xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision 0a767225187e1950afb60e39b0fbf814b1ca3f26)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 #include <unordered_map>
15 
16 #include "lldb/Core/ArchSpec.h"
17 #include "lldb/Core/DataBuffer.h"
18 #include "lldb/Core/Error.h"
19 #include "lldb/Core/FileSpecList.h"
20 #include "lldb/Core/Log.h"
21 #include "lldb/Core/Module.h"
22 #include "lldb/Core/ModuleSpec.h"
23 #include "lldb/Core/PluginManager.h"
24 #include "lldb/Core/Section.h"
25 #include "lldb/Core/Stream.h"
26 #include "lldb/Core/Timer.h"
27 #include "lldb/Symbol/DWARFCallFrameInfo.h"
28 #include "lldb/Symbol/SymbolContext.h"
29 #include "lldb/Target/SectionLoadList.h"
30 #include "lldb/Target/Target.h"
31 
32 #include "llvm/ADT/PointerUnion.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/Support/MathExtras.h"
35 
36 #define CASE_AND_STREAM(s, def, width)                  \
37     case def: s->Printf("%-*s", width, #def); break;
38 
39 using namespace lldb;
40 using namespace lldb_private;
41 using namespace elf;
42 using namespace llvm::ELF;
43 
44 namespace {
45 
46 // ELF note owner definitions
47 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
48 const char *const LLDB_NT_OWNER_GNU     = "GNU";
49 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
50 const char *const LLDB_NT_OWNER_CSR     = "csr";
51 const char *const LLDB_NT_OWNER_ANDROID = "Android";
52 const char *const LLDB_NT_OWNER_CORE    = "CORE";
53 const char *const LLDB_NT_OWNER_LINUX   = "LINUX";
54 
55 // ELF note type definitions
56 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
57 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
58 
59 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
60 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
61 
62 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
63 
64 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
65 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
66 
67 // GNU ABI note OS constants
68 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
69 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
70 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
71 
72 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants
73 #define NT_PRSTATUS             1
74 #define NT_PRFPREG              2
75 #define NT_PRPSINFO             3
76 #define NT_TASKSTRUCT           4
77 #define NT_AUXV                 6
78 #define NT_SIGINFO              0x53494749
79 #define NT_FILE                 0x46494c45
80 #define NT_PRXFPREG             0x46e62b7f
81 #define NT_PPC_VMX              0x100
82 #define NT_PPC_SPE              0x101
83 #define NT_PPC_VSX              0x102
84 #define NT_386_TLS              0x200
85 #define NT_386_IOPERM           0x201
86 #define NT_X86_XSTATE           0x202
87 #define NT_S390_HIGH_GPRS       0x300
88 #define NT_S390_TIMER           0x301
89 #define NT_S390_TODCMP          0x302
90 #define NT_S390_TODPREG         0x303
91 #define NT_S390_CTRS            0x304
92 #define NT_S390_PREFIX          0x305
93 #define NT_S390_LAST_BREAK      0x306
94 #define NT_S390_SYSTEM_CALL     0x307
95 #define NT_S390_TDB             0x308
96 #define NT_S390_VXRS_LOW        0x309
97 #define NT_S390_VXRS_HIGH       0x30a
98 #define NT_ARM_VFP              0x400
99 #define NT_ARM_TLS              0x401
100 #define NT_ARM_HW_BREAK         0x402
101 #define NT_ARM_HW_WATCH         0x403
102 #define NT_ARM_SYSTEM_CALL      0x404
103 #define NT_METAG_CBUF           0x500
104 #define NT_METAG_RPIPE          0x501
105 #define NT_METAG_TLS            0x502
106 
107 //===----------------------------------------------------------------------===//
108 /// @class ELFRelocation
109 /// @brief Generic wrapper for ELFRel and ELFRela.
110 ///
111 /// This helper class allows us to parse both ELFRel and ELFRela relocation
112 /// entries in a generic manner.
113 class ELFRelocation
114 {
115 public:
116 
117     /// Constructs an ELFRelocation entry with a personality as given by @p
118     /// type.
119     ///
120     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
121     ELFRelocation(unsigned type);
122 
123     ~ELFRelocation();
124 
125     bool
126     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
127 
128     static unsigned
129     RelocType32(const ELFRelocation &rel);
130 
131     static unsigned
132     RelocType64(const ELFRelocation &rel);
133 
134     static unsigned
135     RelocSymbol32(const ELFRelocation &rel);
136 
137     static unsigned
138     RelocSymbol64(const ELFRelocation &rel);
139 
140     static unsigned
141     RelocOffset32(const ELFRelocation &rel);
142 
143     static unsigned
144     RelocOffset64(const ELFRelocation &rel);
145 
146     static unsigned
147     RelocAddend32(const ELFRelocation &rel);
148 
149     static unsigned
150     RelocAddend64(const ELFRelocation &rel);
151 
152 private:
153     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
154 
155     RelocUnion reloc;
156 };
157 
158 ELFRelocation::ELFRelocation(unsigned type)
159 {
160     if (type == DT_REL || type == SHT_REL)
161         reloc = new ELFRel();
162     else if (type == DT_RELA || type == SHT_RELA)
163         reloc = new ELFRela();
164     else {
165         assert(false && "unexpected relocation type");
166         reloc = static_cast<ELFRel*>(NULL);
167     }
168 }
169 
170 ELFRelocation::~ELFRelocation()
171 {
172     if (reloc.is<ELFRel*>())
173         delete reloc.get<ELFRel*>();
174     else
175         delete reloc.get<ELFRela*>();
176 }
177 
178 bool
179 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
180 {
181     if (reloc.is<ELFRel*>())
182         return reloc.get<ELFRel*>()->Parse(data, offset);
183     else
184         return reloc.get<ELFRela*>()->Parse(data, offset);
185 }
186 
187 unsigned
188 ELFRelocation::RelocType32(const ELFRelocation &rel)
189 {
190     if (rel.reloc.is<ELFRel*>())
191         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
192     else
193         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
194 }
195 
196 unsigned
197 ELFRelocation::RelocType64(const ELFRelocation &rel)
198 {
199     if (rel.reloc.is<ELFRel*>())
200         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
201     else
202         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
203 }
204 
205 unsigned
206 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
207 {
208     if (rel.reloc.is<ELFRel*>())
209         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
210     else
211         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
212 }
213 
214 unsigned
215 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
216 {
217     if (rel.reloc.is<ELFRel*>())
218         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
219     else
220         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
221 }
222 
223 unsigned
224 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
225 {
226     if (rel.reloc.is<ELFRel*>())
227         return rel.reloc.get<ELFRel*>()->r_offset;
228     else
229         return rel.reloc.get<ELFRela*>()->r_offset;
230 }
231 
232 unsigned
233 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
234 {
235     if (rel.reloc.is<ELFRel*>())
236         return rel.reloc.get<ELFRel*>()->r_offset;
237     else
238         return rel.reloc.get<ELFRela*>()->r_offset;
239 }
240 
241 unsigned
242 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
243 {
244     if (rel.reloc.is<ELFRel*>())
245         return 0;
246     else
247         return rel.reloc.get<ELFRela*>()->r_addend;
248 }
249 
250 unsigned
251 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
252 {
253     if (rel.reloc.is<ELFRel*>())
254         return 0;
255     else
256         return rel.reloc.get<ELFRela*>()->r_addend;
257 }
258 
259 } // end anonymous namespace
260 
261 bool
262 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
263 {
264     // Read all fields.
265     if (data.GetU32(offset, &n_namesz, 3) == NULL)
266         return false;
267 
268     // The name field is required to be nul-terminated, and n_namesz
269     // includes the terminating nul in observed implementations (contrary
270     // to the ELF-64 spec).  A special case is needed for cores generated
271     // by some older Linux versions, which write a note named "CORE"
272     // without a nul terminator and n_namesz = 4.
273     if (n_namesz == 4)
274     {
275         char buf[4];
276         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
277             return false;
278         if (strncmp (buf, "CORE", 4) == 0)
279         {
280             n_name = "CORE";
281             *offset += 4;
282             return true;
283         }
284     }
285 
286     const char *cstr = data.GetCStr(offset, llvm::alignTo (n_namesz, 4));
287     if (cstr == NULL)
288     {
289         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
290         if (log)
291             log->Printf("Failed to parse note name lacking nul terminator");
292 
293         return false;
294     }
295     n_name = cstr;
296     return true;
297 }
298 
299 static uint32_t
300 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
301 {
302     const uint32_t dsp_rev = e_flags & 0xFF;
303     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
304     switch(dsp_rev)
305     {
306         // TODO(mg11) Support more variants
307         case 10:
308             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
309             break;
310         case 14:
311             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
312             break;
313         case 17:
314         case 20:
315             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
316             break;
317         default:
318             break;
319     }
320     return kal_arch_variant;
321 }
322 
323 static uint32_t
324 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
325 {
326     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
327     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
328 
329     switch (mips_arch)
330     {
331         case llvm::ELF::EF_MIPS_ARCH_1:
332         case llvm::ELF::EF_MIPS_ARCH_2:
333         case llvm::ELF::EF_MIPS_ARCH_32:
334             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
335         case llvm::ELF::EF_MIPS_ARCH_32R2:
336             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
337         case llvm::ELF::EF_MIPS_ARCH_32R6:
338             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
339         case llvm::ELF::EF_MIPS_ARCH_3:
340         case llvm::ELF::EF_MIPS_ARCH_4:
341         case llvm::ELF::EF_MIPS_ARCH_5:
342         case llvm::ELF::EF_MIPS_ARCH_64:
343             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
344         case llvm::ELF::EF_MIPS_ARCH_64R2:
345             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
346         case llvm::ELF::EF_MIPS_ARCH_64R6:
347             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
348         default:
349             break;
350     }
351 
352     return arch_variant;
353 }
354 
355 static uint32_t
356 subTypeFromElfHeader(const elf::ELFHeader& header)
357 {
358     if (header.e_machine == llvm::ELF::EM_MIPS)
359         return mipsVariantFromElfFlags (header.e_flags,
360             header.e_ident[EI_DATA]);
361 
362     return
363         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
364         kalimbaVariantFromElfFlags(header.e_flags) :
365         LLDB_INVALID_CPUTYPE;
366 }
367 
368 //! The kalimba toolchain identifies a code section as being
369 //! one with the SHT_PROGBITS set in the section sh_type and the top
370 //! bit in the 32-bit address field set.
371 static lldb::SectionType
372 kalimbaSectionType(
373     const elf::ELFHeader& header,
374     const elf::ELFSectionHeader& sect_hdr)
375 {
376     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
377     {
378         return eSectionTypeOther;
379     }
380 
381     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
382     {
383         return eSectionTypeZeroFill;
384     }
385 
386     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
387     {
388         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
389         return KAL_CODE_BIT & sect_hdr.sh_addr ?
390              eSectionTypeCode  : eSectionTypeData;
391     }
392 
393     return eSectionTypeOther;
394 }
395 
396 // Arbitrary constant used as UUID prefix for core files.
397 const uint32_t
398 ObjectFileELF::g_core_uuid_magic(0xE210C);
399 
400 //------------------------------------------------------------------
401 // Static methods.
