1 //===-- Disassembler.cpp --------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/Disassembler.h" 10 11 #include "lldb/Core/AddressRange.h" 12 #include "lldb/Core/Debugger.h" 13 #include "lldb/Core/EmulateInstruction.h" 14 #include "lldb/Core/Mangled.h" 15 #include "lldb/Core/Module.h" 16 #include "lldb/Core/ModuleList.h" 17 #include "lldb/Core/PluginManager.h" 18 #include "lldb/Core/SourceManager.h" 19 #include "lldb/Host/FileSystem.h" 20 #include "lldb/Interpreter/OptionValue.h" 21 #include "lldb/Interpreter/OptionValueArray.h" 22 #include "lldb/Interpreter/OptionValueDictionary.h" 23 #include "lldb/Interpreter/OptionValueRegex.h" 24 #include "lldb/Interpreter/OptionValueString.h" 25 #include "lldb/Interpreter/OptionValueUInt64.h" 26 #include "lldb/Symbol/Function.h" 27 #include "lldb/Symbol/Symbol.h" 28 #include "lldb/Symbol/SymbolContext.h" 29 #include "lldb/Target/ExecutionContext.h" 30 #include "lldb/Target/SectionLoadList.h" 31 #include "lldb/Target/StackFrame.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/DataBufferHeap.h" 35 #include "lldb/Utility/DataExtractor.h" 36 #include "lldb/Utility/RegularExpression.h" 37 #include "lldb/Utility/Status.h" 38 #include "lldb/Utility/Stream.h" 39 #include "lldb/Utility/StreamString.h" 40 #include "lldb/Utility/Timer.h" 41 #include "lldb/lldb-private-enumerations.h" 42 #include "lldb/lldb-private-interfaces.h" 43 #include "lldb/lldb-private-types.h" 44 #include "llvm/Support/Compiler.h" 45 #include "llvm/TargetParser/Triple.h" 46 47 #include <cstdint> 48 #include <cstring> 49 #include <utility> 50 51 #include <cassert> 52 53 #define DEFAULT_DISASM_BYTE_SIZE 32 54 55 using namespace lldb; 56 using namespace lldb_private; 57 58 DisassemblerSP Disassembler::FindPlugin(const ArchSpec &arch, 59 const char *flavor, 60 const char *plugin_name) { 61 LLDB_SCOPED_TIMERF("Disassembler::FindPlugin (arch = %s, plugin_name = %s)", 62 arch.GetArchitectureName(), plugin_name); 63 64 DisassemblerCreateInstance create_callback = nullptr; 65 66 if (plugin_name) { 67 create_callback = 68 PluginManager::GetDisassemblerCreateCallbackForPluginName(plugin_name); 69 if (create_callback) { 70 if (auto disasm_sp = create_callback(arch, flavor)) 71 return disasm_sp; 72 } 73 } else { 74 for (uint32_t idx = 0; 75 (create_callback = PluginManager::GetDisassemblerCreateCallbackAtIndex( 76 idx)) != nullptr; 77 ++idx) { 78 if (auto disasm_sp = create_callback(arch, flavor)) 79 return disasm_sp; 80 } 81 } 82 return DisassemblerSP(); 83 } 84 85 DisassemblerSP Disassembler::FindPluginForTarget(const Target &target, 86 const ArchSpec &arch, 87 const char *flavor, 88 const char *plugin_name) { 89 if (flavor == nullptr) { 90 // FIXME - we don't have the mechanism in place to do per-architecture 91 // settings. But since we know that for now we only support flavors on x86 92 // & x86_64, 93 if (arch.GetTriple().getArch() == llvm::Triple::x86 || 94 arch.GetTriple().getArch() == llvm::Triple::x86_64) 95 flavor = target.GetDisassemblyFlavor(); 96 } 97 return FindPlugin(arch, flavor, plugin_name); 98 } 99 100 static Address ResolveAddress(Target &target, const Address &addr) { 101 if (!addr.IsSectionOffset()) { 102 Address resolved_addr; 103 // If we weren't passed in a section offset address range, try and resolve 104 // it to something 105 bool is_resolved = target.GetSectionLoadList().IsEmpty() 106 ? target.GetImages().ResolveFileAddress( 107 addr.GetOffset(), resolved_addr) 108 : target.GetSectionLoadList().ResolveLoadAddress( 109 addr.GetOffset(), resolved_addr); 110 111 // We weren't able to resolve the address, just treat it as a raw address 112 if (is_resolved && resolved_addr.IsValid()) 113 return resolved_addr; 114 } 115 return addr; 116 } 117 118 lldb::DisassemblerSP Disassembler::DisassembleRange( 119 const ArchSpec &arch, const char *plugin_name, const char *flavor, 120 Target &target, const AddressRange &range, bool force_live_memory) { 121 if (range.GetByteSize() <= 0) 122 return {}; 123 124 if (!range.GetBaseAddress().IsValid()) 125 return {}; 126 127 lldb::DisassemblerSP disasm_sp = 128 Disassembler::FindPluginForTarget(target, arch, flavor, plugin_name); 129 130 if (!disasm_sp) 131 return {}; 132 133 const size_t bytes_disassembled = disasm_sp->ParseInstructions( 134 target, range.GetBaseAddress(), {Limit::Bytes, range.GetByteSize()}, 135 nullptr, force_live_memory); 136 if (bytes_disassembled == 0) 137 return {}; 138 139 return disasm_sp; 140 } 141 142 lldb::DisassemblerSP 143 Disassembler::DisassembleBytes(const ArchSpec &arch, const char *plugin_name, 144 const char *flavor, const Address &start, 145 const void *src, size_t src_len, 146 uint32_t num_instructions, bool data_from_file) { 147 if (!src) 148 return {}; 149 150 lldb::DisassemblerSP disasm_sp = 151 Disassembler::FindPlugin(arch, flavor, plugin_name); 152 153 if (!disasm_sp) 154 return {}; 155 156 DataExtractor data(src, src_len, arch.GetByteOrder(), 157 arch.GetAddressByteSize()); 158 159 (void)disasm_sp->DecodeInstructions(start, data, 0, num_instructions, false, 160 data_from_file); 161 return disasm_sp; 162 } 163 164 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 165 const char *plugin_name, const char *flavor, 166 const ExecutionContext &exe_ctx, 167 const Address &address, Limit limit, 168 bool mixed_source_and_assembly, 169 uint32_t num_mixed_context_lines, 170 uint32_t options, Stream &strm) { 171 if (!exe_ctx.GetTargetPtr()) 172 return false; 173 174 