xref: /llvm-project/lldb/source/Commands/CommandObjectMemory.cpp (revision 536abf827b481f78a0879b02202fb9a3ffe3a908)
1 //===-- CommandObjectMemory.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "CommandObjectMemory.h"
10 #include "CommandObjectMemoryTag.h"
11 #include "lldb/Core/DumpDataExtractor.h"
12 #include "lldb/Core/Section.h"
13 #include "lldb/Core/ValueObjectMemory.h"
14 #include "lldb/Expression/ExpressionVariable.h"
15 #include "lldb/Host/OptionParser.h"
16 #include "lldb/Interpreter/CommandOptionArgumentTable.h"
17 #include "lldb/Interpreter/CommandReturnObject.h"
18 #include "lldb/Interpreter/OptionArgParser.h"
19 #include "lldb/Interpreter/OptionGroupFormat.h"
20 #include "lldb/Interpreter/OptionGroupMemoryTag.h"
21 #include "lldb/Interpreter/OptionGroupOutputFile.h"
22 #include "lldb/Interpreter/OptionGroupValueObjectDisplay.h"
23 #include "lldb/Interpreter/OptionValueLanguage.h"
24 #include "lldb/Interpreter/OptionValueString.h"
25 #include "lldb/Interpreter/Options.h"
26 #include "lldb/Symbol/SymbolFile.h"
27 #include "lldb/Symbol/TypeList.h"
28 #include "lldb/Target/ABI.h"
29 #include "lldb/Target/Language.h"
30 #include "lldb/Target/MemoryHistory.h"
31 #include "lldb/Target/MemoryRegionInfo.h"
32 #include "lldb/Target/Process.h"
33 #include "lldb/Target/StackFrame.h"
34 #include "lldb/Target/Target.h"
35 #include "lldb/Target/Thread.h"
36 #include "lldb/Utility/Args.h"
37 #include "lldb/Utility/DataBufferHeap.h"
38 #include "lldb/Utility/StreamString.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <cinttypes>
41 #include <memory>
42 #include <optional>
43 
44 using namespace lldb;
45 using namespace lldb_private;
46 
47 #define LLDB_OPTIONS_memory_read
48 #include "CommandOptions.inc"
49 
50 class OptionGroupReadMemory : public OptionGroup {
51 public:
52   OptionGroupReadMemory()
53       : m_num_per_line(1, 1), m_offset(0, 0),
54         m_language_for_type(eLanguageTypeUnknown) {}
55 
56   ~OptionGroupReadMemory() override = default;
57 
58   llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
59     return llvm::ArrayRef(g_memory_read_options);
60   }
61 
62   Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
63                         ExecutionContext *execution_context) override {
64     Status error;
65     const int short_option = g_memory_read_options[option_idx].short_option;
66 
67     switch (short_option) {
68     case 'l':
69       error = m_num_per_line.SetValueFromString(option_value);
70       if (m_num_per_line.GetCurrentValue() == 0)
71         error.SetErrorStringWithFormat(
72             "invalid value for --num-per-line option '%s'",
73             option_value.str().c_str());
74       break;
75 
76     case 'b':
77       m_output_as_binary = true;
78       break;
79 
80     case 't':
81       error = m_view_as_type.SetValueFromString(option_value);
82       break;
83 
84     case 'r':
85       m_force = true;
86       break;
87 
88     case 'x':
89       error = m_language_for_type.SetValueFromString(option_value);
90       break;
91 
92     case 'E':
93       error = m_offset.SetValueFromString(option_value);
94       break;
95 
96     default:
97       llvm_unreachable("Unimplemented option");
98     }
99     return error;
100   }
101 
102   void OptionParsingStarting(ExecutionContext *execution_context) override {
103     m_num_per_line.Clear();
104     m_output_as_binary = false;
105     m_view_as_type.Clear();
106     m_force = false;
107     m_offset.Clear();
108     m_language_for_type.Clear();
109   }
110 
