1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <algorithm> 13 #include <cassert> 14 #include <unordered_map> 15 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Module.h" 18 #include "lldb/Core/ModuleSpec.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Section.h" 21 #include "lldb/Symbol/DWARFCallFrameInfo.h" 22 #include "lldb/Symbol/SymbolContext.h" 23 #include "lldb/Target/SectionLoadList.h" 24 #include "lldb/Target/Target.h" 25 #include "lldb/Utility/ArchSpec.h" 26 #include "lldb/Utility/DataBufferHeap.h" 27 #include "lldb/Utility/Log.h" 28 #include "lldb/Utility/Status.h" 29 #include "lldb/Utility/Stream.h" 30 #include "lldb/Utility/Timer.h" 31 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Object/Decompressor.h" 35 #include "llvm/Support/ARMBuildAttributes.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/MipsABIFlags.h" 39 40 #define CASE_AND_STREAM(s, def, width) \ 41 case def: \ 42 s->Printf("%-*s", width, #def); \ 43 break; 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace elf; 48 using namespace llvm::ELF; 49 50 namespace { 51 52 // ELF note owner definitions 53 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 54 const char *const LLDB_NT_OWNER_GNU = "GNU"; 55 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 56 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD"; 57 const char *const LLDB_NT_OWNER_CSR = "csr"; 58 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 59 const char *const LLDB_NT_OWNER_CORE = "CORE"; 60 const char *const LLDB_NT_OWNER_LINUX = "LINUX"; 61 62 // ELF note type definitions 63 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 64 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 65 66 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 68 69 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 70 71 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 72 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 73 74 // GNU ABI note OS constants 75 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 76 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 77 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 78 79 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants 80 #define NT_PRSTATUS 1 81 #define NT_PRFPREG 2 82 #define NT_PRPSINFO 3 83 #define NT_TASKSTRUCT 4 84 #define NT_AUXV 6 85 #define NT_SIGINFO 0x53494749 86 #define NT_FILE 0x46494c45 87 #define NT_PRXFPREG 0x46e62b7f 88 #define NT_PPC_VMX 0x100 89 #define NT_PPC_SPE 0x101 90 #define NT_PPC_VSX 0x102 91 #define NT_386_TLS 0x200 92 #define NT_386_IOPERM 0x201 93 #define NT_X86_XSTATE 0x202 94 #define NT_S390_HIGH_GPRS 0x300 95 #define NT_S390_TIMER 0x301 96 #define NT_S390_TODCMP 0x302 97 #define NT_S390_TODPREG 0x303 98 #define NT_S390_CTRS 0x304 99 #define NT_S390_PREFIX 0x305 100 #define NT_S390_LAST_BREAK 0x306 101 #define NT_S390_SYSTEM_CALL 0x307 102 #define NT_S390_TDB 0x308 103 #define NT_S390_VXRS_LOW 0x309 104 #define NT_S390_VXRS_HIGH 0x30a 105 #define NT_ARM_VFP 0x400 106 #define NT_ARM_TLS 0x401 107 #define NT_ARM_HW_BREAK 0x402 108 #define NT_ARM_HW_WATCH 0x403 109 #define NT_ARM_SYSTEM_CALL 0x404 110 #define NT_METAG_CBUF 0x500 111 #define NT_METAG_RPIPE 0x501 112 #define NT_METAG_TLS 0x502 113 114 //===----------------------------------------------------------------------===// 115 /// @class ELFRelocation 116 /// @brief Generic wrapper for ELFRel and ELFRela. 117 /// 118 /// This helper class allows us to parse both ELFRel and ELFRela relocation 119 /// entries in a generic manner. 120 class ELFRelocation { 121 public: 122 /// Constructs an ELFRelocation entry with a personality as given by @p 123 /// type. 124 /// 125 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 126 ELFRelocation(unsigned type); 127 128 ~ELFRelocation(); 129 130 bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 131 132 static unsigned RelocType32(const ELFRelocation &rel); 133 134 static unsigned RelocType64(const ELFRelocation &rel); 135 136 static unsigned RelocSymbol32(const ELFRelocation &rel); 137 138 static unsigned RelocSymbol64(const ELFRelocation &rel); 139 140 static unsigned RelocOffset32(const ELFRelocation &rel); 141 142 static unsigned RelocOffset64(const ELFRelocation &rel); 143 144 static unsigned RelocAddend32(const ELFRelocation &rel); 145 146 static unsigned RelocAddend64(const ELFRelocation &rel); 147 148 private: 149 typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion; 150 151 RelocUnion reloc; 152 }; 153 154 ELFRelocation::ELFRelocation(unsigned type) { 155 if (type == DT_REL || type == SHT_REL) 156 reloc = new ELFRel(); 157 else if (type == DT_RELA || type == SHT_RELA) 158 reloc = new ELFRela(); 159 else { 160 assert(false && "unexpected relocation type"); 161 reloc = static_cast<ELFRel *>(NULL); 162 } 163 } 164 165 ELFRelocation::~ELFRelocation() { 166 if (reloc.is<ELFRel *>()) 167 delete reloc.get<ELFRel *>(); 168 else 169 delete reloc.get<ELFRela *>(); 170 } 171 172 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data, 173 lldb::offset_t *offset) { 174 if (reloc.is<ELFRel *>()) 175 return reloc.get<ELFRel *>()->Parse(data, offset); 176 else 177 return reloc.get<ELFRela *>()->Parse(data, offset); 178 } 179 180 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) { 181 if (rel.reloc.is<ELFRel *>()) 182 return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>()); 183 else 184 return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>()); 185 } 186 187 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) { 188 if (rel.reloc.is<ELFRel *>()) 189 return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>()); 190 else 191 return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>()); 192 } 193 194 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) { 195 if (rel.reloc.is<ELFRel *>()) 196 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>()); 197 else 198 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>()); 199 } 200 201 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) { 202 if (rel.reloc.is<ELFRel *>()) 203 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>()); 204 else 205 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>()); 206 } 207 208 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) { 209 if (rel.reloc.is<ELFRel *>()) 210 return rel.reloc.get<ELFRel *>()->r_offset; 211 else 212 return rel.reloc.get<ELFRela *>()->r_offset; 213 } 214 215 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) { 216 if (rel.reloc.is<ELFRel *>()) 217 return rel.reloc.get<ELFRel *>()->r_offset; 218 else 219 return rel.reloc.get<ELFRela *>()->r_offset; 220 } 221 222 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) { 223 if (rel.reloc.is<ELFRel *>()) 224 return 0; 225 else 226 return rel.reloc.get<ELFRela *>()->r_addend; 227 } 228 229 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) { 230 if (rel.reloc.is<ELFRel *>()) 231 return 0; 232 else 233 return rel.reloc.get<ELFRela *>()->r_addend; 234 } 235 236 } // end anonymous namespace 237 238 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) { 239 // Read all fields. 240 if (data.GetU32(offset, &n_namesz, 3) == NULL) 241 return false; 242 243 // The name field is required to be nul-terminated, and n_namesz includes the 244 // terminating nul in observed implementations (contrary to the ELF-64 spec). 245 // A special case is needed for cores generated by some older Linux versions, 246 // which write a note named "CORE" without a nul terminator and n_namesz = 4. 247 if (n_namesz == 4) { 248 char buf[4]; 249 if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4) 250 return false; 251 if (strncmp(buf, "CORE", 4) == 0) { 252 n_name = "CORE"; 253 *offset += 4; 254 return true; 255 } 256 } 257 258 const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4)); 259 if (cstr == NULL) { 260 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 261 if (log) 262 log->Printf("Failed to parse note name lacking nul terminator"); 263 264 return false; 265 } 266 n_name = cstr; 267 return true; 268 } 269 270 static uint32_t kalimbaVariantFromElfFlags(const elf::elf_word e_flags) { 271 const uint32_t dsp_rev = e_flags & 0xFF; 272 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 273 switch (dsp_rev) { 274 // TODO(mg11) Support more variants 275 case 10: 276 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 277 break; 278 case 14: 279 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 280 break; 281 case 17: 282 case 20: 283 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 284 break; 285 default: 286 break; 287 } 288 return kal_arch_variant; 289 } 290 291 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) { 292 const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH; 293 uint32_t endian = header.e_ident[EI_DATA]; 294 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 295 uint32_t fileclass = header.e_ident[EI_CLASS]; 296 297 // If there aren't any elf flags available (e.g core elf file) then return 298 // default 299 // 32 or 64 bit arch (without any architecture revision) based on object file's class. 300 if (header.e_type == ET_CORE) { 301 switch (fileclass) { 302 case llvm::ELF::ELFCLASS32: 303 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 304 : ArchSpec::eMIPSSubType_mips32; 305 case llvm::ELF::ELFCLASS64: 306 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 307 : ArchSpec::eMIPSSubType_mips64; 308 default: 309 return arch_variant; 310 } 311 } 312 313 switch (mips_arch) { 314 case llvm::ELF::EF_MIPS_ARCH_1: 315 case llvm::ELF::EF_MIPS_ARCH_2: 316 case llvm::ELF::EF_MIPS_ARCH_32: 317 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 318 : ArchSpec::eMIPSSubType_mips32; 319 case llvm::ELF::EF_MIPS_ARCH_32R2: 320 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el 321 : ArchSpec::eMIPSSubType_mips32r2; 322 case llvm::ELF::EF_MIPS_ARCH_32R6: 323 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el 324 : ArchSpec::eMIPSSubType_mips32r6; 325 case llvm::ELF::EF_MIPS_ARCH_3: 326 case llvm::ELF::EF_MIPS_ARCH_4: 327 case llvm::ELF::EF_MIPS_ARCH_5: 328 case llvm::ELF::EF_MIPS_ARCH_64: 329 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 330 : ArchSpec::eMIPSSubType_mips64; 331 case llvm::ELF::EF_MIPS_ARCH_64R2: 332 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el 333 : ArchSpec::eMIPSSubType_mips64r2; 334 case llvm::ELF::EF_MIPS_ARCH_64R6: 335 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el 336 : ArchSpec::eMIPSSubType_mips64r6; 337 default: 338 break; 339 } 340 341 return arch_variant; 342 } 343 344 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) { 345 if (header.e_machine == llvm::ELF::EM_MIPS) 346 return mipsVariantFromElfFlags(header); 347 348 return llvm::ELF::EM_CSR_KALIMBA == header.e_machine 349 ? kalimbaVariantFromElfFlags(header.e_flags) 350 : LLDB_INVALID_CPUTYPE; 351 } 352 353 //! The kalimba toolchain identifies a code section as being 354 //! one with the SHT_PROGBITS set in the section sh_type and the top 355 //! bit in the 32-bit address field set. 356 static lldb::SectionType 357 kalimbaSectionType(const elf::ELFHeader &header, 358 const elf::ELFSectionHeader §_hdr) { 359 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) { 360 return eSectionTypeOther; 361 } 362 363 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) { 364 return eSectionTypeZeroFill; 365 } 366 367 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) { 368 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 369 return KAL_CODE_BIT & sect_hdr.sh_addr ? eSectionTypeCode 370 : eSectionTypeData; 371 } 372 373 return eSectionTypeOther; 374 } 375 376 // Arbitrary constant used as UUID prefix for core files. 377 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C); 378 379 //------------------------------------------------------------------ 380 // Static methods. 381 //------------------------------------------------------------------ 382 void ObjectFileELF::Initialize() { 383 PluginManager::RegisterPlugin(GetPluginNameStatic(), 384 GetPluginDescriptionStatic(), CreateInstance, 385 CreateMemoryInstance, GetModuleSpecifications); 386 } 387 388 void ObjectFileELF::Terminate() { 389 PluginManager::UnregisterPlugin(CreateInstance); 390 } 391 392 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() { 393 static ConstString g_name("elf"); 394 return g_name; 395 } 396 397 const char *ObjectFileELF::GetPluginDescriptionStatic() { 398 return "ELF object file reader."; 399 } 400 401 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp, 402 DataBufferSP &data_sp, 403 lldb::offset_t data_offset, 404 const lldb_private::FileSpec *file, 405 lldb::offset_t file_offset, 406 lldb::offset_t length) { 407 if (!data_sp) { 408 data_sp = MapFileData(*file, length, file_offset); 409 if (!data_sp) 410 return nullptr; 411 data_offset = 0; 412 } 413 414 assert(data_sp); 415 416 if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset)) 417 return nullptr; 418 419 const uint8_t *magic = data_sp->GetBytes() + data_offset; 420 if (!ELFHeader::MagicBytesMatch(magic)) 421 return nullptr; 422 423 // Update the data to contain the entire file if it doesn't already 424 if (data_sp->GetByteSize() < length) { 425 data_sp = MapFileData(*file, length, file_offset); 426 if (!data_sp) 427 return nullptr; 428 data_offset = 0; 429 magic = data_sp->GetBytes(); 430 } 431 432 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 433 if (address_size == 4 || address_size == 8) { 434 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF( 435 module_sp, data_sp, data_offset, file, file_offset, length)); 436 ArchSpec spec; 437 if (objfile_ap->GetArchitecture(spec) && 438 objfile_ap->SetModulesArchitecture(spec)) 439 return objfile_ap.release(); 440 } 441 442 return NULL; 443 } 444 445 ObjectFile *ObjectFileELF::CreateMemoryInstance( 446 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 447 const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) { 448 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) { 449 const uint8_t *magic = data_sp->GetBytes(); 450 if (ELFHeader::MagicBytesMatch(magic)) { 451 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 452 if (address_size == 4 || address_size == 8) { 453 std::unique_ptr<ObjectFileELF> objfile_ap( 454 new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 455 ArchSpec spec; 456 if (objfile_ap->GetArchitecture(spec) && 457 objfile_ap->SetModulesArchitecture(spec)) 458 return objfile_ap.release(); 459 } 460 } 461 } 462 return NULL; 463 } 464 465 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp, 466 lldb::addr_t data_offset, 467 lldb::addr_t data_length) { 468 if (data_sp && 469 data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { 470 const uint8_t *magic = data_sp->GetBytes() + data_offset; 471 return ELFHeader::MagicBytesMatch(magic); 472 } 473 return false; 474 } 475 476 /* 477 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 478 * 479 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 480 * code or tables extracted from it, as desired without restriction. 