402 //------------------------------------------------------------------
403 void
404 ObjectFileELF::Initialize()
405 {
406     PluginManager::RegisterPlugin(GetPluginNameStatic(),
407                                   GetPluginDescriptionStatic(),
408                                   CreateInstance,
409                                   CreateMemoryInstance,
410                                   GetModuleSpecifications);
411 }
412 
413 void
414 ObjectFileELF::Terminate()
415 {
416     PluginManager::UnregisterPlugin(CreateInstance);
417 }
418 
419 lldb_private::ConstString
420 ObjectFileELF::GetPluginNameStatic()
421 {
422     static ConstString g_name("elf");
423     return g_name;
424 }
425 
426 const char *
427 ObjectFileELF::GetPluginDescriptionStatic()
428 {
429     return "ELF object file reader.";
430 }
431 
432 ObjectFile *
433 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
434                                DataBufferSP &data_sp,
435                                lldb::offset_t data_offset,
436                                const lldb_private::FileSpec* file,
437                                lldb::offset_t file_offset,
438                                lldb::offset_t length)
439 {
440     if (!data_sp)
441     {
442         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
443         data_offset = 0;
444     }
445 
446     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
447     {
448         const uint8_t *magic = data_sp->GetBytes() + data_offset;
449         if (ELFHeader::MagicBytesMatch(magic))
450         {
451             // Update the data to contain the entire file if it doesn't already
452             if (data_sp->GetByteSize() < length) {
453                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
454                 data_offset = 0;
455                 magic = data_sp->GetBytes();
456             }
457             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
458             if (address_size == 4 || address_size == 8)
459             {
460                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
461                 ArchSpec spec;
462                 if (objfile_ap->GetArchitecture(spec) &&
463                     objfile_ap->SetModulesArchitecture(spec))
464                     return objfile_ap.release();
465             }
466         }
467     }
468     return NULL;
469 }
470 
471 
472 ObjectFile*
473 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
474                                      DataBufferSP& data_sp,
475                                      const lldb::ProcessSP &process_sp,
476                                      lldb::addr_t header_addr)
477 {
478     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
479     {
480         const uint8_t *magic = data_sp->GetBytes();
481         if (ELFHeader::MagicBytesMatch(magic))
482         {
483             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
484             if (address_size == 4 || address_size == 8)
485             {
486                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
487                 ArchSpec spec;
488                 if (objfile_ap->GetArchitecture(spec) &&
489                     objfile_ap->SetModulesArchitecture(spec))
490                     return objfile_ap.release();
491             }
492         }
493     }
494     return NULL;
495 }
496 
497 bool
498 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
499                                   lldb::addr_t data_offset,
500                                   lldb::addr_t data_length)
501 {
502     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
503     {
504         const uint8_t *magic = data_sp->GetBytes() + data_offset;
505         return ELFHeader::MagicBytesMatch(magic);
506     }
507     return false;
508 }
509 
510 /*
511  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
512  *
513  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
514  *   code or tables extracted from it, as desired without restriction.
515  */
516 static uint32_t
517 calc_crc32(uint32_t crc, const void *buf, size_t size)
518 {
519     static const uint32_t g_crc32_tab[] =
520     {
521         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
522         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
523         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
524         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
525         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
526         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
527         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
528         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
529         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
530         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
531         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
532         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
533         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
534         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
535         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
536         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
537         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
538         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
539         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
540         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
541         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
542         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
543         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
544         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
545         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
546         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
547         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
548         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
549         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
550         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
551         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
552         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
553         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
554         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
555         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
556         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
557         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
558         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
559         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
560         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
561         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
562         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
563         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
564     };
565     const uint8_t *p = (const uint8_t *)buf;
566 
567     crc = crc ^ ~0U;
568     while (size--)
569         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
570     return crc ^ ~0U;
571 }
572 
573 static uint32_t
574 calc_gnu_debuglink_crc32(const void *buf, size_t size)
575 {
576     return calc_crc32(0U, buf, size);
577 }
578 
579 uint32_t
580 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
581                                                DataExtractor& object_data)
582 {
583     typedef ProgramHeaderCollConstIter Iter;
584 
585     uint32_t core_notes_crc = 0;
586 
587     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
588     {
589         if (I->p_type == llvm::ELF::PT_NOTE)
590         {
591             const elf_off ph_offset = I->p_offset;
592             const size_t ph_size = I->p_filesz;
593 
594             DataExtractor segment_data;
595             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
596             {
597                 // The ELF program header contained incorrect data,
598                 // probably corefile is incomplete or corrupted.
599                 break;
600             }
601 
602             core_notes_crc = calc_crc32(core_notes_crc,
603                                         segment_data.GetDataStart(),
604                                         segment_data.GetByteSize());
605         }
606     }
607 
608     return core_notes_crc;
609 }
610 
611 static const char*
612 OSABIAsCString (unsigned char osabi_byte)
613 {
614 #define _MAKE_OSABI_CASE(x) case x: return #x
615     switch (osabi_byte)
616     {
617         _MAKE_OSABI_CASE(ELFOSABI_NONE);
618         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
619         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
620         _MAKE_OSABI_CASE(ELFOSABI_GNU);
621         _MAKE_OSABI_CASE(ELFOSABI_HURD);
622         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
623         _MAKE_OSABI_CASE(ELFOSABI_AIX);
624         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
625         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
626         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
627         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
628         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
629         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
630         _MAKE_OSABI_CASE(ELFOSABI_NSK);
631         _MAKE_OSABI_CASE(ELFOSABI_AROS);
632         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
633         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
634         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
635         _MAKE_OSABI_CASE(ELFOSABI_ARM);
636         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
637         default:
638             return "<unknown-osabi>";
639     }
640 #undef _MAKE_OSABI_CASE
641 }
642 
643 //
644 // WARNING : This function is being deprecated
645 // It's functionality has moved to ArchSpec::SetArchitecture
646 // This function is only being kept to validate the move.
647 //
648 // TODO : Remove this function
649 static bool
650 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
651 {
652     switch (osabi_byte)
653     {
654         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
655         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
656         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
657         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
658         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
659         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
660         default:
661             ostype = llvm::Triple::OSType::UnknownOS;
662     }
663     return ostype != llvm::Triple::OSType::UnknownOS;
664 }
665 
666 size_t
667 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
668                                         lldb::DataBufferSP& data_sp,
669                                         lldb::offset_t data_offset,
670                                         lldb::offset_t file_offset,
671                                         lldb::offset_t length,
672                                         lldb_private::ModuleSpecList &specs)
673 {
674     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
675 
676     const size_t initial_count = specs.GetSize();
677 
678     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
679     {
680         DataExtractor data;
681         data.SetData(data_sp);
682         elf::ELFHeader header;
683         if (header.Parse(data, &data_offset))
684         {
685             if (data_sp)
686             {
687                 ModuleSpec spec (file);
688 
689                 const uint32_t sub_type = subTypeFromElfHeader(header);
690                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
691                                                        header.e_machine,
692                                                        sub_type,
693                                                        header.e_ident[EI_OSABI]);
694 
695                 if (spec.GetArchitecture().IsValid())
696                 {
697                     llvm::Triple::OSType ostype;
698                     llvm::Triple::VendorType vendor;
699                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
700 
701                     if (log)
702                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
703 
704                     // SetArchitecture should have set the vendor to unknown
705                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
706                     assert(vendor == llvm::Triple::UnknownVendor);
707 
708                     //
709                     // Validate it is ok to remove GetOsFromOSABI
710                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
711                     assert(spec_ostype == ostype);
712                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
713                     {
714                         if (log)
715                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
716                     }
717 
718                     // Try to get the UUID from the section list. Usually that's at the end, so
719                     // map the file in if we don't have it already.
720                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
721                     if (section_header_end > data_sp->GetByteSize())
722                     {
723                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
724                         data.SetData(data_sp);
725                     }
726 
727                     uint32_t gnu_debuglink_crc = 0;
728                     std::string gnu_debuglink_file;
729                     SectionHeaderColl section_headers;
730                     lldb_private::UUID &uuid = spec.GetUUID();
731 
732                     using namespace std::placeholders;
733                     const SetDataFunction set_data = std::bind(&ObjectFileELF::SetData, std::cref(data), _1, _2, _3);
734                     GetSectionHeaderInfo(section_headers, set_data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
735 
736 
737                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
738 
739                     if (log)
740                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
741 
742                     if (!uuid.IsValid())
743                     {
744                         uint32_t core_notes_crc = 0;
745 
746                         if (!gnu_debuglink_crc)
747                         {
748                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
749                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
750                                                               file.GetLastPathComponent().AsCString(),
751                                                               (file.GetByteSize()-file_offset)/1024);
752 
753                             // For core files - which usually don't happen to have a gnu_debuglink,
754                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
755                             // Thus we will need to fallback to something simpler.
756                             if (header.e_type == llvm::ELF::ET_CORE)
757                             {
758                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
759                                 if (program_headers_end > data_sp->GetByteSize())
760                                 {
761                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
762                                     data.SetData(data_sp);
763                                 }
764                                 ProgramHeaderColl program_headers;
765                                 GetProgramHeaderInfo(program_headers, set_data, header);
766 
767                                 size_t segment_data_end = 0;
768                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
769                                      I != program_headers.end(); ++I)
770                                 {
771                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
772                                 }
773 
774                                 if (segment_data_end > data_sp->GetByteSize())
775                                 {
776                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
777                                     data.SetData(data_sp);
778                                 }
779 
780                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
781                             }
782                             else
783                             {
784                                 // Need to map entire file into memory to calculate the crc.
785                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
786                                 data.SetData(data_sp);
787                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
788                             }
789                         }
790                         if (gnu_debuglink_crc)
791                         {
792                             // Use 4 bytes of crc from the .gnu_debuglink section.
793                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
794                             uuid.SetBytes (uuidt, sizeof(uuidt));
795                         }
796                         else if (core_notes_crc)
797                         {
798                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
799                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
800                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
801                             uuid.SetBytes (uuidt, sizeof(uuidt));
802                         }
803                     }
804 
805                     specs.Append(spec);
806                 }
807             }
808         }
809     }
810 
811     return specs.GetSize() - initial_count;
812 }
813 
814 //------------------------------------------------------------------
815 // PluginInterface protocol
816 //------------------------------------------------------------------
817 lldb_private::ConstString
818 ObjectFileELF::GetPluginName()
819 {
820     return GetPluginNameStatic();
821 }
822 
823 uint32_t
824 ObjectFileELF::GetPluginVersion()
825 {
826     return m_plugin_version;
827 }
828 //------------------------------------------------------------------
829 // ObjectFile protocol
830 //------------------------------------------------------------------
831 
832 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
833                               DataBufferSP& data_sp,
834                               lldb::offset_t data_offset,
835                               const FileSpec* file,
836                               lldb::offset_t file_offset,
837                               lldb::offset_t length) :
838     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
839     m_header(),
840     m_uuid(),
841     m_gnu_debuglink_file(),
842     m_gnu_debuglink_crc(0),
843     m_program_headers(),
844     m_section_headers(),
845     m_dynamic_symbols(),
846     m_filespec_ap(),
847     m_entry_point_address(),
848     m_arch_spec()
849 {
850     if (file)
851         m_file = *file;
852     ::memset(&m_header, 0, sizeof(m_header));
853 }
854 
855 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
856                               DataBufferSP& header_data_sp,
857                               const lldb::ProcessSP &process_sp,
858                               addr_t header_addr) :
859     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
860     m_header(),
861     m_uuid(),
862     m_gnu_debuglink_file(),
863     m_gnu_debuglink_crc(0),
864     m_program_headers(),
865     m_section_headers(),
866     m_dynamic_symbols(),
867     m_filespec_ap(),
868     m_entry_point_address(),
869     m_arch_spec()
870 {
871     ::memset(&m_header, 0, sizeof(m_header));
872 }
873 
874 ObjectFileELF::~ObjectFileELF()
875 {
876 }
877 
878 bool
879 ObjectFileELF::IsExecutable() const
880 {
881     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
882 }
883 
884 bool
885 ObjectFileELF::SetLoadAddress (Target &target,
886                                lldb::addr_t value,
887                                bool value_is_offset)
888 {
889     ModuleSP module_sp = GetModule();
890     if (module_sp)
891     {
892         size_t num_loaded_sections = 0;
893         SectionList *section_list = GetSectionList ();
894         if (section_list)
895         {
896             if (!value_is_offset)
897             {
898                 bool found_offset = false;
899                 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i)
900                 {
901                     const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i);
902                     if (header == nullptr)
903                         continue;
904 
905                     if (header->p_type != PT_LOAD || header->p_offset != 0)
906                         continue;
907 
908                     value = value - header->p_vaddr;
909                     found_offset = true;
910                     break;
911                 }
912                 if (!found_offset)
913                     return false;
914             }
915 
916             const size_t num_sections = section_list->GetSize();
917             size_t sect_idx = 0;
918 
919             for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
920             {
921                 // Iterate through the object file sections to find all
922                 // of the sections that have SHF_ALLOC in their flag bits.
923                 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
924                 // if (section_sp && !section_sp->IsThreadSpecific())
925                 if (section_sp && section_sp->Test(SHF_ALLOC))
926                 {
927                     lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
928 
929                     // On 32-bit systems the load address have to fit into 4 bytes. The rest of
930                     // the bytes are the overflow from the addition.
931                     if (GetAddressByteSize() == 4)
932                         load_addr &= 0xFFFFFFFF;
933 
934                     if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
935                         ++num_loaded_sections;
936                 }
937             }
938             return num_loaded_sections > 0;
939         }
940     }
941     return false;
942 }
943 
944 ByteOrder
945 ObjectFileELF::GetByteOrder() const
946 {
947     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
948         return eByteOrderBig;
949     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
950         return eByteOrderLittle;
951     return eByteOrderInvalid;
952 }
953 
954 uint32_t
955 ObjectFileELF::GetAddressByteSize() const
956 {
957     return m_data.GetAddressByteSize();
958 }
959 
960 AddressClass
961 ObjectFileELF::GetAddressClass (addr_t file_addr)
962 {
963     Symtab* symtab = GetSymtab();
964     if (!symtab)
965         return eAddressClassUnknown;
966 
967     // The address class is determined based on the symtab. Ask it from the object file what
968     // contains the symtab information.