111   Status FinalizeSettings(Target *target, OptionGroupFormat &format_options) {
112     Status error;
113     OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue();
114     OptionValueUInt64 &count_value = format_options.GetCountValue();
115     const bool byte_size_option_set = byte_size_value.OptionWasSet();
116     const bool num_per_line_option_set = m_num_per_line.OptionWasSet();
117     const bool count_option_set = format_options.GetCountValue().OptionWasSet();
118 
119     switch (format_options.GetFormat()) {
120     default:
121       break;
122 
123     case eFormatBoolean:
124       if (!byte_size_option_set)
125         byte_size_value = 1;
126       if (!num_per_line_option_set)
127         m_num_per_line = 1;
128       if (!count_option_set)
129         format_options.GetCountValue() = 8;
130       break;
131 
132     case eFormatCString:
133       break;
134 
135     case eFormatInstruction:
136       if (count_option_set)
137         byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize();
138       m_num_per_line = 1;
139       break;
140 
141     case eFormatAddressInfo:
142       if (!byte_size_option_set)
143         byte_size_value = target->GetArchitecture().GetAddressByteSize();
144       m_num_per_line = 1;
145       if (!count_option_set)
146         format_options.GetCountValue() = 8;
147       break;
148 
149     case eFormatPointer:
150       byte_size_value = target->GetArchitecture().GetAddressByteSize();
151       if (!num_per_line_option_set)
152         m_num_per_line = 4;
153       if (!count_option_set)
154         format_options.GetCountValue() = 8;
155       break;
156 
157     case eFormatBinary:
158     case eFormatFloat:
159     case eFormatOctal:
160     case eFormatDecimal:
161     case eFormatEnum:
162     case eFormatUnicode8:
163     case eFormatUnicode16:
164     case eFormatUnicode32:
165     case eFormatUnsigned:
166     case eFormatHexFloat:
167       if (!byte_size_option_set)
168         byte_size_value = 4;
169       if (!num_per_line_option_set)
170         m_num_per_line = 1;
171       if (!count_option_set)
172         format_options.GetCountValue() = 8;
173       break;
174 
175     case eFormatBytes:
176     case eFormatBytesWithASCII:
177       if (byte_size_option_set) {
178         if (byte_size_value > 1)
179           error.SetErrorStringWithFormat(
180               "display format (bytes/bytes with ASCII) conflicts with the "
181               "specified byte size %" PRIu64 "\n"
182               "\tconsider using a different display format or don't specify "
183               "the byte size.",
184               byte_size_value.GetCurrentValue());
185       } else
186         byte_size_value = 1;
187       if (!num_per_line_option_set)
188         m_num_per_line = 16;
189       if (!count_option_set)
190         format_options.GetCountValue() = 32;
191       break;
192 
193     case eFormatCharArray:
194     case eFormatChar:
195     case eFormatCharPrintable:
196       if (!byte_size_option_set)
197         byte_size_value = 1;
198       if (!num_per_line_option_set)
199         m_num_per_line = 32;
200       if (!count_option_set)
201         format_options.GetCountValue() = 64;
202       break;
203 
204     case eFormatComplex:
205       if (!byte_size_option_set)
206         byte_size_value = 8;
207       if (!num_per_line_option_set)
208         m_num_per_line = 1;
209       if (!count_option_set)
210         format_options.GetCountValue() = 8;
211       break;
212 
213     case eFormatComplexInteger:
214       if (!byte_size_option_set)
215         byte_size_value = 8;
216       if (!num_per_line_option_set)
217         m_num_per_line = 1;
218       if (!count_option_set)
219         format_options.GetCountValue() = 8;
220       break;
221 
222     case eFormatHex:
223       if (!byte_size_option_set)
224         byte_size_value = 4;
225       if (!num_per_line_option_set) {
226         switch (byte_size_value) {
227         case 1:
228         case 2:
229           m_num_per_line = 8;
230           break;
231         case 4:
232           m_num_per_line = 4;
233           break;
234         case 8:
235           m_num_per_line = 2;
236           break;
237         default:
238           m_num_per_line = 1;
239           break;
240         }
241       }
242       if (!count_option_set)
243         count_value = 8;
244       break;
245 
246     case eFormatVectorOfChar:
247     case eFormatVectorOfSInt8:
248     case eFormatVectorOfUInt8:
249     case eFormatVectorOfSInt16:
250     case eFormatVectorOfUInt16:
251     case eFormatVectorOfSInt32:
252     case eFormatVectorOfUInt32:
253     case eFormatVectorOfSInt64:
254     case eFormatVectorOfUInt64:
255     case eFormatVectorOfFloat16:
256     case eFormatVectorOfFloat32:
257     case eFormatVectorOfFloat64:
258     case eFormatVectorOfUInt128:
259       if (!byte_size_option_set)
260         byte_size_value = 128;
261       if (!num_per_line_option_set)
262         m_num_per_line = 1;
263       if (!count_option_set)
264         count_value = 4;
265       break;
266     }
267     return error;
268   }
269 
270   bool AnyOptionWasSet() const {
271     return m_num_per_line.OptionWasSet() || m_output_as_binary ||
272            m_view_as_type.OptionWasSet() || m_offset.OptionWasSet() ||
273            m_language_for_type.OptionWasSet();
274   }
275 
276   OptionValueUInt64 m_num_per_line;
277   bool m_output_as_binary = false;
278   OptionValueString m_view_as_type;
279   bool m_force = false;
280   OptionValueUInt64 m_offset;
281   OptionValueLanguage m_language_for_type;
282 };
283 
284 // Read memory from the inferior process
285 class CommandObjectMemoryRead : public CommandObjectParsed {
286 public:
287   CommandObjectMemoryRead(CommandInterpreter &interpreter)
288       : CommandObjectParsed(
289             interpreter, "memory read",
290             "Read from the memory of the current target process.", nullptr,
291             eCommandRequiresTarget | eCommandProcessMustBePaused),
292         m_format_options(eFormatBytesWithASCII, 1, 8),
293         m_memory_tag_options(/*note_binary=*/true),
294         m_prev_format_options(eFormatBytesWithASCII, 1, 8) {
295     CommandArgumentEntry arg1;
296     CommandArgumentEntry arg2;
297     CommandArgumentData start_addr_arg;
298     CommandArgumentData end_addr_arg;
299 
300     // Define the first (and only) variant of this arg.
301     start_addr_arg.arg_type = eArgTypeAddressOrExpression;
302     start_addr_arg.arg_repetition = eArgRepeatPlain;
303 
304     // There is only one variant this argument could be; put it into the
305     // argument entry.
306     arg1.push_back(start_addr_arg);
307 
308     // Define the first (and only) variant of this arg.
309     end_addr_arg.arg_type = eArgTypeAddressOrExpression;
310     end_addr_arg.arg_repetition = eArgRepeatOptional;
311 
312     // There is only one variant this argument could be; put it into the
313     // argument entry.
314     arg2.push_back(end_addr_arg);
315 
316     // Push the data for the first argument into the m_arguments vector.