481 */ 482 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) { 483 static const uint32_t g_crc32_tab[] = { 484 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 485 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 486 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 487 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 488 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 489 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 490 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 491 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 492 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 493 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 494 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 495 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 496 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 497 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 498 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 499 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 500 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 501 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 502 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 503 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 504 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 505 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 506 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 507 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 508 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 509 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 510 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 511 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 512 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 513 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 514 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 515 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 516 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 517 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 518 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 519 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 520 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 521 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 522 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 523 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 524 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 525 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 526 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d}; 527 const uint8_t *p = (const uint8_t *)buf; 528 529 crc = crc ^ ~0U; 530 while (size--) 531 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 532 return crc ^ ~0U; 533 } 534 535 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) { 536 return calc_crc32(0U, buf, size); 537 } 538 539 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32( 540 const ProgramHeaderColl &program_headers, DataExtractor &object_data) { 541 typedef ProgramHeaderCollConstIter Iter; 542 543 uint32_t core_notes_crc = 0; 544 545 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) { 546 if (I->p_type == llvm::ELF::PT_NOTE) { 547 const elf_off ph_offset = I->p_offset; 548 const size_t ph_size = I->p_filesz; 549 550 DataExtractor segment_data; 551 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) { 552 // The ELF program header contained incorrect data, probably corefile 553 // is incomplete or corrupted. 554 break; 555 } 556 557 core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(), 558 segment_data.GetByteSize()); 559 } 560 } 561 562 return core_notes_crc; 563 } 564 565 static const char *OSABIAsCString(unsigned char osabi_byte) { 566 #define _MAKE_OSABI_CASE(x) \ 567 case x: \ 568 return #x 569 switch (osabi_byte) { 570 _MAKE_OSABI_CASE(ELFOSABI_NONE); 571 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 572 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 573 _MAKE_OSABI_CASE(ELFOSABI_GNU); 574 _MAKE_OSABI_CASE(ELFOSABI_HURD); 575 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 576 _MAKE_OSABI_CASE(ELFOSABI_AIX); 577 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 578 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 579 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 580 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 581 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 582 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 583 _MAKE_OSABI_CASE(ELFOSABI_NSK); 584 _MAKE_OSABI_CASE(ELFOSABI_AROS); 585 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 586 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 587 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 588 _MAKE_OSABI_CASE(ELFOSABI_ARM); 589 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 590 default: 591 return "<unknown-osabi>"; 592 } 593 #undef _MAKE_OSABI_CASE 594 } 595 596 // 597 // WARNING : This function is being deprecated 598 // It's functionality has moved to ArchSpec::SetArchitecture This function is 599 // only being kept to validate the move. 600 // 601 // TODO : Remove this function 602 static bool GetOsFromOSABI(unsigned char osabi_byte, 603 llvm::Triple::OSType &ostype) { 604 switch (osabi_byte) { 605 case ELFOSABI_AIX: 606 ostype = llvm::Triple::OSType::AIX; 607 break; 608 case ELFOSABI_FREEBSD: 609 ostype = llvm::Triple::OSType::FreeBSD; 610 break; 611 case ELFOSABI_GNU: 612 ostype = llvm::Triple::OSType::Linux; 613 break; 614 case ELFOSABI_NETBSD: 615 ostype = llvm::Triple::OSType::NetBSD; 616 break; 617 case ELFOSABI_OPENBSD: 618 ostype = llvm::Triple::OSType::OpenBSD; 619 break; 620 case ELFOSABI_SOLARIS: 621 ostype = llvm::Triple::OSType::Solaris; 622 break; 623 default: 624 ostype = llvm::Triple::OSType::UnknownOS; 625 } 626 return ostype != llvm::Triple::OSType::UnknownOS; 627 } 628 629 size_t ObjectFileELF::GetModuleSpecifications( 630 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 631 lldb::offset_t data_offset, lldb::offset_t file_offset, 632 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 633 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 634 635 const size_t initial_count = specs.GetSize(); 636 637 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 638 DataExtractor data; 639 data.SetData(data_sp); 640 elf::ELFHeader header; 641 lldb::offset_t header_offset = data_offset; 642 if (header.Parse(data, &header_offset)) { 643 if (data_sp) { 644 ModuleSpec spec(file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture( 648 eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 649 650 if (spec.GetArchitecture().IsValid()) { 651 llvm::Triple::OSType ostype; 652 llvm::Triple::VendorType vendor; 653 llvm::Triple::OSType spec_ostype = 654 spec.GetArchitecture().GetTriple().getOS(); 655 656 if (log) 657 log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s", 658 __FUNCTION__, file.GetPath().c_str(), 659 OSABIAsCString(header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture().GetTriple().getVendor(); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 UNUSED_IF_ASSERT_DISABLED(vendor); 665 666 // 667 // Validate it is ok to remove GetOsFromOSABI 668 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 669 assert(spec_ostype == ostype); 670 if (spec_ostype != llvm::Triple::OSType::UnknownOS) { 671 if (log) 672 log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type " 673 "from ELF header OSABI.", 674 __FUNCTION__, file.GetPath().c_str()); 675 } 676 677 data_sp = MapFileData(file, -1, file_offset); 678 if (data_sp) 679 data.SetData(data_sp); 680 // In case there is header extension in the section #0, the header we 681 // parsed above could have sentinel values for e_phnum, e_shnum, and 682 // e_shstrndx. In this case we need to reparse the header with a 683 // bigger data source to get the actual values. 684 if (header.HasHeaderExtension()) { 685 lldb::offset_t header_offset = data_offset; 686 header.Parse(data, &header_offset); 687 } 688 689 uint32_t gnu_debuglink_crc = 0; 690 std::string gnu_debuglink_file; 691 SectionHeaderColl section_headers; 692 lldb_private::UUID &uuid = spec.GetUUID(); 693 694 GetSectionHeaderInfo(section_headers, data, header, uuid, 695 gnu_debuglink_file, gnu_debuglink_crc, 696 spec.GetArchitecture()); 697 698 llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple(); 699 700 if (log) 701 log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s " 702 "(architecture %s)", 703 __FUNCTION__, file.GetPath().c_str(), 704 spec_triple.getTriple().c_str(), 705 spec.GetArchitecture().GetArchitectureName()); 706 707 if (!uuid.IsValid()) { 708 uint32_t core_notes_crc = 0; 709 710 if (!gnu_debuglink_crc) { 711 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 712 lldb_private::Timer scoped_timer( 713 func_cat, 714 "Calculating module crc32 %s with size %" PRIu64 " KiB", 715 file.GetLastPathComponent().AsCString(), 716 (file.GetByteSize() - file_offset) / 1024); 717 718 // For core files - which usually don't happen to have a 719 // gnu_debuglink, and are pretty bulky - calculating whole 720 // contents crc32 would be too much of luxury. Thus we will need 721 // to fallback to something simpler. 722 if (header.e_type == llvm::ELF::ET_CORE) { 723 ProgramHeaderColl program_headers; 724 GetProgramHeaderInfo(program_headers, data, header); 725 726 core_notes_crc = 727 CalculateELFNotesSegmentsCRC32(program_headers, data); 728 } else { 729 gnu_debuglink_crc = calc_gnu_debuglink_crc32( 730 data.GetDataStart(), data.GetByteSize()); 731 } 732 } 733 if (gnu_debuglink_crc) { 734 // Use 4 bytes of crc from the .gnu_debuglink section. 735 uint32_t uuidt[4] = {gnu_debuglink_crc, 0, 0, 0}; 736 uuid.SetBytes(uuidt, sizeof(uuidt)); 737 } else if (core_notes_crc) { 738 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make 739 // it look different form .gnu_debuglink crc followed by 4 bytes 740 // of note segments crc. 741 uint32_t uuidt[4] = {g_core_uuid_magic, core_notes_crc, 0, 0}; 742 uuid.SetBytes(uuidt, sizeof(uuidt)); 743 } 744 } 745 746 specs.Append(spec); 747 } 748 } 749 } 750 } 751 752 return specs.GetSize() - initial_count; 753 } 754 755 //------------------------------------------------------------------ 756 // PluginInterface protocol 757 //------------------------------------------------------------------ 758 lldb_private::ConstString ObjectFileELF::GetPluginName() { 759 return GetPluginNameStatic(); 760 } 761 762 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; } 763 //------------------------------------------------------------------ 764 // ObjectFile protocol 765 //------------------------------------------------------------------ 766 767 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 768 DataBufferSP &data_sp, lldb::offset_t data_offset, 769 const FileSpec *file, lldb::offset_t file_offset, 770 lldb::offset_t length) 771 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 772 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 773 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 774 m_filespec_ap(), m_entry_point_address(), m_arch_spec() { 775 if (file) 776 m_file = *file; 777 ::memset(&m_header, 0, sizeof(m_header)); 778 } 779 780 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 781 DataBufferSP &header_data_sp, 782 const lldb::ProcessSP &process_sp, 783 addr_t header_addr) 784 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 785 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 786 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 787 m_filespec_ap(), m_entry_point_address(), m_arch_spec() { 788 ::memset(&m_header, 0, sizeof(m_header)); 789 } 790 791 ObjectFileELF::~ObjectFileELF() {} 792 793 bool ObjectFileELF::IsExecutable() const { 794 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 795 } 796 797 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value, 798 bool value_is_offset) { 799 ModuleSP module_sp = GetModule(); 800 if (module_sp) { 801 size_t num_loaded_sections = 0; 802 SectionList *section_list = GetSectionList(); 803 if (section_list) { 804 if (!value_is_offset) { 805 bool found_offset = false; 806 for (size_t i = 1, count = GetProgramHeaderCount(); i <= count; ++i) { 807 const elf::ELFProgramHeader *header = GetProgramHeaderByIndex(i); 808 if (header == nullptr) 809 continue; 810 811 if (header->p_type != PT_LOAD || header->p_offset != 0) 812 continue; 813 814 value = value - header->p_vaddr; 815 found_offset = true; 816 break; 817 } 818 if (!found_offset) 819 return false; 820 } 821 822 const size_t num_sections = section_list->GetSize(); 823 size_t sect_idx = 0; 824 825 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 826 // Iterate through the object file sections to find all of the sections 827 // that have SHF_ALLOC in their flag bits. 828 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 829 if (section_sp && section_sp->Test(SHF_ALLOC)) { 830 lldb::addr_t load_addr = section_sp->GetFileAddress(); 831 // We don't want to update the load address of a section with type 832 // eSectionTypeAbsoluteAddress as they already have the absolute load 833 // address already specified 834 if (section_sp->GetType() != eSectionTypeAbsoluteAddress) 835 load_addr += value; 836 837 // On 32-bit systems the load address have to fit into 4 bytes. The 838 // rest of the bytes are the overflow from the addition. 839 if (GetAddressByteSize() == 4) 840 load_addr &= 0xFFFFFFFF; 841 842 if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp, 843 load_addr)) 844 ++num_loaded_sections; 845 } 846 } 847 return num_loaded_sections > 0; 848 } 849 } 850 return false; 851 } 852 853 ByteOrder ObjectFileELF::GetByteOrder() const { 854 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 855 return eByteOrderBig; 856 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 857 return eByteOrderLittle; 858 return eByteOrderInvalid; 859 } 860 861 uint32_t ObjectFileELF::GetAddressByteSize() const { 862 return m_data.GetAddressByteSize(); 863 } 864 865 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) { 866 Symtab *symtab = GetSymtab(); 867 if (!symtab) 868 return eAddressClassUnknown; 869 870 // The address class is determined based on the symtab. Ask it from the 871 // object file what contains the symtab information. 872 ObjectFile *symtab_objfile = symtab->GetObjectFile(); 873 if (symtab_objfile != nullptr && symtab_objfile != this) 874 return symtab_objfile->GetAddressClass(file_addr); 875 876 auto res = ObjectFile::GetAddressClass(file_addr); 877 if (res != eAddressClassCode) 878 return res; 879 880 auto ub = m_address_class_map.upper_bound(file_addr); 881 if (ub == m_address_class_map.begin()) { 882 // No entry in the address class map before the address. Return default 883 // address class for an address in a code section. 884 return eAddressClassCode; 885 } 886 887 // Move iterator to the address class entry preceding address 888 --ub; 889 890 return ub->second; 891 } 892 893 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) { 894 return std::distance(m_section_headers.begin(), I) + 1u; 895 } 896 897 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const { 898 return std::distance(m_section_headers.begin(), I) + 1u; 899 } 900 901 bool ObjectFileELF::ParseHeader() { 902 lldb::offset_t offset = 0; 903 return m_header.Parse(m_data, &offset); 904 } 905 906 bool ObjectFileELF::GetUUID(lldb_private::UUID *uuid) { 907 // Need to parse the section list to get the UUIDs, so make sure that's been 908 // done. 909 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 910 return false; 911 912 if (m_uuid.IsValid()) { 913 // We have the full build id uuid. 914 *uuid = m_uuid; 915 return true; 916 } else if (GetType() == ObjectFile::eTypeCoreFile) { 917 uint32_t core_notes_crc = 0; 918 919 if (!ParseProgramHeaders()) 920 return false; 921 922 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 923 924 if (core_notes_crc) { 925 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look 926 // different form .gnu_debuglink crc - followed by 4 bytes of note 927 // segments crc. 928 uint32_t uuidt[4] = {g_core_uuid_magic, core_notes_crc, 0, 0}; 929 m_uuid.SetBytes(uuidt, sizeof(uuidt)); 930 } 931 } else { 932 if (!m_gnu_debuglink_crc) 933 m_gnu_debuglink_crc = 934 calc_gnu_debuglink_crc32(m_data.GetDataStart(), m_data.GetByteSize()); 935 if (m_gnu_debuglink_crc) { 936 // Use 4 bytes of crc from the .gnu_debuglink section. 