969     ObjectFile* symtab_objfile = symtab->GetObjectFile();
970     if (symtab_objfile != nullptr && symtab_objfile != this)
971         return symtab_objfile->GetAddressClass(file_addr);
972 
973     auto res = ObjectFile::GetAddressClass (file_addr);
974     if (res != eAddressClassCode)
975         return res;
976 
977     auto ub = m_address_class_map.upper_bound(file_addr);
978     if (ub == m_address_class_map.begin())
979     {
980         // No entry in the address class map before the address. Return
981         // default address class for an address in a code section.
982         return eAddressClassCode;
983     }
984 
985     // Move iterator to the address class entry preceding address
986     --ub;
987 
988     return ub->second;
989 }
990 
991 size_t
992 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
993 {
994     return std::distance(m_section_headers.begin(), I) + 1u;
995 }
996 
997 size_t
998 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
999 {
1000     return std::distance(m_section_headers.begin(), I) + 1u;
1001 }
1002 
1003 bool
1004 ObjectFileELF::ParseHeader()
1005 {
1006     lldb::offset_t offset = 0;
1007     if (!m_header.Parse(m_data, &offset))
1008         return false;
1009 
1010     if (!IsInMemory())
1011         return true;
1012 
1013     // For in memory object files m_data might not contain the full object file. Try to load it
1014     // until the end of the "Section header table" what is at the end of the ELF file.
1015     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
1016     if (m_data.GetByteSize() < file_size)
1017     {
1018         ProcessSP process_sp (m_process_wp.lock());
1019         if (!process_sp)
1020             return false;
1021 
1022         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
1023         if (!data_sp)
1024             return false;
1025         m_data.SetData(data_sp, 0, file_size);
1026     }
1027 
1028     return true;
1029 }
1030 
1031 bool
1032 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
1033 {
1034     // Need to parse the section list to get the UUIDs, so make sure that's been done.
1035     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
1036         return false;
1037 
1038     if (m_uuid.IsValid())
1039     {
1040         // We have the full build id uuid.
1041         *uuid = m_uuid;
1042         return true;
1043     }
1044     else if (GetType() == ObjectFile::eTypeCoreFile)
1045     {
1046         uint32_t core_notes_crc = 0;
1047 
1048         if (!ParseProgramHeaders())
1049             return false;
1050 
1051         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
1052 
1053         if (core_notes_crc)
1054         {
1055             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
1056             // look different form .gnu_debuglink crc - followed by 4 bytes of note
1057             // segments crc.
1058             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
1059             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1060         }
1061     }
1062     else
1063     {
1064         if (!m_gnu_debuglink_crc)
1065             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1066         if (m_gnu_debuglink_crc)
1067         {
1068             // Use 4 bytes of crc from the .gnu_debuglink section.
1069             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1070             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1071         }
1072     }
1073 
1074     if (m_uuid.IsValid())
1075     {
1076         *uuid = m_uuid;
1077         return true;
1078     }
1079 
1080     return false;
1081 }
1082 
1083 lldb_private::FileSpecList
1084 ObjectFileELF::GetDebugSymbolFilePaths()
1085 {
1086     FileSpecList file_spec_list;
1087 
1088     if (!m_gnu_debuglink_file.empty())
1089     {
1090         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1091         file_spec_list.Append (file_spec);
1092     }
1093     return file_spec_list;
1094 }
1095 
1096 uint32_t
1097 ObjectFileELF::GetDependentModules(FileSpecList &files)
1098 {
1099     size_t num_modules = ParseDependentModules();
1100     uint32_t num_specs = 0;
1101 
1102     for (unsigned i = 0; i < num_modules; ++i)
1103     {
1104         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1105             num_specs++;
1106     }
1107 
1108     return num_specs;
1109 }
1110 
1111 Address
1112 ObjectFileELF::GetImageInfoAddress(Target *target)
1113 {
1114     if (!ParseDynamicSymbols())
1115         return Address();
1116 
1117     SectionList *section_list = GetSectionList();
1118     if (!section_list)
1119         return Address();
1120 
1121     // Find the SHT_DYNAMIC (.dynamic) section.
1122     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1123     if (!dynsym_section_sp)
1124         return Address();
1125     assert (dynsym_section_sp->GetObjectFile() == this);
1126 
1127     user_id_t dynsym_id = dynsym_section_sp->GetID();
1128     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1129     if (!dynsym_hdr)
1130         return Address();
1131 
1132     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1133     {
1134         ELFDynamic &symbol = m_dynamic_symbols[i];
1135 
1136         if (symbol.d_tag == DT_DEBUG)
1137         {
1138             // Compute the offset as the number of previous entries plus the
1139             // size of d_tag.
1140             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1141             return Address(dynsym_section_sp, offset);
1142         }
1143         // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP exists in non-PIE.
1144         else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target)
1145         {
1146             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1147             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1148             if (dyn_base == LLDB_INVALID_ADDRESS)
1149                 return Address();
1150 
1151             Error error;
1152             if (symbol.d_tag == DT_MIPS_RLD_MAP)
1153             {
1154                 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
1155                 Address addr;
1156                 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1157                     return addr;
1158             }
1159             if (symbol.d_tag == DT_MIPS_RLD_MAP_REL)
1160             {
1161                 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, relative to the address of the tag.
1162                 uint64_t rel_offset;
1163                 rel_offset = target->ReadUnsignedIntegerFromMemory(dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error);
1164                 if (error.Success() && rel_offset != UINT64_MAX)
1165                 {
1166                     Address addr;
1167                     addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset;
1168                     addr.SetOffset (debug_ptr_address);
1169                     return addr;
1170                 }
1171             }
1172         }
1173     }
1174 
1175     return Address();
1176 }
1177 
1178 lldb_private::Address
1179 ObjectFileELF::GetEntryPointAddress ()
1180 {
1181     if (m_entry_point_address.IsValid())
1182         return m_entry_point_address;
1183 
1184     if (!ParseHeader() || !IsExecutable())
1185         return m_entry_point_address;
1186 
1187     SectionList *section_list = GetSectionList();
1188     addr_t offset = m_header.e_entry;
1189 
1190     if (!section_list)
1191         m_entry_point_address.SetOffset(offset);
1192     else
1193         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1194     return m_entry_point_address;
1195 }
1196 
1197 //----------------------------------------------------------------------
1198 // ParseDependentModules
1199 //----------------------------------------------------------------------
1200 size_t
1201 ObjectFileELF::ParseDependentModules()
1202 {
1203     if (m_filespec_ap.get())
1204         return m_filespec_ap->GetSize();
1205 
1206     m_filespec_ap.reset(new FileSpecList());
1207 
1208     if (!ParseSectionHeaders())
1209         return 0;
1210 
1211     SectionList *section_list = GetSectionList();
1212     if (!section_list)
1213         return 0;
1214 
1215     // Find the SHT_DYNAMIC section.
1216     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1217     if (!dynsym)
1218         return 0;
1219     assert (dynsym->GetObjectFile() == this);
1220 
1221     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1222     if (!header)
1223         return 0;
1224     // sh_link: section header index of string table used by entries in the section.
1225     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1226     if (!dynstr)
1227         return 0;
1228 
1229     DataExtractor dynsym_data;
1230     DataExtractor dynstr_data;
1231     if (ReadSectionData(dynsym, dynsym_data) &&
1232         ReadSectionData(dynstr, dynstr_data))
1233     {
1234         ELFDynamic symbol;
1235         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1236         lldb::offset_t offset = 0;
1237 
1238         // The only type of entries we are concerned with are tagged DT_NEEDED,
1239         // yielding the name of a required library.
1240         while (offset < section_size)
1241         {
1242             if (!symbol.Parse(dynsym_data, &offset))
1243                 break;
1244 
1245             if (symbol.d_tag != DT_NEEDED)
1246                 continue;
1247 
1248             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1249             const char *lib_name = dynstr_data.PeekCStr(str_index);
1250             m_filespec_ap->Append(FileSpec(lib_name, true));
1251         }
1252     }
1253 
1254     return m_filespec_ap->GetSize();
1255 }
1256 
1257 //----------------------------------------------------------------------
1258 // GetProgramHeaderInfo
1259 //----------------------------------------------------------------------
1260 size_t
1261 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1262                                     const SetDataFunction &set_data,
1263                                     const ELFHeader &header)
1264 {
1265     // We have already parsed the program headers
1266     if (!program_headers.empty())
1267         return program_headers.size();
1268 
1269     // If there are no program headers to read we are done.
1270     if (header.e_phnum == 0)
1271         return 0;
1272 
1273     program_headers.resize(header.e_phnum);
1274     if (program_headers.size() != header.e_phnum)
1275         return 0;
1276 
1277     const size_t ph_size = header.e_phnum * header.e_phentsize;
1278     const elf_off ph_offset = header.e_phoff;
1279     DataExtractor data;
1280     if (set_data(data, ph_offset, ph_size) != ph_size)
1281         return 0;
1282 
1283     uint32_t idx;
1284     lldb::offset_t offset;
1285     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1286     {
1287         if (program_headers[idx].Parse(data, &offset) == false)
1288             break;
1289     }
1290 
1291     if (idx < program_headers.size())
1292         program_headers.resize(idx);
1293 
1294     return program_headers.size();
1295 
1296 }
1297 
1298 //----------------------------------------------------------------------
1299 // ParseProgramHeaders
1300 //----------------------------------------------------------------------
1301 size_t
1302 ObjectFileELF::ParseProgramHeaders()
1303 {
1304     using namespace std::placeholders;
1305     return GetProgramHeaderInfo(m_program_headers,
1306                                 std::bind(&ObjectFileELF::SetDataWithReadMemoryFallback, this, _1, _2, _3),
1307                                 m_header);
1308 }
1309 
1310 lldb_private::Error
1311 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1312 {
1313     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1314     Error error;
1315 
1316     lldb::offset_t offset = 0;
1317 
1318     while (true)
1319     {
1320         // Parse the note header.  If this fails, bail out.
1321         const lldb::offset_t note_offset = offset;
1322         ELFNote note = ELFNote();
1323         if (!note.Parse(data, &offset))
1324         {
1325             // We're done.
1326             return error;
1327         }
1328 
1329         if (log)
1330             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1331 
1332         // Process FreeBSD ELF notes.
1333         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1334             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1335             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1336         {
1337             // Pull out the min version info.
1338             uint32_t version_info;
1339             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1340             {
1341                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1342                 return error;
1343             }
1344 
1345             // Convert the version info into a major/minor number.
1346             const uint32_t version_major = version_info / 100000;
1347             const uint32_t version_minor = (version_info / 1000) % 100;
1348 
1349             char os_name[32];
1350             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1351 
1352             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1353             arch_spec.GetTriple ().setOSName (os_name);
1354             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1355 
1356             if (log)
1357                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1358         }
1359         // Process GNU ELF notes.
1360         else if (note.n_name == LLDB_NT_OWNER_GNU)
1361         {
1362             switch (note.n_type)
1363             {
1364                 case LLDB_NT_GNU_ABI_TAG:
1365                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1366                     {
1367                         // Pull out the min OS version supporting the ABI.
1368                         uint32_t version_info[4];
1369                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1370                         {
1371                             error.SetErrorString ("failed to read GNU ABI note payload");
1372                             return error;
1373                         }
1374 
1375                         // Set the OS per the OS field.
1376                         switch (version_info[0])
1377                         {
1378                             case LLDB_NT_GNU_ABI_OS_LINUX:
1379                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1380                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1381                                 if (log)
1382                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1383                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1384                                 break;
1385                             case LLDB_NT_GNU_ABI_OS_HURD:
1386                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1387                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1388                                 if (log)
1389                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1390                                 break;
1391                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1392                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1393                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1394                                 if (log)
1395                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1396                                 break;
1397                             default:
1398                                 if (log)
1399                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1400                                 break;
1401                         }
1402                     }
1403                     break;
1404 
1405                 case LLDB_NT_GNU_BUILD_ID_TAG:
1406                     // Only bother processing this if we don't already have the uuid set.
1407                     if (!uuid.IsValid())
1408                     {
1409                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1410                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1411                         {
1412                             uint8_t uuidbuf[20];
1413                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1414                             {
1415                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1416                                 return error;
1417                             }
1418 
1419                             // Save the build id as the UUID for the module.
