1 //===-- Disassembler.cpp --------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/Disassembler.h" 10 11 #include "lldb/Core/AddressRange.h" 12 #include "lldb/Core/Debugger.h" 13 #include "lldb/Core/EmulateInstruction.h" 14 #include "lldb/Core/Mangled.h" 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/ModuleList.h" 17 #include "lldb/Core/PluginManager.h" 18 #include "lldb/Core/SourceManager.h" 19 #include "lldb/Host/FileSystem.h" 20 #include "lldb/Interpreter/OptionValue.h" 21 #include "lldb/Interpreter/OptionValueArray.h" 22 #include "lldb/Interpreter/OptionValueDictionary.h" 23 #include "lldb/Interpreter/OptionValueRegex.h" 24 #include "lldb/Interpreter/OptionValueString.h" 25 #include "lldb/Interpreter/OptionValueUInt64.h" 26 #include "lldb/Symbol/Function.h" 27 #include "lldb/Symbol/Symbol.h" 28 #include "lldb/Symbol/SymbolContext.h" 29 #include "lldb/Target/ExecutionContext.h" 30 #include "lldb/Target/SectionLoadList.h" 31 #include "lldb/Target/StackFrame.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/DataBufferHeap.h" 35 #include "lldb/Utility/DataExtractor.h" 36 #include "lldb/Utility/RegularExpression.h" 37 #include "lldb/Utility/Status.h" 38 #include "lldb/Utility/Stream.h" 39 #include "lldb/Utility/StreamString.h" 40 #include "lldb/Utility/Timer.h" 41 #include "lldb/lldb-private-enumerations.h" 42 #include "lldb/lldb-private-interfaces.h" 43 #include "lldb/lldb-private-types.h" 44 #include "llvm/Support/Compiler.h" 45 #include "llvm/TargetParser/Triple.h" 46 47 #include <cstdint> 48 #include <cstring> 49 #include <utility> 50 51 #include <cassert> 52 53 #define DEFAULT_DISASM_BYTE_SIZE 32 54 55 using namespace lldb; 56 using namespace lldb_private; 57 58 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch, 59 const char *flavor, 60 const char *plugin_name) { 61 LLDB_SCOPED_TIMERF("Disassembler::FindPlugin (arch = %s, plugin_name = %s)", 62 arch.GetArchitectureName(), plugin_name); 63 64 DisassemblerCreateInstance create_callback = nullptr; 65 66 if (plugin_name) { 67 create_callback = 68 PluginManager::GetDisassemblerCreateCallbackForPluginName(plugin_name); 69 if (create_callback) { 70 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 71 72 if (disassembler_sp) 73 return disassembler_sp; 74 } 75 } else { 76 for (uint32_t idx = 0; 77 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex( 78 idx)) != nullptr; 79 ++idx) { 80 DisassemblerSP disassembler_sp(create_callback(arch, flavor)); 81 82 if (disassembler_sp) 83 return disassembler_sp; 84 } 85 } 86 return DisassemblerSP(); 87 } 88 89 DisassemblerSP Disassembler::FindPluginForTarget(const Target &target, 90 const ArchSpec &arch, 91 const char *flavor, 92 const char *plugin_name) { 93 if (flavor == nullptr) { 94 // FIXME - we don't have the mechanism in place to do per-architecture 95 // settings. But since we know that for now we only support flavors on x86 96 // & x86_64, 97 if (arch.GetTriple().getArch() == llvm::Triple::x86 || 98 arch.GetTriple().getArch() == llvm::Triple::x86_64) 99 flavor = target.GetDisassemblyFlavor(); 100 } 101 return FindPlugin(arch, flavor, plugin_name); 102 } 103 104 static Address ResolveAddress(Target &target, const Address &addr) { 105 if (!addr.IsSectionOffset()) { 106 Address resolved_addr; 107 // If we weren't passed in a section offset address range, try and resolve 108 // it to something 109 bool is_resolved = target.GetSectionLoadList().IsEmpty() 110 ? target.GetImages().ResolveFileAddress( 111 addr.GetOffset(), resolved_addr) 112 : target.GetSectionLoadList().ResolveLoadAddress( 113 addr.GetOffset(), resolved_addr); 114 115 // We weren't able to resolve the address, just treat it as a raw address 116 if (is_resolved && resolved_addr.IsValid()) 117 return resolved_addr; 118 } 119 return addr; 120 } 121 122 lldb::DisassemblerSP Disassembler::DisassembleRange( 123 const ArchSpec &arch, const char *plugin_name, const char *flavor, 124 Target &target, const AddressRange &range, bool force_live_memory) { 125 if (range.GetByteSize() <= 0) 126 return {}; 127 128 if (!range.GetBaseAddress().IsValid()) 129 return {}; 130 131 lldb::DisassemblerSP disasm_sp = 132 Disassembler::FindPluginForTarget(target, arch, flavor, plugin_name); 133 134 if (!disasm_sp) 135 return {}; 136 137 const size_t bytes_disassembled = disasm_sp->ParseInstructions( 138 target, range.GetBaseAddress(), {Limit::Bytes, range.GetByteSize()}, 139 nullptr, force_live_memory); 140 if (bytes_disassembled == 0) 141 return {}; 142 143 return disasm_sp; 144 } 145 146 lldb::DisassemblerSP 147 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name, 148 const char *flavor, const Address &start, 149 const void *src, size_t src_len, 150 uint32_t num_instructions, bool data_from_file) { 151 if (!src) 152 return {}; 153 154 lldb::DisassemblerSP disasm_sp = 155 Disassembler::FindPlugin(arch, flavor, plugin_name); 156 157 if (!disasm_sp) 158 return {}; 159 160 DataExtractor data(src, src_len, arch.GetByteOrder(), 161 arch.GetAddressByteSize()); 162 163 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, false, 164 data_from_file); 165 return disasm_sp; 166 } 167 168 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 169 const char *plugin_name, const char *flavor, 170 const ExecutionContext &exe_ctx, 171 const Address &address, Limit