937 uint32_t uuidt[4] = {m_gnu_debuglink_crc, 0, 0, 0}; 938 m_uuid.SetBytes(uuidt, sizeof(uuidt)); 939 } 940 } 941 942 if (m_uuid.IsValid()) { 943 *uuid = m_uuid; 944 return true; 945 } 946 947 return false; 948 } 949 950 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() { 951 FileSpecList file_spec_list; 952 953 if (!m_gnu_debuglink_file.empty()) { 954 FileSpec file_spec(m_gnu_debuglink_file, false); 955 file_spec_list.Append(file_spec); 956 } 957 return file_spec_list; 958 } 959 960 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) { 961 size_t num_modules = ParseDependentModules(); 962 uint32_t num_specs = 0; 963 964 for (unsigned i = 0; i < num_modules; ++i) { 965 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 966 num_specs++; 967 } 968 969 return num_specs; 970 } 971 972 Address ObjectFileELF::GetImageInfoAddress(Target *target) { 973 if (!ParseDynamicSymbols()) 974 return Address(); 975 976 SectionList *section_list = GetSectionList(); 977 if (!section_list) 978 return Address(); 979 980 // Find the SHT_DYNAMIC (.dynamic) section. 981 SectionSP dynsym_section_sp( 982 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)); 983 if (!dynsym_section_sp) 984 return Address(); 985 assert(dynsym_section_sp->GetObjectFile() == this); 986 987 user_id_t dynsym_id = dynsym_section_sp->GetID(); 988 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 989 if (!dynsym_hdr) 990 return Address(); 991 992 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) { 993 ELFDynamic &symbol = m_dynamic_symbols[i]; 994 995 if (symbol.d_tag == DT_DEBUG) { 996 // Compute the offset as the number of previous entries plus the size of 997 // d_tag. 998 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 999 return Address(dynsym_section_sp, offset); 1000 } 1001 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP 1002 // exists in non-PIE. 1003 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || 1004 symbol.d_tag == DT_MIPS_RLD_MAP_REL) && 1005 target) { 1006 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1007 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1008 if (dyn_base == LLDB_INVALID_ADDRESS) 1009 return Address(); 1010 1011 Status error; 1012 if (symbol.d_tag == DT_MIPS_RLD_MAP) { 1013 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1014 Address addr; 1015 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, 1016 addr)) 1017 return addr; 1018 } 1019 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) { 1020 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, 1021 // relative to the address of the tag. 1022 uint64_t rel_offset; 1023 rel_offset = target->ReadUnsignedIntegerFromMemory( 1024 dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1025 if (error.Success() && rel_offset != UINT64_MAX) { 1026 Address addr; 1027 addr_t debug_ptr_address = 1028 dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1029 addr.SetOffset(debug_ptr_address); 1030 return addr; 1031 } 1032 } 1033 } 1034 } 1035 1036 return Address(); 1037 } 1038 1039 lldb_private::Address ObjectFileELF::GetEntryPointAddress() { 1040 if (m_entry_point_address.IsValid()) 1041 return m_entry_point_address; 1042 1043 if (!ParseHeader() || !IsExecutable()) 1044 return m_entry_point_address; 1045 1046 SectionList *section_list = GetSectionList(); 1047 addr_t offset = m_header.e_entry; 1048 1049 if (!section_list) 1050 m_entry_point_address.SetOffset(offset); 1051 else 1052 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1053 return m_entry_point_address; 1054 } 1055 1056 //---------------------------------------------------------------------- 1057 // ParseDependentModules 1058 //---------------------------------------------------------------------- 1059 size_t ObjectFileELF::ParseDependentModules() { 1060 if (m_filespec_ap.get()) 1061 return m_filespec_ap->GetSize(); 1062 1063 m_filespec_ap.reset(new FileSpecList()); 1064 1065 if (!ParseSectionHeaders()) 1066 return 0; 1067 1068 SectionList *section_list = GetSectionList(); 1069 if (!section_list) 1070 return 0; 1071 1072 // Find the SHT_DYNAMIC section. 1073 Section *dynsym = 1074 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 1075 .get(); 1076 if (!dynsym) 1077 return 0; 1078 assert(dynsym->GetObjectFile() == this); 1079 1080 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID()); 1081 if (!header) 1082 return 0; 1083 // sh_link: section header index of string table used by entries in the 1084 // section. 1085 Section *dynstr = section_list->FindSectionByID(header->sh_link + 1).get(); 1086 if (!dynstr) 1087 return 0; 1088 1089 DataExtractor dynsym_data; 1090 DataExtractor dynstr_data; 1091 if (ReadSectionData(dynsym, dynsym_data) && 1092 ReadSectionData(dynstr, dynstr_data)) { 1093 ELFDynamic symbol; 1094 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1095 lldb::offset_t offset = 0; 1096 1097 // The only type of entries we are concerned with are tagged DT_NEEDED, 1098 // yielding the name of a required library. 1099 while (offset < section_size) { 1100 if (!symbol.Parse(dynsym_data, &offset)) 1101 break; 1102 1103 if (symbol.d_tag != DT_NEEDED) 1104 continue; 1105 1106 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1107 const char *lib_name = dynstr_data.PeekCStr(str_index); 1108 m_filespec_ap->Append(FileSpec(lib_name, true)); 1109 } 1110 } 1111 1112 return m_filespec_ap->GetSize(); 1113 } 1114 1115 //---------------------------------------------------------------------- 1116 // GetProgramHeaderInfo 1117 //---------------------------------------------------------------------- 1118 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1119 DataExtractor &object_data, 1120 const ELFHeader &header) { 1121 // We have already parsed the program headers 1122 if (!program_headers.empty()) 1123 return program_headers.size(); 1124 1125 // If there are no program headers to read we are done. 1126 if (header.e_phnum == 0) 1127 return 0; 1128 1129 program_headers.resize(header.e_phnum); 1130 if (program_headers.size() != header.e_phnum) 1131 return 0; 1132 1133 const size_t ph_size = header.e_phnum * header.e_phentsize; 1134 const elf_off ph_offset = header.e_phoff; 1135 DataExtractor data; 1136 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1137 return 0; 1138 1139 uint32_t idx; 1140 lldb::offset_t offset; 1141 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) { 1142 if (program_headers[idx].Parse(data, &offset) == false) 1143 break; 1144 } 1145 1146 if (idx < program_headers.size()) 1147 program_headers.resize(idx); 1148 1149 return program_headers.size(); 1150 } 1151 1152 //---------------------------------------------------------------------- 1153 // ParseProgramHeaders 1154 //---------------------------------------------------------------------- 1155 size_t ObjectFileELF::ParseProgramHeaders() { 1156 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1157 } 1158 1159 lldb_private::Status 1160 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data, 1161 lldb_private::ArchSpec &arch_spec, 1162 lldb_private::UUID &uuid) { 1163 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1164 Status error; 1165 1166 lldb::offset_t offset = 0; 1167 1168 while (true) { 1169 // Parse the note header. If this fails, bail out. 1170 const lldb::offset_t note_offset = offset; 1171 ELFNote note = ELFNote(); 1172 if (!note.Parse(data, &offset)) { 1173 // We're done. 1174 return error; 1175 } 1176 1177 if (log) 1178 log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, 1179 __FUNCTION__, note.n_name.c_str(), note.n_type); 1180 1181 // Process FreeBSD ELF notes. 1182 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1183 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1184 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) { 1185 // Pull out the min version info. 1186 uint32_t version_info; 1187 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1188 error.SetErrorString("failed to read FreeBSD ABI note payload"); 1189 return error; 1190 } 1191 1192 // Convert the version info into a major/minor number. 1193 const uint32_t version_major = version_info / 100000; 1194 const uint32_t version_minor = (version_info / 1000) % 100; 1195 1196 char os_name[32]; 1197 snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32, 1198 version_major, version_minor); 1199 1200 // Set the elf OS version to FreeBSD. Also clear the vendor. 1201 arch_spec.GetTriple().setOSName(os_name); 1202 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1203 1204 if (log) 1205 log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 1206 ".%" PRIu32, 1207 __FUNCTION__, version_major, version_minor, 1208 static_cast<uint32_t>(version_info % 1000)); 1209 } 1210 // Process GNU ELF notes. 1211 else if (note.n_name == LLDB_NT_OWNER_GNU) { 1212 switch (note.n_type) { 1213 case LLDB_NT_GNU_ABI_TAG: 1214 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) { 1215 // Pull out the min OS version supporting the ABI. 1216 uint32_t version_info[4]; 1217 if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) == 1218 nullptr) { 1219 error.SetErrorString("failed to read GNU ABI note payload"); 1220 return error; 1221 } 1222 1223 // Set the OS per the OS field. 1224 switch (version_info[0]) { 1225 case LLDB_NT_GNU_ABI_OS_LINUX: 1226 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1227 arch_spec.GetTriple().setVendor( 1228 llvm::Triple::VendorType::UnknownVendor); 1229 if (log) 1230 log->Printf( 1231 "ObjectFileELF::%s detected Linux, min version %" PRIu32 1232 ".%" PRIu32 ".%" PRIu32, 1233 __FUNCTION__, version_info[1], version_info[2], 1234 version_info[3]); 1235 // FIXME we have the minimal version number, we could be propagating 1236 // that. version_info[1] = OS Major, version_info[2] = OS Minor, 1237 // version_info[3] = Revision. 1238 break; 1239 case LLDB_NT_GNU_ABI_OS_HURD: 1240 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1241 arch_spec.GetTriple().setVendor( 1242 llvm::Triple::VendorType::UnknownVendor); 1243 if (log) 1244 log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min " 1245 "version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1246 __FUNCTION__, version_info[1], version_info[2], 1247 version_info[3]); 1248 break; 1249 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1250 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris); 1251 arch_spec.GetTriple().setVendor( 1252 llvm::Triple::VendorType::UnknownVendor); 1253 if (log) 1254 log->Printf( 1255 "ObjectFileELF::%s detected Solaris, min version %" PRIu32 1256 ".%" PRIu32 ".%" PRIu32, 1257 __FUNCTION__, version_info[1], version_info[2], 1258 version_info[3]); 1259 break; 1260 default: 1261 if (log) 1262 log->Printf( 1263 "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 1264 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1265 __FUNCTION__, version_info[0], version_info[1], 1266 version_info[2], version_info[3]); 1267 break; 1268 } 1269 } 1270 break; 1271 1272 case LLDB_NT_GNU_BUILD_ID_TAG: 1273 // Only bother processing this if we don't already have the uuid set. 1274 if (!uuid.IsValid()) { 1275 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a 1276 // build-id of a different 1277 // length. Accept it as long as it's at least 4 bytes as it will be 1278 // better than our own crc32. 1279 if (note.n_descsz >= 4 && note.n_descsz <= 20) { 1280 uint8_t uuidbuf[20]; 1281 if (data.GetU8(&offset, &uuidbuf, note.n_descsz) == nullptr) { 1282 error.SetErrorString("failed to read GNU_BUILD_ID note payload"); 1283 return error; 1284 } 1285 1286 // Save the build id as the UUID for the module. 1287 uuid.SetBytes(uuidbuf, note.n_descsz); 1288 } 1289 } 1290 break; 1291 } 1292 if (arch_spec.IsMIPS() && 1293 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1294 // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform 1295 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1296 } 1297 // Process NetBSD ELF notes. 1298 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1299 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1300 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) { 1301 // Pull out the min version info. 1302 uint32_t version_info; 1303 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1304 error.SetErrorString("failed to read NetBSD ABI note payload"); 1305 return error; 1306 } 1307 1308 // Set the elf OS version to NetBSD. Also clear the vendor. 1309 arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD); 1310 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1311 1312 if (log) 1313 log->Printf( 1314 "ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, 1315 __FUNCTION__, version_info); 1316 } 1317 // Process OpenBSD ELF notes. 1318 else if (note.n_name == LLDB_NT_OWNER_OPENBSD) { 1319 // Set the elf OS version to OpenBSD. Also clear the vendor. 1320 arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD); 1321 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1322 } 1323 // Process CSR kalimba notes 1324 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1325 (note.n_name == LLDB_NT_OWNER_CSR)) { 1326 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1327 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1328 1329 // TODO At some point the description string could be processed. 1330 // It could provide a steer towards the kalimba variant which this ELF 1331 // targets. 1332 if (note.n_descsz) { 1333 const char *cstr = 1334 data.GetCStr(&offset, llvm::alignTo(note.n_descsz, 4)); 1335 (void)cstr; 1336 } 1337 } else if (note.n_name == LLDB_NT_OWNER_ANDROID) { 1338 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1339 arch_spec.GetTriple().setEnvironment( 1340 llvm::Triple::EnvironmentType::Android); 1341 } else if (note.n_name == LLDB_NT_OWNER_LINUX) { 1342 // This is sometimes found in core files and usually contains extended 1343 // register info 1344 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1345 } else if (note.n_name == LLDB_NT_OWNER_CORE) { 1346 // Parse the NT_FILE to look for stuff in paths to shared libraries As 1347 // the contents look like this in a 64 bit ELF core file: count = 1348 // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index 1349 // start end file_ofs path ===== 1350 // ------------------ ------------------ ------------------ 1351 // ------------------------------------- [ 0] 0x0000000000400000 1352 // 0x0000000000401000 0x0000000000000000 /tmp/a.out [ 1] 1353 // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [ 1354 // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out 1355 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 1356 // /lib/x86_64-linux-gnu/libc-2.19.so [ 4] 0x00007fa79cba8000 1357 // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux- 1358 // gnu/libc-2.19.so [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 1359 // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [ 6] 1360 // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64 1361 // -linux-gnu/libc-2.19.so [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 1362 // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [ 8] 1363 // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64 1364 // -linux-gnu/ld-2.19.so [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 1365 // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs 1366 // the count, page_size, start, end, file_ofs are uint32_t For reference: 1367 // see readelf source code (in binutils). 