1420                             uuid.SetBytes (uuidbuf, note.n_descsz);
1421                         }
1422                     }
1423                     break;
1424             }
1425         }
1426         // Process NetBSD ELF notes.
1427         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1428                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1429                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1430         {
1431             // Pull out the min version info.
1432             uint32_t version_info;
1433             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1434             {
1435                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1436                 return error;
1437             }
1438 
1439             // Set the elf OS version to NetBSD.  Also clear the vendor.
1440             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1441             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1442 
1443             if (log)
1444                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1445         }
1446         // Process CSR kalimba notes
1447         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1448                 (note.n_name == LLDB_NT_OWNER_CSR))
1449         {
1450             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1451             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1452 
1453             // TODO At some point the description string could be processed.
1454             // It could provide a steer towards the kalimba variant which
1455             // this ELF targets.
1456             if(note.n_descsz)
1457             {
1458                 const char *cstr = data.GetCStr(&offset, llvm::alignTo (note.n_descsz, 4));
1459                 (void)cstr;
1460             }
1461         }
1462         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1463         {
1464             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1465             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1466         }
1467         else if (note.n_name == LLDB_NT_OWNER_LINUX)
1468         {
1469             // This is sometimes found in core files and usually contains extended register info
1470             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1471         }
1472         else if (note.n_name == LLDB_NT_OWNER_CORE)
1473         {
1474             // Parse the NT_FILE to look for stuff in paths to shared libraries
1475             // As the contents look like:
1476             // count     = 0x000000000000000a (10)
1477             // page_size = 0x0000000000001000 (4096)
1478             // Index start              end                file_ofs           path
1479             // ===== ------------------ ------------------ ------------------ -------------------------------------
1480             // [  0] 0x0000000000400000 0x0000000000401000 0x0000000000000000 /tmp/a.out
1481             // [  1] 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out
1482             // [  2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1483             // [  3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 /lib/x86_64-linux-gnu/libc-2.19.so
1484             // [  4] 0x00007fa79cba8000 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-gnu/libc-2.19.so
1485             // [  5] 0x00007fa79cda7000 0x00007fa79cdab000 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so
1486             // [  6] 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64-linux-gnu/libc-2.19.so
1487             // [  7] 0x00007fa79cdb2000 0x00007fa79cdd5000 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so
1488             // [  8] 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64-linux-gnu/ld-2.19.so
1489             // [  9] 0x00007fa79cfd5000 0x00007fa79cfd6000 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so
1490             if (note.n_type == NT_FILE)
1491             {
1492                 uint64_t count = data.GetU64(&offset);
1493                 offset += 8 + 3*8*count; // Skip page size and all start/end/file_ofs
1494                 for (size_t i=0; i<count; ++i)
1495                 {
1496                     llvm::StringRef path(data.GetCStr(&offset));
1497                     if (path.startswith("/lib/x86_64-linux-gnu"))
1498                     {
1499                         arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1500                         break;
1501                     }
1502                 }
1503             }
1504         }
1505 
1506         // Calculate the offset of the next note just in case "offset" has been used
1507         // to poke at the contents of the note data
1508         offset = note_offset + note.GetByteSize();
1509     }
1510 
1511     return error;
1512 }
1513 
1514 
1515 //----------------------------------------------------------------------
1516 // GetSectionHeaderInfo
1517 //----------------------------------------------------------------------
1518 size_t
1519 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1520                                     const SetDataFunction &set_data,
1521                                     const elf::ELFHeader &header,
1522                                     lldb_private::UUID &uuid,
1523                                     std::string &gnu_debuglink_file,
1524                                     uint32_t &gnu_debuglink_crc,
1525                                     ArchSpec &arch_spec)
1526 {
1527     // Don't reparse the section headers if we already did that.
1528     if (!section_headers.empty())
1529         return section_headers.size();
1530 
1531     // Only initialize the arch_spec to okay defaults if they're not already set.
1532     // We'll refine this with note data as we parse the notes.
1533     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1534     {
1535         llvm::Triple::OSType ostype;
1536         llvm::Triple::OSType spec_ostype;
1537         const uint32_t sub_type = subTypeFromElfHeader(header);
1538         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1539         //
1540         // Validate if it is ok to remove GetOsFromOSABI
1541         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1542         spec_ostype = arch_spec.GetTriple ().getOS ();
1543         assert(spec_ostype == ostype);
1544     }
1545 
1546     if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1547         || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1548     {
1549         switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE)
1550         {
1551             case llvm::ELF::EF_MIPS_MICROMIPS:
1552                 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips);
1553                 break;
1554             case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1555                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16);
1556                 break;
1557             case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1558                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx);
1559                 break;
1560             default:
1561                 break;
1562         }
1563     }
1564 
1565     if (arch_spec.GetMachine() == llvm::Triple::arm ||
1566         arch_spec.GetMachine() == llvm::Triple::thumb)
1567     {
1568         if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
1569             arch_spec.SetFlags (ArchSpec::eARM_abi_soft_float);
1570         else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
1571             arch_spec.SetFlags (ArchSpec::eARM_abi_hard_float);
1572     }
1573 
1574     // If there are no section headers we are done.
1575     if (header.e_shnum == 0)
1576         return 0;
1577 
1578     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1579 
1580     section_headers.resize(header.e_shnum);
1581     if (section_headers.size() != header.e_shnum)
1582         return 0;
1583 
1584     const size_t sh_size = header.e_shnum * header.e_shentsize;
1585     const elf_off sh_offset = header.e_shoff;
1586     DataExtractor sh_data;
1587     if (set_data (sh_data, sh_offset, sh_size) != sh_size)
1588         return 0;
1589 
1590     uint32_t idx;
1591     lldb::offset_t offset;
1592     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1593     {
1594         if (section_headers[idx].Parse(sh_data, &offset) == false)
1595             break;
1596     }
1597     if (idx < section_headers.size())
1598         section_headers.resize(idx);
1599 
1600     const unsigned strtab_idx = header.e_shstrndx;
1601     if (strtab_idx && strtab_idx < section_headers.size())
1602     {
1603         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1604         const size_t byte_size = sheader.sh_size;
1605         const Elf64_Off offset = sheader.sh_offset;
1606         lldb_private::DataExtractor shstr_data;
1607 
1608         if (set_data (shstr_data, offset, byte_size) == byte_size)
1609         {
1610             for (SectionHeaderCollIter I = section_headers.begin();
1611                  I != section_headers.end(); ++I)
1612             {
1613                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1614                 const ELFSectionHeaderInfo &sheader = *I;
1615                 const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1616                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1617 
1618                 I->section_name = name;
1619 
1620                 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1621                     || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1622                 {
1623                     uint32_t arch_flags = arch_spec.GetFlags ();
1624                     DataExtractor data;
1625                     if (sheader.sh_type == SHT_MIPS_ABIFLAGS)
1626                     {
1627 
1628                         if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size))
1629                         {
1630                             lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0
1631                             arch_flags |= data.GetU32 (&ase_offset);
1632                         }
1633                     }
1634                     // Settings appropriate ArchSpec ABI Flags
1635                     if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1636                     {
1637                         arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1638                     }
1639                     else if (header.e_flags & llvm::ELF::EF_MIPS_ABI_O32)
1640                     {
1641                          arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1642                     }
1643                     arch_spec.SetFlags (arch_flags);
1644                 }
1645 
1646                 if (name == g_sect_name_gnu_debuglink)
1647                 {
1648                     DataExtractor data;
1649                     if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size))
1650                     {
1651                         lldb::offset_t gnu_debuglink_offset = 0;
1652                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1653                         gnu_debuglink_offset = llvm::alignTo (gnu_debuglink_offset, 4);
1654                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1655                     }
1656                 }
1657 
1658                 // Process ELF note section entries.
1659                 bool is_note_header = (sheader.sh_type == SHT_NOTE);
1660 
1661                 // The section header ".note.android.ident" is stored as a
1662                 // PROGBITS type header but it is actually a note header.
1663                 static ConstString g_sect_name_android_ident (".note.android.ident");
1664                 if (!is_note_header && name == g_sect_name_android_ident)
1665                     is_note_header = true;
1666 
1667                 if (is_note_header)
1668                 {
1669                     // Allow notes to refine module info.
1670                     DataExtractor data;
1671                     if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size))
1672                     {
1673                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1674                         if (error.Fail ())
1675                         {
1676                             if (log)
1677                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1678                         }
1679                     }
1680                 }
1681             }
1682 
1683             // Make any unknown triple components to be unspecified unknowns.
1684             if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1685                 arch_spec.GetTriple().setVendorName (llvm::StringRef());
1686             if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1687                 arch_spec.GetTriple().setOSName (llvm::StringRef());
1688 
1689             return section_headers.size();
1690         }
1691     }
1692 
1693     section_headers.clear();
1694     return 0;
1695 }
1696 
1697 size_t
1698 ObjectFileELF::GetProgramHeaderCount()
1699 {
1700     return ParseProgramHeaders();
1701 }
1702 
1703 const elf::ELFProgramHeader *
1704 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1705 {
1706     if (!id || !ParseProgramHeaders())
1707         return NULL;
1708 
1709     if (--id < m_program_headers.size())
1710         return &m_program_headers[id];
1711 
1712     return NULL;
1713 }
1714 
1715 DataExtractor
1716 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1717 {
1718     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1719     if (segment_header == NULL)
1720         return DataExtractor();
1721     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1722 }
1723 
1724 std::string
1725 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1726 {
1727     size_t pos = symbol_name.find('@');
1728     return symbol_name.substr(0, pos).str();
1729 }
1730 
1731 //----------------------------------------------------------------------
1732 // ParseSectionHeaders
1733 //----------------------------------------------------------------------
1734 size_t
1735 ObjectFileELF::ParseSectionHeaders()
1736 {
1737     using namespace std::placeholders;
1738 
1739     return GetSectionHeaderInfo(m_section_headers,
1740                                 std::bind(&ObjectFileELF::SetDataWithReadMemoryFallback, this, _1, _2, _3),
1741                                 m_header,
1742                                 m_uuid,
1743                                 m_gnu_debuglink_file,
1744                                 m_gnu_debuglink_crc,
1745                                 m_arch_spec);
1746 }
1747 
1748 lldb::offset_t
1749 ObjectFileELF::SetData(const lldb_private::DataExtractor &src, lldb_private::DataExtractor &dst, lldb::offset_t offset, lldb::offset_t length)
1750 {
1751     return dst.SetData(src, offset, length);
1752 }
1753 
1754 lldb::offset_t
1755 ObjectFileELF::SetDataWithReadMemoryFallback(lldb_private::DataExtractor &dst, lldb::offset_t offset, lldb::offset_t length)
1756 {
1757     if (offset + length <= m_data.GetByteSize())
1758         return dst.SetData(m_data, offset, length);
1759 
1760     const auto process_sp = m_process_wp.lock();
1761     if (process_sp != nullptr)
1762     {
1763         addr_t file_size = offset + length;
1764 
1765         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
1766         if (!data_sp)
1767             return false;
1768         m_data.SetData(data_sp, 0, file_size);
1769     }
1770 
1771     return dst.SetData(m_data, offset, length);
1772 }
1773 
1774 const ObjectFileELF::ELFSectionHeaderInfo *
1775 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1776 {
1777     if (!id || !ParseSectionHeaders())
1778         return NULL;
1779 
1780     if (--id < m_section_headers.size())
1781         return &m_section_headers[id];
1782 
1783     return NULL;
1784 }
1785 
1786 lldb::user_id_t
1787 ObjectFileELF::GetSectionIndexByName(const char* name)
1788 {
1789     if (!name || !name[0] || !ParseSectionHeaders())
1790         return 0;
1791     for (size_t i = 1; i < m_section_headers.size(); ++i)
1792         if (m_section_headers[i].section_name == ConstString(name))
1793             return i;
1794     return 0;
1795 }
1796 
1797 void
1798 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1799 {
1800     if (!m_sections_ap.get() && ParseSectionHeaders())
1801     {
1802         m_sections_ap.reset(new SectionList());
1803 
1804         for (SectionHeaderCollIter I = m_section_headers.begin();
1805              I != m_section_headers.end(); ++I)
1806         {