lldb::DisassemblerSP disasm_sp(Disassembler::FindPluginForTarget( 175 exe_ctx.GetTargetRef(), arch, flavor, plugin_name)); 176 if (!disasm_sp) 177 return false; 178 179 const bool force_live_memory = true; 180 size_t bytes_disassembled = disasm_sp->ParseInstructions( 181 exe_ctx.GetTargetRef(), address, limit, &strm, force_live_memory); 182 if (bytes_disassembled == 0) 183 return false; 184 185 disasm_sp->PrintInstructions(debugger, arch, exe_ctx, 186 mixed_source_and_assembly, 187 num_mixed_context_lines, options, strm); 188 return true; 189 } 190 191 Disassembler::SourceLine 192 Disassembler::GetFunctionDeclLineEntry(const SymbolContext &sc) { 193 if (!sc.function) 194 return {}; 195 196 if (!sc.line_entry.IsValid()) 197 return {}; 198 199 LineEntry prologue_end_line = sc.line_entry; 200 FileSpec func_decl_file; 201 uint32_t func_decl_line; 202 sc.function->GetStartLineSourceInfo(func_decl_file, func_decl_line); 203 204 if (func_decl_file != prologue_end_line.GetFile() && 205 func_decl_file != prologue_end_line.original_file_sp->GetSpecOnly()) 206 return {}; 207 208 SourceLine decl_line; 209 decl_line.file = func_decl_file; 210 decl_line.line = func_decl_line; 211 // TODO: Do we care about column on these entries? If so, we need to plumb 212 // that through GetStartLineSourceInfo. 213 decl_line.column = 0; 214 return decl_line; 215 } 216 217 void Disassembler::AddLineToSourceLineTables( 218 SourceLine &line, 219 std::map<FileSpec, std::set<uint32_t>> &source_lines_seen) { 220 if (line.IsValid()) { 221 auto source_lines_seen_pos = source_lines_seen.find(line.file); 222 if (source_lines_seen_pos == source_lines_seen.end()) { 223 std::set<uint32_t> lines; 224 lines.insert(line.line); 225 source_lines_seen.emplace(line.file, lines); 226 } else { 227 source_lines_seen_pos->second.insert(line.line); 228 } 229 } 230 } 231 232 bool Disassembler::ElideMixedSourceAndDisassemblyLine( 233 const ExecutionContext &exe_ctx, const SymbolContext &sc, 234 SourceLine &line) { 235 236 // TODO: should we also check target.process.thread.step-avoid-libraries ? 237 238 const RegularExpression *avoid_regex = nullptr; 239 240 // Skip any line #0 entries - they are implementation details 241 if (line.line == 0) 242 return true; 243 244 ThreadSP thread_sp = exe_ctx.GetThreadSP(); 245 if (thread_sp) { 246 avoid_regex = thread_sp->GetSymbolsToAvoidRegexp(); 247 } else { 248 TargetSP target_sp = exe_ctx.GetTargetSP(); 249 if (target_sp) { 250 Status error; 251 OptionValueSP value_sp = target_sp->GetDebugger().GetPropertyValue( 252 &exe_ctx, "target.process.thread.step-avoid-regexp", error); 253 if (value_sp && value_sp->GetType() == OptionValue::eTypeRegex) { 254 OptionValueRegex *re = value_sp->GetAsRegex(); 255 if (re) { 256 avoid_regex = re->GetCurrentValue(); 257 } 258 } 259 } 260 } 261 if (avoid_regex && sc.symbol != nullptr) { 262 const char *function_name = 263 sc.GetFunctionName(Mangled::ePreferDemangledWithoutArguments) 264 .GetCString(); 265 if (function_name && avoid_regex->Execute(function_name)) { 266 // skip this source line 267 return true; 268 } 269 } 270 // don't skip this source line 271 return false; 272 } 273 274 void Disassembler::PrintInstructions(Debugger &debugger, const ArchSpec &arch, 275 const ExecutionContext &exe_ctx, 276 bool mixed_source_and_assembly, 277 uint32_t num_mixed_context_lines, 278 uint32_t options, Stream &strm) { 279 // We got some things disassembled... 280 size_t num_instructions_found = GetInstructionList().GetSize(); 281 282 const uint32_t max_opcode_byte_size = 283 GetInstructionList().GetMaxOpcocdeByteSize(); 284 SymbolContext sc; 285 SymbolContext prev_sc; 286 AddressRange current_source_line_range; 287 const Address *pc_addr_ptr = nullptr; 288 StackFrame *frame = exe_ctx.GetFramePtr(); 289 290 TargetSP target_sp(exe_ctx.GetTargetSP()); 291 SourceManager &source_manager = 292 target_sp ? target_sp->GetSourceManager() : debugger.GetSourceManager(); 293 294 if (frame) { 295 pc_addr_ptr = &frame->GetFrameCodeAddress(); 296 } 297 const uint32_t scope = 298 eSymbolContextLineEntry | eSymbolContextFunction | eSymbolContextSymbol; 299 const bool use_inline_block_range = false; 300 301 const FormatEntity::Entry *disassembly_format = nullptr; 302 FormatEntity::Entry format; 303 if (exe_ctx.HasTargetScope()) { 304 disassembly_format = 305 exe_ctx.GetTargetRef().GetDebugger().GetDisassemblyFormat(); 306 } else { 307 FormatEntity::Parse("${addr}: ", format); 308 disassembly_format = &format; 309 } 310 311 // First pass: step through the list of instructions, find how long the 312 // initial addresses strings are, insert padding in the second pass so the 313 // opcodes all line up nicely. 314 315 // Also build up the source line mapping if this is mixed source & assembly 316 // mode. Calculate the source line for each assembly instruction (eliding 317 // inlined functions which the user wants to skip). 