1368 if (note.n_type == NT_FILE) { 1369 uint64_t count = data.GetAddress(&offset); 1370 const char *cstr; 1371 data.GetAddress(&offset); // Skip page size 1372 offset += count * 3 * 1373 data.GetAddressByteSize(); // Skip all start/end/file_ofs 1374 for (size_t i = 0; i < count; ++i) { 1375 cstr = data.GetCStr(&offset); 1376 if (cstr == nullptr) { 1377 error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read " 1378 "at an offset after the end " 1379 "(GetCStr returned nullptr)", 1380 __FUNCTION__); 1381 return error; 1382 } 1383 llvm::StringRef path(cstr); 1384 if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) { 1385 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1386 break; 1387 } 1388 } 1389 if (arch_spec.IsMIPS() && 1390 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1391 // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some 1392 // cases (e.g. compile with -nostdlib) Hence set OS to Linux 1393 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1394 } 1395 } 1396 1397 // Calculate the offset of the next note just in case "offset" has been 1398 // used to poke at the contents of the note data 1399 offset = note_offset + note.GetByteSize(); 1400 } 1401 1402 return error; 1403 } 1404 1405 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, 1406 ArchSpec &arch_spec) { 1407 lldb::offset_t Offset = 0; 1408 1409 uint8_t FormatVersion = data.GetU8(&Offset); 1410 if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) 1411 return; 1412 1413 Offset = Offset + sizeof(uint32_t); // Section Length 1414 llvm::StringRef VendorName = data.GetCStr(&Offset); 1415 1416 if (VendorName != "aeabi") 1417 return; 1418 1419 if (arch_spec.GetTriple().getEnvironment() == 1420 llvm::Triple::UnknownEnvironment) 1421 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1422 1423 while (Offset < length) { 1424 uint8_t Tag = data.GetU8(&Offset); 1425 uint32_t Size = data.GetU32(&Offset); 1426 1427 if (Tag != llvm::ARMBuildAttrs::File || Size == 0) 1428 continue; 1429 1430 while (Offset < length) { 1431 uint64_t Tag = data.GetULEB128(&Offset); 1432 switch (Tag) { 1433 default: 1434 if (Tag < 32) 1435 data.GetULEB128(&Offset); 1436 else if (Tag % 2 == 0) 1437 data.GetULEB128(&Offset); 1438 else 1439 data.GetCStr(&Offset); 1440 1441 break; 1442 1443 case llvm::ARMBuildAttrs::CPU_raw_name: 1444 case llvm::ARMBuildAttrs::CPU_name: 1445 data.GetCStr(&Offset); 1446 1447 break; 1448 1449 case llvm::ARMBuildAttrs::ABI_VFP_args: { 1450 uint64_t VFPArgs = data.GetULEB128(&Offset); 1451 1452 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) { 1453 if (arch_spec.GetTriple().getEnvironment() == 1454 llvm::Triple::UnknownEnvironment || 1455 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) 1456 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1457 1458 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1459 } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) { 1460 if (arch_spec.GetTriple().getEnvironment() == 1461 llvm::Triple::UnknownEnvironment || 1462 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) 1463 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); 1464 1465 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1466 } 1467 1468 break; 1469 } 1470 } 1471 } 1472 } 1473 } 1474 1475 //---------------------------------------------------------------------- 1476 // GetSectionHeaderInfo 1477 //---------------------------------------------------------------------- 1478 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1479 DataExtractor &object_data, 1480 const elf::ELFHeader &header, 1481 lldb_private::UUID &uuid, 1482 std::string &gnu_debuglink_file, 1483 uint32_t &gnu_debuglink_crc, 1484 ArchSpec &arch_spec) { 1485 // Don't reparse the section headers if we already did that. 1486 if (!section_headers.empty()) 1487 return section_headers.size(); 1488 1489 // Only initialize the arch_spec to okay defaults if they're not already set. 1490 // We'll refine this with note data as we parse the notes. 1491 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) { 1492 llvm::Triple::OSType ostype; 1493 llvm::Triple::OSType spec_ostype; 1494 const uint32_t sub_type = subTypeFromElfHeader(header); 1495 arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type, 1496 header.e_ident[EI_OSABI]); 1497 1498 // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is 1499 // determined based on EI_OSABI flag and the info extracted from ELF notes 1500 // (see RefineModuleDetailsFromNote). However in some cases that still 1501 // might be not enough: for example a shared library might not have any 1502 // notes at all and have EI_OSABI flag set to System V, as result the OS 1503 // will be set to UnknownOS. 1504 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 1505 spec_ostype = arch_spec.GetTriple().getOS(); 1506 assert(spec_ostype == ostype); 1507 UNUSED_IF_ASSERT_DISABLED(spec_ostype); 1508 } 1509 1510 if (arch_spec.GetMachine() == llvm::Triple::mips || 1511 arch_spec.GetMachine() == llvm::Triple::mipsel || 1512 arch_spec.GetMachine() == llvm::Triple::mips64 || 1513 arch_spec.GetMachine() == llvm::Triple::mips64el) { 1514 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) { 1515 case llvm::ELF::EF_MIPS_MICROMIPS: 1516 arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips); 1517 break; 1518 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1519 arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16); 1520 break; 1521 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1522 arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx); 1523 break; 1524 default: 1525 break; 1526 } 1527 } 1528 1529 if (arch_spec.GetMachine() == llvm::Triple::arm || 1530 arch_spec.GetMachine() == llvm::Triple::thumb) { 1531 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) 1532 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1533 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) 1534 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1535 } 1536 1537 // If there are no section headers we are done. 1538 if (header.e_shnum == 0) 1539 return 0; 1540 1541 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1542 1543 section_headers.resize(header.e_shnum); 1544 if (section_headers.size() != header.e_shnum) 1545 return 0; 1546 1547 const size_t sh_size = header.e_shnum * header.e_shentsize; 1548 const elf_off sh_offset = header.e_shoff; 1549 DataExtractor sh_data; 1550 if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size) 1551 return 0; 1552 1553 uint32_t idx; 1554 lldb::offset_t offset; 1555 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) { 1556 if (section_headers[idx].Parse(sh_data, &offset) == false) 1557 break; 1558 } 1559 if (idx < section_headers.size()) 1560 section_headers.resize(idx); 1561 1562 const unsigned strtab_idx = header.e_shstrndx; 1563 if (strtab_idx && strtab_idx < section_headers.size()) { 1564 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1565 const size_t byte_size = sheader.sh_size; 1566 const Elf64_Off offset = sheader.sh_offset; 1567 lldb_private::DataExtractor shstr_data; 1568 1569 if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) { 1570 for (SectionHeaderCollIter I = section_headers.begin(); 1571 I != section_headers.end(); ++I) { 1572 static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink"); 1573 const ELFSectionHeaderInfo &sheader = *I; 1574 const uint64_t section_size = 1575 sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1576 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1577 1578 I->section_name = name; 1579 1580 if (arch_spec.IsMIPS()) { 1581 uint32_t arch_flags = arch_spec.GetFlags(); 1582 DataExtractor data; 1583 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) { 1584 1585 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1586 section_size) == section_size)) { 1587 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section 1588 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 1589 arch_flags |= data.GetU32(&offset); 1590 1591 // The floating point ABI is at offset 7 1592 offset = 7; 1593 switch (data.GetU8(&offset)) { 1594 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY: 1595 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; 1596 break; 1597 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE: 1598 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; 1599 break; 1600 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE: 1601 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; 1602 break; 1603 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT: 1604 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; 1605 break; 1606 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64: 1607 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; 1608 break; 1609 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX: 1610 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; 1611 break; 1612 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64: 1613 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; 1614 break; 1615 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A: 1616 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; 1617 break; 1618 } 1619 } 1620 } 1621 // Settings appropriate ArchSpec ABI Flags 1622 switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) { 1623 case llvm::ELF::EF_MIPS_ABI_O32: 1624 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1625 break; 1626 case EF_MIPS_ABI_O64: 1627 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; 1628 break; 1629 case EF_MIPS_ABI_EABI32: 1630 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; 1631 break; 1632 case EF_MIPS_ABI_EABI64: 1633 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; 1634 break; 1635 default: 1636 // ABI Mask doesn't cover N32 and N64 ABI. 1637 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) 1638 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; 1639 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) 1640 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1641 break; 1642 } 1643 arch_spec.SetFlags(arch_flags); 1644 } 1645 1646 if (arch_spec.GetMachine() == llvm::Triple::arm || 1647 arch_spec.GetMachine() == llvm::Triple::thumb) { 1648 DataExtractor data; 1649 1650 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && 1651 data.SetData(object_data, sheader.sh_offset, section_size) == section_size) 1652 ParseARMAttributes(data, section_size, arch_spec); 1653 } 1654 1655 if (name == g_sect_name_gnu_debuglink) { 1656 DataExtractor data; 1657 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1658 section_size) == section_size)) { 1659 lldb::offset_t gnu_debuglink_offset = 0; 1660 gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset); 1661 gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4); 1662 data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1663 } 1664 } 1665 1666 // Process ELF note section entries. 1667 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1668 1669 // The section header ".note.android.ident" is stored as a 1670 // PROGBITS type header but it is actually a note header. 1671 static ConstString g_sect_name_android_ident(".note.android.ident"); 1672 if (!is_note_header && name == g_sect_name_android_ident) 1673 is_note_header = true; 1674 1675 if (is_note_header) { 1676 // Allow notes to refine module info. 1677 DataExtractor data; 1678 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1679 section_size) == section_size)) { 1680 Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid); 1681 if (error.Fail()) { 1682 if (log) 1683 log->Printf("ObjectFileELF::%s ELF note processing failed: %s", 1684 __FUNCTION__, error.AsCString()); 1685 } 1686 } 1687 } 1688 } 1689 1690 // Make any unknown triple components to be unspecified unknowns. 1691 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) 1692 arch_spec.GetTriple().setVendorName(llvm::StringRef()); 1693 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) 1694 arch_spec.GetTriple().setOSName(llvm::StringRef()); 1695 1696 return section_headers.size(); 1697 } 1698 } 1699 1700 section_headers.clear(); 1701 return 0; 1702 } 1703 1704 size_t ObjectFileELF::GetProgramHeaderCount() { return ParseProgramHeaders(); } 1705 1706 const elf::ELFProgramHeader * 1707 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) { 1708 if (!id || !ParseProgramHeaders()) 1709 return NULL; 1710 1711 if (--id < m_program_headers.size()) 1712 return &m_program_headers[id]; 1713 1714 return NULL; 1715 } 1716 1717 DataExtractor ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) { 1718 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1719 if (segment_header == NULL) 1720 return DataExtractor(); 1721 return DataExtractor(m_data, segment_header->p_offset, 1722 segment_header->p_filesz); 1723 } 1724 1725 llvm::StringRef 1726 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const { 1727 size_t pos = symbol_name.find('@'); 1728 return symbol_name.substr(0, pos); 1729 } 1730 1731 //---------------------------------------------------------------------- 1732 // ParseSectionHeaders 1733 //---------------------------------------------------------------------- 1734 size_t ObjectFileELF::ParseSectionHeaders() { 1735 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, 1736 m_gnu_debuglink_file, m_gnu_debuglink_crc, 1737 m_arch_spec); 1738 } 1739 1740 const ObjectFileELF::ELFSectionHeaderInfo * 1741 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) { 1742 if (!id || !ParseSectionHeaders()) 1743 return NULL; 1744 1745 if (--id < m_section_headers.size()) 1746 return &m_section_headers[id]; 1747 1748 return NULL; 1749 } 1750 1751 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) { 1752 if (!name || !name[0] || !ParseSectionHeaders()) 1753 return 0; 1754 for (size_t i = 1; i < m_section_headers.size(); ++i) 1755 if (m_section_headers[i].section_name == ConstString(name)) 1756 return i; 1757 return 0; 1758 } 1759 1760 void ObjectFileELF::CreateSections(SectionList &unified_section_list) { 1761 if (!m_sections_ap.get() && ParseSectionHeaders()) { 1762 m_sections_ap.reset(new SectionList()); 1763 1764 // Object files frequently have 0 for every section address, meaning we 1765 // need to compute synthetic addresses in order for "file addresses" from 1766 // different sections to not overlap 1767 bool synthaddrs = (CalculateType() == ObjectFile::Type::eTypeObjectFile); 1768 uint64_t nextaddr = 0; 1769 1770 for (SectionHeaderCollIter I = m_section_headers.begin(); 1771 I != m_section_headers.end(); ++I) { 1772 const ELFSectionHeaderInfo &header = *I; 1773 1774 ConstString &name = I->section_name; 1775 const uint64_t file_size = 1776 header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1777 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1778 1779 static ConstString g_sect_name_text(".text"); 1780 static ConstString g_sect_name_data(".data"); 1781 static ConstString g_sect_name_bss(".bss"); 1782 static ConstString g_sect_name_tdata(".tdata"); 1783 static ConstString