1807             const ELFSectionHeaderInfo &header = *I;
1808 
1809             ConstString& name = I->section_name;
1810             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1811             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1812 
1813             static ConstString g_sect_name_text (".text");
1814             static ConstString g_sect_name_data (".data");
1815             static ConstString g_sect_name_bss (".bss");
1816             static ConstString g_sect_name_tdata (".tdata");
1817             static ConstString g_sect_name_tbss (".tbss");
1818             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1819             static ConstString g_sect_name_dwarf_debug_addr (".debug_addr");
1820             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1821             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1822             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1823             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1824             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1825             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1826             static ConstString g_sect_name_dwarf_debug_macro (".debug_macro");
1827             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1828             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1829             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1830             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1831             static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets");
1832             static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo");
1833             static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo");
1834             static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo");
1835             static ConstString g_sect_name_dwarf_debug_macro_dwo (".debug_macro.dwo");
1836             static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo");
1837             static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo");
1838             static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo");
1839             static ConstString g_sect_name_eh_frame (".eh_frame");
1840             static ConstString g_sect_name_arm_exidx (".ARM.exidx");
1841             static ConstString g_sect_name_arm_extab (".ARM.extab");
1842             static ConstString g_sect_name_go_symtab (".gosymtab");
1843 
1844             SectionType sect_type = eSectionTypeOther;
1845 
1846             bool is_thread_specific = false;
1847 
1848             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1849             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1850             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1851             else if (name == g_sect_name_tdata)
1852             {
1853                 sect_type = eSectionTypeData;
1854                 is_thread_specific = true;
1855             }
1856             else if (name == g_sect_name_tbss)
1857             {
1858                 sect_type = eSectionTypeZeroFill;
1859                 is_thread_specific = true;
1860             }
1861             // .debug_abbrev – Abbreviations used in the .debug_info section
1862             // .debug_aranges – Lookup table for mapping addresses to compilation units
1863             // .debug_frame – Call frame information
1864             // .debug_info – The core DWARF information section
1865             // .debug_line – Line number information
1866             // .debug_loc – Location lists used in DW_AT_location attributes
1867             // .debug_macinfo – Macro information
1868             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1869             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1870             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1871             // .debug_str – String table used in .debug_info
1872             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1873             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1874             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1875             else if (name == g_sect_name_dwarf_debug_abbrev)          sect_type = eSectionTypeDWARFDebugAbbrev;
1876             else if (name == g_sect_name_dwarf_debug_addr)            sect_type = eSectionTypeDWARFDebugAddr;
1877             else if (name == g_sect_name_dwarf_debug_aranges)         sect_type = eSectionTypeDWARFDebugAranges;
1878             else if (name == g_sect_name_dwarf_debug_frame)           sect_type = eSectionTypeDWARFDebugFrame;
1879             else if (name == g_sect_name_dwarf_debug_info)            sect_type = eSectionTypeDWARFDebugInfo;
1880             else if (name == g_sect_name_dwarf_debug_line)            sect_type = eSectionTypeDWARFDebugLine;
1881             else if (name == g_sect_name_dwarf_debug_loc)             sect_type = eSectionTypeDWARFDebugLoc;
1882             else if (name == g_sect_name_dwarf_debug_macinfo)         sect_type = eSectionTypeDWARFDebugMacInfo;
1883             else if (name == g_sect_name_dwarf_debug_macro)           sect_type = eSectionTypeDWARFDebugMacro;
1884             else if (name == g_sect_name_dwarf_debug_pubnames)        sect_type = eSectionTypeDWARFDebugPubNames;
1885             else if (name == g_sect_name_dwarf_debug_pubtypes)        sect_type = eSectionTypeDWARFDebugPubTypes;
1886             else if (name == g_sect_name_dwarf_debug_ranges)          sect_type = eSectionTypeDWARFDebugRanges;
1887             else if (name == g_sect_name_dwarf_debug_str)             sect_type = eSectionTypeDWARFDebugStr;
1888             else if (name == g_sect_name_dwarf_debug_str_offsets)     sect_type = eSectionTypeDWARFDebugStrOffsets;
1889             else if (name == g_sect_name_dwarf_debug_abbrev_dwo)      sect_type = eSectionTypeDWARFDebugAbbrev;
1890             else if (name == g_sect_name_dwarf_debug_info_dwo)        sect_type = eSectionTypeDWARFDebugInfo;
1891             else if (name == g_sect_name_dwarf_debug_line_dwo)        sect_type = eSectionTypeDWARFDebugLine;
1892             else if (name == g_sect_name_dwarf_debug_macro_dwo)       sect_type = eSectionTypeDWARFDebugMacro;
1893             else if (name == g_sect_name_dwarf_debug_loc_dwo)         sect_type = eSectionTypeDWARFDebugLoc;
1894             else if (name == g_sect_name_dwarf_debug_str_dwo)         sect_type = eSectionTypeDWARFDebugStr;
1895             else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets;
1896             else if (name == g_sect_name_eh_frame)                    sect_type = eSectionTypeEHFrame;
1897             else if (name == g_sect_name_arm_exidx)                   sect_type = eSectionTypeARMexidx;
1898             else if (name == g_sect_name_arm_extab)                   sect_type = eSectionTypeARMextab;
1899             else if (name == g_sect_name_go_symtab)                   sect_type = eSectionTypeGoSymtab;
1900 
1901             switch (header.sh_type)
1902             {
1903                 case SHT_SYMTAB:
1904                     assert (sect_type == eSectionTypeOther);
1905                     sect_type = eSectionTypeELFSymbolTable;
1906                     break;
1907                 case SHT_DYNSYM:
1908                     assert (sect_type == eSectionTypeOther);
1909                     sect_type = eSectionTypeELFDynamicSymbols;
1910                     break;
1911                 case SHT_RELA:
1912                 case SHT_REL:
1913                     assert (sect_type == eSectionTypeOther);
1914                     sect_type = eSectionTypeELFRelocationEntries;
1915                     break;
1916                 case SHT_DYNAMIC:
1917                     assert (sect_type == eSectionTypeOther);
1918                     sect_type = eSectionTypeELFDynamicLinkInfo;
1919                     break;
1920             }
1921 
1922             if (eSectionTypeOther == sect_type)
1923             {
1924                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1925                 // support linkscripts which (can) give rise to various arbitrarily named
1926                 // sections being "Code" or "Data".
1927                 sect_type = kalimbaSectionType(m_header, header);
1928             }
1929 
1930             const uint32_t target_bytes_size =
1931                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1932                 m_arch_spec.GetDataByteSize() :
1933                     eSectionTypeCode == sect_type ?
1934                     m_arch_spec.GetCodeByteSize() : 1;
1935 
1936             elf::elf_xword log2align = (header.sh_addralign==0)
1937                                         ? 0
1938                                         : llvm::Log2_64(header.sh_addralign);
1939             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1940                                               this,               // ObjectFile to which this section belongs and should read section data from.
1941                                               SectionIndex(I),    // Section ID.
1942                                               name,               // Section name.
1943                                               sect_type,          // Section type.
1944                                               header.sh_addr,     // VM address.
1945                                               vm_size,            // VM size in bytes of this section.
1946                                               header.sh_offset,   // Offset of this section in the file.
1947                                               file_size,          // Size of the section as found in the file.
1948                                               log2align,          // Alignment of the section
1949                                               header.sh_flags,    // Flags for this section.
1950                                               target_bytes_size));// Number of host bytes per target byte
1951 
1952             if (is_thread_specific)
1953                 section_sp->SetIsThreadSpecific (is_thread_specific);
1954             m_sections_ap->AddSection(section_sp);
1955         }
1956     }
1957 
1958     if (m_sections_ap.get())
1959     {
1960         if (GetType() == eTypeDebugInfo)
1961         {
1962             static const SectionType g_sections[] =
1963             {
1964                 eSectionTypeDWARFDebugAbbrev,
1965                 eSectionTypeDWARFDebugAddr,
1966                 eSectionTypeDWARFDebugAranges,
1967                 eSectionTypeDWARFDebugFrame,
1968                 eSectionTypeDWARFDebugInfo,
1969                 eSectionTypeDWARFDebugLine,
1970                 eSectionTypeDWARFDebugLoc,
1971                 eSectionTypeDWARFDebugMacInfo,
1972                 eSectionTypeDWARFDebugPubNames,
1973                 eSectionTypeDWARFDebugPubTypes,
1974                 eSectionTypeDWARFDebugRanges,
1975                 eSectionTypeDWARFDebugStr,
1976                 eSectionTypeDWARFDebugStrOffsets,
1977                 eSectionTypeELFSymbolTable,
1978             };
1979             SectionList *elf_section_list = m_sections_ap.get();
1980             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1981             {
1982                 SectionType section_type = g_sections[idx];
1983                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1984                 if (section_sp)
1985                 {
1986                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1987                     if (module_section_sp)
1988                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1989                     else
1990                         unified_section_list.AddSection (section_sp);
1991                 }
1992             }
1993         }
1994         else
1995         {
1996             unified_section_list = *m_sections_ap;
1997         }
1998     }
1999 }
2000 
2001 // Find the arm/aarch64 mapping symbol character in the given symbol name. Mapping symbols have the
2002 // form of "$<char>[.<any>]*". Additionally we recognize cases when the mapping symbol prefixed by
2003 // an arbitrary string because if a symbol prefix added to each symbol in the object file with
2004 // objcopy then the mapping symbols are also prefixed.
2005 static char
2006 FindArmAarch64MappingSymbol(const char* symbol_name)
2007 {
2008     if (!symbol_name)
2009         return '\0';
2010 
2011     const char* dollar_pos = ::strchr(symbol_name, '$');
2012     if (!dollar_pos || dollar_pos[1] == '\0')
2013         return '\0';
2014 
2015     if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
2016         return dollar_pos[1];
2017     return '\0';
2018 }
2019 
2020 #define STO_MIPS_ISA            (3 << 6)
2021 #define STO_MICROMIPS           (2 << 6)
2022 #define IS_MICROMIPS(ST_OTHER)  (((ST_OTHER) & STO_MIPS_ISA) == STO_MICROMIPS)
2023 
2024 // private
2025 unsigned
2026 ObjectFileELF::ParseSymbols (Symtab *symtab,
2027                              user_id_t start_id,
2028                              SectionList *section_list,
2029                              const size_t num_symbols,
2030                              const DataExtractor &symtab_data,
2031                              const DataExtractor &strtab_data)
2032 {
2033     ELFSymbol symbol;
2034     lldb::offset_t offset = 0;
2035 
2036     static ConstString text_section_name(".text");
2037     static ConstString init_section_name(".init");
2038     static ConstString fini_section_name(".fini");
2039     static ConstString ctors_section_name(".ctors");
2040     static ConstString dtors_section_name(".dtors");
2041 
2042     static ConstString data_section_name(".data");
2043     static ConstString rodata_section_name(".rodata");
2044     static ConstString rodata1_section_name(".rodata1");
2045     static ConstString data2_section_name(".data1");
2046     static ConstString bss_section_name(".bss");
2047     static ConstString opd_section_name(".opd");    // For ppc64
2048 
2049     // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full
2050     // .text section what causes issues with displaying unusable symbol name to the user and very
2051     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
2052     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
2053     // use for the debugger and they are causing a lot of trouble.
2054     // Filtering can't be restricted to Android because this special object file don't contain the
2055     // note section specifying the environment to Android but the custom extension and file name
2056     // makes it highly unlikely that this will collide with anything else.
2057     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat");
2058 
2059     ArchSpec arch;
2060     GetArchitecture(arch);
2061 
2062     // Local cache to avoid doing a FindSectionByName for each symbol. The "const char*" key must
2063     // came from a ConstString object so they can be compared by pointer
2064     std::unordered_map<const char*, lldb::SectionSP> section_name_to_section;
2065 
2066     unsigned i;
2067     for (i = 0; i < num_symbols; ++i)
2068     {
2069         if (symbol.Parse(symtab_data, &offset) == false)
2070             break;
2071 
2072         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2073 
2074         // No need to add non-section symbols that have no names
2075         if (symbol.getType() != STT_SECTION &&
2076             (symbol_name == NULL || symbol_name[0] == '\0'))
2077             continue;
2078 
2079         // Skipping oatdata and oatexec sections if it is requested. See details above the
2080         // definition of skip_oatdata_oatexec for the reasons.
2081         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
2082             continue;
2083 
2084         SectionSP symbol_section_sp;
2085         SymbolType symbol_type = eSymbolTypeInvalid;
2086         Elf64_Half symbol_idx = symbol.st_shndx;
2087 
2088         switch (symbol_idx)
2089         {
2090         case SHN_ABS:
2091             symbol_type = eSymbolTypeAbsolute;
2092             break;
2093         case SHN_UNDEF:
2094             symbol_type = eSymbolTypeUndefined;
2095             break;
2096         default:
2097             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
2098             break;
2099         }
2100 
2101         // If a symbol is undefined do not process it further even if it has a STT type
2102         if (symbol_type != eSymbolTypeUndefined)
2103         {
2104             switch (symbol.getType())
2105             {
2106             default:
2107             case STT_NOTYPE:
2108                 // The symbol's type is not specified.