318 319 std::map<FileSpec, std::set<uint32_t>> source_lines_seen; 320 Symbol *previous_symbol = nullptr; 321 322 size_t address_text_size = 0; 323 for (size_t i = 0; i < num_instructions_found; ++i) { 324 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get(); 325 if (inst) { 326 const Address &addr = inst->GetAddress(); 327 ModuleSP module_sp(addr.GetModule()); 328 if (module_sp) { 329 const SymbolContextItem resolve_mask = eSymbolContextFunction | 330 eSymbolContextSymbol | 331 eSymbolContextLineEntry; 332 uint32_t resolved_mask = 333 module_sp->ResolveSymbolContextForAddress(addr, resolve_mask, sc); 334 if (resolved_mask) { 335 StreamString strmstr; 336 Debugger::FormatDisassemblerAddress(disassembly_format, &sc, nullptr, 337 &exe_ctx, &addr, strmstr); 338 size_t cur_line = strmstr.GetSizeOfLastLine(); 339 if (cur_line > address_text_size) 340 address_text_size = cur_line; 341 342 // Add entries to our "source_lines_seen" map+set which list which 343 // sources lines occur in this disassembly session. We will print 344 // lines of context around a source line, but we don't want to print 345 // a source line that has a line table entry of its own - we'll leave 346 // that source line to be printed when it actually occurs in the 347 // disassembly. 348 349 if (mixed_source_and_assembly && sc.line_entry.IsValid()) { 350 if (sc.symbol != previous_symbol) { 351 SourceLine decl_line = GetFunctionDeclLineEntry(sc); 352 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, decl_line)) 353 AddLineToSourceLineTables(decl_line, source_lines_seen); 354 } 355 if (sc.line_entry.IsValid()) { 356 SourceLine this_line; 357 this_line.file = sc.line_entry.GetFile(); 358 this_line.line = sc.line_entry.line; 359 this_line.column = sc.line_entry.column; 360 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, this_line)) 361 AddLineToSourceLineTables(this_line, source_lines_seen); 362 } 363 } 364 } 365 sc.Clear(false); 366 } 367 } 368 } 369 370 previous_symbol = nullptr; 371 SourceLine previous_line; 372 for (size_t i = 0; i < num_instructions_found; ++i) { 373 Instruction *inst = GetInstructionList().GetInstructionAtIndex(i).get(); 374 375 if (inst) { 376 const Address &addr = inst->GetAddress(); 377 const bool inst_is_at_pc = pc_addr_ptr && addr == *pc_addr_ptr; 378 SourceLinesToDisplay source_lines_to_display; 379 380 prev_sc = sc; 381 382 ModuleSP module_sp(addr.GetModule()); 383 if (module_sp) { 384 uint32_t resolved_mask = module_sp->ResolveSymbolContextForAddress( 385 addr, eSymbolContextEverything, sc); 386 if (resolved_mask) { 387 if (mixed_source_and_assembly) { 388 389 // If we've started a new function (non-inlined), print all of the 390 // source lines from the function declaration until the first line 391 // table entry - typically the opening curly brace of the function. 392 if (previous_symbol != sc.symbol) { 393 // The default disassembly format puts an extra blank line 394 // between functions - so when we're displaying the source 395 // context for a function, we don't want to add a blank line 396 // after the source context or we'll end up with two of them. 397 if (previous_symbol != nullptr) 398 source_lines_to_display.print_source_context_end_eol = false; 399 400 previous_symbol = sc.symbol; 401 if (sc.function && sc.line_entry.IsValid()) { 402 LineEntry prologue_end_line = sc.line_entry; 403 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 404 prologue_end_line)) { 405 FileSpec func_decl_file; 406 uint32_t func_decl_line; 407 sc.function->GetStartLineSourceInfo(func_decl_file, 408 func_decl_line); 409 if (func_decl_file == prologue_end_line.GetFile() || 410 func_decl_file == 411 prologue_end_line.original_file_sp->GetSpecOnly()) { 412 // Add all the lines between the function declaration and 413 // the first non-prologue source line to the list of lines 414 // to print. 415 for (uint32_t lineno = func_decl_line; 416 lineno <= prologue_end_line.line; lineno++) { 417 SourceLine this_line; 418 this_line.file = func_decl_file; 419 this_line.line = lineno; 420 source_lines_to_display.lines.push_back(this_line); 421 } 422 // Mark the last line as the "current" one. Usually this 423 // is the open curly brace. 424 if (source_lines_to_display.lines.size() > 0) 425 source_lines_to_display.current_source_line = 426 source_lines_to_display.lines.size() - 1; 427 } 428 } 429 } 430 sc.GetAddressRange(scope, 0, use_inline_block_range, 431 current_source_line_range); 432 } 433 434 // If we've left a previous source line's address range, print a 435 // new source line 436 if (!current_source_line_range.ContainsFileAddress(addr)) { 437 sc.GetAddressRange(scope, 0, use_inline_block_range, 438 current_source_line_range); 439 440 if (sc != prev_sc && sc.comp_unit && sc.line_entry.IsValid()) { 441 SourceLine this_line; 442 this_line.file = sc.line_entry.GetFile(); 443 this_line.line = sc.line_entry.line; 444 445 if (!ElideMixedSourceAndDisassemblyLine(exe_ctx, sc, 446 this_line)) { 447 // Only print this source line if it is different from the 448 // last source line we printed. There may have been inlined 449 // functions between these lines that we elided, resulting in 450 // the same line being printed twice in a row for a 451 // contiguous block of assembly instructions. 