g_sect_name_tbss(".tbss"); 1784 static ConstString g_sect_name_dwarf_debug_abbrev(".debug_abbrev"); 1785 static ConstString g_sect_name_dwarf_debug_addr(".debug_addr"); 1786 static ConstString g_sect_name_dwarf_debug_aranges(".debug_aranges"); 1787 static ConstString g_sect_name_dwarf_debug_cu_index(".debug_cu_index"); 1788 static ConstString g_sect_name_dwarf_debug_frame(".debug_frame"); 1789 static ConstString g_sect_name_dwarf_debug_info(".debug_info"); 1790 static ConstString g_sect_name_dwarf_debug_line(".debug_line"); 1791 static ConstString g_sect_name_dwarf_debug_loc(".debug_loc"); 1792 static ConstString g_sect_name_dwarf_debug_macinfo(".debug_macinfo"); 1793 static ConstString g_sect_name_dwarf_debug_macro(".debug_macro"); 1794 static ConstString g_sect_name_dwarf_debug_pubnames(".debug_pubnames"); 1795 static ConstString g_sect_name_dwarf_debug_pubtypes(".debug_pubtypes"); 1796 static ConstString g_sect_name_dwarf_debug_ranges(".debug_ranges"); 1797 static ConstString g_sect_name_dwarf_debug_str(".debug_str"); 1798 static ConstString g_sect_name_dwarf_debug_str_offsets( 1799 ".debug_str_offsets"); 1800 static ConstString g_sect_name_dwarf_debug_abbrev_dwo( 1801 ".debug_abbrev.dwo"); 1802 static ConstString g_sect_name_dwarf_debug_info_dwo(".debug_info.dwo"); 1803 static ConstString g_sect_name_dwarf_debug_line_dwo(".debug_line.dwo"); 1804 static ConstString g_sect_name_dwarf_debug_macro_dwo(".debug_macro.dwo"); 1805 static ConstString g_sect_name_dwarf_debug_loc_dwo(".debug_loc.dwo"); 1806 static ConstString g_sect_name_dwarf_debug_str_dwo(".debug_str.dwo"); 1807 static ConstString g_sect_name_dwarf_debug_str_offsets_dwo( 1808 ".debug_str_offsets.dwo"); 1809 static ConstString g_sect_name_eh_frame(".eh_frame"); 1810 static ConstString g_sect_name_arm_exidx(".ARM.exidx"); 1811 static ConstString g_sect_name_arm_extab(".ARM.extab"); 1812 static ConstString g_sect_name_go_symtab(".gosymtab"); 1813 static ConstString g_sect_name_dwarf_gnu_debugaltlink(".gnu_debugaltlink"); 1814 1815 SectionType sect_type = eSectionTypeOther; 1816 1817 bool is_thread_specific = false; 1818 1819 if (name == g_sect_name_text) 1820 sect_type = eSectionTypeCode; 1821 else if (name == g_sect_name_data) 1822 sect_type = eSectionTypeData; 1823 else if (name == g_sect_name_bss) 1824 sect_type = eSectionTypeZeroFill; 1825 else if (name == g_sect_name_tdata) { 1826 sect_type = eSectionTypeData; 1827 is_thread_specific = true; 1828 } else if (name == g_sect_name_tbss) { 1829 sect_type = eSectionTypeZeroFill; 1830 is_thread_specific = true; 1831 } 1832 // .debug_abbrev – Abbreviations used in the .debug_info section 1833 // .debug_aranges – Lookup table for mapping addresses to compilation 1834 // units .debug_frame – Call frame information .debug_info – The core 1835 // DWARF information section .debug_line – Line number information 1836 // .debug_loc – Location lists used in DW_AT_location attributes 1837 // .debug_macinfo – Macro information .debug_pubnames – Lookup table 1838 // for mapping object and function names to compilation units 1839 // .debug_pubtypes – Lookup table for mapping type names to compilation 1840 // units .debug_ranges – Address ranges used in DW_AT_ranges attributes 1841 // .debug_str – String table used in .debug_info MISSING? 1842 // .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, 1843 // http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html MISSING? 1844 // .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build 1845 // /gdb-add-index?pathrev=144644 MISSING? .debug_types - Type 1846 // descriptions from DWARF 4? See 1847 // http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1848 else if (name == g_sect_name_dwarf_debug_abbrev) 1849 sect_type = eSectionTypeDWARFDebugAbbrev; 1850 else if (name == g_sect_name_dwarf_debug_addr) 1851 sect_type = eSectionTypeDWARFDebugAddr; 1852 else if (name == g_sect_name_dwarf_debug_aranges) 1853 sect_type = eSectionTypeDWARFDebugAranges; 1854 else if (name == g_sect_name_dwarf_debug_cu_index) 1855 sect_type = eSectionTypeDWARFDebugCuIndex; 1856 else if (name == g_sect_name_dwarf_debug_frame) 1857 sect_type = eSectionTypeDWARFDebugFrame; 1858 else if (name == g_sect_name_dwarf_debug_info) 1859 sect_type = eSectionTypeDWARFDebugInfo; 1860 else if (name == g_sect_name_dwarf_debug_line) 1861 sect_type = eSectionTypeDWARFDebugLine; 1862 else if (name == g_sect_name_dwarf_debug_loc) 1863 sect_type = eSectionTypeDWARFDebugLoc; 1864 else if (name == g_sect_name_dwarf_debug_macinfo) 1865 sect_type = eSectionTypeDWARFDebugMacInfo; 1866 else if (name == g_sect_name_dwarf_debug_macro) 1867 sect_type = eSectionTypeDWARFDebugMacro; 1868 else if (name == g_sect_name_dwarf_debug_pubnames) 1869 sect_type = eSectionTypeDWARFDebugPubNames; 1870 else if (name == g_sect_name_dwarf_debug_pubtypes) 1871 sect_type = eSectionTypeDWARFDebugPubTypes; 1872 else if (name == g_sect_name_dwarf_debug_ranges) 1873 sect_type = eSectionTypeDWARFDebugRanges; 1874 else if (name == g_sect_name_dwarf_debug_str) 1875 sect_type = eSectionTypeDWARFDebugStr; 1876 else if (name == g_sect_name_dwarf_debug_str_offsets) 1877 sect_type = eSectionTypeDWARFDebugStrOffsets; 1878 else if (name == g_sect_name_dwarf_debug_abbrev_dwo) 1879 sect_type = eSectionTypeDWARFDebugAbbrev; 1880 else if (name == g_sect_name_dwarf_debug_info_dwo) 1881 sect_type = eSectionTypeDWARFDebugInfo; 1882 else if (name == g_sect_name_dwarf_debug_line_dwo) 1883 sect_type = eSectionTypeDWARFDebugLine; 1884 else if (name == g_sect_name_dwarf_debug_macro_dwo) 1885 sect_type = eSectionTypeDWARFDebugMacro; 1886 else if (name == g_sect_name_dwarf_debug_loc_dwo) 1887 sect_type = eSectionTypeDWARFDebugLoc; 1888 else if (name == g_sect_name_dwarf_debug_str_dwo) 1889 sect_type = eSectionTypeDWARFDebugStr; 1890 else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) 1891 sect_type = eSectionTypeDWARFDebugStrOffsets; 1892 else if (name == g_sect_name_eh_frame) 1893 sect_type = eSectionTypeEHFrame; 1894 else if (name == g_sect_name_arm_exidx) 1895 sect_type = eSectionTypeARMexidx; 1896 else if (name == g_sect_name_arm_extab) 1897 sect_type = eSectionTypeARMextab; 1898 else if (name == g_sect_name_go_symtab) 1899 sect_type = eSectionTypeGoSymtab; 1900 else if (name == g_sect_name_dwarf_gnu_debugaltlink) 1901 sect_type = eSectionTypeDWARFGNUDebugAltLink; 1902 1903 const uint32_t permissions = 1904 ((header.sh_flags & SHF_ALLOC) ? ePermissionsReadable : 0u) | 1905 ((header.sh_flags & SHF_WRITE) ? ePermissionsWritable : 0u) | 1906 ((header.sh_flags & SHF_EXECINSTR) ? ePermissionsExecutable : 0u); 1907 switch (header.sh_type) { 1908 case SHT_SYMTAB: 1909 assert(sect_type == eSectionTypeOther); 1910 sect_type = eSectionTypeELFSymbolTable; 1911 break; 1912 case SHT_DYNSYM: 1913 assert(sect_type == eSectionTypeOther); 1914 sect_type = eSectionTypeELFDynamicSymbols; 1915 break; 1916 case SHT_RELA: 1917 case SHT_REL: 1918 assert(sect_type == eSectionTypeOther); 1919 sect_type = eSectionTypeELFRelocationEntries; 1920 break; 1921 case SHT_DYNAMIC: 1922 assert(sect_type == eSectionTypeOther); 1923 sect_type = eSectionTypeELFDynamicLinkInfo; 1924 break; 1925 } 1926 1927 if (eSectionTypeOther == sect_type) { 1928 // the kalimba toolchain assumes that ELF section names are free-form. 1929 // It does support linkscripts which (can) give rise to various 1930 // arbitrarily named sections being "Code" or "Data". 1931 sect_type = kalimbaSectionType(m_header, header); 1932 } 1933 1934 // In common case ELF code section can have arbitrary name (for example, 1935 // we can specify it using section attribute for particular function) so 1936 // assume that section is a code section if it has SHF_EXECINSTR flag set 1937 // and has SHT_PROGBITS type. 1938 if (eSectionTypeOther == sect_type && 1939 llvm::ELF::SHT_PROGBITS == header.sh_type && 1940 (header.sh_flags & SHF_EXECINSTR)) { 1941 sect_type = eSectionTypeCode; 1942 } 1943 1944 const uint32_t target_bytes_size = 1945 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) 1946 ? m_arch_spec.GetDataByteSize() 1947 : eSectionTypeCode == sect_type ? m_arch_spec.GetCodeByteSize() 1948 : 1; 1949 elf::elf_xword log2align = 1950 (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign); 1951 1952 uint64_t addr = header.sh_addr; 1953 1954 if ((header.sh_flags & SHF_ALLOC) && synthaddrs) { 1955 nextaddr = 1956 (nextaddr + header.sh_addralign - 1) & ~(header.sh_addralign - 1); 1957 addr = nextaddr; 1958 nextaddr += vm_size; 1959 } 1960 1961 SectionSP section_sp(new Section( 1962 GetModule(), // Module to which this section belongs. 1963 this, // ObjectFile to which this section belongs and should read 1964 // section data from. 1965 SectionIndex(I), // Section ID. 1966 name, // Section name. 1967 sect_type, // Section type. 1968 addr, // VM address. 1969 vm_size, // VM size in bytes of this section. 1970 header.sh_offset, // Offset of this section in the file. 1971 file_size, // Size of the section as found in the file. 1972 log2align, // Alignment of the section 1973 header.sh_flags, // Flags for this section. 1974 target_bytes_size)); // Number of host bytes per target byte 1975 1976 section_sp->SetPermissions(permissions); 1977 if (is_thread_specific) 1978 section_sp->SetIsThreadSpecific(is_thread_specific); 1979 m_sections_ap->AddSection(section_sp); 1980 } 1981 } 1982 1983 // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the 1984 // unified section list. 1985 if (GetType() != eTypeDebugInfo) 1986 unified_section_list = *m_sections_ap; 1987 } 1988 1989 // Find the arm/aarch64 mapping symbol character in the given symbol name. 1990 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we 1991 // recognize cases when the mapping symbol prefixed by an arbitrary string 1992 // because if a symbol prefix added to each symbol in the object file with 1993 // objcopy then the mapping symbols are also prefixed. 1994 static char FindArmAarch64MappingSymbol(const char *symbol_name) { 1995 if (!symbol_name) 1996 return '\0'; 1997 1998 const char *dollar_pos = ::strchr(symbol_name, '$'); 1999 if (!dollar_pos || dollar_pos[1] == '\0') 2000 return '\0'; 2001 2002 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 2003 return dollar_pos[1]; 2004 return '\0'; 2005 } 2006 2007 #define STO_MIPS_ISA (3 << 6) 2008 #define STO_MICROMIPS (2 << 6) 2009 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS) 2010 2011 // private 2012 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id, 2013 SectionList *section_list, 2014 const size_t num_symbols, 2015 const DataExtractor &symtab_data, 2016 const DataExtractor &strtab_data) { 2017 ELFSymbol symbol; 2018 lldb::offset_t offset = 0; 2019 2020 static ConstString text_section_name(".text"); 2021 static ConstString init_section_name(".init"); 2022 static ConstString fini_section_name(".fini"); 2023 static ConstString ctors_section_name(".ctors"); 2024 static ConstString dtors_section_name(".dtors"); 2025 2026 static ConstString data_section_name(".data"); 2027 static ConstString rodata_section_name(".rodata"); 2028 static ConstString rodata1_section_name(".rodata1"); 2029 static ConstString data2_section_name(".data1"); 2030 static ConstString bss_section_name(".bss"); 2031 static ConstString opd_section_name(".opd"); // For ppc64 2032 2033 // On Android the oatdata and the oatexec symbols in the oat and odex files 2034 // covers the full .text section what causes issues with displaying unusable 2035 // symbol name to the user and very slow unwinding speed because the 2036 // instruction emulation based unwind plans try to emulate all instructions 2037 // in these symbols. Don't add these symbols to the symbol list as they have 2038 // no use for the debugger and they are causing a lot of trouble. Filtering 2039 // can't be restricted to Android because this special object file don't 2040 // contain the note section specifying the environment to Android but the 2041 // custom extension and file name makes it highly unlikely that this will 2042 // collide with anything else. 2043 ConstString file_extension = m_file.GetFileNameExtension(); 2044 bool skip_oatdata_oatexec = file_extension == ConstString("oat") || 2045 file_extension == ConstString("odex"); 2046 2047 ArchSpec arch; 2048 GetArchitecture(arch); 2049 ModuleSP module_sp(GetModule()); 2050 SectionList *module_section_list = 2051 module_sp ? module_sp->GetSectionList() : nullptr; 2052 2053 // Local cache to avoid doing a FindSectionByName for each symbol. The "const 2054 // char*" key must came from a ConstString object so they can be compared by 2055 // pointer 2056 std::unordered_map<const char *, lldb::SectionSP> section_name_to_section; 2057 2058 unsigned i; 2059 for (i = 0; i < num_symbols; ++i) { 2060 if (symbol.Parse(symtab_data, &offset) == false) 2061 break; 2062 2063 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2064 if (!symbol_name) 2065 symbol_name = ""; 2066 2067 // No need to add non-section symbols that have no names 2068 if (symbol.getType() != STT_SECTION && 2069 (symbol_name == nullptr || symbol_name[0] == '\0')) 2070 continue; 2071 2072 // Skipping oatdata and oatexec sections if it is requested. See details 2073 // above the definition of skip_oatdata_oatexec for the reasons. 2074 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || 2075 ::strcmp(symbol_name, "oatexec") == 0)) 2076 continue; 2077 2078 SectionSP symbol_section_sp; 2079 SymbolType symbol_type = eSymbolTypeInvalid; 2080 Elf64_Half section_idx = symbol.st_shndx; 2081 2082 switch (section_idx) { 2083 case SHN_ABS: 2084 symbol_type = eSymbolTypeAbsolute; 2085 break; 2086 case SHN_UNDEF: 2087 symbol_type = eSymbolTypeUndefined; 2088 break; 2089 default: 2090 symbol_section_sp = section_list->GetSectionAtIndex(section_idx); 2091 break; 2092 } 2093 2094 // If a symbol is undefined do not process it further even if it has a STT 2095 // type 2096 if (symbol_type != eSymbolTypeUndefined) { 2097 switch (symbol.getType()) { 2098 default: 2099 case STT_NOTYPE: 2100 // The symbol's type is not specified. 2101 break; 2102 2103 case STT_OBJECT: 2104 // The symbol is associated with a data object, such as a variable, an 2105 // array, etc. 2106 symbol_type = eSymbolTypeData; 2107 break; 2108 2109 case STT_FUNC: 2110 // The symbol is associated with a function or other executable code. 2111 symbol_type = eSymbolTypeCode; 2112 break; 2113 2114 case STT_SECTION: 2115 // The symbol is associated with a section. Symbol table entries of 2116 // this type exist primarily for relocation and normally have STB_LOCAL 2117 // binding. 2118 break; 2119 2120 case STT_FILE: 2121 // Conventionally, the symbol's name gives the name of the source file 2122 // associated with the object file. A file symbol has STB_LOCAL 2123 // binding, its section index is SHN_ABS, and it precedes the other 2124 // STB_LOCAL symbols for the file, if it is present. 2125 symbol_type = eSymbolTypeSourceFile; 2126 break; 2127 2128 case STT_GNU_IFUNC: 2129 // The symbol is associated with an indirect function. The actual 2130 // function will be resolved if it is referenced. 