317     m_arguments.push_back(arg1);
318     m_arguments.push_back(arg2);
319 
320     // Add the "--format" and "--count" options to group 1 and 3
321     m_option_group.Append(&m_format_options,
322                           OptionGroupFormat::OPTION_GROUP_FORMAT |
323                               OptionGroupFormat::OPTION_GROUP_COUNT,
324                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
325     m_option_group.Append(&m_format_options,
326                           OptionGroupFormat::OPTION_GROUP_GDB_FMT,
327                           LLDB_OPT_SET_1 | LLDB_OPT_SET_3);
328     // Add the "--size" option to group 1 and 2
329     m_option_group.Append(&m_format_options,
330                           OptionGroupFormat::OPTION_GROUP_SIZE,
331                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
332     m_option_group.Append(&m_memory_options);
333     m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL,
334                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
335     m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3);
336     m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
337                           LLDB_OPT_SET_ALL);
338     m_option_group.Finalize();
339   }
340 
341   ~CommandObjectMemoryRead() override = default;
342 
343   Options *GetOptions() override { return &m_option_group; }
344 
345   std::optional<std::string> GetRepeatCommand(Args &current_command_args,
346                                               uint32_t index) override {
347     return m_cmd_name;
348   }
349 
350 protected:
351   void DoExecute(Args &command, CommandReturnObject &result) override {
352     // No need to check "target" for validity as eCommandRequiresTarget ensures
353     // it is valid
354     Target *target = m_exe_ctx.GetTargetPtr();
355 
356     const size_t argc = command.GetArgumentCount();
357 
358     if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) {
359       result.AppendErrorWithFormat("%s takes a start address expression with "
360                                    "an optional end address expression.\n",
361                                    m_cmd_name.c_str());
362       result.AppendWarning("Expressions should be quoted if they contain "
363                            "spaces or other special characters.");
364       return;
365     }
366 
367     CompilerType compiler_type;
368     Status error;
369 
370     const char *view_as_type_cstr =
371         m_memory_options.m_view_as_type.GetCurrentValue();
372     if (view_as_type_cstr && view_as_type_cstr[0]) {
373       // We are viewing memory as a type
374 
375       uint32_t reference_count = 0;
376       uint32_t pointer_count = 0;
377       size_t idx;
378 
379 #define ALL_KEYWORDS                                                           \
380   KEYWORD("const")                                                             \
381   KEYWORD("volatile")                                                          \
382   KEYWORD("restrict")                                                          \
383   KEYWORD("struct")                                                            \
384   KEYWORD("class")                                                             \
385   KEYWORD("union")
386 
387 #define KEYWORD(s) s,
388       static const char *g_keywords[] = {ALL_KEYWORDS};
389 #undef KEYWORD
390 
391 #define KEYWORD(s) (sizeof(s) - 1),
392       static const int g_keyword_lengths[] = {ALL_KEYWORDS};
393 #undef KEYWORD
394 
395 #undef ALL_KEYWORDS
396 
397       static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *);
398       std::string type_str(view_as_type_cstr);
399 
400       // Remove all instances of g_keywords that are followed by spaces
401       for (size_t i = 0; i < g_num_keywords; ++i) {
402         const char *keyword = g_keywords[i];
403         int keyword_len = g_keyword_lengths[i];
404 
405         idx = 0;
406         while ((idx = type_str.find(keyword, idx)) != std::string::npos) {
407           if (type_str[idx + keyword_len] == ' ' ||
408               type_str[idx + keyword_len] == '\t') {
409             type_str.erase(idx, keyword_len + 1);
410             idx = 0;
411           } else {
412             idx += keyword_len;
413           }
414         }
415       }
416       bool done = type_str.empty();
417       //
418       idx = type_str.find_first_not_of(" \t");
419       if (idx > 0 && idx != std::string::npos)
420         type_str.erase(0, idx);
421       while (!done) {
422         // Strip trailing spaces
423         if (type_str.empty())
424           done = true;
425         else {
426           switch (type_str[type_str.size() - 1]) {
427           case '*':
428             ++pointer_count;
429             [[fallthrough]];
430           case ' ':
431           case '\t':
432             type_str.erase(type_str.size() - 1);
433             break;
434 
435           case '&':
436             if (reference_count == 0) {
437               reference_count = 1;
438               type_str.erase(type_str.size() - 1);