limit, 172 bool mixed_source_and_assembly, 173 uint32_t num_mixed_context_lines, 174 uint32_t options, Stream &strm) { 175 if (!exe_ctx.GetTargetPtr()) 176 return false; 177 178 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 179 exe_ctx.GetTargetRef(), arch, flavor, plugin_name)); 180 if (!disasm_sp) 181 return false; 182 183 const bool force_live_memory = true; 184 size_t bytes_disassembled = disasm_sp->ParseInstructions( 185 exe_ctx.GetTargetRef(), address, limit, &strm, force_live_memory); 186 if (bytes_disassembled == 0) 187 return false; 188 189 disasm_sp->PrintInstructions(debugger, arch, exe_ctx, 190 mixed_source_and_assembly, 191 num_mixed_context_lines, options, strm); 192 return true; 193 } 194 195 Disassembler::SourceLine 196 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) { 197 if (!sc.function) 198 return {}; 199 200 if (!sc.line_entry.IsValid()) 201 return {}; 202 203 LineEntry prologue_end_line = sc.line_entry; 204 FileSpec func_decl_file; 205 uint32_t func_decl_line; 206 sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line); 207 208 if (func_decl_file != prologue_end_line.file && 209 func_decl_file != prologue_end_line.original_file) 210 return {}; 211 212 SourceLine decl_line; 213 decl_line.file = func_decl_file; 214 decl_line.line = func_decl_line; 215 // TODO: Do we care about column on these entries? If so, we need to plumb 216 // that through GetStartLineSourceInfo. 217 decl_line.column = 0; 218 return decl_line; 219 } 220 221 void Disassembler::AddLineToSourceLineTables( 222 SourceLine &line, 223 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) { 224 if (line.IsValid()) { 225 auto source_lines_seen_pos = source_lines_seen.find(line.file); 226 if (source_lines_seen_pos == source_lines_seen.end()) { 227 std::set<uint32_t> lines; 228 lines.insert(line.line); 229 source_lines_seen.emplace(line.file, lines); 230 } else { 231 source_lines_seen_pos->second.insert(line.line); 232 } 233 } 234 } 235 236 bool Disassembler::ElideMixedSourceAndDisassemblyLine( 237 const ExecutionContext &exe_ctx, const SymbolContext &sc, 238 SourceLine &line) { 239 240 // TODO: should we also check target.process.thread.step-avoid-libraries ? 241 242 const RegularExpression *avoid_regex = nullptr; 243 244 // Skip any line #0 entries - they are implementation details 245 if (line.line == 0) 246 return false; 247 248 ThreadSP thread_sp = exe_ctx.GetThreadSP(); 249 if (thread_sp) { 250 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp(); 251 } else { 252 TargetSP target_sp = exe_ctx.GetTargetSP(); 253 if (target_sp) { 254 Status error; 255 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue( 256 &exe_ctx, "target.process.thread.step-avoid-regexp", false, error); 257 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) { 258 OptionValueRegex *re = value_sp->GetAsRegex(); 259 if (re) { 260 avoid_regex = re->GetCurrentValue(); 261 } 262 } 263 } 264 } 265 if (avoid_regex && sc.symbol != nullptr) { 266 const char *function_name = 267 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments) 268 .GetCString(); 269 if (function_name && avoid_regex->Execute(function_name)) { 270 // skip this source line 271 return true; 272 } 273 } 274 // don't skip this source line 275 return false; 276 } 277 278 void Disassembler::PrintInstructions(Debugger &debugger, const ArchSpec &arch, 279 const ExecutionContext &exe_ctx, 280 bool mixed_source_and_assembly, 281 uint32_t num_mixed_context_lines, 282 uint32_t options, Stream &strm) { 283 // We got some things disassembled... 284 size_t num_instructions_found = GetInstructionList().GetSize(); 285 286 const uint32_t max_opcode_byte_size = 287 GetInstructionList().GetMaxOpcocdeByteSize(); 288 SymbolContext sc; 289 SymbolContext prev_sc; 290 AddressRange current_source_line_range; 291 const Address *pc_addr_ptr = nullptr; 292 StackFrame *frame = exe_ctx.GetFramePtr(); 293 294 TargetSP target_sp(exe_ctx.GetTargetSP()); 295 SourceManager &source_manager = 296 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager(); 297 298 if (frame) { 299 pc_addr_ptr = &frame->GetFrameCodeAddress(); 300 } 301 const uint32_t scope = 302 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol; 303 const bool use_inline_block_range = false; 304 305 const FormatEntity::Entry *disassembly_format = nullptr; 306 FormatEntity::Entry format; 307 if (exe_ctx.HasTargetScope()) { 308 disassembly_format = 309 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat(); 310 } else { 311 FormatEntity::Parse("${addr}: ", format); 312 disassembly_format = &format; 313 } 314 315 // First pass: step through the list of instructions, find how long the 316 // initial addresses strings are, insert padding in the second pass so the 317 // opcodes all line up nicely. 318 319 // Also build up the source line mapping if this is mixed source & assembly 320 // mode. Calculate the source line for each assembly instruction (eliding 321 // inlined functions which the user wants to skip). 