452 if (this_line != previous_line) { 453 454 std::vector<uint32_t> previous_lines; 455 for (uint32_t i = 0; 456 i < num_mixed_context_lines && 457 (this_line.line - num_mixed_context_lines) > 0; 458 i++) { 459 uint32_t line = 460 this_line.line - num_mixed_context_lines + i; 461 auto pos = source_lines_seen.find(this_line.file); 462 if (pos != source_lines_seen.end()) { 463 if (pos->second.count(line) == 1) { 464 previous_lines.clear(); 465 } else { 466 previous_lines.push_back(line); 467 } 468 } 469 } 470 for (size_t i = 0; i < previous_lines.size(); i++) { 471 SourceLine previous_line; 472 previous_line.file = this_line.file; 473 previous_line.line = previous_lines[i]; 474 auto pos = source_lines_seen.find(previous_line.file); 475 if (pos != source_lines_seen.end()) { 476 pos->second.insert(previous_line.line); 477 } 478 source_lines_to_display.lines.push_back(previous_line); 479 } 480 481 source_lines_to_display.lines.push_back(this_line); 482 source_lines_to_display.current_source_line = 483 source_lines_to_display.lines.size() - 1; 484 485 for (uint32_t i = 0; i < num_mixed_context_lines; i++) { 486 SourceLine next_line; 487 next_line.file = this_line.file; 488 next_line.line = this_line.line + i + 1; 489 auto pos = source_lines_seen.find(next_line.file); 490 if (pos != source_lines_seen.end()) { 491 if (pos->second.count(next_line.line) == 1) 492 break; 493 pos->second.insert(next_line.line); 494 } 495 source_lines_to_display.lines.push_back(next_line); 496 } 497 } 498 previous_line = this_line; 499 } 500 } 501 } 502 } 503 } else { 504 sc.Clear(true); 505 } 506 } 507 508 if (source_lines_to_display.lines.size() > 0) { 509 strm.EOL(); 510 for (size_t idx = 0; idx < source_lines_to_display.lines.size(); 511 idx++) { 512 SourceLine ln = source_lines_to_display.lines[idx]; 513 const char *line_highlight = ""; 514 if (inst_is_at_pc && (options & eOptionMarkPCSourceLine)) { 515 line_highlight = "->"; 516 } else if (idx == source_lines_to_display.current_source_line) { 517 line_highlight = "**"; 518 } 519 source_manager.DisplaySourceLinesWithLineNumbers( 520 std::make_shared<SupportFile>(ln.file), ln.line, ln.column, 0, 0, 521 line_highlight, &strm); 522 } 523 if (source_lines_to_display.print_source_context_end_eol) 524 strm.EOL(); 525 } 526 527 const bool show_bytes = (options & eOptionShowBytes) != 0; 528 const bool show_control_flow_kind = 529 (options & eOptionShowControlFlowKind) != 0; 530 inst->Dump(&strm, max_opcode_byte_size, true, show_bytes, 531 show_control_flow_kind, &exe_ctx, &sc, &prev_sc, nullptr, 532 address_text_size); 533 strm.EOL(); 534 } else { 535 break; 536 } 537 } 538 } 539 540 bool Disassembler::Disassemble(Debugger &debugger, const ArchSpec &arch, 541 StackFrame &frame, Stream &strm) { 542 AddressRange range; 543 SymbolContext sc( 544 frame.GetSymbolContext(eSymbolContextFunction | eSymbolContextSymbol)); 545 if (sc.function) { 546 range = sc.function->GetAddressRange(); 547 } else if (sc.symbol && sc.symbol->ValueIsAddress()) { 548 range.GetBaseAddress() = sc.symbol->GetAddressRef(); 549 range.SetByteSize(sc.symbol->GetByteSize()); 550 } else { 551 range.GetBaseAddress() = frame.GetFrameCodeAddress(); 552 } 553 554 if (range.GetBaseAddress().IsValid() && range.GetByteSize() == 0) 555 range.SetByteSize(DEFAULT_DISASM_BYTE_SIZE); 556 557 Disassembler::Limit limit = {Disassembler::Limit::Bytes, 558 range.GetByteSize()}; 559 if (limit.value == 0) 560 limit.value = DEFAULT_DISASM_BYTE_SIZE; 561 562 return Disassemble(debugger, arch, nullptr, nullptr, frame, 563 range.GetBaseAddress(), limit, false, 0, 0, strm); 564 } 565 566 Instruction::Instruction(const Address &address, AddressClass addr_class) 567 : m_address(address), m_address_class(addr_class), m_opcode(), 568 m_calculated_strings(false) {} 569 570 Instruction::~Instruction() = default; 571 572 AddressClass Instruction::GetAddressClass() { 573 if (m_address_class == AddressClass::eInvalid) 574 m_address_class = m_address.GetAddressClass(); 575 return m_address_class; 576 } 577 578 const char *Instruction::GetNameForInstructionControlFlowKind( 579 lldb::InstructionControlFlowKind instruction_control_flow_kind) { 580 switch (instruction_control_flow_kind) { 581 case eInstructionControlFlowKindUnknown: 582 return "unknown"; 583 case eInstructionControlFlowKindOther: 584 return "other"; 585 case eInstructionControlFlowKindCall: 586 return "call"; 587 case eInstructionControlFlowKindReturn: 588 return "return"; 589 case eInstructionControlFlowKindJump: 590 return "jump"; 591 case eInstructionControlFlowKindCondJump: 592 return "cond jump"; 593 case eInstructionControlFlowKindFarCall: 594 return "far call"; 595 case eInstructionControlFlowKindFarReturn: 596 return "far return"; 597 case eInstructionControlFlowKindFarJump: 598 return "far jump"; 599 } 600 llvm_unreachable("Fully covered switch above!"); 601 } 602 603 void Instruction::Dump(lldb_private::Stream *s, uint32_t max_opcode_byte_size, 604 bool show_address, bool show_bytes, 605 bool show_control_flow_kind, 606 const ExecutionContext *exe_ctx, 607 const SymbolContext *sym_ctx, 608 const SymbolContext *prev_sym_ctx, 609 const FormatEntity::Entry *disassembly_addr_format, 610 size_t max_address_text_size) { 611 size_t opcode_column_width = 7; 612 const size_t operand_column_width = 25; 613 614 CalculateMnemonicOperandsAndCommentIfNeeded(exe_ctx); 615 616 StreamString ss; 617 618 if (show_address) { 619 Debugger::FormatDisassemblerAddress(disassembly_addr_format, sym_ctx, 620 prev_sym_ctx, exe_ctx, &m_address, ss); 621 ss.FillLastLineToColumn(max_address_text_size, ' '); 622 } 623 624 if (show_bytes) { 625 if (m_opcode.GetType() == Opcode::eTypeBytes) { 626 // x86_64 and i386 are the only ones that use bytes right now so pad out 627 // the byte dump to be able to always show 15 bytes (3 chars each) plus a 628 // space 629 if (max_opcode_byte_size > 0) 630 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 631 else 632 m_opcode.Dump(&ss, 15 * 3 + 1); 633 } else { 634 // Else, we have ARM or MIPS which can show up to a uint32_t 0x00000000 635 // (10 spaces) plus two for padding... 