2148 bool has_suffix = version_pos != llvm::StringRef::npos; 2149 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2150 Mangled mangled(ConstString(symbol_bare), is_mangled); 2151 2152 // Now append the suffix back to mangled and unmangled names. Only do it if the 2153 // demangling was successful (string is not empty). 2154 if (has_suffix) 2155 { 2156 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2157 2158 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2159 if (! mangled_name.empty()) 2160 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2161 2162 ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2163 llvm::StringRef demangled_name = demangled.GetStringRef(); 2164 if (!demangled_name.empty()) 2165 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2166 } 2167 2168 Symbol dc_symbol( 2169 i + start_id, // ID is the original symbol table index. 2170 mangled, 2171 symbol_type, // Type of this symbol 2172 is_global, // Is this globally visible? 2173 false, // Is this symbol debug info? 2174 false, // Is this symbol a trampoline? 2175 false, // Is this symbol artificial? 2176 AddressRange( 2177 symbol_section_sp, // Section in which this symbol is defined or null. 2178 symbol_value, // Offset in section or symbol value. 2179 symbol.st_size), // Size in bytes of this symbol. 2180 symbol.st_size != 0, // Size is valid if it is not 0 2181 has_suffix, // Contains linker annotations? 2182 flags); // Symbol flags. 2183 symtab->AddSymbol(dc_symbol); 2184 } 2185 return i; 2186 } 2187 2188 unsigned 2189 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 2190 { 2191 if (symtab->GetObjectFile() != this) 2192 { 2193 // If the symbol table section is owned by a different object file, have it do the 2194 // parsing. 2195 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2196 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2197 } 2198 2199 // Get section list for this object file. 2200 SectionList *section_list = m_sections_ap.get(); 2201 if (!section_list) 2202 return 0; 2203 2204 user_id_t symtab_id = symtab->GetID(); 2205 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2206 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2207 symtab_hdr->sh_type == SHT_DYNSYM); 2208 2209 // sh_link: section header index of associated string table. 2210 // Section ID's are ones based. 2211 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2212 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2213 2214 if (symtab && strtab) 2215 { 2216 assert (symtab->GetObjectFile() == this); 2217 assert (strtab->GetObjectFile() == this); 2218 2219 DataExtractor symtab_data; 2220 DataExtractor strtab_data; 2221 if (ReadSectionData(symtab, symtab_data) && 2222 ReadSectionData(strtab, strtab_data)) 2223 { 2224 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2225 2226 return ParseSymbols(symbol_table, start_id, section_list, 2227 num_symbols, symtab_data, strtab_data); 2228 } 2229 } 2230 2231 return 0; 2232 } 2233 2234 size_t 2235 ObjectFileELF::ParseDynamicSymbols() 2236 { 2237 if (m_dynamic_symbols.size()) 2238 return m_dynamic_symbols.size(); 2239 2240 SectionList *section_list = GetSectionList(); 2241 if (!section_list) 2242 return 0; 2243 2244 // Find the SHT_DYNAMIC section. 2245 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2246 if (!dynsym) 2247 return 0; 2248 assert (dynsym->GetObjectFile() == this); 2249 2250 ELFDynamic symbol; 2251 DataExtractor dynsym_data; 2252 if (ReadSectionData(dynsym, dynsym_data)) 2253 { 2254 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2255 lldb::offset_t cursor = 0; 2256 2257 while (cursor < section_size) 2258 { 2259 if (!symbol.Parse(dynsym_data, &cursor)) 2260 break; 2261 2262 m_dynamic_symbols.push_back(symbol); 2263 } 2264 } 2265 2266 return m_dynamic_symbols.size(); 2267 } 2268 2269 const ELFDynamic * 2270 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2271 { 2272 if (!ParseDynamicSymbols()) 2273 return NULL; 2274 2275 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2276 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2277 for ( ; I != E; ++I) 2278 { 2279 ELFDynamic *symbol = &*I; 2280 2281 if (symbol->d_tag == tag) 2282 return symbol; 2283 } 2284 2285 return NULL; 2286 } 2287 2288 unsigned 2289 ObjectFileELF::PLTRelocationType() 2290 { 2291 // DT_PLTREL 2292 // This member specifies the type of relocation entry to which the 2293 // procedure linkage table refers. The d_val member holds DT_REL or 2294 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2295 // must use the same relocation. 