322 323 std::map<FileSpec, std::set<uint32_t>> source_lines_seen; 324 Symbol *previous_symbol = nullptr; 325 326 size_t address_text_size = 0; 327 for (size_t i = 0; i < num_instructions_found; ++i) { 328 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get(); 329 if (inst) { 330 const Address &addr = inst->GetAddress(); 331 ModuleSP module_sp(addr.GetModule()); 332 if (module_sp) { 333 const SymbolContextItem resolve_mask = eSymbolContextFunction | 334 eSymbolContextSymbol | 335 eSymbolContextLineEntry; 336 uint32_t resolved_mask = 337 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc); 338 if (resolved_mask) { 339 StreamString strmstr; 340 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr, 341 &exe_ctx, &addr, strmstr); 342 size_t cur_line = strmstr.GetSizeOfLastLine(); 343 if (cur_line > address_text_size) 344 address_text_size = cur_line; 345 346 // Add entries to our "source_lines_seen" map+set which list which 347 // sources lines occur in this disassembly session. We will print 348 // lines of context around a source line, but we don't want to print 349 // a source line that has a line table entry of its own - we'll leave 350 // that source line to be printed when it actually occurs in the 351 // disassembly. 352 353 if (mixed_source_and_assembly && sc.line_entry.IsValid()) { 354 if (sc.symbol != previous_symbol) { 355 SourceLine decl_line = GetFunctionDeclLineEntry(sc); 356 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line)) 357 AddLineToSourceLineTables(decl_line, source_lines_seen); 358 } 359 if (sc.line_entry.IsValid()) { 360 SourceLine this_line; 361 this_line.file = sc.line_entry.file; 362 this_line.line = sc.line_entry.line; 363 this_line.column = sc.line_entry.column; 364 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line)) 365 AddLineToSourceLineTables(this_line, source_lines_seen); 366 } 367 } 368 } 369 sc.Clear(false); 370 } 371 } 372 } 373 374 previous_symbol = nullptr; 375 SourceLine previous_line; 376 for (size_t i = 0; i < num_instructions_found; ++i) { 377 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get(); 378 379 if (inst) { 380 const Address &addr = inst->GetAddress(); 381 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr; 382 SourceLinesToDisplay source_lines_to_display; 383 384 prev_sc = sc; 385 386 ModuleSP module_sp(addr.GetModule()); 387 if (module_sp) { 388 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress( 389 addr, eSymbolContextEverything, sc); 390 if (resolved_mask) { 391 if (mixed_source_and_assembly) { 392 393 // If we've started a new function (non-inlined), print all of the 394 // source lines from the function declaration until the first line 395 // table entry - typically the opening curly brace of the function. 396 if (previous_symbol != sc.symbol) { 397 // The default disassembly format puts an extra blank line 398 // between functions - so when we're displaying the source 399 // context for a function, we don't want to add a blank line 400 // after the source context or we'll end up with two of them. 401 if (previous_symbol != nullptr) 402 source_lines_to_display.print_source_context_end_eol = false; 403 404 previous_symbol = sc.symbol; 405 if (sc.function && sc.line_entry.IsValid()) { 406 LineEntry prologue_end_line = sc.line_entry; 407 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 408 prologue_end_line)) { 409 FileSpec func_decl_file; 410 uint32_t func_decl_line; 411 sc.function->GetStartLineSourceInfo(func_decl_file, 412 func_decl_line); 413 if (func_decl_file == prologue_end_line.file || 414 func_decl_file == prologue_end_line.original_file) { 415 // Add all the lines between the function declaration and 416 // the first non-prologue source line to the list of lines 417 // to print. 418 for (uint32_t lineno = func_decl_line; 419 lineno <= prologue_end_line.line; lineno++) { 420 SourceLine this_line; 421 this_line.file = func_decl_file; 422 this_line.line = lineno; 423 source_lines_to_display.lines.push_back(this_line); 424 } 425 // Mark the last line as the "current" one. Usually this 426 // is the open curly brace. 427 if (source_lines_to_display.lines.size() > 0) 428 source_lines_to_display.current_source_line = 429 source_lines_to_display.lines.size() - 1; 430 } 431 } 432 } 433 sc.GetAddressRange(scope, 0, use_inline_block_range, 434 current_source_line_range); 435 } 436 437 // If we've left a previous source line's address range, print a 438 // new source line 439 if (!current_source_line_range.ContainsFileAddress(addr)) { 440 sc.GetAddressRange(scope, 0, use_inline_block_range, 441 current_source_line_range); 442 443 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) { 444 SourceLine this_line; 445 this_line.file = sc.line_entry.file; 446 this_line.line = sc.line_entry.line; 447 448 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 449 this_line)) { 450 // Only print this source line if it is different from the 451 // last source line we printed. There may have been inlined 452 // functions between these lines that we elided, resulting in 453 // the same line being printed twice in a row for a 454 // contiguous block of assembly instructions. 