636 if (max_opcode_byte_size > 0) 637 m_opcode.Dump(&ss, max_opcode_byte_size * 3 + 1); 638 else 639 m_opcode.Dump(&ss, 12); 640 } 641 } 642 643 if (show_control_flow_kind) { 644 lldb::InstructionControlFlowKind instruction_control_flow_kind = 645 GetControlFlowKind(exe_ctx); 646 ss.Printf("%-12s", GetNameForInstructionControlFlowKind( 647 instruction_control_flow_kind)); 648 } 649 650 bool show_color = false; 651 if (exe_ctx) { 652 if (TargetSP target_sp = exe_ctx->GetTargetSP()) { 653 show_color = target_sp->GetDebugger().GetUseColor(); 654 } 655 } 656 const size_t opcode_pos = ss.GetSizeOfLastLine(); 657 const std::string &opcode_name = 658 show_color ? m_markup_opcode_name : m_opcode_name; 659 const std::string &mnemonics = show_color ? m_markup_mnemonics : m_mnemonics; 660 661 // The default opcode size of 7 characters is plenty for most architectures 662 // but some like arm can pull out the occasional vqrshrun.s16. We won't get 663 // consistent column spacing in these cases, unfortunately. Also note that we 664 // need to directly use m_opcode_name here (instead of opcode_name) so we 665 // don't include color codes as characters. 666 if (m_opcode_name.length() >= opcode_column_width) { 667 opcode_column_width = m_opcode_name.length() + 1; 668 } 669 670 ss.PutCString(opcode_name); 671 ss.FillLastLineToColumn(opcode_pos + opcode_column_width, ' '); 672 ss.PutCString(mnemonics); 673 674 if (!m_comment.empty()) { 675 ss.FillLastLineToColumn( 676 opcode_pos + opcode_column_width + operand_column_width, ' '); 677 ss.PutCString(" ; "); 678 ss.PutCString(m_comment); 679 } 680 s->PutCString(ss.GetString()); 681 } 682 683 bool Instruction::DumpEmulation(const ArchSpec &arch) { 684 std::unique_ptr<EmulateInstruction> insn_emulator_up( 685 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 686 if (insn_emulator_up) { 687 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 688 return insn_emulator_up->EvaluateInstruction(0); 689 } 690 691 return false; 692 } 693 694 bool Instruction::CanSetBreakpoint () { 695 return !HasDelaySlot(); 696 } 697 698 bool Instruction::HasDelaySlot() { 699 // Default is false. 700 return false; 701 } 702 703 OptionValueSP Instruction::ReadArray(FILE *in_file, Stream &out_stream, 704 OptionValue::Type data_type) { 705 bool done = false; 706 char buffer[1024]; 707 708 auto option_value_sp = std::make_shared<OptionValueArray>(1u << data_type); 709 710 int idx = 0; 711 while (!done) { 712 if (!fgets(buffer, 1023, in_file)) { 713 out_stream.Printf( 714 "Instruction::ReadArray: Error reading file (fgets).\n"); 715 option_value_sp.reset(); 716 return option_value_sp; 717 } 718 719 std::string line(buffer); 720 721 size_t len = line.size(); 722 if (line[len - 1] == '\n') { 723 line[len - 1] = '\0'; 724 line.resize(len - 1); 725 } 726 727 if ((line.size() == 1) && line[0] == ']') { 728 done = true; 729 line.clear(); 730 } 731 732 if (!line.empty()) { 733 std::string value; 734 static RegularExpression g_reg_exp( 735 llvm::StringRef("^[ \t]*([^ \t]+)[ \t]*$")); 736 llvm::SmallVector<llvm::StringRef, 2> matches; 737 if (g_reg_exp.Execute(line, &matches)) 738 value = matches[1].str(); 739 else 740 value = line; 741 742 OptionValueSP data_value_sp; 743 switch (data_type) { 744 case OptionValue::eTypeUInt64: 745 data_value_sp = std::make_shared<OptionValueUInt64>(0, 0); 746 data_value_sp->SetValueFromString(value); 747 break; 748 // Other types can be added later as needed. 749 default: 750 data_value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 751 break; 752 } 753 754 option_value_sp->GetAsArray()->InsertValue(idx, data_value_sp); 755 ++idx; 756 } 757 } 758 759 return option_value_sp; 760 } 761 762 OptionValueSP Instruction::ReadDictionary(FILE *in_file, Stream &out_stream) { 763 bool done = false; 764 char buffer[1024]; 765 766 auto option_value_sp = std::make_shared<OptionValueDictionary>(); 767 static constexpr llvm::StringLiteral encoding_key("data_encoding"); 768 OptionValue::Type data_type = OptionValue::eTypeInvalid; 769 770 while (!done) { 771 // Read the next line in the file 772 if (!fgets(buffer, 1023, in_file)) { 773 out_stream.Printf( 774 "Instruction::ReadDictionary: Error reading file (fgets).\n"); 775 option_value_sp.reset(); 776 return option_value_sp; 777 } 778 779 // Check to see if the line contains the end-of-dictionary marker ("}") 780 std::string line(buffer); 781 782 size_t len = line.size(); 783 if (line[len - 1] == '\n') { 784 line[len - 1] = '\0'; 785 line.resize(len - 1); 786 } 787 788 if ((line.size() == 1) && (line[0] == '}')) { 789 done = true; 790 line.clear(); 791 } 792 793 // Try to find a key-value pair in the current line and add it to the 794 // dictionary. 795 if (!line.empty()) { 796 static RegularExpression g_reg_exp(llvm::StringRef( 797 "^[ \t]*([a-zA-Z_][a-zA-Z0-9_]*)[ \t]*=[ \t]*(.*)[ \t]*$")); 798 799 llvm::SmallVector<llvm::StringRef, 3> matches; 800 801 bool reg_exp_success = g_reg_exp.Execute(line, &matches); 802 std::string key; 803 std::string value; 804 if (reg_exp_success) { 805 key = matches[1].str(); 806 value = matches[2].str(); 807 } else { 808 out_stream.Printf("Instruction::ReadDictionary: Failure executing " 809 "regular expression.\n"); 810 option_value_sp.reset(); 811 return option_value_sp; 812 } 813 814 // Check value to see if it's the start of an array or dictionary. 