2109                 break;
2110 
2111             case STT_OBJECT:
2112                 // The symbol is associated with a data object, such as a variable,
2113                 // an array, etc.
2114                 symbol_type = eSymbolTypeData;
2115                 break;
2116 
2117             case STT_FUNC:
2118                 // The symbol is associated with a function or other executable code.
2119                 symbol_type = eSymbolTypeCode;
2120                 break;
2121 
2122             case STT_SECTION:
2123                 // The symbol is associated with a section. Symbol table entries of
2124                 // this type exist primarily for relocation and normally have
2125                 // STB_LOCAL binding.
2126                 break;
2127 
2128             case STT_FILE:
2129                 // Conventionally, the symbol's name gives the name of the source
2130                 // file associated with the object file. A file symbol has STB_LOCAL
2131                 // binding, its section index is SHN_ABS, and it precedes the other
2132                 // STB_LOCAL symbols for the file, if it is present.
2133                 symbol_type = eSymbolTypeSourceFile;
2134                 break;
2135 
2136             case STT_GNU_IFUNC:
2137                 // The symbol is associated with an indirect function. The actual
2138                 // function will be resolved if it is referenced.
2139                 symbol_type = eSymbolTypeResolver;
2140                 break;
2141             }
2142         }
2143 
2144         if (symbol_type == eSymbolTypeInvalid)
2145         {
2146             if (symbol_section_sp)
2147             {
2148                 const ConstString &sect_name = symbol_section_sp->GetName();
2149                 if (sect_name == text_section_name ||
2150                     sect_name == init_section_name ||
2151                     sect_name == fini_section_name ||
2152                     sect_name == ctors_section_name ||
2153                     sect_name == dtors_section_name)
2154                 {
2155                     symbol_type = eSymbolTypeCode;
2156                 }
2157                 else if (sect_name == data_section_name ||
2158                          sect_name == data2_section_name ||
2159                          sect_name == rodata_section_name ||
2160                          sect_name == rodata1_section_name ||
2161                          sect_name == bss_section_name)
2162                 {
2163                     symbol_type = eSymbolTypeData;
2164                 }
2165             }
2166         }
2167 
2168         int64_t symbol_value_offset = 0;
2169         uint32_t additional_flags = 0;
2170 
2171         if (arch.IsValid())
2172         {
2173             if (arch.GetMachine() == llvm::Triple::arm)
2174             {
2175                 if (symbol.getBinding() == STB_LOCAL)
2176                 {
2177                     char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2178                     if (symbol_type == eSymbolTypeCode)
2179                     {
2180                         switch (mapping_symbol)
2181                         {
2182                             case 'a':
2183                                 // $a[.<any>]* - marks an ARM instruction sequence
2184                                 m_address_class_map[symbol.st_value] = eAddressClassCode;
2185                                 break;
2186                             case 'b':
2187                             case 't':
2188                                 // $b[.<any>]* - marks a THUMB BL instruction sequence
2189                                 // $t[.<any>]* - marks a THUMB instruction sequence
2190                                 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2191                                 break;
2192                             case 'd':
2193                                 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2194                                 m_address_class_map[symbol.st_value] = eAddressClassData;
2195                                 break;
2196                         }
2197                     }
2198                     if (mapping_symbol)
2199                         continue;
2200                 }
2201             }
2202             else if (arch.GetMachine() == llvm::Triple::aarch64)
2203             {
2204                 if (symbol.getBinding() == STB_LOCAL)
2205                 {
2206                     char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2207                     if (symbol_type == eSymbolTypeCode)
2208                     {
2209                         switch (mapping_symbol)
2210                         {
2211                             case 'x':
2212                                 // $x[.<any>]* - marks an A64 instruction sequence
2213                                 m_address_class_map[symbol.st_value] = eAddressClassCode;
2214                                 break;
2215                             case 'd':
2216                                 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2217                                 m_address_class_map[symbol.st_value] = eAddressClassData;
2218                                 break;
2219                         }
2220                     }
2221                     if (mapping_symbol)
2222                         continue;
2223                 }
2224             }
2225 
2226             if (arch.GetMachine() == llvm::Triple::arm)
2227             {
2228                 if (symbol_type == eSymbolTypeCode)
2229                 {
2230                     if (symbol.st_value & 1)
2231                     {
2232                         // Subtracting 1 from the address effectively unsets
2233                         // the low order bit, which results in the address
2234                         // actually pointing to the beginning of the symbol.
2235                         // This delta will be used below in conjunction with
2236                         // symbol.st_value to produce the final symbol_value
2237                         // that we store in the symtab.
2238                         symbol_value_offset = -1;
2239                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
2240                     }
2241                     else
2242                     {
2243                         // This address is ARM
2244                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2245                     }
2246                 }
2247             }
2248 
2249             /*
2250              * MIPS:
2251              * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for MIPS).
2252              * This allows processer to switch between microMIPS and MIPS without any need
2253              * for special mode-control register. However, apart from .debug_line, none of
2254              * the ELF/DWARF sections set the ISA bit (for symbol or section). Use st_other
2255              * flag to check whether the symbol is microMIPS and then set the address class
2256              * accordingly.
2257             */
2258             const llvm::Triple::ArchType llvm_arch = arch.GetMachine();
2259             if (llvm_arch == llvm::Triple::mips || llvm_arch == llvm::Triple::mipsel
2260                 || llvm_arch == llvm::Triple::mips64 || llvm_arch == llvm::Triple::mips64el)
2261             {
2262                 if (IS_MICROMIPS(symbol.st_other))
2263                     m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2264                 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode))
2265                 {
2266                     symbol.st_value = symbol.st_value & (~1ull);
2267                     m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2268                 }
2269                 else
2270                 {
2271                     if (symbol_type == eSymbolTypeCode)
2272                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2273                     else if (symbol_type == eSymbolTypeData)
2274                         m_address_class_map[symbol.st_value] = eAddressClassData;
2275                     else
2276                         m_address_class_map[symbol.st_value] = eAddressClassUnknown;
2277                 }
2278             }
2279         }
2280 
2281         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2282         // THUMB symbols. See above for more details.
2283         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2284         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2285             symbol_value -= symbol_section_sp->GetFileAddress();
2286 
2287         if (symbol_section_sp)
2288         {
2289             ModuleSP module_sp(GetModule());
2290             if (module_sp)
2291             {
2292                 SectionList *module_section_list = module_sp->GetSectionList();
2293                 if (module_section_list && module_section_list != section_list)
2294                 {
2295                     const ConstString &sect_name = symbol_section_sp->GetName();
2296                     auto section_it = section_name_to_section.find(sect_name.GetCString());
2297                     if (section_it == section_name_to_section.end())
2298                         section_it = section_name_to_section.emplace(
2299                             sect_name.GetCString(),
2300                             module_section_list->FindSectionByName (sect_name)).first;
2301                     if (section_it->second && section_it->second->GetFileSize())
2302                         symbol_section_sp = section_it->second;
2303                 }
2304             }
2305         }
2306 
2307         bool is_global = symbol.getBinding() == STB_GLOBAL;
2308         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2309         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2310 
2311         llvm::StringRef symbol_ref(symbol_name);
2312 
2313         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2314         size_t version_pos = symbol_ref.find('@');
2315         bool has_suffix = version_pos != llvm::StringRef::npos;
2316         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2317         Mangled mangled(ConstString(symbol_bare), is_mangled);
2318 
2319         // Now append the suffix back to mangled and unmangled names. Only do it if the
2320         // demangling was successful (string is not empty).
2321         if (has_suffix)
2322         {
2323             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2324 
2325             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2326             if (! mangled_name.empty())
2327                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2328 
2329             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2330             llvm::StringRef demangled_name = demangled.GetStringRef();
2331             if (!demangled_name.empty())
2332                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2333         }
2334 
2335         // In ELF all symbol should have a valid size but it is not true for some code symbols
2336         // coming from hand written assembly. As none of the code symbol should have 0 size we try
2337         // to calculate the size for these symbols in the symtab with saying that their original
2338         // size is not valid.
2339         bool symbol_size_valid = symbol.st_size != 0 || symbol_type != eSymbolTypeCode;
2340 
2341         Symbol dc_symbol(
2342             i + start_id,       // ID is the original symbol table index.
2343             mangled,
2344             symbol_type,        // Type of this symbol
2345             is_global,          // Is this globally visible?
2346             false,              // Is this symbol debug info?
2347             false,              // Is this symbol a trampoline?
2348             false,              // Is this symbol artificial?
2349             AddressRange(
2350                 symbol_section_sp,  // Section in which this symbol is defined or null.
2351                 symbol_value,       // Offset in section or symbol value.
2352                 symbol.st_size),    // Size in bytes of this symbol.
2353             symbol_size_valid,      // Symbol size is valid
2354             has_suffix,             // Contains linker annotations?
2355             flags);                 // Symbol flags.
2356         symtab->AddSymbol(dc_symbol);
2357     }
2358     return i;
2359 }
2360 
2361 unsigned
2362 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table,
2363                                 user_id_t start_id,
2364                                 lldb_private::Section *symtab)
2365 {
2366     if (symtab->GetObjectFile() != this)
2367     {
2368         // If the symbol table section is owned by a different object file, have it do the
2369         // parsing.
2370         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2371         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2372     }
2373 
2374     // Get section list for this object file.
2375     SectionList *section_list = m_sections_ap.get();
2376     if (!section_list)
2377         return 0;
2378 
2379     user_id_t symtab_id = symtab->GetID();
2380     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2381     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2382            symtab_hdr->sh_type == SHT_DYNSYM);
2383 
2384     // sh_link: section header index of associated string table.
2385     // Section ID's are ones based.
2386     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2387     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2388 
2389     if (symtab && strtab)
2390     {
2391         assert (symtab->GetObjectFile() == this);
2392         assert (strtab->GetObjectFile() == this);
2393 
2394         DataExtractor symtab_data;
2395         DataExtractor strtab_data;
2396         if (ReadSectionData(symtab, symtab_data) &&
2397             ReadSectionData(strtab, strtab_data))
2398         {
2399             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2400 
2401             return ParseSymbols(symbol_table, start_id, section_list,
2402                                 num_symbols, symtab_data, strtab_data);
2403         }
2404     }
2405 
2406     return 0;
2407 }
2408 
2409 size_t
2410 ObjectFileELF::ParseDynamicSymbols()
2411 {
2412     if (m_dynamic_symbols.size())
2413         return m_dynamic_symbols.size();
2414 
2415     SectionList *section_list = GetSectionList();
2416     if (!section_list)
2417         return 0;
2418 
2419     // Find the SHT_DYNAMIC section.
2420     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2421     if (!dynsym)
2422         return 0;
2423     assert (dynsym->GetObjectFile() == this);
2424 
2425     ELFDynamic symbol;
2426     DataExtractor dynsym_data;
2427     if (ReadSectionData(dynsym, dynsym_data))
2428     {
2429         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2430         lldb::offset_t cursor = 0;
2431 
2432         while (cursor < section_size)
2433         {
2434             if (!symbol.Parse(dynsym_data, &cursor))
2435                 break;
2436 
2437             m_dynamic_symbols.push_back(symbol);
2438         }
2439     }
2440 
2441     return m_dynamic_symbols.size();
2442 }
2443 
2444 const ELFDynamic *
2445 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2446 {
2447     if (!ParseDynamicSymbols())
2448         return NULL;
2449 
2450     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2451     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2452     for ( ; I != E; ++I)
2453     {
2454         ELFDynamic *symbol = &*I;
2455 
2456         if (symbol->d_tag == tag)
2457             return symbol;
2458     }
2459 
2460     return NULL;
2461 }
2462 
2463 unsigned
2464 ObjectFileELF::PLTRelocationType()
2465 {
2466     // DT_PLTREL
2467     //  This member specifies the type of relocation entry to which the
2468     //  procedure linkage table refers. The d_val member holds DT_REL or
2469     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2470     //  must use the same relocation.
2471     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2472 
2473     if (symbol)
2474         return symbol->d_val;
2475 
2476     return 0;
2477 }
2478 
2479 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2480 // 0th entry in the plt table is usually a resolution entry which have different size in some
2481 // architectures then the rest of the plt entries.