2131 symbol_type = eSymbolTypeResolver; 2132 break; 2133 } 2134 } 2135 2136 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) { 2137 if (symbol_section_sp) { 2138 const ConstString §_name = symbol_section_sp->GetName(); 2139 if (sect_name == text_section_name || sect_name == init_section_name || 2140 sect_name == fini_section_name || sect_name == ctors_section_name || 2141 sect_name == dtors_section_name) { 2142 symbol_type = eSymbolTypeCode; 2143 } else if (sect_name == data_section_name || 2144 sect_name == data2_section_name || 2145 sect_name == rodata_section_name || 2146 sect_name == rodata1_section_name || 2147 sect_name == bss_section_name) { 2148 symbol_type = eSymbolTypeData; 2149 } 2150 } 2151 } 2152 2153 int64_t symbol_value_offset = 0; 2154 uint32_t additional_flags = 0; 2155 2156 if (arch.IsValid()) { 2157 if (arch.GetMachine() == llvm::Triple::arm) { 2158 if (symbol.getBinding() == STB_LOCAL) { 2159 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2160 if (symbol_type == eSymbolTypeCode) { 2161 switch (mapping_symbol) { 2162 case 'a': 2163 // $a[.<any>]* - marks an ARM instruction sequence 2164 m_address_class_map[symbol.st_value] = eAddressClassCode; 2165 break; 2166 case 'b': 2167 case 't': 2168 // $b[.<any>]* - marks a THUMB BL instruction sequence 2169 // $t[.<any>]* - marks a THUMB instruction sequence 2170 m_address_class_map[symbol.st_value] = 2171 eAddressClassCodeAlternateISA; 2172 break; 2173 case 'd': 2174 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2175 m_address_class_map[symbol.st_value] = eAddressClassData; 2176 break; 2177 } 2178 } 2179 if (mapping_symbol) 2180 continue; 2181 } 2182 } else if (arch.GetMachine() == llvm::Triple::aarch64) { 2183 if (symbol.getBinding() == STB_LOCAL) { 2184 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2185 if (symbol_type == eSymbolTypeCode) { 2186 switch (mapping_symbol) { 2187 case 'x': 2188 // $x[.<any>]* - marks an A64 instruction sequence 2189 m_address_class_map[symbol.st_value] = eAddressClassCode; 2190 break; 2191 case 'd': 2192 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2193 m_address_class_map[symbol.st_value] = eAddressClassData; 2194 break; 2195 } 2196 } 2197 if (mapping_symbol) 2198 continue; 2199 } 2200 } 2201 2202 if (arch.GetMachine() == llvm::Triple::arm) { 2203 if (symbol_type == eSymbolTypeCode) { 2204 if (symbol.st_value & 1) { 2205 // Subtracting 1 from the address effectively unsets the low order 2206 // bit, which results in the address actually pointing to the 2207 // beginning of the symbol. This delta will be used below in 2208 // conjunction with symbol.st_value to produce the final 2209 // symbol_value that we store in the symtab. 2210 symbol_value_offset = -1; 2211 m_address_class_map[symbol.st_value ^ 1] = 2212 eAddressClassCodeAlternateISA; 2213 } else { 2214 // This address is ARM 2215 m_address_class_map[symbol.st_value] = eAddressClassCode; 2216 } 2217 } 2218 } 2219 2220 /* 2221 * MIPS: 2222 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for 2223 * MIPS). 2224 * This allows processor to switch between microMIPS and MIPS without any 2225 * need 2226 * for special mode-control register. However, apart from .debug_line, 2227 * none of 2228 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use 2229 * st_other 2230 * flag to check whether the symbol is microMIPS and then set the address 2231 * class 2232 * accordingly. 2233 */ 2234 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2235 if (llvm_arch == llvm::Triple::mips || 2236 llvm_arch == llvm::Triple::mipsel || 2237 llvm_arch == llvm::Triple::mips64 || 2238 llvm_arch == llvm::Triple::mips64el) { 2239 if (IS_MICROMIPS(symbol.st_other)) 2240 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2241 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) { 2242 symbol.st_value = symbol.st_value & (~1ull); 2243 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2244 } else { 2245 if (symbol_type == eSymbolTypeCode) 2246 m_address_class_map[symbol.st_value] = eAddressClassCode; 2247 else if (symbol_type == eSymbolTypeData) 2248 m_address_class_map[symbol.st_value] = eAddressClassData; 2249 else 2250 m_address_class_map[symbol.st_value] = eAddressClassUnknown; 2251 } 2252 } 2253 } 2254 2255 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB 2256 // symbols. See above for more details. 2257 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2258 2259 if (symbol_section_sp == nullptr && section_idx == SHN_ABS && 2260 symbol.st_size != 0) { 2261 // We don't have a section for a symbol with non-zero size. Create a new 2262 // section for it so the address range covered by the symbol is also 2263 // covered by the module (represented through the section list). It is 2264 // needed so module lookup for the addresses covered by this symbol will 2265 // be successfull. This case happens for absolute symbols. 2266 ConstString fake_section_name(std::string(".absolute.") + symbol_name); 2267 symbol_section_sp = 2268 std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name, 2269 eSectionTypeAbsoluteAddress, symbol_value, 2270 symbol.st_size, 0, 0, 0, SHF_ALLOC); 2271 2272 module_section_list->AddSection(symbol_section_sp); 2273 section_list->AddSection(symbol_section_sp); 2274 } 2275 2276 if (symbol_section_sp && 2277 CalculateType() != ObjectFile::Type::eTypeObjectFile) 2278 symbol_value -= symbol_section_sp->GetFileAddress(); 2279 2280 if (symbol_section_sp && module_section_list && 2281 module_section_list != section_list) { 2282 const ConstString §_name = symbol_section_sp->GetName(); 2283 auto section_it = section_name_to_section.find(sect_name.GetCString()); 2284 if (section_it == section_name_to_section.end()) 2285 section_it = 2286 section_name_to_section 2287 .emplace(sect_name.GetCString(), 2288 module_section_list->FindSectionByName(sect_name)) 2289 .first; 2290 if (section_it->second) 2291 symbol_section_sp = section_it->second; 2292 } 2293 2294 bool is_global = symbol.getBinding() == STB_GLOBAL; 2295 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2296 bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z'); 2297 2298 llvm::StringRef symbol_ref(symbol_name); 2299 2300 // Symbol names may contain @VERSION suffixes. Find those and strip them 2301 // temporarily. 2302 size_t version_pos = symbol_ref.find('@'); 2303 bool has_suffix = version_pos != llvm::StringRef::npos; 2304 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2305 Mangled mangled(ConstString(symbol_bare), is_mangled); 2306 2307 // Now append the suffix back to mangled and unmangled names. Only do it if 2308 // the demangling was successful (string is not empty). 2309 if (has_suffix) { 2310 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2311 2312 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2313 if (!mangled_name.empty()) 2314 mangled.SetMangledName(ConstString((mangled_name + suffix).str())); 2315 2316 ConstString demangled = 2317 mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2318 llvm::StringRef demangled_name = demangled.GetStringRef(); 2319 if (!demangled_name.empty()) 2320 mangled.SetDemangledName(ConstString((demangled_name + suffix).str())); 2321 } 2322 2323 // In ELF all symbol should have a valid size but it is not true for some 2324 // function symbols coming from hand written assembly. As none of the 2325 // function symbol should have 0 size we try to calculate the size for 2326 // these symbols in the symtab with saying that their original size is not 2327 // valid. 2328 bool symbol_size_valid = 2329 symbol.st_size != 0 || symbol.getType() != STT_FUNC; 2330 2331 Symbol dc_symbol( 2332 i + start_id, // ID is the original symbol table index. 2333 mangled, 2334 symbol_type, // Type of this symbol 2335 is_global, // Is this globally visible? 2336 false, // Is this symbol debug info? 2337 false, // Is this symbol a trampoline? 2338 false, // Is this symbol artificial? 2339 AddressRange(symbol_section_sp, // Section in which this symbol is 2340 // defined or null. 2341 symbol_value, // Offset in section or symbol value. 2342 symbol.st_size), // Size in bytes of this symbol. 2343 symbol_size_valid, // Symbol size is valid 2344 has_suffix, // Contains linker annotations? 2345 flags); // Symbol flags. 2346 symtab->AddSymbol(dc_symbol); 2347 } 2348 return i; 2349 } 2350 2351 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, 2352 user_id_t start_id, 2353 lldb_private::Section *symtab) { 2354 if (symtab->GetObjectFile() != this) { 2355 // If the symbol table section is owned by a different object file, have it 2356 // do the parsing. 2357 ObjectFileELF *obj_file_elf = 2358 static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2359 return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab); 2360 } 2361 2362 // Get section list for this object file. 2363 SectionList *section_list = m_sections_ap.get(); 2364 if (!section_list) 2365 return 0; 2366 2367 user_id_t symtab_id = symtab->GetID(); 2368 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2369 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2370 symtab_hdr->sh_type == SHT_DYNSYM); 2371 2372 // sh_link: section header index of associated string table. Section ID's are 2373 // ones based. 2374 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2375 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2376 2377 if (symtab && strtab) { 2378 assert(symtab->GetObjectFile() == this); 2379 assert(strtab->GetObjectFile() == this); 2380 2381 DataExtractor symtab_data; 2382 DataExtractor strtab_data; 2383 if (ReadSectionData(symtab, symtab_data) && 2384 ReadSectionData(strtab, strtab_data)) { 2385 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2386 2387 return ParseSymbols(symbol_table, start_id, section_list, num_symbols, 2388 symtab_data, strtab_data); 2389 } 2390 } 2391 2392 return 0; 2393 } 2394 2395 size_t ObjectFileELF::ParseDynamicSymbols() { 2396 if (m_dynamic_symbols.size()) 2397 return m_dynamic_symbols.size(); 2398 2399 SectionList *section_list = GetSectionList(); 2400 if (!section_list) 2401 return 0; 2402 2403 // Find the SHT_DYNAMIC section. 2404 Section *dynsym = 2405 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 2406 .get(); 2407 if (!dynsym) 2408 return 0; 2409 assert(dynsym->GetObjectFile() == this); 2410 2411 ELFDynamic symbol; 2412 DataExtractor dynsym_data; 2413 if (ReadSectionData(dynsym, dynsym_data)) { 2414 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2415 lldb::offset_t cursor = 0; 2416 2417 while (cursor < section_size) { 2418 if (!symbol.Parse(dynsym_data, &cursor)) 2419 break; 2420 2421 m_dynamic_symbols.push_back(symbol); 2422 } 2423 } 2424 2425 return m_dynamic_symbols.size(); 2426 } 2427 2428 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) { 2429 if (!ParseDynamicSymbols()) 2430 return NULL; 2431 2432 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2433 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2434 for (; I != E; ++I) { 2435 ELFDynamic *symbol = &*I; 2436 2437 if (symbol->d_tag == tag) 2438 return symbol; 2439 } 2440 2441 return NULL; 2442 } 2443 2444 unsigned ObjectFileELF::PLTRelocationType() { 2445 // DT_PLTREL 2446 // This member specifies the type of relocation entry to which the 2447 // procedure linkage table refers. The d_val member holds DT_REL or 2448 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2449 // must use the same relocation. 2450 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2451 2452 if (symbol) 2453 return symbol->d_val; 2454 2455 return 0; 2456 } 2457 2458 // Returns the size of the normal plt entries and the offset of the first 2459 // normal plt entry. The 0th entry in the plt table is usually a resolution 2460 // entry which have different size in some architectures then the rest of the 2461 // plt entries. 2462 static std::pair<uint64_t, uint64_t> 2463 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr, 2464 const ELFSectionHeader *plt_hdr) { 2465 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2466 2467 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 2468 // 16 bytes. So round the entsize up by the alignment if addralign is set. 2469 elf_xword plt_entsize = 2470 plt_hdr->sh_addralign 2471 ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign) 2472 : plt_hdr->sh_entsize; 2473 2474 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. 2475 // PLT entries relocation code in general requires multiple instruction and 2476 // should be greater than 4 bytes in most cases. Try to guess correct size 2477 // just in case. 2478 if (plt_entsize <= 4) { 2479 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the 2480 // size of the plt entries based on the number of entries and the size of 2481 // the plt section with the assumption that the size of the 0th entry is at 2482 // least as big as the size of the normal entries and it isn't much bigger 2483 // then that. 2484 if (plt_hdr->sh_addralign) 2485 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / 2486 (num_relocations + 1) * plt_hdr->sh_addralign; 2487 else 2488 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2489 } 2490 2491 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2492 2493 return std::make_pair(plt_entsize, plt_offset); 2494 } 2495 2496 static unsigned ParsePLTRelocations( 2497 Symtab *symbol_table, user_id_t start_id, unsigned rel_type, 2498 const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2499 const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, 2500 const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, 2501 DataExtractor &symtab_data, DataExtractor &strtab_data) { 2502 ELFRelocation rel(rel_type); 2503 ELFSymbol symbol; 2504 lldb::offset_t offset = 0; 2505 2506 uint64_t plt_offset, plt_entsize; 2507 std::tie(plt_entsize, plt_offset) = 2508 GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2509 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2510 2511 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2512 reloc_info_fn reloc_type; 2513 reloc_info_fn reloc_symbol; 2514 2515 if (hdr->Is32Bit()) { 2516 reloc_type = ELFRelocation::RelocType32; 2517 reloc_symbol = ELFRelocation::RelocSymbol32; 2518 } else { 2519 reloc_type = ELFRelocation::RelocType64; 2520 reloc_symbol = ELFRelocation::RelocSymbol64; 2521 } 2522 2523 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2524 unsigned i; 2525 for (i = 0; i < num_relocations; ++i) { 2526 if (rel.Parse(rel_data, &offset) == false) 2527 break; 2528 2529 if (reloc_type(rel) != slot_type) 2530 continue; 2531 2532 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2533 if (!symbol.Parse(symtab_data, &symbol_offset)) 2534 break; 2535 2536 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2537 bool is_mangled = 2538 symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2539 uint64_t plt_index = plt_offset + i * plt_entsize; 2540 2541 Symbol jump_symbol( 2542 i + start_id, // Symbol table index 2543 symbol_name, // symbol name. 2544 is_mangled, // is the symbol name mangled? 2545 eSymbolTypeTrampoline, // Type of this symbol 2546 false, // Is this globally visible? 2547 false, // Is this symbol debug info? 2548 true, // Is this symbol a trampoline? 2549 true, // Is this symbol artificial? 2550 plt_section_sp, // Section in which this symbol is defined or null. 2551 plt_index, // Offset in section or symbol value. 2552 plt_entsize, // Size in bytes of this symbol. 2553 true, // Size is valid 2554 false, // Contains linker annotations? 2555 0); // Symbol flags. 2556 2557 symbol_table->AddSymbol(jump_symbol); 2558 } 2559 2560 return i; 2561 } 2562 2563 unsigned 2564 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id, 2565 const ELFSectionHeaderInfo *rel_hdr, 2566 user_id_t rel_id) { 2567 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2568 2569 // The link field points to the associated symbol table. 