815 816 lldb::OptionValueSP value_sp; 817 assert(value.empty() == false); 818 assert(key.empty() == false); 819 820 if (value[0] == '{') { 821 assert(value.size() == 1); 822 // value is a dictionary 823 value_sp = ReadDictionary(in_file, out_stream); 824 if (!value_sp) { 825 option_value_sp.reset(); 826 return option_value_sp; 827 } 828 } else if (value[0] == '[') { 829 assert(value.size() == 1); 830 // value is an array 831 value_sp = ReadArray(in_file, out_stream, data_type); 832 if (!value_sp) { 833 option_value_sp.reset(); 834 return option_value_sp; 835 } 836 // We've used the data_type to read an array; re-set the type to 837 // Invalid 838 data_type = OptionValue::eTypeInvalid; 839 } else if ((value[0] == '0') && (value[1] == 'x')) { 840 value_sp = std::make_shared<OptionValueUInt64>(0, 0); 841 value_sp->SetValueFromString(value); 842 } else { 843 size_t len = value.size(); 844 if ((value[0] == '"') && (value[len - 1] == '"')) 845 value = value.substr(1, len - 2); 846 value_sp = std::make_shared<OptionValueString>(value.c_str(), ""); 847 } 848 849 if (key == encoding_key) { 850 // A 'data_encoding=..." is NOT a normal key-value pair; it is meta-data 851 // indicating the data type of an upcoming array (usually the next bit 852 // of data to be read in). 853 if (llvm::StringRef(value) == "uint32_t") 854 data_type = OptionValue::eTypeUInt64; 855 } else 856 option_value_sp->GetAsDictionary()->SetValueForKey(key, value_sp, 857 false); 858 } 859 } 860 861 return option_value_sp; 862 } 863 864 bool Instruction::TestEmulation(Stream &out_stream, const char *file_name) { 865 if (!file_name) { 866 out_stream.Printf("Instruction::TestEmulation: Missing file_name."); 867 return false; 868 } 869 FILE *test_file = FileSystem::Instance().Fopen(file_name, "r"); 870 if (!test_file) { 871 out_stream.Printf( 872 "Instruction::TestEmulation: Attempt to open test file failed."); 873 return false; 874 } 875 876 char buffer[256]; 877 if (!fgets(buffer, 255, test_file)) { 878 out_stream.Printf( 879 "Instruction::TestEmulation: Error reading first line of test file.\n"); 880 fclose(test_file); 881 return false; 882 } 883 884 if (strncmp(buffer, "InstructionEmulationState={", 27) != 0) { 885 out_stream.Printf("Instructin::TestEmulation: Test file does not contain " 886 "emulation state dictionary\n"); 887 fclose(test_file); 888 return false; 889 } 890 891 // Read all the test information from the test file into an 892 // OptionValueDictionary. 893 894 OptionValueSP data_dictionary_sp(ReadDictionary(test_file, out_stream)); 895 if (!data_dictionary_sp) { 896 out_stream.Printf( 897 "Instruction::TestEmulation: Error reading Dictionary Object.\n"); 898 fclose(test_file); 899 return false; 900 } 901 902 fclose(test_file); 903 904 OptionValueDictionary *data_dictionary = 905 data_dictionary_sp->GetAsDictionary(); 906 static constexpr llvm::StringLiteral description_key("assembly_string"); 907 static constexpr llvm::StringLiteral triple_key("triple"); 908 909 OptionValueSP value_sp = data_dictionary->GetValueForKey(description_key); 910 911 if (!value_sp) { 912 out_stream.Printf("Instruction::TestEmulation: Test file does not " 913 "contain description string.\n"); 914 return false; 915 } 916 917 SetDescription(value_sp->GetValueAs<llvm::StringRef>().value_or("")); 918 919 value_sp = data_dictionary->GetValueForKey(triple_key); 920 if (!value_sp) { 921 out_stream.Printf( 922 "Instruction::TestEmulation: Test file does not contain triple.\n"); 923 return false; 924 } 925 926 ArchSpec arch; 927 arch.SetTriple( 928 llvm::Triple(value_sp->GetValueAs<llvm::StringRef>().value_or(""))); 929 930 bool success = false; 931 std::unique_ptr<EmulateInstruction> insn_emulator_up( 932 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 933 if (insn_emulator_up) 934 success = 935 insn_emulator_up->TestEmulation(out_stream, arch, data_dictionary); 936 937 if (success) 938 out_stream.Printf("Emulation test succeeded."); 939 else 940 out_stream.Printf("Emulation test failed."); 941 942 return success; 943 } 944 945 bool Instruction::Emulate( 946 const ArchSpec &arch, uint32_t evaluate_options, void *baton, 947 EmulateInstruction::ReadMemoryCallback read_mem_callback, 948 EmulateInstruction::WriteMemoryCallback write_mem_callback, 949 EmulateInstruction::ReadRegisterCallback read_reg_callback, 950 EmulateInstruction::WriteRegisterCallback write_reg_callback) { 951 std::unique_ptr<EmulateInstruction> insn_emulator_up( 952 EmulateInstruction::FindPlugin(arch, eInstructionTypeAny, nullptr)); 953 if (insn_emulator_up) { 954 insn_emulator_up->SetBaton(baton); 955 insn_emulator_up->SetCallbacks(read_mem_callback, write_mem_callback, 956 read_reg_callback, write_reg_callback); 957 insn_emulator_up->SetInstruction(GetOpcode(), GetAddress(), nullptr); 958 return insn_emulator_up->EvaluateInstruction(evaluate_options); 959 } 960 961 return false; 962 } 963 964 uint32_t Instruction::GetData(DataExtractor &data) { 965 return m_opcode.GetData(data); 966 } 967 968 InstructionList::InstructionList() : m_instructions() {} 969 970 InstructionList::~InstructionList() = default; 971 972 size_t InstructionList::GetSize() const { return m_instructions.size(); } 973 974 uint32_t InstructionList::GetMaxOpcocdeByteSize() const { 975 uint32_t max_inst_size = 0; 976 collection::const_iterator pos, end; 977 for (pos = m_instructions.begin(), end = m_instructions.end(); pos != end; 978 ++pos) { 979 uint32_t inst_size = (*pos)->GetOpcode().GetByteSize(); 980 if (max_inst_size < inst_size) 981 max_inst_size = inst_size; 982 } 983 return max_inst_size; 984 } 985 986 InstructionSP InstructionList::GetInstructionAtIndex(size_t idx) const { 987 