2296 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2297 2298 if (symbol) 2299 return symbol->d_val; 2300 2301 return 0; 2302 } 2303 2304 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2305 // 0th entry in the plt table is usually a resolution entry which have different size in some 2306 // architectures then the rest of the plt entries. 2307 static std::pair<uint64_t, uint64_t> 2308 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2309 { 2310 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2311 2312 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2313 // So round the entsize up by the alignment if addralign is set. 2314 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2315 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2316 2317 if (plt_entsize == 0) 2318 { 2319 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2320 // entries based on the number of entries and the size of the plt section with the 2321 // assumption that the size of the 0th entry is at least as big as the size of the normal 2322 // entries and it isn't much bigger then that. 2323 if (plt_hdr->sh_addralign) 2324 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2325 else 2326 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2327 } 2328 2329 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2330 2331 return std::make_pair(plt_entsize, plt_offset); 2332 } 2333 2334 static unsigned 2335 ParsePLTRelocations(Symtab *symbol_table, 2336 user_id_t start_id, 2337 unsigned rel_type, 2338 const ELFHeader *hdr, 2339 const ELFSectionHeader *rel_hdr, 2340 const ELFSectionHeader *plt_hdr, 2341 const ELFSectionHeader *sym_hdr, 2342 const lldb::SectionSP &plt_section_sp, 2343 DataExtractor &rel_data, 2344 DataExtractor &symtab_data, 2345 DataExtractor &strtab_data) 2346 { 2347 ELFRelocation rel(rel_type); 2348 ELFSymbol symbol; 2349 lldb::offset_t offset = 0; 2350 2351 uint64_t plt_offset, plt_entsize; 2352 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2353 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2354 2355 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2356 reloc_info_fn reloc_type; 2357 reloc_info_fn reloc_symbol; 2358 2359 if (hdr->Is32Bit()) 2360 { 2361 reloc_type = ELFRelocation::RelocType32; 2362 reloc_symbol = ELFRelocation::RelocSymbol32; 2363 } 2364 else 2365 { 2366 reloc_type = ELFRelocation::RelocType64; 2367 reloc_symbol = ELFRelocation::RelocSymbol64; 2368 } 2369 2370 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2371 unsigned i; 2372 for (i = 0; i < num_relocations; ++i) 2373 { 2374 if (rel.Parse(rel_data, &offset) == false) 2375 break; 2376 2377 if (reloc_type(rel) != slot_type) 2378 continue; 2379 2380 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2381 if (!symbol.Parse(symtab_data, &symbol_offset)) 2382 break; 2383 2384 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2385 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2386 uint64_t plt_index = plt_offset + i * plt_entsize; 2387 2388 Symbol jump_symbol( 2389 i + start_id, // Symbol table index 2390 symbol_name, // symbol name. 2391 is_mangled, // is the symbol name mangled? 2392 eSymbolTypeTrampoline, // Type of this symbol 2393 false, // Is this globally visible? 2394 false, // Is this symbol debug info? 2395 true, // Is this symbol a trampoline? 2396 true, // Is this symbol artificial? 2397 plt_section_sp, // Section in which this symbol is defined or null. 2398 plt_index, // Offset in section or symbol value. 2399 plt_entsize, // Size in bytes of this symbol. 2400 true, // Size is valid 2401 false, // Contains linker annotations? 2402 0); // Symbol flags. 2403 2404 symbol_table->AddSymbol(jump_symbol); 2405 } 2406 2407 return i; 2408 } 2409 2410 unsigned 2411 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2412 user_id_t start_id, 2413 const ELFSectionHeaderInfo *rel_hdr, 2414 user_id_t rel_id) 2415 { 2416 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2417 2418 // The link field points to the associated symbol table. The info field 2419 // points to the section holding the plt. 2420 user_id_t symtab_id = rel_hdr->sh_link; 2421 user_id_t plt_id = rel_hdr->sh_info; 2422 2423 // If the link field doesn't point to the appropriate symbol name table then 2424 // try to find it by name as some compiler don't fill in the link fields. 2425 if (!symtab_id) 2426 symtab_id = GetSectionIndexByName(".dynsym"); 2427 if (!plt_id) 2428 plt_id = GetSectionIndexByName(".plt"); 2429 2430 if (!symtab_id || !plt_id) 2431 return 0; 2432 2433 // Section ID's are ones based; 2434 symtab_id++; 2435 plt_id++; 2436 2437 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2438 if (!plt_hdr) 2439 return 0; 2440 2441 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2442 if (!sym_hdr) 2443 return 0; 2444 2445 SectionList *section_list = m_sections_ap.get(); 2446 if (!section_list) 2447 return 0; 2448 2449 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2450 if (!rel_section) 2451 return 0; 2452 2453 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2454 if (!plt_section_sp) 2455 return 0; 2456 2457 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2458 if (!symtab) 2459 return 0; 2460 2461 // sh_link points to associated string table. 