455 if (this_line != previous_line) { 456 457 std::vector<uint32_t> previous_lines; 458 for (uint32_t i = 0; 459 i < num_mixed_context_lines && 460 (this_line.line - num_mixed_context_lines) > 0; 461 i++) { 462 uint32_t line = 463 this_line.line - num_mixed_context_lines + i; 464 auto pos = source_lines_seen.find(this_line.file); 465 if (pos != source_lines_seen.end()) { 466 if (pos->second.count(line) == 1) { 467 previous_lines.clear(); 468 } else { 469 previous_lines.push_back(line); 470 } 471 } 472 } 473 for (size_t i = 0; i < previous_lines.size(); i++) { 474 SourceLine previous_line; 475 previous_line.file = this_line.file; 476 previous_line.line = previous_lines[i]; 477 auto pos = source_lines_seen.find(previous_line.file); 478 if (pos != source_lines_seen.end()) { 479 pos->second.insert(previous_line.line); 480 } 481 source_lines_to_display.lines.push_back(previous_line); 482 } 483 484 source_lines_to_display.lines.push_back(this_line); 485 source_lines_to_display.current_source_line = 486 source_lines_to_display.lines.size() - 1; 487 488 for (uint32_t i = 0; i < num_mixed_context_lines; i++) { 489 SourceLine next_line; 490 next_line.file = this_line.file; 491 next_line.line = this_line.line + i + 1; 492 auto pos = source_lines_seen.find(next_line.file); 493 if (pos != source_lines_seen.end()) { 494 if (pos->second.count(next_line.line) == 1) 495 break; 496 pos->second.insert(next_line.line); 497 } 498 source_lines_to_display.lines.push_back(next_line); 499 } 500 } 501 previous_line = this_line; 502 } 503 } 504 } 505 } 506 } else { 507 sc.Clear(true); 508 } 509 } 510 511 if (source_lines_to_display.lines.size() > 0) { 512 strm.EOL(); 513 for (size_t idx = 0; idx < source_lines_to_display.lines.size(); 514 idx++) { 515 SourceLine ln = source_lines_to_display.lines[idx]; 516 const char *line_highlight = ""; 517 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) { 518 line_highlight = "->"; 519 } else if (idx == source_lines_to_display.current_source_line) { 520 line_highlight = "**"; 521 } 522 source_manager.DisplaySourceLinesWithLineNumbers( 523 ln.file, ln.line, ln.column, 0, 0, line_highlight, &strm); 524 } 525 if (source_lines_to_display.print_source_context_end_eol) 526 strm.EOL(); 527 } 528 529 const bool show_bytes = (options & eOptionShowBytes) != 0; 530 const bool show_control_flow_kind = 531 (options & eOptionShowControlFlowKind) != 0; 532 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, 533 show_control_flow_kind, &exe_ctx, &sc, &prev_sc, nullptr, 534 address_text_size); 535 strm.EOL(); 536 } else { 537 break; 538 } 539 } 540 } 541 542 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 543 StackFrame &frame, Stream &strm) { 544 AddressRange range; 545 SymbolContext sc( 546 frame.GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol)); 547 if (sc.function) { 548 range = sc.function->GetAddressRange(); 549 } else if (sc.symbol && sc.symbol->ValueIsAddress()) { 550 range.GetBaseAddress() = sc.symbol->GetAddressRef(); 551 range.SetByteSize(sc.symbol->GetByteSize()); 552 } else { 553 range.GetBaseAddress() = frame.GetFrameCodeAddress(); 554 } 555 556 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0) 557 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE); 558 559 Disassembler::Limit limit = {Disassembler::Limit::Bytes, 560 range.GetByteSize()}; 561 if (limit.value == 0) 562 limit.value = DEFAULT_DISASM_BYTE_SIZE; 563 564 return Disassemble(debugger, arch, nullptr, nullptr, frame, 565 range.GetBaseAddress(), limit, false, 0, 0, strm); 566 } 567 568 Instruction::Instruction(const Address &address, AddressClass addr_class) 569 : m_address(address), m_address_class(addr_class), m_opcode(), 570 m_calculated_strings(false) {} 571 572 Instruction::~Instruction() = default; 573 574 AddressClass Instruction::GetAddressClass() { 575 if (m_address_class == AddressClass::eInvalid) 576 m_address_class = m_address.GetAddressClass(); 577 return m_address_class; 578 } 579 580 const char *Instruction::GetNameForInstructionControlFlowKind( 581 lldb::InstructionControlFlowKind instruction_control_flow_kind) { 582 switch (instruction_control_flow_kind) { 583 case eInstructionControlFlowKindUnknown: 584 return "unknown"; 585 case eInstructionControlFlowKindOther: 586 return "other"; 587 case eInstructionControlFlowKindCall: 588 return "call"; 589 case eInstructionControlFlowKindReturn: 590 return "return"; 591 case eInstructionControlFlowKindJump: 592 return "jump"; 593 case eInstructionControlFlowKindCondJump: 594 return "cond jump"; 595 case eInstructionControlFlowKindFarCall: 596 return "far call"; 597 case eInstructionControlFlowKindFarReturn: 598 return "far return"; 599 case eInstructionControlFlowKindFarJump: 600 return "far jump"; 601 } 602 llvm_unreachable("Fully covered switch above!"); 603 } 604 605 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size, 606 bool show_address, bool show_bytes, 607 bool show_control_flow_kind, 608 const ExecutionContext *exe_ctx, 609 const SymbolContext *sym_ctx, 610 const SymbolContext *prev_sym_ctx, 611 const FormatEntity::Entry *disassembly_addr_format, 612 size_t max_address_text_size) { 613 size_t opcode_column_width = 7; 614 const size_t operand_column_width = 25; 615 616 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx); 617 618 StreamString ss; 619 620 if (show_address) { 621 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx, 622 prev_sym_ctx, exe_ctx, &m_address, ss); 623 ss.FillLastLineToColumn(max_address_text_size, ' '); 624 } 625 626 if (show_bytes) { 627 if (m_opcode.GetType() == Opcode::eTypeBytes) { 628 // x86_64 and i386 are the only ones that use bytes right now so pad out 629 // the byte dump to be able to always show 15 bytes (3 chars each) plus a 630 // space 631 if (max_opcode_byte_size > 0) 632 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 633 else 634 m_opcode.Dump(&ss, 15 * 3 + 1); 635 } else { 636 // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000 637 // (10 spaces) plus two for padding... 