InstructionSP inst_sp; 988 if (idx < m_instructions.size()) 989 inst_sp = m_instructions[idx]; 990 return inst_sp; 991 } 992 993 InstructionSP InstructionList::GetInstructionAtAddress(const Address &address) { 994 uint32_t index = GetIndexOfInstructionAtAddress(address); 995 if (index != UINT32_MAX) 996 return GetInstructionAtIndex(index); 997 return nullptr; 998 } 999 1000 void InstructionList::Dump(Stream *s, bool show_address, bool show_bytes, 1001 bool show_control_flow_kind, 1002 const ExecutionContext *exe_ctx) { 1003 const uint32_t max_opcode_byte_size = GetMaxOpcocdeByteSize(); 1004 collection::const_iterator pos, begin, end; 1005 1006 const FormatEntity::Entry *disassembly_format = nullptr; 1007 FormatEntity::Entry format; 1008 if (exe_ctx && exe_ctx->HasTargetScope()) { 1009 disassembly_format = 1010 exe_ctx->GetTargetRef().GetDebugger().GetDisassemblyFormat(); 1011 } else { 1012 FormatEntity::Parse("${addr}: ", format); 1013 disassembly_format = &format; 1014 } 1015 1016 for (begin = m_instructions.begin(), end = m_instructions.end(), pos = begin; 1017 pos != end; ++pos) { 1018 if (pos != begin) 1019 s->EOL(); 1020 (*pos)->Dump(s, max_opcode_byte_size, show_address, show_bytes, 1021 show_control_flow_kind, exe_ctx, nullptr, nullptr, 1022 disassembly_format, 0); 1023 } 1024 } 1025 1026 void InstructionList::Clear() { m_instructions.clear(); } 1027 1028 void InstructionList::Append(lldb::InstructionSP &inst_sp) { 1029 if (inst_sp) 1030 m_instructions.push_back(inst_sp); 1031 } 1032 1033 uint32_t 1034 InstructionList::GetIndexOfNextBranchInstruction(uint32_t start, 1035 bool ignore_calls, 1036 bool *found_calls) const { 1037 size_t num_instructions = m_instructions.size(); 1038 1039 uint32_t next_branch = UINT32_MAX; 1040 1041 if (found_calls) 1042 *found_calls = false; 1043 for (size_t i = start; i < num_instructions; i++) { 1044 if (m_instructions[i]->DoesBranch()) { 1045 if (ignore_calls && m_instructions[i]->IsCall()) { 1046 if (found_calls) 1047 *found_calls = true; 1048 continue; 1049 } 1050 next_branch = i; 1051 break; 1052 } 1053 } 1054 1055 return next_branch; 1056 } 1057 1058 uint32_t 1059 InstructionList::GetIndexOfInstructionAtAddress(const Address &address) { 1060 size_t num_instructions = m_instructions.size(); 1061 uint32_t index = UINT32_MAX; 1062 for (size_t i = 0; i < num_instructions; i++) { 1063 if (m_instructions[i]->GetAddress() == address) { 1064 index = i; 1065 break; 1066 } 1067 } 1068 return index; 1069 } 1070 1071 uint32_t 1072 InstructionList::GetIndexOfInstructionAtLoadAddress(lldb::addr_t load_addr, 1073 Target &target) { 1074 Address address; 1075 address.SetLoadAddress(load_addr, &target); 1076 return GetIndexOfInstructionAtAddress(address); 1077 } 1078 1079 size_t Disassembler::ParseInstructions(Target &target, Address start, 1080 Limit limit, Stream *error_strm_ptr, 1081 bool force_live_memory) { 1082 m_instruction_list.Clear(); 1083 1084 if (!start.IsValid()) 1085 return 0; 1086 1087 start = ResolveAddress(target, start); 1088 1089 addr_t byte_size = limit.value; 1090 if (limit.kind == Limit::Instructions) 1091 byte_size *= m_arch.GetMaximumOpcodeByteSize(); 1092 auto data_sp = std::make_shared<DataBufferHeap>(byte_size, '\0'); 1093 1094 Status error; 1095 lldb::addr_t load_addr = LLDB_INVALID_ADDRESS; 1096 const size_t bytes_read = 1097 target.ReadMemory(start, data_sp->GetBytes(), data_sp->GetByteSize(), 1098 error, force_live_memory, &load_addr); 1099 const bool data_from_file = load_addr == LLDB_INVALID_ADDRESS; 1100 1101 if (bytes_read == 0) { 1102 if (error_strm_ptr) { 1103 if (const char *error_cstr = error.AsCString()) 1104 error_strm_ptr->Printf("error: %s\n", error_cstr); 1105 } 1106 return 0; 1107 } 1108 1109 if (bytes_read != data_sp->GetByteSize()) 1110 data_sp->SetByteSize(bytes_read); 1111 DataExtractor data(data_sp, m_arch.GetByteOrder(), 1112 m_arch.GetAddressByteSize()); 1113 return DecodeInstructions(start, data, 0, 1114 limit.kind == Limit::Instructions ? limit.value 1115 : UINT32_MAX, 1116 false, data_from_file); 1117 } 1118 1119 // Disassembler copy constructor 1120 Disassembler::Disassembler(const ArchSpec &arch, const char *flavor) 1121 : m_arch(arch), m_instruction_list(), m_flavor() { 1122 if (flavor == nullptr) 1123 m_flavor.assign("default"); 1124 else 1125 m_flavor.assign(flavor); 1126 1127 // If this is an arm variant that can only include thumb (T16, T32) 1128 // instructions, force the arch triple to be "thumbv.." instead of "armv..." 1129 if (arch.IsAlwaysThumbInstructions()) { 1130 std::string thumb_arch_name(arch.GetTriple().getArchName().str()); 1131 // Replace "arm" with "thumb" so we get all thumb variants correct 1132 if (thumb_arch_name.size() > 3) { 1133 thumb_arch_name.erase(0, 3); 1134 thumb_arch_name.insert(0, "thumb"); 1135 } 1136 m_arch.SetTriple(thumb_arch_name.c_str()); 1137 } 1138 } 1139 1140 Disassembler::~Disassembler() = default; 1141 1142 InstructionList &Disassembler::GetInstructionList() { 1143 return m_instruction_list; 1144 } 1145 1146 const InstructionList &Disassembler::GetInstructionList() const { 1147 return m_instruction_list; 1148 } 1149 1150 // Class PseudoInstruction 1151 1152 PseudoInstruction::PseudoInstruction() 1153 : Instruction(Address(), AddressClass::eUnknown), m_description() {} 1154 1155 PseudoInstruction::~PseudoInstruction() = default; 1156 1157 bool PseudoInstruction::DoesBranch() { 1158 // This is NOT a valid question for a pseudo instruction. 