2462 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2463 if (!strtab) 2464 return 0; 2465 2466 DataExtractor rel_data; 2467 if (!ReadSectionData(rel_section, rel_data)) 2468 return 0; 2469 2470 DataExtractor symtab_data; 2471 if (!ReadSectionData(symtab, symtab_data)) 2472 return 0; 2473 2474 DataExtractor strtab_data; 2475 if (!ReadSectionData(strtab, strtab_data)) 2476 return 0; 2477 2478 unsigned rel_type = PLTRelocationType(); 2479 if (!rel_type) 2480 return 0; 2481 2482 return ParsePLTRelocations (symbol_table, 2483 start_id, 2484 rel_type, 2485 &m_header, 2486 rel_hdr, 2487 plt_hdr, 2488 sym_hdr, 2489 plt_section_sp, 2490 rel_data, 2491 symtab_data, 2492 strtab_data); 2493 } 2494 2495 unsigned 2496 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2497 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2498 DataExtractor &rel_data, DataExtractor &symtab_data, 2499 DataExtractor &debug_data, Section* rel_section) 2500 { 2501 ELFRelocation rel(rel_hdr->sh_type); 2502 lldb::addr_t offset = 0; 2503 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2504 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2505 reloc_info_fn reloc_type; 2506 reloc_info_fn reloc_symbol; 2507 2508 if (hdr->Is32Bit()) 2509 { 2510 reloc_type = ELFRelocation::RelocType32; 2511 reloc_symbol = ELFRelocation::RelocSymbol32; 2512 } 2513 else 2514 { 2515 reloc_type = ELFRelocation::RelocType64; 2516 reloc_symbol = ELFRelocation::RelocSymbol64; 2517 } 2518 2519 for (unsigned i = 0; i < num_relocations; ++i) 2520 { 2521 if (rel.Parse(rel_data, &offset) == false) 2522 break; 2523 2524 Symbol* symbol = NULL; 2525 2526 if (hdr->Is32Bit()) 2527 { 2528 switch (reloc_type(rel)) { 2529 case R_386_32: 2530 case R_386_PC32: 2531 default: 2532 assert(false && "unexpected relocation type"); 2533 } 2534 } else { 2535 switch (reloc_type(rel)) { 2536 case R_X86_64_64: 2537 { 2538 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2539 if (symbol) 2540 { 2541 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2542 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2543 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2544 *dst = value + ELFRelocation::RelocAddend64(rel); 2545 } 2546 break; 2547 } 2548 case R_X86_64_32: 2549 case R_X86_64_32S: 2550 { 2551 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2552 if (symbol) 2553 { 2554 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2555 value += ELFRelocation::RelocAddend32(rel); 2556 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2557 (reloc_type(rel) == R_X86_64_32S && 2558 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2559 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2560 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2561 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2562 *dst = truncated_addr; 2563 } 2564 break; 2565 } 2566 case R_X86_64_PC32: 2567 default: 2568 assert(false && "unexpected relocation type"); 2569 } 2570 } 2571 } 2572 2573 return 0; 2574 } 2575 2576 unsigned 2577 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2578 { 2579 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2580 2581 // Parse in the section list if needed. 2582 SectionList *section_list = GetSectionList(); 2583 if (!section_list) 2584 return 0; 2585 2586 // Section ID's are ones based. 2587 user_id_t symtab_id = rel_hdr->sh_link + 1; 2588 user_id_t debug_id = rel_hdr->sh_info + 1; 2589 2590 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2591 if (!symtab_hdr) 2592 return 0; 2593 2594 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2595 if (!debug_hdr) 2596 return 0; 2597 2598 Section *rel = section_list->FindSectionByID(rel_id).get(); 2599 if (!rel) 2600 return 0; 2601 2602 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2603 if (!symtab) 2604 return 0; 2605 2606 Section *debug = section_list->FindSectionByID(debug_id).get(); 2607 if (!debug) 2608 return 0; 2609 2610 DataExtractor rel_data; 2611 DataExtractor symtab_data; 2612 DataExtractor debug_data; 2613 2614 if (ReadSectionData(rel, rel_data) && 2615 ReadSectionData(symtab, symtab_data) && 2616 ReadSectionData(debug, debug_data)) 2617 { 2618 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2619 rel_data, symtab_data, debug_data, debug); 2620 } 2621 2622 return 0; 2623 } 2624 2625 