638 if (max_opcode_byte_size > 0) 639 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 640 else 641 m_opcode.Dump(&ss, 12); 642 } 643 } 644 645 if (show_control_flow_kind) { 646 lldb::InstructionControlFlowKind instruction_control_flow_kind = 647 GetControlFlowKind(exe_ctx); 648 ss.Printf("%-12s", GetNameForInstructionControlFlowKind( 649 instruction_control_flow_kind)); 650 } 651 652 const size_t opcode_pos = ss.GetSizeOfLastLine(); 653 654 // The default opcode size of 7 characters is plenty for most architectures 655 // but some like arm can pull out the occasional vqrshrun.s16. We won't get 656 // consistent column spacing in these cases, unfortunately. 657 if (m_opcode_name.length() >= opcode_column_width) { 658 opcode_column_width = m_opcode_name.length() + 1; 659 } 660 661 ss.PutCString(m_opcode_name); 662 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' '); 663 ss.PutCString(m_mnemonics); 664 665 if (!m_comment.empty()) { 666 ss.FillLastLineToColumn( 667 opcode_pos + opcode_column_width + operand_column_width, ' '); 668 ss.PutCString(" ; "); 669 ss.PutCString(m_comment); 670 } 671 s->PutCString(ss.GetString()); 672 } 673 674 bool Instruction::DumpEmulation(const ArchSpec &arch) { 675 std::unique_ptr<EmulateInstruction> insn_emulator_up( 676 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 677 if (insn_emulator_up) { 678 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 679 return insn_emulator_up->EvaluateInstruction(0); 680 } 681 682 return false; 683 } 684 685 bool Instruction::CanSetBreakpoint () { 686 return !HasDelaySlot(); 687 } 688 689 bool Instruction::HasDelaySlot() { 690 // Default is false. 691 return false; 692 } 693 694 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream *out_stream, 695 OptionValue::Type data_type) { 696 bool done = false; 697 char buffer[1024]; 698 699 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type); 700 701 int idx = 0; 702 while (!done) { 703 if (!fgets(buffer, 1023, in_file)) { 704 out_stream->Printf( 705 "Instruction::ReadArray: Error reading file (fgets).\n"); 706 option_value_sp.reset(); 707 return option_value_sp; 708 } 709 710 std::string line(buffer); 711 712 size_t len = line.size(); 713 if (line[len - 1] == '\n') { 714 line[len - 1] = '\0'; 715 line.resize(len - 1); 716 } 717 718 if ((line.size() == 1) && line[0] == ']') { 719 done = true; 720 line.clear(); 721 } 722 723 if (!line.empty()) { 724 std::string value; 725 static RegularExpression g_reg_exp( 726 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$")); 727 llvm::SmallVector<llvm::StringRef, 2> matches; 728 if (g_reg_exp.Execute(line, &matches)) 729 value = matches[1].str(); 730 else 731 value = line; 732 733 OptionValueSP data_value_sp; 734 switch (data_type) { 735 case OptionValue::eTypeUInt64: 736 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0); 737 data_value_sp->SetValueFromString(value); 738 break; 739 // Other types can be added later as needed. 740 default: 741 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 742 break; 743 } 744 745 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp); 746 ++idx; 747 } 748 } 749 750 return option_value_sp; 751 } 752 753 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream *out_stream) { 754 bool done = false; 755 char buffer[1024]; 756 757 auto option_value_sp = std::make_shared<OptionValueDictionary>(); 758 static constexpr llvm::StringLiteral encoding_key("data_encoding"); 759 OptionValue::Type data_type = OptionValue::eTypeInvalid; 760 761 while (!done) { 762 // Read the next line in the file 763 if (!fgets(buffer, 1023, in_file)) { 764 out_stream->Printf( 765 "Instruction::ReadDictionary: Error reading file (fgets).\n"); 766 option_value_sp.reset(); 767 return option_value_sp; 768 } 769 770 // Check to see if the line contains the end-of-dictionary marker ("}") 771 std::string line(buffer); 772 773 size_t len = line.size(); 774 if (line[len - 1] == '\n') { 775 line[len - 1] = '\0'; 776 line.resize(len - 1); 777 } 778 779 if ((line.size() == 1) && (line[0] == '}')) { 780 done = true; 781 line.clear(); 782 } 783 784 // Try to find a key-value pair in the current line and add it to the 785 // dictionary. 786 if (!line.empty()) { 787 static RegularExpression g_reg_exp(llvm::StringRef( 788 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$")); 789 790 llvm::SmallVector<llvm::StringRef, 3> matches; 791 792 bool reg_exp_success = g_reg_exp.Execute(line, &matches); 793 std::string key; 794 std::string value; 795 if (reg_exp_success) { 796 key = matches[1].str(); 797 value = matches[2].str(); 798 } else { 799 out_stream->Printf("Instruction::ReadDictionary: Failure executing " 800 "regular expression.\n"); 801 option_value_sp.reset(); 802 return option_value_sp; 803 } 804 805 // Check value to see if it's the start of an array or dictionary. 