2570 user_id_t symtab_id = rel_hdr->sh_link; 2571 2572 // If the link field doesn't point to the appropriate symbol name table then 2573 // try to find it by name as some compiler don't fill in the link fields. 2574 if (!symtab_id) 2575 symtab_id = GetSectionIndexByName(".dynsym"); 2576 2577 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers 2578 // point that to the .got.plt or .got section instead of .plt. 2579 user_id_t plt_id = GetSectionIndexByName(".plt"); 2580 2581 if (!symtab_id || !plt_id) 2582 return 0; 2583 2584 // Section ID's are ones based; 2585 symtab_id++; 2586 plt_id++; 2587 2588 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2589 if (!plt_hdr) 2590 return 0; 2591 2592 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2593 if (!sym_hdr) 2594 return 0; 2595 2596 SectionList *section_list = m_sections_ap.get(); 2597 if (!section_list) 2598 return 0; 2599 2600 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2601 if (!rel_section) 2602 return 0; 2603 2604 SectionSP plt_section_sp(section_list->FindSectionByID(plt_id)); 2605 if (!plt_section_sp) 2606 return 0; 2607 2608 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2609 if (!symtab) 2610 return 0; 2611 2612 // sh_link points to associated string table. 2613 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2614 if (!strtab) 2615 return 0; 2616 2617 DataExtractor rel_data; 2618 if (!ReadSectionData(rel_section, rel_data)) 2619 return 0; 2620 2621 DataExtractor symtab_data; 2622 if (!ReadSectionData(symtab, symtab_data)) 2623 return 0; 2624 2625 DataExtractor strtab_data; 2626 if (!ReadSectionData(strtab, strtab_data)) 2627 return 0; 2628 2629 unsigned rel_type = PLTRelocationType(); 2630 if (!rel_type) 2631 return 0; 2632 2633 return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header, 2634 rel_hdr, plt_hdr, sym_hdr, plt_section_sp, 2635 rel_data, symtab_data, strtab_data); 2636 } 2637 2638 unsigned ObjectFileELF::ApplyRelocations( 2639 Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2640 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2641 DataExtractor &rel_data, DataExtractor &symtab_data, 2642 DataExtractor &debug_data, Section *rel_section) { 2643 ELFRelocation rel(rel_hdr->sh_type); 2644 lldb::addr_t offset = 0; 2645 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2646 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2647 reloc_info_fn reloc_type; 2648 reloc_info_fn reloc_symbol; 2649 2650 if (hdr->Is32Bit()) { 2651 reloc_type = ELFRelocation::RelocType32; 2652 reloc_symbol = ELFRelocation::RelocSymbol32; 2653 } else { 2654 reloc_type = ELFRelocation::RelocType64; 2655 reloc_symbol = ELFRelocation::RelocSymbol64; 2656 } 2657 2658 for (unsigned i = 0; i < num_relocations; ++i) { 2659 if (rel.Parse(rel_data, &offset) == false) 2660 break; 2661 2662 Symbol *symbol = NULL; 2663 2664 if (hdr->Is32Bit()) { 2665 switch (reloc_type(rel)) { 2666 case R_386_32: 2667 case R_386_PC32: 2668 default: 2669 // FIXME: This asserts with this input: 2670 // 2671 // foo.cpp 2672 // int main(int argc, char **argv) { return 0; } 2673 // 2674 // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o 2675 // 2676 // and running this on the foo.o module. 2677 assert(false && "unexpected relocation type"); 2678 } 2679 } else { 2680 switch (reloc_type(rel)) { 2681 case R_X86_64_64: { 2682 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2683 if (symbol) { 2684 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2685 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2686 uint64_t *dst = reinterpret_cast<uint64_t *>( 2687 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2688 ELFRelocation::RelocOffset64(rel)); 2689 *dst = value + ELFRelocation::RelocAddend64(rel); 2690 } 2691 break; 2692 } 2693 case R_X86_64_32: 2694 case R_X86_64_32S: { 2695 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2696 if (symbol) { 2697 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2698 value += ELFRelocation::RelocAddend32(rel); 2699 assert( 2700 (reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2701 (reloc_type(rel) == R_X86_64_32S && 2702 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2703 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2704 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2705 uint32_t *dst = reinterpret_cast<uint32_t *>( 2706 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2707 ELFRelocation::RelocOffset32(rel)); 2708 *dst = truncated_addr; 2709 } 2710 break; 2711 } 2712 case R_X86_64_PC32: 2713 default: 2714 assert(false && "unexpected relocation type"); 2715 } 2716 } 2717 } 2718 2719 return 0; 2720 } 2721 2722 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, 2723 user_id_t rel_id, 2724 lldb_private::Symtab *thetab) { 2725 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2726 2727 // Parse in the section list if needed. 2728 SectionList *section_list = GetSectionList(); 2729 if (!section_list) 2730 return 0; 2731 2732 // Section ID's are ones based. 2733 user_id_t symtab_id = rel_hdr->sh_link + 1; 2734 user_id_t debug_id = rel_hdr->sh_info + 1; 2735 2736 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2737 if (!symtab_hdr) 2738 return 0; 2739 2740 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2741 if (!debug_hdr) 2742 return 0; 2743 2744 Section *rel = section_list->FindSectionByID(rel_id).get(); 2745 if (!rel) 2746 return 0; 2747 2748 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2749 if (!symtab) 2750 return 0; 2751 2752 Section *debug = section_list->FindSectionByID(debug_id).get(); 2753 if (!debug) 2754 return 0; 2755 2756 DataExtractor rel_data; 2757 DataExtractor symtab_data; 2758 DataExtractor debug_data; 2759 2760 if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) && 2761 GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) && 2762 GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) { 2763 ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr, 2764 rel_data, symtab_data, debug_data, debug); 2765 } 2766 2767 return 0; 2768 } 2769 2770 Symtab *ObjectFileELF::GetSymtab() { 2771 ModuleSP module_sp(GetModule()); 2772 if (!module_sp) 2773 return NULL; 2774 2775 // We always want to use the main object file so we (hopefully) only have one 2776 // cached copy of our symtab, dynamic sections, etc. 2777 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2778 if (module_obj_file && module_obj_file != this) 2779 return module_obj_file->GetSymtab(); 2780 2781 if (m_symtab_ap.get() == NULL) { 2782 SectionList *section_list = module_sp->GetSectionList(); 2783 if (!section_list) 2784 return NULL; 2785 2786 uint64_t symbol_id = 0; 2787 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2788 2789 // Sharable objects and dynamic executables usually have 2 distinct symbol 2790 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a 2791 // smaller version of the symtab that only contains global symbols. The 2792 // information found in the dynsym is therefore also found in the symtab, 2793 // while the reverse is not necessarily true. 2794 Section *symtab = 2795 section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get(); 2796 if (!symtab) { 2797 // The symtab section is non-allocable and can be stripped, so if it 2798 // doesn't exist then use the dynsym section which should always be 2799 // there. 2800 symtab = 2801 section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true) 2802 .get(); 2803 } 2804 if (symtab) { 2805 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2806 symbol_id += ParseSymbolTable(m_symtab_ap.get(), symbol_id, symtab); 2807 } 2808 2809 // DT_JMPREL 2810 // If present, this entry's d_ptr member holds the address of 2811 // relocation 2812 // entries associated solely with the procedure linkage table. 2813 // Separating 2814 // these relocation entries lets the dynamic linker ignore them during 2815 // process initialization, if lazy binding is enabled. If this entry is 2816 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2817 // also be present. 2818 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2819 if (symbol) { 2820 // Synthesize trampoline symbols to help navigate the PLT. 2821 addr_t addr = symbol->d_ptr; 2822 Section *reloc_section = 2823 section_list->FindSectionContainingFileAddress(addr).get(); 2824 if (reloc_section) { 2825 user_id_t reloc_id = reloc_section->GetID(); 2826 const ELFSectionHeaderInfo *reloc_header = 2827 GetSectionHeaderByIndex(reloc_id); 2828 assert(reloc_header); 2829 2830 if (m_symtab_ap == nullptr) 2831 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 2832 2833 ParseTrampolineSymbols(m_symtab_ap.get(), symbol_id, reloc_header, 2834 reloc_id); 2835 } 2836 } 2837 2838 DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo(); 2839 if (eh_frame) { 2840 if (m_symtab_ap == nullptr) 2841 m_symtab_ap.reset(new Symtab(this)); 2842 ParseUnwindSymbols(m_symtab_ap.get(), eh_frame); 2843 } 2844 2845 // If we still don't have any symtab then create an empty instance to avoid 2846 // do the section lookup next time. 2847 if (m_symtab_ap == nullptr) 2848 m_symtab_ap.reset(new Symtab(this)); 2849 2850 m_symtab_ap->CalculateSymbolSizes(); 2851 } 2852 2853 return m_symtab_ap.get(); 2854 } 2855 2856 void ObjectFileELF::RelocateSection(lldb_private::Section *section) 2857 { 2858 static const char *debug_prefix = ".debug"; 2859 2860 // Set relocated bit so we stop getting called, regardless of whether we 2861 // actually relocate. 2862 section->SetIsRelocated(true); 2863 2864 // We only relocate in ELF relocatable files 2865 if (CalculateType() != eTypeObjectFile) 2866 return; 2867 2868 const char *section_name = section->GetName().GetCString(); 2869 // Can't relocate that which can't be named 2870 if (section_name == nullptr) 2871 return; 2872 2873 // We don't relocate non-debug sections at the moment 2874 if (strncmp(section_name, debug_prefix, strlen(debug_prefix))) 2875 return; 2876 2877 // Relocation section names to look for 2878 std::string needle = std::string(".rel") + section_name; 2879 std::string needlea = std::string(".rela") + section_name; 2880 2881 for (SectionHeaderCollIter I = m_section_headers.begin(); 2882 I != m_section_headers.end(); ++I) { 2883 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) { 2884 const char *hay_name = I->section_name.GetCString(); 2885 if (hay_name == nullptr) 2886 continue; 2887 if (needle == hay_name || needlea == hay_name) { 2888 const ELFSectionHeader &reloc_header = *I; 2889 user_id_t reloc_id = SectionIndex(I); 2890 RelocateDebugSections(&reloc_header, reloc_id, GetSymtab()); 2891 break; 2892 } 2893 } 2894 } 2895 } 2896 2897 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, 2898 DWARFCallFrameInfo *eh_frame) { 2899 SectionList *section_list = GetSectionList(); 2900 if (!section_list) 2901 return; 2902 2903 // First we save the new symbols into a separate list and add them to the 2904 // symbol table after we colleced all symbols we want to add. This is 2905 // neccessary because adding a new symbol invalidates the internal index of 2906 // the symtab what causing the next lookup to be slow because it have to 2907 // recalculate the index first. 2908 std::vector<Symbol> new_symbols; 2909 2910 eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols]( 2911 lldb::addr_t file_addr, uint32_t size, dw_offset_t) { 2912 Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr); 2913 if (symbol) { 2914 if (!symbol->GetByteSizeIsValid()) { 2915 symbol->SetByteSize(size); 2916 symbol->SetSizeIsSynthesized(true); 2917 } 2918 } else { 2919 SectionSP section_sp = 2920 section_list->FindSectionContainingFileAddress(file_addr); 2921 if (section_sp) { 2922 addr_t offset = file_addr - section_sp->GetFileAddress(); 2923 const char *symbol_name = GetNextSyntheticSymbolName().GetCString(); 2924 uint64_t symbol_id = symbol_table->GetNumSymbols(); 2925 Symbol eh_symbol( 2926 symbol_id, // Symbol table index. 2927 symbol_name, // Symbol name. 2928 false, // Is the symbol name mangled? 2929 eSymbolTypeCode, // Type of this symbol. 2930 true, // Is this globally visible? 2931 false, // Is this symbol debug info? 2932 false, // Is this symbol a trampoline? 2933 true, // Is this symbol artificial? 2934 section_sp, // Section in which this symbol is defined or null. 2935 offset, // Offset in section or symbol value. 2936 0, // Size: Don't specify the size as an FDE can 2937 false, // Size is valid: cover multiple symbols. 2938 false, // Contains linker annotations? 2939 0); // Symbol flags. 2940 new_symbols.push_back(eh_symbol); 2941 } 2942 } 2943 return true; 2944 }); 2945 2946 for (const Symbol &s : new_symbols) 2947 symbol_table->AddSymbol(s); 2948 } 2949 2950 bool ObjectFileELF::IsStripped() { 2951 // TODO: determine this for ELF 2952 return false; 2953 } 2954 2955 //===----------------------------------------------------------------------===// 2956 // Dump 2957 // 2958 // Dump the specifics of the runtime file container (such as any headers 2959 // segments, sections, etc). 2960 //---------------------------------------------------------------------- 2961 void ObjectFileELF::Dump(Stream *s) { 2962 ModuleSP module_sp(GetModule()); 2963 if (!module_sp) { 2964 return; 2965 } 2966 2967 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2968 s->Printf("%p: ", static_cast<void *>(this)); 2969 s->Indent(); 2970 s->PutCString("ObjectFileELF"); 2971 2972 ArchSpec header_arch; 2973 GetArchitecture(header_arch); 2974 2975 *s << ", file = '" << m_file 2976 << "', arch = " << header_arch.GetArchitectureName() << "\n"; 2977 2978 DumpELFHeader(s, m_header); 2979 s->EOL(); 2980 DumpELFProgramHeaders(s); 2981 s->EOL(); 2982 DumpELFSectionHeaders(s); 2983 s->EOL(); 2984 SectionList *section_list = GetSectionList(); 2985 if (section_list) 2986 section_list->Dump(s, NULL, true, UINT32_MAX); 2987 Symtab *symtab = GetSymtab(); 2988 if (symtab) 2989 symtab->Dump(s, NULL, eSortOrderNone); 2990 s->EOL(); 2991 DumpDependentModules(s); 2992 s->EOL(); 2993 } 2994 2995 //---------------------------------------------------------------------- 2996 // DumpELFHeader 2997 // 2998 // Dump the ELF header to the specified output stream 2999 //---------------------------------------------------------------------- 3000 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) { 3001 s->PutCString("ELF Header\n"); 3002 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 3003 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], 3004 header.e_ident[EI_MAG1]); 3005 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], 3006 header.e_ident[EI_MAG2]); 3007 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], 3008 header.e_ident[EI_MAG3]); 3009 3010 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 3011 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 3012 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 3013 s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 3014 s->Printf("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 3015 3016 s->Printf("e_type = 0x%4.4x ", header.e_type); 3017 DumpELFHeader_e_type(s, header.e_type); 3018 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 3019 s->Printf("e_version = 0x%8.8x\n", header.e_version); 3020 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 3021 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 3022 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 3023 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 