2482 static std::pair<uint64_t, uint64_t>
2483 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2484 {
2485     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2486 
2487     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2488     // So round the entsize up by the alignment if addralign is set.
2489     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2490         llvm::alignTo (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2491 
2492     if (plt_entsize == 0)
2493     {
2494         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2495         // entries based on the number of entries and the size of the plt section with the
2496         // assumption that the size of the 0th entry is at least as big as the size of the normal
2497         // entries and it isn't much bigger then that.
2498         if (plt_hdr->sh_addralign)
2499             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2500         else
2501             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2502     }
2503 
2504     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2505 
2506     return std::make_pair(plt_entsize, plt_offset);
2507 }
2508 
2509 static unsigned
2510 ParsePLTRelocations(Symtab *symbol_table,
2511                     user_id_t start_id,
2512                     unsigned rel_type,
2513                     const ELFHeader *hdr,
2514                     const ELFSectionHeader *rel_hdr,
2515                     const ELFSectionHeader *plt_hdr,
2516                     const ELFSectionHeader *sym_hdr,
2517                     const lldb::SectionSP &plt_section_sp,
2518                     DataExtractor &rel_data,
2519                     DataExtractor &symtab_data,
2520                     DataExtractor &strtab_data)
2521 {
2522     ELFRelocation rel(rel_type);
2523     ELFSymbol symbol;
2524     lldb::offset_t offset = 0;
2525 
2526     uint64_t plt_offset, plt_entsize;
2527     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2528     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2529 
2530     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2531     reloc_info_fn reloc_type;
2532     reloc_info_fn reloc_symbol;
2533 
2534     if (hdr->Is32Bit())
2535     {
2536         reloc_type = ELFRelocation::RelocType32;
2537         reloc_symbol = ELFRelocation::RelocSymbol32;
2538     }
2539     else
2540     {
2541         reloc_type = ELFRelocation::RelocType64;
2542         reloc_symbol = ELFRelocation::RelocSymbol64;
2543     }
2544 
2545     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2546     unsigned i;
2547     for (i = 0; i < num_relocations; ++i)
2548     {
2549         if (rel.Parse(rel_data, &offset) == false)
2550             break;
2551 
2552         if (reloc_type(rel) != slot_type)
2553             continue;
2554 
2555         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2556         if (!symbol.Parse(symtab_data, &symbol_offset))
2557             break;
2558 
2559         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2560         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2561         uint64_t plt_index = plt_offset + i * plt_entsize;
2562 
2563         Symbol jump_symbol(
2564             i + start_id,    // Symbol table index
2565             symbol_name,     // symbol name.
2566             is_mangled,      // is the symbol name mangled?
2567             eSymbolTypeTrampoline, // Type of this symbol
2568             false,           // Is this globally visible?
2569             false,           // Is this symbol debug info?
2570             true,            // Is this symbol a trampoline?
2571             true,            // Is this symbol artificial?
2572             plt_section_sp,  // Section in which this symbol is defined or null.
2573             plt_index,       // Offset in section or symbol value.
2574             plt_entsize,     // Size in bytes of this symbol.
2575             true,            // Size is valid
2576             false,           // Contains linker annotations?
2577             0);              // Symbol flags.
2578 
2579         symbol_table->AddSymbol(jump_symbol);
2580     }
2581 
2582     return i;
2583 }
2584 
2585 unsigned
2586 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2587                                       user_id_t start_id,
2588                                       const ELFSectionHeaderInfo *rel_hdr,
2589                                       user_id_t rel_id)
2590 {
2591     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2592 
2593     // The link field points to the associated symbol table. The info field
2594     // points to the section holding the plt.
2595     user_id_t symtab_id = rel_hdr->sh_link;
2596     user_id_t plt_id = rel_hdr->sh_info;
2597 
2598     // If the link field doesn't point to the appropriate symbol name table then
2599     // try to find it by name as some compiler don't fill in the link fields.
2600     if (!symtab_id)
2601         symtab_id = GetSectionIndexByName(".dynsym");
2602     if (!plt_id)
2603         plt_id = GetSectionIndexByName(".plt");
2604 
2605     if (!symtab_id || !plt_id)
2606         return 0;
2607 
2608     // Section ID's are ones based;
2609     symtab_id++;
2610     plt_id++;
2611 
2612     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2613     if (!plt_hdr)
2614         return 0;
2615 
2616     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2617     if (!sym_hdr)
2618         return 0;
2619 
2620     SectionList *section_list = m_sections_ap.get();
2621     if (!section_list)
2622         return 0;
2623 
2624     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2625     if (!rel_section)
2626         return 0;
2627 
2628     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2629     if (!plt_section_sp)
2630         return 0;
2631 
2632     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2633     if (!symtab)
2634         return 0;
2635 
2636     // sh_link points to associated string table.
2637     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2638     if (!strtab)
2639         return 0;
2640 
2641     DataExtractor rel_data;
2642     if (!ReadSectionData(rel_section, rel_data))
2643         return 0;
2644 
2645     DataExtractor symtab_data;
2646     if (!ReadSectionData(symtab, symtab_data))
2647         return 0;
2648 
2649     DataExtractor strtab_data;
2650     if (!ReadSectionData(strtab, strtab_data))
2651         return 0;
2652 
2653     unsigned rel_type = PLTRelocationType();
2654     if (!rel_type)
2655         return 0;
2656 
2657     return ParsePLTRelocations (symbol_table,
2658                                 start_id,
2659                                 rel_type,
2660                                 &m_header,
2661                                 rel_hdr,
2662                                 plt_hdr,
2663                                 sym_hdr,
2664                                 plt_section_sp,
2665                                 rel_data,
2666                                 symtab_data,
2667                                 strtab_data);
2668 }
2669 
2670 unsigned
2671 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2672                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2673                 DataExtractor &rel_data, DataExtractor &symtab_data,
2674                 DataExtractor &debug_data, Section* rel_section)
2675 {
2676     ELFRelocation rel(rel_hdr->sh_type);
2677     lldb::addr_t offset = 0;
2678     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2679     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2680     reloc_info_fn reloc_type;
2681     reloc_info_fn reloc_symbol;
2682 
2683     if (hdr->Is32Bit())
2684     {
2685         reloc_type = ELFRelocation::RelocType32;
2686         reloc_symbol = ELFRelocation::RelocSymbol32;
2687     }
2688     else
2689     {
2690         reloc_type = ELFRelocation::RelocType64;
2691         reloc_symbol = ELFRelocation::RelocSymbol64;
2692     }
2693 
2694     for (unsigned i = 0; i < num_relocations; ++i)
2695     {
2696         if (rel.Parse(rel_data, &offset) == false)
2697             break;
2698 
2699         Symbol* symbol = NULL;
2700 
2701         if (hdr->Is32Bit())
2702         {
2703             switch (reloc_type(rel)) {
2704             case R_386_32:
2705             case R_386_PC32:
2706             default:
2707                 assert(false && "unexpected relocation type");
2708             }
2709         } else {
2710             switch (reloc_type(rel)) {
2711             case R_X86_64_64:
2712             {
2713                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2714                 if (symbol)
2715                 {
2716                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2717                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2718                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2719                     *dst = value + ELFRelocation::RelocAddend64(rel);
2720                 }
2721                 break;
2722             }
2723             case R_X86_64_32:
2724             case R_X86_64_32S:
2725             {
2726                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2727                 if (symbol)
2728                 {
2729                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2730                     value += ELFRelocation::RelocAddend32(rel);
2731                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2732                            (reloc_type(rel) == R_X86_64_32S &&
2733                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2734                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2735                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2736                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2737                     *dst = truncated_addr;
2738                 }
2739                 break;
2740             }
2741             case R_X86_64_PC32:
2742             default:
2743                 assert(false && "unexpected relocation type");
2744             }
2745         }
2746     }
2747 
2748     return 0;
2749 }
2750 
2751 unsigned
2752 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2753 {
2754     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2755 
2756     // Parse in the section list if needed.
2757     SectionList *section_list = GetSectionList();
2758     if (!section_list)
2759         return 0;
2760 
2761     // Section ID's are ones based.
2762     user_id_t symtab_id = rel_hdr->sh_link + 1;
2763     user_id_t debug_id = rel_hdr->sh_info + 1;
2764 
2765     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2766     if (!symtab_hdr)
2767         return 0;
2768 
2769     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2770     if (!debug_hdr)
2771         return 0;
2772 
2773     Section *rel = section_list->FindSectionByID(rel_id).get();
2774     if (!rel)
2775         return 0;
2776 
2777     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2778     if (!symtab)
2779         return 0;
2780 
2781     Section *debug = section_list->FindSectionByID(debug_id).get();
2782     if (!debug)
2783         return 0;
2784 
2785     DataExtractor rel_data;
2786     DataExtractor symtab_data;
2787     DataExtractor debug_data;
2788 
2789     if (ReadSectionData(rel, rel_data) &&
2790         ReadSectionData(symtab, symtab_data) &&
2791         ReadSectionData(debug, debug_data))
2792     {
2793         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2794                         rel_data, symtab_data, debug_data, debug);
2795     }
2796 
2797     return 0;
2798 }
2799 
2800 Symtab *
2801 ObjectFileELF::GetSymtab()
2802 {
2803     ModuleSP module_sp(GetModule());
2804     if (!module_sp)
2805         return NULL;
2806 
2807     // We always want to use the main object file so we (hopefully) only have one cached copy
2808     // of our symtab, dynamic sections, etc.
2809     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2810     if (module_obj_file && module_obj_file != this)
2811         return module_obj_file->GetSymtab();
2812 
2813     if (m_symtab_ap.get() == NULL)
2814     {
2815         SectionList *section_list = module_sp->GetSectionList();
2816         if (!section_list)
2817             return NULL;
2818 
2819         uint64_t symbol_id = 0;
2820         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2821 
2822         // Sharable objects and dynamic executables usually have 2 distinct symbol
2823         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2824         // version of the symtab that only contains global symbols. The information found
2825         // in the dynsym is therefore also found in the symtab, while the reverse is not
2826         // necessarily true.
2827         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2828         if (!symtab)
2829         {
2830             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2831             // then use the dynsym section which should always be there.
2832             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2833         }
2834         if (symtab)
2835         {
2836             m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2837             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2838         }
2839 
2840         // DT_JMPREL
2841         //      If present, this entry's d_ptr member holds the address of relocation
2842         //      entries associated solely with the procedure linkage table. Separating
2843         //      these relocation entries lets the dynamic linker ignore them during
2844         //      process initialization, if lazy binding is enabled. If this entry is
2845         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2846         //      also be present.
2847         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2848         if (symbol)
2849         {
2850             // Synthesize trampoline symbols to help navigate the PLT.
2851             addr_t addr = symbol->d_ptr;
2852             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2853             if (reloc_section)
2854             {
2855                 user_id_t reloc_id = reloc_section->GetID();
2856                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2857                 assert(reloc_header);
2858 
2859                 if (m_symtab_ap == nullptr)
2860                     m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2861 
2862                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2863             }
2864         }
2865 
2866         // If we still don't have any symtab then create an empty instance to avoid do the section
2867         // lookup next time.
2868         if (m_symtab_ap == nullptr)
2869             m_symtab_ap.reset(new Symtab(this));
2870 
2871         m_symtab_ap->CalculateSymbolSizes();
2872     }
2873 
2874     for (SectionHeaderCollIter I = m_section_headers.begin();
2875          I != m_section_headers.end(); ++I)
2876     {
2877         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2878         {
2879             if (CalculateType() == eTypeObjectFile)
2880             {
2881                 const char *section_name = I->section_name.AsCString("");
2882                 if (strstr(section_name, ".rela.debug") ||
2883                     strstr(section_name, ".rel.debug"))
2884                 {
2885                     const ELFSectionHeader &reloc_header = *I;
2886                     user_id_t reloc_id = SectionIndex(I);
2887                     RelocateDebugSections(&reloc_header, reloc_id);
2888                 }
2889             }
2890         }
2891     }
2892     return m_symtab_ap.get();
2893 }
2894 
2895 Symbol *
2896 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2897 {
2898     if (!m_symtab_ap.get())
2899         return nullptr; // GetSymtab() should be called first.
2900 
2901     const SectionList *section_list = GetSectionList();
2902     if (!section_list)
2903         return nullptr;
2904 
2905     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2906     {
2907         AddressRange range;
2908         if (eh_frame->GetAddressRange (so_addr, range))
2909         {
2910             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2911             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2912             if (symbol)
2913                 return symbol;
2914 
2915             // Note that a (stripped) symbol won't be found by GetSymtab()...