806 807 lldb::OptionValueSP value_sp; 808 assert(value.empty() == false); 809 assert(key.empty() == false); 810 811 if (value[0] == '{') { 812 assert(value.size() == 1); 813 // value is a dictionary 814 value_sp = ReadDictionary(in_file, out_stream); 815 if (!value_sp) { 816 option_value_sp.reset(); 817 return option_value_sp; 818 } 819 } else if (value[0] == '[') { 820 assert(value.size() == 1); 821 // value is an array 822 value_sp = ReadArray(in_file, out_stream, data_type); 823 if (!value_sp) { 824 option_value_sp.reset(); 825 return option_value_sp; 826 } 827 // We've used the data_type to read an array; re-set the type to 828 // Invalid 829 data_type = OptionValue::eTypeInvalid; 830 } else if ((value[0] == '0') && (value[1] == 'x')) { 831 value_sp = std::make_shared<OptionValueUInt64>(0, 0); 832 value_sp->SetValueFromString(value); 833 } else { 834 size_t len = value.size(); 835 if ((value[0] == '"') && (value[len - 1] == '"')) 836 value = value.substr(1, len - 2); 837 value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 838 } 839 840 if (key == encoding_key) { 841 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data 842 // indicating the data type of an upcoming array (usually the next bit 843 // of data to be read in). 844 if (llvm::StringRef(value) == "uint32_t") 845 data_type = OptionValue::eTypeUInt64; 846 } else 847 option_value_sp->GetAsDictionary()->SetValueForKey(key, value_sp, 848 false); 849 } 850 } 851 852 return option_value_sp; 853 } 854 855 bool Instruction::TestEmulation(Stream *out_stream, const char *file_name) { 856 if (!out_stream) 857 return false; 858 859 if (!file_name) { 860 out_stream->Printf("Instruction::TestEmulation: Missing file_name."); 861 return false; 862 } 863 FILE *test_file = FileSystem::Instance().Fopen(file_name, "r"); 864 if (!test_file) { 865 out_stream->Printf( 866 "Instruction::TestEmulation: Attempt to open test file failed."); 867 return false; 868 } 869 870 char buffer[256]; 871 if (!fgets(buffer, 255, test_file)) { 872 out_stream->Printf( 873 "Instruction::TestEmulation: Error reading first line of test file.\n"); 874 fclose(test_file); 875 return false; 876 } 877 878 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) { 879 out_stream->Printf("Instructin::TestEmulation: Test file does not contain " 880 "emulation state dictionary\n"); 881 fclose(test_file); 882 return false; 883 } 884 885 // Read all the test information from the test file into an 886 // OptionValueDictionary. 887 888 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream)); 889 if (!data_dictionary_sp) { 890 out_stream->Printf( 891 "Instruction::TestEmulation: Error reading Dictionary Object.\n"); 892 fclose(test_file); 893 return false; 894 } 895 896 fclose(test_file); 897 898 OptionValueDictionary *data_dictionary = 899 data_dictionary_sp->GetAsDictionary(); 900 static ConstString description_key("assembly_string"); 901 static ConstString triple_key("triple"); 902 903 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key); 904 905 if (!value_sp) { 906 out_stream->Printf("Instruction::TestEmulation: Test file does not " 907 "contain description string.\n"); 908 return false; 909 } 910 911 SetDescription(value_sp->GetStringValue().value_or("")); 912 913 value_sp = data_dictionary->GetValueForKey(triple_key); 914 if (!value_sp) { 915 out_stream->Printf( 916 "Instruction::TestEmulation: Test file does not contain triple.\n"); 917 return false; 918 } 919 920 ArchSpec arch; 921 arch.SetTriple(llvm::Triple(value_sp->GetStringValue().value_or(""))); 922 923 bool success = false; 924 std::unique_ptr<EmulateInstruction> insn_emulator_up( 925 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 926 if (insn_emulator_up) 927 success = 928 insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary); 929 930 if (success) 931 out_stream->Printf("Emulation test succeeded."); 932 else 933 out_stream->Printf("Emulation test failed."); 934 935 return success; 936 } 937 938 bool Instruction::Emulate( 939 const ArchSpec &arch, uint32_t evaluate_options, void *baton, 940 EmulateInstruction::ReadMemoryCallback read_mem_callback, 941 EmulateInstruction::WriteMemoryCallback write_mem_callback, 942 EmulateInstruction::ReadRegisterCallback read_reg_callback, 943 EmulateInstruction::WriteRegisterCallback write_reg_callback) { 944 std::unique_ptr<EmulateInstruction> insn_emulator_up( 945 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 946 if (insn_emulator_up) { 947 insn_emulator_up->SetBaton(baton); 948 insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback, 949 read_reg_callback, write_reg_callback); 950 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 951 return insn_emulator_up->EvaluateInstruction(evaluate_options); 952 } 953 954 return false; 955 } 956 957 uint32_t Instruction::GetData(DataExtractor &data) { 958 return m_opcode.GetData(data); 959 } 960 961 InstructionList::InstructionList() : m_instructions() {} 962 963 InstructionList::~InstructionList() = default; 964 965 size_t InstructionList::GetSize() const { return m_instructions.size(); } 966 967 uint32_t InstructionList::GetMaxOpcocdeByteSize() const { 968 uint32_t max_inst_size = 0; 969 collection::const_iterator pos, end; 970 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end; 971 ++pos) { 972 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize(); 973 if (max_inst_size < inst_size) 974 max_inst_size = inst_size; 975 } 976 return max_inst_size; 977 } 978 979 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const { 980 InstructionSP inst_sp; 981 if (idx < m_instructions.size()) 982 inst_sp = m_instructions[idx]; 983 return inst_sp; 984 } 985 986 InstructionSP InstructionList::GetInstructionAtAddress(const Address &address) { 987 uint32_t index = GetIndexOfInstructionAtAddress(address); 988 if (index != UINT32_MAX) 989 return GetInstructionAtIndex(index); 990 return nullptr; 991 } 992 993 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes, 994 bool show_control_flow_kind, 995 const ExecutionContext *exe_ctx) { 996 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize(); 997 collection::const_iterator pos, begin, end; 998 999 const FormatEntity::Entry *disassembly_format = nullptr; 1000 FormatEntity::Entry format; 1001 if (exe_ctx && exe_ctx->HasTargetScope()) { 1002 disassembly_format = 1003 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat(); 1004 } else { 1005 FormatEntity::Parse("${addr}: ", format); 1006 disassembly_format = &format; 1007 } 1008 1009 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin; 1010 pos != end; ++pos) { 1011 if (pos != begin) 1012 s->EOL(); 1013 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, 1014 show_control_flow_kind, exe_ctx, nullptr, nullptr, 1015 disassembly_format, 0); 1016 } 1017 } 1018 1019 void InstructionList::Clear() { m_instructions.clear(); } 1020 1021 void InstructionList::Append(lldb::InstructionSP &inst_sp) { 1022 if (inst_sp) 1023 m_instructions.push_back(inst_sp); 1024 } 1025 1026 uint32_t 1027 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start, 1028 bool ignore_calls, 1029 bool *found_calls) const { 1030 size_t num_instructions = m_instructions.size(); 1031 1032 uint32_t next_branch = UINT32_MAX; 1033 1034 if (found_calls) 1035 *found_calls = false; 1036 for (size_t i = start; i < num_instructions; i++) { 1037 if (m_instructions[i]->DoesBranch()) { 1038 if (ignore_calls && m_instructions[i]->IsCall()) { 1039 if (found_calls) 1040 *found_calls = true; 1041 continue; 1042 } 1043 next_branch = i; 1044 break; 1045 } 1046 } 1047 1048 return next_branch; 1049 } 1050 1051 uint32_t 1052 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) { 1053 size_t num_instructions = m_instructions.size(); 1054 uint32_t index = UINT32_MAX; 1055 for (size_t i = 0; i < num_instructions; i++) { 1056 if (m_instructions[i]->GetAddress() == address) { 1057 index = i; 1058 break; 1059 } 1060 } 1061 return index; 1062 } 1063 1064 uint32_t 1065 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr, 1066 Target &target) { 1067 Address address; 1068 address.SetLoadAddress(load_addr, &target); 1069 return GetIndexOfInstructionAtAddress(address); 1070 } 1071 1072 size_t Disassembler::ParseInstructions(Target &target, Address start, 1073 Limit limit, Stream *error_strm_ptr, 1074 bool force_live_memory) { 1075 m_instruction_list.Clear(); 1076 1077 if (!start.IsValid()) 1078 return 0; 1079 1080 start = ResolveAddress(target, start); 1081 1082 addr_t byte_size = limit.value; 1083 if (limit.kind == Limit::Instructions) 1084 byte_size *= m_arch.GetMaximumOpcodeByteSize(); 1085 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0'); 1086 1087 Status error; 1088 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1089 const size_t bytes_read = 1090 target.ReadMemory(start, data_sp->GetBytes(), data_sp->GetByteSize(), 1091 error, force_live_memory, &load_addr); 1092 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1093 1094 if (bytes_read == 0) { 1095 if (error_strm_ptr) { 1096 if (const char *error_cstr = error.AsCString()) 1097 error_strm_ptr->Printf("error: %s\n", error_cstr); 1098 } 1099 return 0; 1100 } 1101 1102 if (bytes_read != data_sp->GetByteSize()) 1103 data_sp->SetByteSize(bytes_read); 1104 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1105 m_arch.GetAddressByteSize()); 1106 return DecodeInstructions(start, data, 0, 1107 limit.kind == Limit::Instructions ? limit.value 1108 : UINT32_MAX, 1109 false, data_from_file); 1110 } 1111 1112 // Disassembler copy constructor 1113 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor) 1114 : m_arch(arch), m_instruction_list(), m_base_addr(LLDB_INVALID_ADDRESS), 1115 m_flavor() { 1116 if (flavor == nullptr) 1117 m_flavor.assign("default"); 1118 else 1119 m_flavor.assign(flavor); 1120 1121 // If this is an arm variant that can only include thumb (T16, T32) 1122 // instructions, force the arch triple to be "thumbv.." instead of "armv..." 1123 if (arch.IsAlwaysThumbInstructions()) { 1124 std::string thumb_arch_name(arch.GetTriple().getArchName().str()); 1125 // Replace "arm" with "thumb" so we get all thumb variants correct 1126 if (thumb_arch_name.size() > 3) { 1127 thumb_arch_name.erase(0, 3); 1128 thumb_arch_name.insert(0, "thumb"); 1129 } 1130 m_arch.SetTriple(thumb_arch_name.c_str()); 1131 } 1132 } 1133 1134 Disassembler::~Disassembler() = default; 1135 1136 InstructionList &Disassembler::GetInstructionList() { 1137 return m_instruction_list; 1138 } 1139 1140 const InstructionList &Disassembler::GetInstructionList() const { 1141 return m_instruction_list; 1142 } 1143 1144 // Class PseudoInstruction 1145 1146 PseudoInstruction::PseudoInstruction() 1147 : Instruction(Address(), AddressClass::eUnknown), m_description() {} 1148 1149 PseudoInstruction::~PseudoInstruction() = default; 1150 1151 bool PseudoInstruction::DoesBranch() { 1152 // This is NOT a valid question for a pseudo instruction. 