439             } else {
440               result.AppendErrorWithFormat("invalid type string: '%s'\n",
441                                            view_as_type_cstr);
442               return;
443             }
444             break;
445 
446           default:
447             done = true;
448             break;
449           }
450         }
451       }
452 
453       ConstString lookup_type_name(type_str.c_str());
454       StackFrame *frame = m_exe_ctx.GetFramePtr();
455       ModuleSP search_first;
456       if (frame)
457         search_first = frame->GetSymbolContext(eSymbolContextModule).module_sp;
458       TypeQuery query(lookup_type_name.GetStringRef(),
459                       TypeQueryOptions::e_find_one);
460       TypeResults results;
461       target->GetImages().FindTypes(search_first.get(), query, results);
462       TypeSP type_sp = results.GetFirstType();
463 
464       if (!type_sp && lookup_type_name.GetCString()) {
465         LanguageType language_for_type =
466             m_memory_options.m_language_for_type.GetCurrentValue();
467         std::set<LanguageType> languages_to_check;
468         if (language_for_type != eLanguageTypeUnknown) {
469           languages_to_check.insert(language_for_type);
470         } else {
471           languages_to_check = Language::GetSupportedLanguages();
472         }
473 
474         std::set<CompilerType> user_defined_types;
475         for (auto lang : languages_to_check) {
476           if (auto *persistent_vars =
477                   target->GetPersistentExpressionStateForLanguage(lang)) {
478             if (std::optional<CompilerType> type =
479                     persistent_vars->GetCompilerTypeFromPersistentDecl(
480                         lookup_type_name)) {
481               user_defined_types.emplace(*type);
482             }
483           }
484         }
485 
486         if (user_defined_types.size() > 1) {
487           result.AppendErrorWithFormat(
488               "Mutiple types found matching raw type '%s', please disambiguate "
489               "by specifying the language with -x",
490               lookup_type_name.GetCString());
491           return;
492         }
493 
494         if (user_defined_types.size() == 1) {
495           compiler_type = *user_defined_types.begin();
496         }
497       }
498 
499       if (!compiler_type.IsValid()) {
500         if (type_sp) {
501           compiler_type = type_sp->GetFullCompilerType();
502         } else {
503           result.AppendErrorWithFormat("unable to find any types that match "
504                                        "the raw type '%s' for full type '%s'\n",
505                                        lookup_type_name.GetCString(),
506                                        view_as_type_cstr);
507           return;
508         }
509       }
510 
511       while (pointer_count > 0) {
512         CompilerType pointer_type = compiler_type.GetPointerType();
513         if (pointer_type.IsValid())
514           compiler_type = pointer_type;
515         else {
516           result.AppendError("unable make a pointer type\n");
517           return;
518         }
519         --pointer_count;
520       }
521 
522       std::optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
523       if (!size) {
524         result.AppendErrorWithFormat(
525             "unable to get the byte size of the type '%s'\n",
526             view_as_type_cstr);
527         return;
528       }
529       m_format_options.GetByteSizeValue() = *size;
530 
531       if (!m_format_options.GetCountValue().OptionWasSet())
532         m_format_options.GetCountValue() = 1;
533     } else {
534       error = m_memory_options.FinalizeSettings(target, m_format_options);
535     }
536 
537     // Look for invalid combinations of settings
538     if (error.Fail()) {
539       result.AppendError(error.AsCString());
540       return;
541     }
542 
543     lldb::addr_t addr;
544     size_t total_byte_size = 0;
545     if (argc == 0) {
546       // Use the last address and byte size and all options as they were if no
547       // options have been set
548       addr = m_next_addr;
549       total_byte_size = m_prev_byte_size;
550       compiler_type = m_prev_compiler_type;
551       if (!m_format_options.AnyOptionWasSet() &&
552           !m_memory_options.AnyOptionWasSet() &&
553           !m_outfile_options.AnyOptionWasSet() &&
554           !m_varobj_options.AnyOptionWasSet() &&
555           !m_memory_tag_options.AnyOptionWasSet()) {
556         m_format_options = m_prev_format_options;
557         m_memory_options = m_prev_memory_options;
558         m_outfile_options = m_prev_outfile_options;
559         m_varobj_options = m_prev_varobj_options;
560         m_memory_tag_options = m_prev_memory_tag_options;
561       }
562     }
563 
564     size_t item_count = m_format_options.GetCountValue().GetCurrentValue();
565 
566     // TODO For non-8-bit byte addressable architectures this needs to be
567     // revisited to fully support all lldb's range of formatting options.