Symtab * 2626 ObjectFileELF::GetSymtab() 2627 { 2628 ModuleSP module_sp(GetModule()); 2629 if (!module_sp) 2630 return NULL; 2631 2632 // We always want to use the main object file so we (hopefully) only have one cached copy 2633 // of our symtab, dynamic sections, etc. 2634 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2635 if (module_obj_file && module_obj_file != this) 2636 return module_obj_file->GetSymtab(); 2637 2638 if (m_symtab_ap.get() == NULL) 2639 { 2640 SectionList *section_list = module_sp->GetSectionList(); 2641 if (!section_list) 2642 return NULL; 2643 2644 uint64_t symbol_id = 0; 2645 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2646 2647 // Sharable objects and dynamic executables usually have 2 distinct symbol 2648 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2649 // version of the symtab that only contains global symbols. The information found 2650 // in the dynsym is therefore also found in the symtab, while the reverse is not 2651 // necessarily true. 2652 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2653 if (!symtab) 2654 { 2655 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2656 // then use the dynsym section which should always be there. 2657 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2658 } 2659 if (symtab) 2660 { 2661 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2662 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2663 } 2664 2665 // DT_JMPREL 2666 // If present, this entry's d_ptr member holds the address of relocation 2667 // entries associated solely with the procedure linkage table. Separating 2668 // these relocation entries lets the dynamic linker ignore them during 2669 // process initialization, if lazy binding is enabled. If this entry is 2670 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2671 // also be present. 2672 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2673 if (symbol) 2674 { 2675 // Synthesize trampoline symbols to help navigate the PLT. 2676 addr_t addr = symbol->d_ptr; 2677 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2678 if (reloc_section) 2679 { 2680 user_id_t reloc_id = reloc_section->GetID(); 2681 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2682 assert(reloc_header); 2683 2684 if (m_symtab_ap == nullptr) 2685 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 2686 2687 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2688 } 2689 } 2690 2691 // If we still don't have any symtab then create an empty instance to avoid do the section 2692 // lookup next time. 2693 if (m_symtab_ap == nullptr) 2694 m_symtab_ap.reset(new Symtab(this)); 2695 2696 m_symtab_ap->CalculateSymbolSizes(); 2697 } 2698 2699 for (SectionHeaderCollIter I = m_section_headers.begin(); 2700 I != m_section_headers.end(); ++I) 2701 { 2702 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2703 { 2704 if (CalculateType() == eTypeObjectFile) 2705 { 2706 const char *section_name = I->section_name.AsCString(""); 2707 if (strstr(section_name, ".rela.debug") || 2708 strstr(section_name, ".rel.debug")) 2709 { 2710 const ELFSectionHeader &reloc_header = *I; 2711 user_id_t reloc_id = SectionIndex(I); 2712 RelocateDebugSections(&reloc_header, reloc_id); 2713 } 2714 } 2715 } 2716 } 2717 return m_symtab_ap.get(); 2718 } 2719 2720 Symbol * 2721 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2722 { 2723 if (!m_symtab_ap.get()) 2724 return nullptr; // GetSymtab() should be called first. 2725 2726 const SectionList *section_list = GetSectionList(); 2727 if (!section_list) 2728 return nullptr; 2729 2730 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2731 { 2732 AddressRange range; 2733 if (eh_frame->GetAddressRange (so_addr, range)) 2734 { 2735 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2736 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2737 if (symbol) 2738 return symbol; 2739 2740 // Note that a (stripped) symbol won't be found by GetSymtab()... 2741 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2742 if (eh_sym_section_sp.get()) 2743 { 2744 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2745 addr_t offset = file_addr - section_base; 2746 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2747 2748 Symbol eh_symbol( 2749 symbol_id, // Symbol table index. 2750 "???", // Symbol name. 2751 false, // Is the symbol name mangled? 2752 eSymbolTypeCode, // Type of this symbol. 2753 true, // Is this globally visible? 2754 false, // Is this symbol debug info? 2755 false, // Is this symbol a trampoline? 2756 true, // Is this symbol artificial? 2757 eh_sym_section_sp, // Section in which this symbol is defined or null. 2758 offset, // Offset in section or symbol value. 