1159 return false; 1160 } 1161 1162 bool PseudoInstruction::HasDelaySlot() { 1163 // This is NOT a valid question for a pseudo instruction. 1164 return false; 1165 } 1166 1167 bool PseudoInstruction::IsLoad() { return false; } 1168 1169 bool PseudoInstruction::IsAuthenticated() { return false; } 1170 1171 size_t PseudoInstruction::Decode(const lldb_private::Disassembler &disassembler, 1172 const lldb_private::DataExtractor &data, 1173 lldb::offset_t data_offset) { 1174 return m_opcode.GetByteSize(); 1175 } 1176 1177 void PseudoInstruction::SetOpcode(size_t opcode_size, void *opcode_data) { 1178 if (!opcode_data) 1179 return; 1180 1181 switch (opcode_size) { 1182 case 8: { 1183 uint8_t value8 = *((uint8_t *)opcode_data); 1184 m_opcode.SetOpcode8(value8, eByteOrderInvalid); 1185 break; 1186 } 1187 case 16: { 1188 uint16_t value16 = *((uint16_t *)opcode_data); 1189 m_opcode.SetOpcode16(value16, eByteOrderInvalid); 1190 break; 1191 } 1192 case 32: { 1193 uint32_t value32 = *((uint32_t *)opcode_data); 1194 m_opcode.SetOpcode32(value32, eByteOrderInvalid); 1195 break; 1196 } 1197 case 64: { 1198 uint64_t value64 = *((uint64_t *)opcode_data); 1199 m_opcode.SetOpcode64(value64, eByteOrderInvalid); 1200 break; 1201 } 1202 default: 1203 break; 1204 } 1205 } 1206 1207 void PseudoInstruction::SetDescription(llvm::StringRef description) { 1208 m_description = std::string(description); 1209 } 1210 1211 Instruction::Operand Instruction::Operand::BuildRegister(ConstString &r) { 1212 Operand ret; 1213 ret.m_type = Type::Register; 1214 ret.m_register = r; 1215 return ret; 1216 } 1217 1218 Instruction::Operand Instruction::Operand::BuildImmediate(lldb::addr_t imm, 1219 bool neg) { 1220 Operand ret; 1221 ret.m_type = Type::Immediate; 1222 ret.m_immediate = imm; 1223 ret.m_negative = neg; 1224 return ret; 1225 } 1226 1227 Instruction::Operand Instruction::Operand::BuildImmediate(int64_t imm) { 1228 Operand ret; 1229 ret.m_type = Type::Immediate; 1230 if (imm < 0) { 1231 ret.m_immediate = -imm; 1232 ret.m_negative = true; 1233 } else { 1234 ret.m_immediate = imm; 1235 ret.m_negative = false; 1236 } 1237 return ret; 1238 } 1239 1240 Instruction::Operand 1241 Instruction::Operand::BuildDereference(const Operand &ref) { 1242 Operand ret; 1243 ret.m_type = Type::Dereference; 1244 ret.m_children = {ref}; 1245 return ret; 1246 } 1247 1248 Instruction::Operand Instruction::Operand::BuildSum(const Operand &lhs, 1249 const Operand &rhs) { 1250 Operand ret; 1251 ret.m_type = Type::Sum; 1252 ret.m_children = {lhs, rhs}; 1253 return ret; 1254 } 1255 1256 Instruction::Operand Instruction::Operand::BuildProduct(const Operand &lhs, 1257 const Operand &rhs) { 1258 Operand ret; 1259 ret.m_type = Type::Product; 1260 ret.m_children = {lhs, rhs}; 1261 return ret; 1262 } 1263 1264 std::function<bool(const Instruction::Operand &)> 1265 lldb_private::OperandMatchers::MatchBinaryOp( 1266 std::function<bool(const Instruction::Operand &)> base, 1267 std::function<bool(const Instruction::Operand &)> left, 1268 std::function<bool(const Instruction::Operand &)> right) { 1269 return [base, left, right](const Instruction::Operand &op) -> bool { 1270 return (base(op) && op.m_children.size() == 2 && 1271 ((left(op.m_children[0]) && right(op.m_children[1])) || 1272 (left(op.m_children[1]) && right(op.m_children[0])))); 1273 }; 1274 } 1275 1276 std::function<bool(const Instruction::Operand &)> 1277 lldb_private::OperandMatchers::MatchUnaryOp( 1278 std::function<bool(const Instruction::Operand &)> base, 1279 std::function<bool(const Instruction::Operand &)> child) { 1280 return [base, child](const Instruction::Operand &op) -> bool { 1281 return (base(op) && op.m_children.size() == 1 && child(op.m_children[0])); 1282 }; 1283 } 1284 1285 std::function<bool(const Instruction::Operand &)> 1286 lldb_private::OperandMatchers::MatchRegOp(const RegisterInfo &info) { 1287 return [&info](const Instruction::Operand &op) { 1288 return (op.m_type == Instruction::Operand::Type::Register && 1289 (op.m_register == ConstString(info.name) || 1290 op.m_register == ConstString(info.alt_name))); 1291 }; 1292 } 1293 1294 std::function<bool(const Instruction::Operand &)> 1295 lldb_private::OperandMatchers::FetchRegOp(ConstString ®) { 1296 return [®](const Instruction::Operand &op) { 1297 if (op.m_type != Instruction::Operand::Type::Register) { 1298 return false; 1299 } 1300 reg = op.m_register; 1301 return true; 1302 }; 1303 } 1304 1305 std::function<bool(const Instruction::Operand &)> 1306 lldb_private::OperandMatchers::MatchImmOp(int64_t imm) { 1307 return [imm](const Instruction::Operand &op) { 1308 return (op.m_type == Instruction::Operand::Type::Immediate && 1309 ((op.m_negative && op.m_immediate == (uint64_t)-imm) || 1310 (!op.m_negative && op.m_immediate == (uint64_t)imm))); 1311 }; 1312 } 1313 1314 std::function<bool(const Instruction::Operand &)> 1315 lldb_private::OperandMatchers::FetchImmOp(int64_t &imm) { 1316 return [&imm](const Instruction::Operand &op) { 1317 if (op.m_type != Instruction::Operand::Type::Immediate) { 1318 return false; 1319 } 1320 if (op.m_negative) { 1321 imm = -((int64_t)op.m_immediate); 1322 } else { 1323 imm = ((int64_t)op.m_immediate); 1324 } 1325 return true; 1326 }; 1327 } 1328 1329 std::function<bool(const Instruction::Operand &)> 1330 lldb_private::OperandMatchers::MatchOpType(Instruction::Operand::Type type) { 1331 return [type](const Instruction::Operand &op) { return op.m_type == type; }; 1332 } 1333