1153 return false; 1154 } 1155 1156 bool PseudoInstruction::HasDelaySlot() { 1157 // This is NOT a valid question for a pseudo instruction. 1158 return false; 1159 } 1160 1161 bool PseudoInstruction::IsLoad() { return false; } 1162 1163 bool PseudoInstruction::IsAuthenticated() { return false; } 1164 1165 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler, 1166 const lldb_private::DataExtractor &data, 1167 lldb::offset_t data_offset) { 1168 return m_opcode.GetByteSize(); 1169 } 1170 1171 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) { 1172 if (!opcode_data) 1173 return; 1174 1175 switch (opcode_size) { 1176 case 8: { 1177 uint8_t value8 = *((uint8_t *)opcode_data); 1178 m_opcode.SetOpcode8(value8, eByteOrderInvalid); 1179 break; 1180 } 1181 case 16: { 1182 uint16_t value16 = *((uint16_t *)opcode_data); 1183 m_opcode.SetOpcode16(value16, eByteOrderInvalid); 1184 break; 1185 } 1186 case 32: { 1187 uint32_t value32 = *((uint32_t *)opcode_data); 1188 m_opcode.SetOpcode32(value32, eByteOrderInvalid); 1189 break; 1190 } 1191 case 64: { 1192 uint64_t value64 = *((uint64_t *)opcode_data); 1193 m_opcode.SetOpcode64(value64, eByteOrderInvalid); 1194 break; 1195 } 1196 default: 1197 break; 1198 } 1199 } 1200 1201 void PseudoInstruction::SetDescription(llvm::StringRef description) { 1202 m_description = std::string(description); 1203 } 1204 1205 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) { 1206 Operand ret; 1207 ret.m_type = Type::Register; 1208 ret.m_register = r; 1209 return ret; 1210 } 1211 1212 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm, 1213 bool neg) { 1214 Operand ret; 1215 ret.m_type = Type::Immediate; 1216 ret.m_immediate = imm; 1217 ret.m_negative = neg; 1218 return ret; 1219 } 1220 1221 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) { 1222 Operand ret; 1223 ret.m_type = Type::Immediate; 1224 if (imm < 0) { 1225 ret.m_immediate = -imm; 1226 ret.m_negative = true; 1227 } else { 1228 ret.m_immediate = imm; 1229 ret.m_negative = false; 1230 } 1231 return ret; 1232 } 1233 1234 Instruction::Operand 1235 Instruction::Operand::BuildDereference(const Operand &ref) { 1236 Operand ret; 1237 ret.m_type = Type::Dereference; 1238 ret.m_children = {ref}; 1239 return ret; 1240 } 1241 1242 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs, 1243 const Operand &rhs) { 1244 Operand ret; 1245 ret.m_type = Type::Sum; 1246 ret.m_children = {lhs, rhs}; 1247 return ret; 1248 } 1249 1250 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs, 1251 const Operand &rhs) { 1252 Operand ret; 1253 ret.m_type = Type::Product; 1254 ret.m_children = {lhs, rhs}; 1255 return ret; 1256 } 1257 1258 std::function<bool(const Instruction::Operand &)> 1259 lldb_private::OperandMatchers::MatchBinaryOp( 1260 std::function<bool(const Instruction::Operand &)> base, 1261 std::function<bool(const Instruction::Operand &)> left, 1262 std::function<bool(const Instruction::Operand &)> right) { 1263 return [base, left, right](const Instruction::Operand &op) -> bool { 1264 return (base(op) && op.m_children.size() == 2 && 1265 ((left(op.m_children[0]) && right(op.m_children[1])) || 1266 (left(op.m_children[1]) && right(op.m_children[0])))); 1267 }; 1268 } 1269 1270 std::function<bool(const Instruction::Operand &)> 1271 lldb_private::OperandMatchers::MatchUnaryOp( 1272 std::function<bool(const Instruction::Operand &)> base, 1273 std::function<bool(const Instruction::Operand &)> child) { 1274 return [base, child](const Instruction::Operand &op) -> bool { 1275 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0])); 1276 }; 1277 } 1278 1279 std::function<bool(const Instruction::Operand &)> 1280 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) { 1281 return [&info](const Instruction::Operand &op) { 1282 return (op.m_type == Instruction::Operand::Type::Register && 1283 (op.m_register == ConstString(info.name) || 1284 op.m_register == ConstString(info.alt_name))); 1285 }; 1286 } 1287 1288 std::function<bool(const Instruction::Operand &)> 1289 lldb_private::OperandMatchers::FetchRegOp(ConstString ®) { 1290 return [®](const Instruction::Operand &op) { 1291 if (op.m_type != Instruction::Operand::Type::Register) { 1292 return false; 1293 } 1294 reg = op.m_register; 1295 return true; 1296 }; 1297 } 1298 1299 std::function<bool(const Instruction::Operand &)> 1300 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) { 1301 return [imm](const Instruction::Operand &op) { 1302 return (op.m_type == Instruction::Operand::Type::Immediate && 1303 ((op.m_negative && op.m_immediate == (uint64_t)-imm) || 1304 (!op.m_negative && op.m_immediate == (uint64_t)imm))); 1305 }; 1306 } 1307 1308 std::function<bool(const Instruction::Operand &)> 1309 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) { 1310 return [&imm](const Instruction::Operand &op) { 1311 if (op.m_type != Instruction::Operand::Type::Immediate) { 1312 return false; 1313 } 1314 if (op.m_negative) { 1315 imm = -((int64_t)op.m_immediate); 1316 } else { 1317 imm = ((int64_t)op.m_immediate); 1318 } 1319 return true; 1320 }; 1321 } 1322 1323 std::function<bool(const Instruction::Operand &)> 1324 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) { 1325 return [type](const Instruction::Operand &op) { return op.m_type == type; }; 1326 } 1327