568     // Furthermore code memory reads (for those architectures) will not be
569     // correctly formatted even w/o formatting options.
570     size_t item_byte_size =
571         target->GetArchitecture().GetDataByteSize() > 1
572             ? target->GetArchitecture().GetDataByteSize()
573             : m_format_options.GetByteSizeValue().GetCurrentValue();
574 
575     const size_t num_per_line =
576         m_memory_options.m_num_per_line.GetCurrentValue();
577 
578     if (total_byte_size == 0) {
579       total_byte_size = item_count * item_byte_size;
580       if (total_byte_size == 0)
581         total_byte_size = 32;
582     }
583 
584     if (argc > 0)
585       addr = OptionArgParser::ToAddress(&m_exe_ctx, command[0].ref(),
586                                         LLDB_INVALID_ADDRESS, &error);
587 
588     if (addr == LLDB_INVALID_ADDRESS) {
589       result.AppendError("invalid start address expression.");
590       result.AppendError(error.AsCString());
591       return;
592     }
593 
594     if (argc == 2) {
595       lldb::addr_t end_addr = OptionArgParser::ToAddress(
596           &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, nullptr);
597 
598       if (end_addr == LLDB_INVALID_ADDRESS) {
599         result.AppendError("invalid end address expression.");
600         result.AppendError(error.AsCString());
601         return;
602       } else if (end_addr <= addr) {
603         result.AppendErrorWithFormat(
604             "end address (0x%" PRIx64
605             ") must be greater than the start address (0x%" PRIx64 ").\n",
606             end_addr, addr);
607         return;
608       } else if (m_format_options.GetCountValue().OptionWasSet()) {
609         result.AppendErrorWithFormat(
610             "specify either the end address (0x%" PRIx64
611             ") or the count (--count %" PRIu64 "), not both.\n",
612             end_addr, (uint64_t)item_count);
613         return;
614       }
615 
616       total_byte_size = end_addr - addr;
617       item_count = total_byte_size / item_byte_size;
618     }
619 
620     uint32_t max_unforced_size = target->GetMaximumMemReadSize();
621 
622     if (total_byte_size > max_unforced_size && !m_memory_options.m_force) {
623       result.AppendErrorWithFormat(
624           "Normally, \'memory read\' will not read over %" PRIu32
625           " bytes of data.\n",
626           max_unforced_size);
627       result.AppendErrorWithFormat(
628           "Please use --force to override this restriction just once.\n");
629       result.AppendErrorWithFormat("or set target.max-memory-read-size if you "
630                                    "will often need a larger limit.\n");
631       return;
632     }
633 
634     WritableDataBufferSP data_sp;
635     size_t bytes_read = 0;
636     if (compiler_type.GetOpaqueQualType()) {
637       // Make sure we don't display our type as ASCII bytes like the default
638       // memory read
639       if (!m_format_options.GetFormatValue().OptionWasSet())
640         m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault);
641 
642       std::optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
643       if (!size) {
644         result.AppendError("can't get size of type");
645         return;
646       }
647       bytes_read = *size * m_format_options.GetCountValue().GetCurrentValue();
648 
649       if (argc > 0)
650         addr = addr + (*size * m_memory_options.m_offset.GetCurrentValue());
651     } else if (m_format_options.GetFormatValue().GetCurrentValue() !=
652                eFormatCString) {
653       data_sp = std::make_shared<DataBufferHeap>(total_byte_size, '\0');
654       if (data_sp->GetBytes() == nullptr) {
655         result.AppendErrorWithFormat(
656             "can't allocate 0x%" PRIx32
657             " bytes for the memory read buffer, specify a smaller size to read",
658             (uint32_t)total_byte_size);
659         return;
660       }
661 
662       Address address(addr, nullptr);
663       bytes_read = target->ReadMemory(address, data_sp->GetBytes(),
664                                       data_sp->GetByteSize(), error, true);
665       if (bytes_read == 0) {
666         const char *error_cstr = error.AsCString();
667         if (error_cstr && error_cstr[0]) {
668           result.AppendError(error_cstr);
669         } else {
670           result.AppendErrorWithFormat(
671               "failed to read memory from 0x%" PRIx64 ".\n", addr);
672         }
673         return;
674       }
675 
676       if (bytes_read < total_byte_size)
677         result.AppendWarningWithFormat(
678             "Not all bytes (%" PRIu64 "/%" PRIu64