2916             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2917             if (eh_sym_section_sp.get())
2918             {
2919                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2920                 addr_t offset = file_addr - section_base;
2921                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2922 
2923                 Symbol eh_symbol(
2924                         symbol_id,            // Symbol table index.
2925                         "???",                // Symbol name.
2926                         false,                // Is the symbol name mangled?
2927                         eSymbolTypeCode,      // Type of this symbol.
2928                         true,                 // Is this globally visible?
2929                         false,                // Is this symbol debug info?
2930                         false,                // Is this symbol a trampoline?
2931                         true,                 // Is this symbol artificial?
2932                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2933                         offset,               // Offset in section or symbol value.
2934                         range.GetByteSize(),  // Size in bytes of this symbol.
2935                         true,                 // Size is valid.
2936                         false,                // Contains linker annotations?
2937                         0);                   // Symbol flags.
2938                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2939                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2940             }
2941         }
2942     }
2943     return nullptr;
2944 }
2945 
2946 
2947 bool
2948 ObjectFileELF::IsStripped ()
2949 {
2950     // TODO: determine this for ELF
2951     return false;
2952 }
2953 
2954 //===----------------------------------------------------------------------===//
2955 // Dump
2956 //
2957 // Dump the specifics of the runtime file container (such as any headers
2958 // segments, sections, etc).
2959 //----------------------------------------------------------------------
2960 void
2961 ObjectFileELF::Dump(Stream *s)
2962 {
2963     DumpELFHeader(s, m_header);
2964     s->EOL();
2965     DumpELFProgramHeaders(s);
2966     s->EOL();
2967     DumpELFSectionHeaders(s);
2968     s->EOL();
2969     SectionList *section_list = GetSectionList();
2970     if (section_list)
2971         section_list->Dump(s, NULL, true, UINT32_MAX);
2972     Symtab *symtab = GetSymtab();
2973     if (symtab)
2974         symtab->Dump(s, NULL, eSortOrderNone);
2975     s->EOL();
2976     DumpDependentModules(s);
2977     s->EOL();
2978 }
2979 
2980 //----------------------------------------------------------------------
2981 // DumpELFHeader
2982 //
2983 // Dump the ELF header to the specified output stream
2984 //----------------------------------------------------------------------
2985 void
2986 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2987 {
2988     s->PutCString("ELF Header\n");
2989     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2990     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2991               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2992     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2993               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2994     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2995               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2996 
2997     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2998     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2999     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
3000     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
3001     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
3002 
3003     s->Printf("e_type      = 0x%4.4x ", header.e_type);
3004     DumpELFHeader_e_type(s, header.e_type);
3005     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
3006     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
3007     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
3008     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
3009     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
3010     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
3011     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
3012     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
3013     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
3014     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
3015     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
3016     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
3017 }
3018 
3019 //----------------------------------------------------------------------
3020 // DumpELFHeader_e_type
3021 //
3022 // Dump an token value for the ELF header member e_type
3023 //----------------------------------------------------------------------
3024 void
3025 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
3026 {
3027     switch (e_type)
3028     {
3029     case ET_NONE:   *s << "ET_NONE"; break;
3030     case ET_REL:    *s << "ET_REL"; break;
3031     case ET_EXEC:   *s << "ET_EXEC"; break;
3032     case ET_DYN:    *s << "ET_DYN"; break;
3033     case ET_CORE:   *s << "ET_CORE"; break;
3034     default:
3035         break;
3036     }
3037 }
3038 
3039 //----------------------------------------------------------------------
3040 // DumpELFHeader_e_ident_EI_DATA
3041 //
3042 // Dump an token value for the ELF header member e_ident[EI_DATA]
3043 //----------------------------------------------------------------------
3044 void
3045 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
3046 {
3047     switch (ei_data)
3048     {
3049     case ELFDATANONE:   *s << "ELFDATANONE"; break;
3050     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
3051     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
3052     default:
3053         break;
3054     }
3055 }
3056 
3057 
3058 //----------------------------------------------------------------------
3059 // DumpELFProgramHeader
3060 //
3061 // Dump a single ELF program header to the specified output stream
3062 //----------------------------------------------------------------------
3063 void
3064 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
3065 {
3066     DumpELFProgramHeader_p_type(s, ph.p_type);
3067     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
3068     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
3069 
3070     DumpELFProgramHeader_p_flags(s, ph.p_flags);
3071     s->Printf(") %8.8" PRIx64, ph.p_align);
3072 }
3073 
3074 //----------------------------------------------------------------------
3075 // DumpELFProgramHeader_p_type
3076 //
3077 // Dump an token value for the ELF program header member p_type which
3078 // describes the type of the program header
3079 // ----------------------------------------------------------------------
3080 void
3081 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
3082 {
3083     const int kStrWidth = 15;
3084     switch (p_type)
3085     {
3086     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
3087     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
3088     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
3089     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
3090     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
3091     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
3092     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
3093     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
3094     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3095     default:
3096         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
3097         break;
3098     }
3099 }
3100 
3101 
3102 //----------------------------------------------------------------------
3103 // DumpELFProgramHeader_p_flags
3104 //
3105 // Dump an token value for the ELF program header member p_flags
3106 //----------------------------------------------------------------------
3107 void
3108 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
3109 {
3110     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
3111         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3112         << ((p_flags & PF_W) ? "PF_W" : "    ")
3113         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3114         << ((p_flags & PF_R) ? "PF_R" : "    ");
3115 }
3116 
3117 //----------------------------------------------------------------------
3118 // DumpELFProgramHeaders
3119 //
3120 // Dump all of the ELF program header to the specified output stream
3121 //----------------------------------------------------------------------
3122 void
3123 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
3124 {
3125     if (!ParseProgramHeaders())
3126         return;
3127 
3128     s->PutCString("Program Headers\n");
3129     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
3130                   "p_filesz p_memsz  p_flags                   p_align\n");
3131     s->PutCString("==== --------------- -------- -------- -------- "
3132                   "-------- -------- ------------------------- --------\n");
3133 
3134     uint32_t idx = 0;
3135     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
3136          I != m_program_headers.end(); ++I, ++idx)
3137     {
3138         s->Printf("[%2u] ", idx);
3139         ObjectFileELF::DumpELFProgramHeader(s, *I);
3140         s->EOL();
3141     }
3142 }
3143 
3144 //----------------------------------------------------------------------
3145 // DumpELFSectionHeader
3146 //
3147 // Dump a single ELF section header to the specified output stream
3148 //----------------------------------------------------------------------
3149 void
3150 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
3151 {
3152     s->Printf("%8.8x ", sh.sh_name);
3153     DumpELFSectionHeader_sh_type(s, sh.sh_type);
3154     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
3155     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
3156     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
3157     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
3158     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3159 }
3160 
3161 //----------------------------------------------------------------------
3162 // DumpELFSectionHeader_sh_type
3163 //
3164 // Dump an token value for the ELF section header member sh_type which
3165 // describes the type of the section
3166 //----------------------------------------------------------------------
3167 void
3168 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
3169 {
3170     const int kStrWidth = 12;
3171     switch (sh_type)
3172     {
3173     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
3174     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
3175     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
3176     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
3177     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
3178     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
3179     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
3180     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
3181     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
3182     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
3183     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
3184     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
3185     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
3186     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
3187     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
3188     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
3189     default:
3190         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3191         break;
3192     }
3193 }
3194 
3195 //----------------------------------------------------------------------
3196 // DumpELFSectionHeader_sh_flags
3197 //
3198 // Dump an token value for the ELF section header member sh_flags
3199 //----------------------------------------------------------------------
3200 void
3201 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
3202 {
3203     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
3204         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3205         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
3206         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3207         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
3208 }
3209 
3210 //----------------------------------------------------------------------
3211 // DumpELFSectionHeaders
3212 //
3213 // Dump all of the ELF section header to the specified output stream
3214 //----------------------------------------------------------------------
3215 void
3216 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
3217 {
3218     if (!ParseSectionHeaders())
3219         return;
3220 
3221     s->PutCString("Section Headers\n");
3222     s->PutCString("IDX  name     type         flags                            "
3223                   "addr     offset   size     link     info     addralgn "
3224                   "entsize  Name\n");
3225     s->PutCString("==== -------- ------------ -------------------------------- "
3226                   "-------- -------- -------- -------- -------- -------- "
3227                   "-------- ====================\n");
3228 
3229     uint32_t idx = 0;
3230     for (SectionHeaderCollConstIter I = m_section_headers.begin();
3231          I != m_section_headers.end(); ++I, ++idx)
3232     {
3233         s->Printf("[%2u] ", idx);
3234         ObjectFileELF::DumpELFSectionHeader(s, *I);
3235         const char* section_name = I->section_name.AsCString("");
3236         if (section_name)
3237             *s << ' ' << section_name << "\n";
3238     }
3239 }
3240 
3241 void
3242 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
3243 {
3244     size_t num_modules = ParseDependentModules();
3245 
3246     if (num_modules > 0)
3247     {
3248         s->PutCString("Dependent Modules:\n");
3249         for (unsigned i = 0; i < num_modules; ++i)
3250         {
3251             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3252             s->Printf("   %s\n", spec.GetFilename().GetCString());
3253         }
3254     }
3255 }
3256 
3257 bool
3258 ObjectFileELF::GetArchitecture (ArchSpec &arch)
3259 {
3260     if (!ParseHeader())
3261         return false;
3262 
3263     if (m_section_headers.empty())
3264     {
3265         // Allow elf notes to be parsed which may affect the detected architecture.
3266         ParseSectionHeaders();
3267     }
3268 
3269     if (CalculateType() == eTypeCoreFile && m_arch_spec.TripleOSIsUnspecifiedUnknown())
3270     {
3271         // Core files don't have section headers yet they have PT_NOTE program headers
3272         // that might shed more light on the architecture
3273         if (ParseProgramHeaders())
3274         {
3275             for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i)
3276             {
3277                 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i);
3278                 if (header && header->p_type == PT_NOTE && header->p_offset != 0 && header->p_filesz > 0)
3279                 {
3280                     DataExtractor data;
3281                     if (data.SetData (m_data, header->p_offset, header->p_filesz) == header->p_filesz)
3282                     {
3283                         lldb_private::UUID uuid;
3284                         RefineModuleDetailsFromNote (data, m_arch_spec, uuid);
3285                     }
3286                 }
3287             }
3288         }
3289     }
3290     arch = m_arch_spec;
3291     return true;
3292 }
3293 
3294 ObjectFile::Type
3295 ObjectFileELF::CalculateType()
3296 {
3297     switch (m_header.e_type)
3298     {
3299         case llvm::ELF::ET_NONE:
3300             // 0 - No file type
3301             return eTypeUnknown;
3302 
3303         case llvm::ELF::ET_REL:
3304             // 1 - Relocatable file
3305             return eTypeObjectFile;
3306 
3307         case llvm::ELF::ET_EXEC:
3308             // 2 - Executable file
3309             return eTypeExecutable;
3310 
3311         case llvm::ELF::ET_DYN:
3312             // 3 - Shared object file
3313             return eTypeSharedLibrary;
3314 
3315         case ET_CORE:
3316             // 4 - Core file
3317             return eTypeCoreFile;
3318 
3319         default:
3320             break;
3321     }
3322     return eTypeUnknown;
3323 }
3324 
3325 ObjectFile::Strata
3326 ObjectFileELF::CalculateStrata()
3327 {
3328     switch (m_header.e_type)
3329     {
3330         case llvm::ELF::ET_NONE:
3331             // 0 - No file type
3332             return eStrataUnknown;
3333 
3334         case llvm::ELF::ET_REL:
3335             // 1 - Relocatable file
3336             return eStrataUnknown;
3337 
3338         case llvm::ELF::ET_EXEC:
3339             // 2 - Executable file
3340             // TODO: is there any way to detect that an executable is a kernel
3341             // related executable by inspecting the program headers, section
3342             // headers, symbols, or any other flag bits???
3343             return eStrataUser;
3344 
3345         case llvm::ELF::ET_DYN:
3346             // 3 - Shared object file
3347             // TODO: is there any way to detect that an shared library is a kernel
3348             // related executable by inspecting the program headers, section
3349             // headers, symbols, or any other flag bits???
3350             return eStrataUnknown;
3351 
3352         case ET_CORE:
3353             // 4 - Core file
3354             // TODO: is there any way to detect that an core file is a kernel
3355             // related executable by inspecting the program headers, section
3356             // headers, symbols, or any other flag bits???
3357             return eStrataUnknown;
3358 
3359         default:
3360             break;
3361     }
3362     return eStrataUnknown;
3363 }
3364 
3365