2759 range.GetByteSize(), // Size in bytes of this symbol. 2760 true, // Size is valid. 2761 false, // Contains linker annotations? 2762 0); // Symbol flags. 2763 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2764 return m_symtab_ap->SymbolAtIndex(symbol_id); 2765 } 2766 } 2767 } 2768 return nullptr; 2769 } 2770 2771 2772 bool 2773 ObjectFileELF::IsStripped () 2774 { 2775 // TODO: determine this for ELF 2776 return false; 2777 } 2778 2779 //===----------------------------------------------------------------------===// 2780 // Dump 2781 // 2782 // Dump the specifics of the runtime file container (such as any headers 2783 // segments, sections, etc). 2784 //---------------------------------------------------------------------- 2785 void 2786 ObjectFileELF::Dump(Stream *s) 2787 { 2788 DumpELFHeader(s, m_header); 2789 s->EOL(); 2790 DumpELFProgramHeaders(s); 2791 s->EOL(); 2792 DumpELFSectionHeaders(s); 2793 s->EOL(); 2794 SectionList *section_list = GetSectionList(); 2795 if (section_list) 2796 section_list->Dump(s, NULL, true, UINT32_MAX); 2797 Symtab *symtab = GetSymtab(); 2798 if (symtab) 2799 symtab->Dump(s, NULL, eSortOrderNone); 2800 s->EOL(); 2801 DumpDependentModules(s); 2802 s->EOL(); 2803 } 2804 2805 //---------------------------------------------------------------------- 2806 // DumpELFHeader 2807 // 2808 // Dump the ELF header to the specified output stream 2809 //---------------------------------------------------------------------- 2810 void 2811 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2812 { 2813 s->PutCString("ELF Header\n"); 2814 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2815 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2816 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2817 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2818 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2819 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2820 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2821 2822 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2823 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2824 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2825 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2826 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2827 2828 s->Printf("e_type = 0x%4.4x ", header.e_type); 2829 DumpELFHeader_e_type(s, header.e_type); 2830 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2831 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2832 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2833 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2834 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2835 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2836 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2837 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2838 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2839 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2840 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2841 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2842 } 2843 2844 //---------------------------------------------------------------------- 2845 // DumpELFHeader_e_type 2846 // 2847 // Dump an token value for the ELF header member e_type 2848 //---------------------------------------------------------------------- 2849 void 2850 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2851 { 2852 switch (e_type) 2853 { 2854 case ET_NONE: *s << "ET_NONE"; break; 2855 case ET_REL: *s << "ET_REL"; break; 2856 case ET_EXEC: *s << "ET_EXEC"; break; 2857 case ET_DYN: *s << "ET_DYN"; break; 2858 case ET_CORE: *s << "ET_CORE"; break; 2859 default: 2860 break; 2861 } 2862 } 2863 2864 //---------------------------------------------------------------------- 2865 // DumpELFHeader_e_ident_EI_DATA 2866 // 2867 // Dump an token value for the ELF header member e_ident[EI_DATA] 2868 //---------------------------------------------------------------------- 2869 void 2870 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2871 { 2872 switch (ei_data) 2873 { 2874 case ELFDATANONE: *s << "ELFDATANONE"; break; 2875 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2876 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2877 default: 2878 break; 2879 } 2880 } 2881 2882 2883 //---------------------------------------------------------------------- 2884 // DumpELFProgramHeader 2885 // 2886 // Dump a single ELF program header to the specified output stream 2887 //---------------------------------------------------------------------- 2888 void 2889 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2890 { 2891 DumpELFProgramHeader_p_type(s, ph.p_type); 2892 