679             ") were able to be read from 0x%" PRIx64 ".\n",
680             (uint64_t)bytes_read, (uint64_t)total_byte_size, addr);
681     } else {
682       // we treat c-strings as a special case because they do not have a fixed
683       // size
684       if (m_format_options.GetByteSizeValue().OptionWasSet() &&
685           !m_format_options.HasGDBFormat())
686         item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue();
687       else
688         item_byte_size = target->GetMaximumSizeOfStringSummary();
689       if (!m_format_options.GetCountValue().OptionWasSet())
690         item_count = 1;
691       data_sp = std::make_shared<DataBufferHeap>(
692           (item_byte_size + 1) * item_count,
693           '\0'); // account for NULLs as necessary
694       if (data_sp->GetBytes() == nullptr) {
695         result.AppendErrorWithFormat(
696             "can't allocate 0x%" PRIx64
697             " bytes for the memory read buffer, specify a smaller size to read",
698             (uint64_t)((item_byte_size + 1) * item_count));
699         return;
700       }
701       uint8_t *data_ptr = data_sp->GetBytes();
702       auto data_addr = addr;
703       auto count = item_count;
704       item_count = 0;
705       bool break_on_no_NULL = false;
706       while (item_count < count) {
707         std::string buffer;
708         buffer.resize(item_byte_size + 1, 0);
709         Status error;
710         size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0],
711                                                     item_byte_size + 1, error);
712         if (error.Fail()) {
713           result.AppendErrorWithFormat(
714               "failed to read memory from 0x%" PRIx64 ".\n", addr);
715           return;
716         }
717 
718         if (item_byte_size == read) {
719           result.AppendWarningWithFormat(
720               "unable to find a NULL terminated string at 0x%" PRIx64
721               ". Consider increasing the maximum read length.\n",
722               data_addr);
723           --read;
724           break_on_no_NULL = true;
725         } else
726           ++read; // account for final NULL byte
727 
728         memcpy(data_ptr, &buffer[0], read);
729         data_ptr += read;
730         data_addr += read;
731         bytes_read += read;
732         item_count++; // if we break early we know we only read item_count
733                       // strings
734 
735         if (break_on_no_NULL)
736           break;
737       }
738       data_sp =
739           std::make_shared<DataBufferHeap>(data_sp->GetBytes(), bytes_read + 1);
740     }
741 
742     m_next_addr = addr + bytes_read;
743     m_prev_byte_size = bytes_read;
744     m_prev_format_options = m_format_options;
745     m_prev_memory_options = m_memory_options;
746     m_prev_outfile_options = m_outfile_options;
747     m_prev_varobj_options = m_varobj_options;
748     m_prev_memory_tag_options = m_memory_tag_options;
749     m_prev_compiler_type = compiler_type;
750 
751     std::unique_ptr<Stream> output_stream_storage;
752     Stream *output_stream_p = nullptr;
753     const FileSpec &outfile_spec =
754         m_outfile_options.GetFile().GetCurrentValue();
755 
756     std::string path = outfile_spec.GetPath();
757     if (outfile_spec) {
758 
759       File::OpenOptions open_options =
760           File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate;
761       const bool append = m_outfile_options.GetAppend().GetCurrentValue();
762       open_options |=
763           append ? File::eOpenOptionAppend : File::eOpenOptionTruncate;
764 
765       auto outfile = FileSystem::Instance().Open(outfile_spec, open_options);
766 
767       if (outfile) {
768         auto outfile_stream_up =
769             std::make_unique<StreamFile>(std::move(outfile.get()));
770         if (m_memory_options.m_output_as_binary) {
771           const size_t bytes_written =
772               outfile_stream_up->Write(data_sp->GetBytes(), bytes_read);
773           if (bytes_written > 0) {
774             result.GetOutputStream().Printf(
775                 "%zi bytes %s to '%s'\n", bytes_written,
776                 append ? "appended" : "written", path.c_str());
777             return;
778           } else {
779             result.AppendErrorWithFormat("Failed to write %" PRIu64
780                                          " bytes to '%s'.\n",
781                                          (uint64_t)bytes_read, path.c_str());
782             return;
783           }
784         } else {
785           // We are going to write ASCII to the file just point the
786           // output_stream to our outfile_stream...