3024 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 3025 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 3026 s->Printf("e_phnum = 0x%8.8x\n", header.e_phnum); 3027 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 3028 s->Printf("e_shnum = 0x%8.8x\n", header.e_shnum); 3029 s->Printf("e_shstrndx = 0x%8.8x\n", header.e_shstrndx); 3030 } 3031 3032 //---------------------------------------------------------------------- 3033 // DumpELFHeader_e_type 3034 // 3035 // Dump an token value for the ELF header member e_type 3036 //---------------------------------------------------------------------- 3037 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) { 3038 switch (e_type) { 3039 case ET_NONE: 3040 *s << "ET_NONE"; 3041 break; 3042 case ET_REL: 3043 *s << "ET_REL"; 3044 break; 3045 case ET_EXEC: 3046 *s << "ET_EXEC"; 3047 break; 3048 case ET_DYN: 3049 *s << "ET_DYN"; 3050 break; 3051 case ET_CORE: 3052 *s << "ET_CORE"; 3053 break; 3054 default: 3055 break; 3056 } 3057 } 3058 3059 //---------------------------------------------------------------------- 3060 // DumpELFHeader_e_ident_EI_DATA 3061 // 3062 // Dump an token value for the ELF header member e_ident[EI_DATA] 3063 //---------------------------------------------------------------------- 3064 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, 3065 unsigned char ei_data) { 3066 switch (ei_data) { 3067 case ELFDATANONE: 3068 *s << "ELFDATANONE"; 3069 break; 3070 case ELFDATA2LSB: 3071 *s << "ELFDATA2LSB - Little Endian"; 3072 break; 3073 case ELFDATA2MSB: 3074 *s << "ELFDATA2MSB - Big Endian"; 3075 break; 3076 default: 3077 break; 3078 } 3079 } 3080 3081 //---------------------------------------------------------------------- 3082 // DumpELFProgramHeader 3083 // 3084 // Dump a single ELF program header to the specified output stream 3085 //---------------------------------------------------------------------- 3086 void ObjectFileELF::DumpELFProgramHeader(Stream *s, 3087 const ELFProgramHeader &ph) { 3088 DumpELFProgramHeader_p_type(s, ph.p_type); 3089 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, 3090 ph.p_vaddr, ph.p_paddr); 3091 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, 3092 ph.p_flags); 3093 3094 DumpELFProgramHeader_p_flags(s, ph.p_flags); 3095 s->Printf(") %8.8" PRIx64, ph.p_align); 3096 } 3097 3098 //---------------------------------------------------------------------- 3099 // DumpELFProgramHeader_p_type 3100 // 3101 // Dump an token value for the ELF program header member p_type which describes 3102 // the type of the program header 3103 // ---------------------------------------------------------------------- 3104 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) { 3105 const int kStrWidth = 15; 3106 switch (p_type) { 3107 CASE_AND_STREAM(s, PT_NULL, kStrWidth); 3108 CASE_AND_STREAM(s, PT_LOAD, kStrWidth); 3109 CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth); 3110 CASE_AND_STREAM(s, PT_INTERP, kStrWidth); 3111 CASE_AND_STREAM(s, PT_NOTE, kStrWidth); 3112 CASE_AND_STREAM(s, PT_SHLIB, kStrWidth); 3113 CASE_AND_STREAM(s, PT_PHDR, kStrWidth); 3114 CASE_AND_STREAM(s, PT_TLS, kStrWidth); 3115 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 3116 default: 3117 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 3118 break; 3119 } 3120 } 3121 3122 //---------------------------------------------------------------------- 3123 // DumpELFProgramHeader_p_flags 3124 // 3125 // Dump an token value for the ELF program header member p_flags 3126 //---------------------------------------------------------------------- 3127 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) { 3128 *s << ((p_flags & PF_X) ? "PF_X" : " ") 3129 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 3130 << ((p_flags & PF_W) ? "PF_W" : " ") 3131 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 3132 << ((p_flags & PF_R) ? "PF_R" : " "); 3133 } 3134 3135 //---------------------------------------------------------------------- 3136 // DumpELFProgramHeaders 3137 // 3138 // Dump all of the ELF program header to the specified output stream 3139 //---------------------------------------------------------------------- 3140 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) { 3141 if (!ParseProgramHeaders()) 3142 return; 3143 3144 s->PutCString("Program Headers\n"); 3145 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 3146 "p_filesz p_memsz p_flags p_align\n"); 3147 s->PutCString("==== --------------- -------- -------- -------- " 3148 "-------- -------- ------------------------- --------\n"); 3149 3150 uint32_t idx = 0; 3151 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 3152 I != m_program_headers.end(); ++I, ++idx) { 3153 s->Printf("[%2u] ", idx); 3154 ObjectFileELF::DumpELFProgramHeader(s, *I); 3155 s->EOL(); 3156 } 3157 } 3158 3159 //---------------------------------------------------------------------- 3160 // DumpELFSectionHeader 3161 // 3162 // Dump a single ELF section header to the specified output stream 3163 //---------------------------------------------------------------------- 3164 void ObjectFileELF::DumpELFSectionHeader(Stream *s, 3165 const ELFSectionHeaderInfo &sh) { 3166 s->Printf("%8.8x ", sh.sh_name); 3167 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3168 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3169 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3170 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, 3171 sh.sh_offset, sh.sh_size); 3172 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3173 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3174 } 3175 3176 //---------------------------------------------------------------------- 3177 // DumpELFSectionHeader_sh_type 3178 // 3179 // Dump an token value for the ELF section header member sh_type which 3180 // describes the type of the section 3181 //---------------------------------------------------------------------- 3182 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) { 3183 const int kStrWidth = 12; 3184 switch (sh_type) { 3185 CASE_AND_STREAM(s, SHT_NULL, kStrWidth); 3186 CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth); 3187 CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth); 3188 CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth); 3189 CASE_AND_STREAM(s, SHT_RELA, kStrWidth); 3190 CASE_AND_STREAM(s, SHT_HASH, kStrWidth); 3191 CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth); 3192 CASE_AND_STREAM(s, SHT_NOTE, kStrWidth); 3193 CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth); 3194 CASE_AND_STREAM(s, SHT_REL, kStrWidth); 3195 CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth); 3196 CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth); 3197 CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth); 3198 CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth); 3199 CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth); 3200 CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth); 3201 default: 3202 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3203 break; 3204 } 3205 } 3206 3207 //---------------------------------------------------------------------- 3208 // DumpELFSectionHeader_sh_flags 3209 // 3210 // Dump an token value for the ELF section header member sh_flags 3211 //---------------------------------------------------------------------- 3212 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, 3213 elf_xword sh_flags) { 3214 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3215 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3216 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3217 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3218 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3219 } 3220 3221 //---------------------------------------------------------------------- 3222 // DumpELFSectionHeaders 3223 // 3224 // Dump all of the ELF section header to the specified output stream 3225 //---------------------------------------------------------------------- 3226 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) { 3227 if (!ParseSectionHeaders()) 3228 return; 3229 3230 s->PutCString("Section Headers\n"); 3231 s->PutCString("IDX name type flags " 3232 "addr offset size link info addralgn " 3233 "entsize Name\n"); 3234 s->PutCString("==== -------- ------------ -------------------------------- " 3235 "-------- -------- -------- -------- -------- -------- " 3236 "-------- ====================\n"); 3237 3238 uint32_t idx = 0; 3239 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3240 I != m_section_headers.end(); ++I, ++idx) { 3241 s->Printf("[%2u] ", idx); 3242 ObjectFileELF::DumpELFSectionHeader(s, *I); 3243 const char *section_name = I->section_name.AsCString(""); 3244 if (section_name) 3245 *s << ' ' << section_name << "\n"; 3246 } 3247 } 3248 3249 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) { 3250 size_t num_modules = ParseDependentModules(); 3251 3252 if (num_modules > 0) { 3253 s->PutCString("Dependent Modules:\n"); 3254 for (unsigned i = 0; i < num_modules; ++i) { 3255 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3256 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3257 } 3258 } 3259 } 3260 3261 bool ObjectFileELF::GetArchitecture(ArchSpec &arch) { 3262 if (!ParseHeader()) 3263 return false; 3264 3265 if (m_section_headers.empty()) { 3266 // Allow elf notes to be parsed which may affect the detected architecture. 3267 ParseSectionHeaders(); 3268 } 3269 3270 if (CalculateType() == eTypeCoreFile && 3271 m_arch_spec.TripleOSIsUnspecifiedUnknown()) { 3272 // Core files don't have section headers yet they have PT_NOTE program 3273 // headers that might shed more light on the architecture 3274 if (ParseProgramHeaders()) { 3275 for (size_t i = 1, count = GetProgramHeaderCount(); i <= count; ++i) { 3276 const elf::ELFProgramHeader *header = GetProgramHeaderByIndex(i); 3277 if (header && header->p_type == PT_NOTE && header->p_offset != 0 && 3278 header->p_filesz > 0) { 3279 DataExtractor data; 3280 if (data.SetData(m_data, header->p_offset, header->p_filesz) == 3281 header->p_filesz) { 3282 lldb_private::UUID uuid; 3283 RefineModuleDetailsFromNote(data, m_arch_spec, uuid); 3284 } 3285 } 3286 } 3287 } 3288 } 3289 arch = m_arch_spec; 3290 return true; 3291 } 3292 3293 ObjectFile::Type ObjectFileELF::CalculateType() { 3294 switch (m_header.e_type) { 3295 case llvm::ELF::ET_NONE: 3296 // 0 - No file type 3297 return eTypeUnknown; 3298 3299 case llvm::ELF::ET_REL: 3300 // 1 - Relocatable file 3301 return eTypeObjectFile; 3302 3303 case llvm::ELF::ET_EXEC: 3304 // 2 - Executable file 3305 return eTypeExecutable; 3306 3307 case llvm::ELF::ET_DYN: 3308 // 3 - Shared object file 3309 return eTypeSharedLibrary; 3310 3311 case ET_CORE: 3312 // 4 - Core file 3313 return eTypeCoreFile; 3314 3315 default: 3316 break; 3317 } 3318 return eTypeUnknown; 3319 } 3320 3321 ObjectFile::Strata ObjectFileELF::CalculateStrata() { 3322 switch (m_header.e_type) { 3323 case llvm::ELF::ET_NONE: 3324 // 0 - No file type 3325 return eStrataUnknown; 3326 3327 case llvm::ELF::ET_REL: 3328 // 1 - Relocatable file 3329 return eStrataUnknown; 3330 3331 case llvm::ELF::ET_EXEC: 3332 // 2 - Executable file 3333 // TODO: is there any way to detect that an executable is a kernel 3334 // related executable by inspecting the program headers, section headers, 3335 // symbols, or any other flag bits??? 3336 return eStrataUser; 3337 3338 case llvm::ELF::ET_DYN: 3339 // 3 - Shared object file 3340 // TODO: is there any way to detect that an shared library is a kernel 3341 // related executable by inspecting the program headers, section headers, 3342 // symbols, or any other flag bits??? 3343 return eStrataUnknown; 3344 3345 case ET_CORE: 3346 // 4 - Core file 3347 // TODO: is there any way to detect that an core file is a kernel 3348 // related executable by inspecting the program headers, section headers, 3349 // symbols, or any other flag bits??? 3350 return eStrataUnknown; 3351 3352 default: 3353 break; 3354 } 3355 return eStrataUnknown; 3356 } 3357 3358 size_t ObjectFileELF::ReadSectionData(Section *section, 3359 lldb::offset_t section_offset, void *dst, 3360 size_t dst_len) { 3361 // If some other objectfile owns this data, pass this to them. 3362 if (section->GetObjectFile() != this) 3363 return section->GetObjectFile()->ReadSectionData(section, section_offset, 3364 dst, dst_len); 3365 3366 if (!section->Test(SHF_COMPRESSED)) 3367 return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len); 3368 3369 // For compressed sections we need to read to full data to be able to 3370 // decompress. 3371 DataExtractor data; 3372 ReadSectionData(section, data); 3373 return data.CopyData(section_offset, dst_len, dst); 3374 } 3375 3376 size_t ObjectFileELF::ReadSectionData(Section *section, 3377 DataExtractor §ion_data) { 3378 // If some other objectfile owns this data, pass this to them. 3379 if (section->GetObjectFile() != this) 3380 return section->GetObjectFile()->ReadSectionData(section, section_data); 3381 3382 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES); 3383 3384 size_t result = ObjectFile::ReadSectionData(section, section_data); 3385 if (result == 0 || !section->Test(SHF_COMPRESSED)) 3386 return result; 3387 3388 auto Decompressor = llvm::object::Decompressor::create( 3389 section->GetName().GetStringRef(), 3390 {reinterpret_cast<const char *>(section_data.GetDataStart()), 3391 size_t(section_data.GetByteSize())}, 3392 GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8); 3393 if (!Decompressor) { 3394 LLDB_LOG_ERROR(log, Decompressor.takeError(), 3395 "Unable to initialize decompressor for section {0}", 3396 section->GetName()); 3397 return result; 3398 } 3399 auto buffer_sp = 3400 std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0); 3401 if (auto Error = Decompressor->decompress( 3402 {reinterpret_cast<char *>(buffer_sp->GetBytes()), 3403 size_t(buffer_sp->GetByteSize())})) { 3404 LLDB_LOG_ERROR(log, std::move(Error), "Decompression of section {0} failed", 3405 section->GetName()); 3406 return result; 3407 } 3408 section_data.SetData(buffer_sp); 3409 return buffer_sp->GetByteSize(); 3410 } 3411 3412 bool ObjectFileELF::AnySegmentHasPhysicalAddress() { 3413 size_t header_count = ParseProgramHeaders(); 3414 for (size_t i = 1; i <= header_count; ++i) { 3415 auto header = GetProgramHeaderByIndex(i); 3416 if (header->p_paddr != 0) 3417 return true; 3418 } 3419 return false; 3420 } 3421 3422 std::vector<ObjectFile::LoadableData> 3423 ObjectFileELF::GetLoadableData(Target &target) { 3424 // Create a list of loadable data from loadable segments, using physical 3425 // addresses if they aren't all null 3426 std::vector<LoadableData> loadables; 3427 size_t header_count = ParseProgramHeaders(); 3428 bool should_use_paddr = AnySegmentHasPhysicalAddress(); 3429 for (size_t i = 1; i <= header_count; ++i) { 3430 LoadableData loadable; 3431 auto header = GetProgramHeaderByIndex(i); 3432 if (header->p_type != llvm::ELF::PT_LOAD) 3433 continue; 3434 loadable.Dest = should_use_paddr ? header->p_paddr : header->p_vaddr; 3435 if (loadable.Dest == LLDB_INVALID_ADDRESS) 3436 continue; 3437 if (header->p_filesz == 0) 3438 continue; 3439 auto segment_data = GetSegmentDataByIndex(i); 3440 loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(), 3441 segment_data.GetByteSize()); 3442 loadables.push_back(loadable); 3443 } 3444 return loadables; 3445 } 3446