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2893 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2894 2895 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2896 s->Printf(") %8.8" PRIx64, ph.p_align); 2897 } 2898 2899 //---------------------------------------------------------------------- 2900 // DumpELFProgramHeader_p_type 2901 // 2902 // Dump an token value for the ELF program header member p_type which 2903 // describes the type of the program header 2904 // ---------------------------------------------------------------------- 2905 void 2906 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2907 { 2908 const int kStrWidth = 15; 2909 switch (p_type) 2910 { 2911 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2912 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2913 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2914 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2915 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2916 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2917 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2918 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2919 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2920 default: 2921 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2922 break; 2923 } 2924 } 2925 2926 2927 //---------------------------------------------------------------------- 2928 // DumpELFProgramHeader_p_flags 2929 // 2930 // Dump an token value for the ELF program header member p_flags 2931 //---------------------------------------------------------------------- 2932 void 2933 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2934 { 2935 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2936 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2937 << ((p_flags & PF_W) ? "PF_W" : " ") 2938 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2939 << ((p_flags & PF_R) ? "PF_R" : " "); 2940 } 2941 2942 //---------------------------------------------------------------------- 2943 // DumpELFProgramHeaders 2944 // 2945 // Dump all of the ELF program header to the specified output stream 2946 //---------------------------------------------------------------------- 2947 void 2948 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2949 { 2950 if (!ParseProgramHeaders()) 2951 return; 2952 2953 s->PutCString("Program Headers\n"); 2954 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2955 "p_filesz p_memsz p_flags p_align\n"); 2956 s->PutCString("==== --------------- -------- -------- -------- " 2957 "-------- -------- ------------------------- --------\n"); 2958 2959 uint32_t idx = 0; 2960 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2961 I != m_program_headers.end(); ++I, ++idx) 2962 { 2963 s->Printf("[%2u] ", idx); 2964 ObjectFileELF::DumpELFProgramHeader(s, *I); 2965 s->EOL(); 2966 } 2967 } 2968 2969 //---------------------------------------------------------------------- 2970 // DumpELFSectionHeader 2971 // 2972 // Dump a single ELF section header to the specified output stream 2973 //---------------------------------------------------------------------- 2974 void 2975 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2976 { 2977 s->Printf("%8.8x ", sh.sh_name); 2978 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2979 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2980 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2981 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2982 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2983 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2984 } 2985 2986 //---------------------------------------------------------------------- 2987 // DumpELFSectionHeader_sh_type 2988 // 2989 // Dump an token value for the ELF section header member sh_type which 2990 // describes the type of the section 2991 //---------------------------------------------------------------------- 2992 void 2993 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2994 { 2995 const int kStrWidth = 12; 2996 switch (sh_type) 2997 { 2998 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2999 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 3000 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 3001 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 3002 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 3003 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 3004 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 3005 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 3006 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 3007 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 3008 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 3009 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 3010 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 3011 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 3012 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 3013 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 3014 default: 3015 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3016 break; 3017 } 3018 } 3019 3020 //---------------------------------------------------------------------- 3021 // DumpELFSectionHeader_sh_flags 3022 // 3023 // Dump an token value for the ELF section header member sh_flags 3024 //---------------------------------------------------------------------- 3025 void 3026 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 3027 { 3028 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3029 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3030 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3031 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3032 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3033 } 3034 3035 //---------------------------------------------------------------------- 3036 // DumpELFSectionHeaders 3037 // 3038 // Dump all of the ELF section header to the specified output stream 3039 //---------------------------------------------------------------------- 3040 void 3041 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 3042 { 3043 if (!ParseSectionHeaders()) 3044 return; 3045 3046 s->PutCString("Section Headers\n"); 3047 s->PutCString("IDX name type flags " 3048 "addr offset size link info addralgn " 3049 "entsize Name\n"); 3050 s->PutCString("==== -------- ------------ -------------------------------- " 3051 "-------- -------- -------- -------- -------- -------- " 3052 "-------- ====================\n"); 3053 3054 uint32_t idx = 0; 3055 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3056 I != m_section_headers.end(); ++I, ++idx) 3057 { 3058 s->Printf("[%2u] ", idx); 3059 ObjectFileELF::DumpELFSectionHeader(s, *I); 3060 const char* section_name = I->section_name.AsCString(""); 3061 if (section_name) 3062 *s << ' ' << section_name << "\n"; 3063 } 3064 } 3065 3066 void 3067 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 3068 { 3069 size_t num_modules = ParseDependentModules(); 3070 3071 if (num_modules > 0) 3072 { 3073 s->PutCString("Dependent Modules:\n"); 3074 for (unsigned i = 0; i < num_modules; ++i) 3075 { 3076 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3077 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3078 } 3079 } 3080 } 3081 3082 bool 3083 ObjectFileELF::GetArchitecture (ArchSpec &arch) 3084 { 3085 if (!ParseHeader()) 3086 return false; 3087 3088 if (m_section_headers.empty()) 3089 { 3090 // Allow elf notes to be parsed which may affect the detected architecture. 3091 ParseSectionHeaders(); 3092 } 3093 3094 arch = m_arch_spec; 3095 return true; 3096 } 3097 3098 ObjectFile::Type 3099 ObjectFileELF::CalculateType() 3100 { 3101 switch (m_header.e_type) 3102 { 3103 case llvm::ELF::ET_NONE: 3104 // 0 - No file type 3105 return eTypeUnknown; 3106 3107 case llvm::ELF::ET_REL: 3108 // 1 - Relocatable file 3109 return eTypeObjectFile; 3110 3111 case llvm::ELF::ET_EXEC: 3112 // 2 - Executable file 3113 return eTypeExecutable; 3114 3115 case llvm::ELF::ET_DYN: 3116 // 3 - Shared object file 3117 return eTypeSharedLibrary; 3118 3119 case ET_CORE: 3120 // 4 - Core file 3121 return eTypeCoreFile; 3122 3123 default: 3124 break; 3125 } 3126 return eTypeUnknown; 3127 } 3128 3129 ObjectFile::Strata 3130 ObjectFileELF::CalculateStrata() 3131 { 3132 switch (m_header.e_type) 3133 { 3134 case llvm::ELF::ET_NONE: 3135 // 0 - No file type 3136 return eStrataUnknown; 3137 3138 case llvm::ELF::ET_REL: 3139 // 1 - Relocatable file 3140 return eStrataUnknown; 3141 3142 case llvm::ELF::ET_EXEC: 3143 // 2 - Executable file 3144 // TODO: is there any way to detect that an executable is a kernel 3145 // related executable by inspecting the program headers, section 3146 // headers, symbols, or any other flag bits??? 3147 return eStrataUser; 3148 3149 case llvm::ELF::ET_DYN: 3150 // 3 - Shared object file 3151 // TODO: is there any way to detect that an shared library is a kernel 3152 // related executable by inspecting the program headers, section 3153 // headers, symbols, or any other flag bits??? 3154 return eStrataUnknown; 3155 3156 case ET_CORE: 3157 // 4 - Core file 3158 // TODO: is there any way to detect that an core file is a kernel 3159 // related executable by inspecting the program headers, section 3160 // headers, symbols, or any other flag bits??? 3161 return eStrataUnknown; 3162 3163 default: 3164 break; 3165 } 3166 return eStrataUnknown; 3167 } 3168 3169