787           output_stream_storage = std::move(outfile_stream_up);
788           output_stream_p = output_stream_storage.get();
789         }
790       } else {
791         result.AppendErrorWithFormat("Failed to open file '%s' for %s:\n",
792                                      path.c_str(), append ? "append" : "write");
793 
794         result.AppendError(llvm::toString(outfile.takeError()));
795         return;
796       }
797     } else {
798       output_stream_p = &result.GetOutputStream();
799     }
800 
801     ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope();
802     if (compiler_type.GetOpaqueQualType()) {
803       for (uint32_t i = 0; i < item_count; ++i) {
804         addr_t item_addr = addr + (i * item_byte_size);
805         Address address(item_addr);
806         StreamString name_strm;
807         name_strm.Printf("0x%" PRIx64, item_addr);
808         ValueObjectSP valobj_sp(ValueObjectMemory::Create(
809             exe_scope, name_strm.GetString(), address, compiler_type));
810         if (valobj_sp) {
811           Format format = m_format_options.GetFormat();
812           if (format != eFormatDefault)
813             valobj_sp->SetFormat(format);
814 
815           DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions(
816               eLanguageRuntimeDescriptionDisplayVerbosityFull, format));
817 
818           valobj_sp->Dump(*output_stream_p, options);
819         } else {
820           result.AppendErrorWithFormat(
821               "failed to create a value object for: (%s) %s\n",
822               view_as_type_cstr, name_strm.GetData());
823           return;
824         }
825       }
826       return;
827     }
828 
829     result.SetStatus(eReturnStatusSuccessFinishResult);
830     DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(),
831                        target->GetArchitecture().GetAddressByteSize(),
832                        target->GetArchitecture().GetDataByteSize());
833 
834     Format format = m_format_options.GetFormat();
835     if (((format == eFormatChar) || (format == eFormatCharPrintable)) &&
836         (item_byte_size != 1)) {
837       // if a count was not passed, or it is 1
838       if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) {
839         // this turns requests such as
840         // memory read -fc -s10 -c1 *charPtrPtr
841         // which make no sense (what is a char of size 10?) into a request for
842         // fetching 10 chars of size 1 from the same memory location
843         format = eFormatCharArray;
844         item_count = item_byte_size;
845         item_byte_size = 1;
846       } else {
847         // here we passed a count, and it was not 1 so we have a byte_size and
848         // a count we could well multiply those, but instead let's just fail
849         result.AppendErrorWithFormat(
850             "reading memory as characters of size %" PRIu64 " is not supported",
851             (uint64_t)item_byte_size);
852         return;
853       }
854     }
855 
856     assert(output_stream_p);
857     size_t bytes_dumped = DumpDataExtractor(
858         data, output_stream_p, 0, format, item_byte_size, item_count,
859         num_per_line / target->GetArchitecture().GetDataByteSize(), addr, 0, 0,
860         exe_scope, m_memory_tag_options.GetShowTags().GetCurrentValue());
861     m_next_addr = addr + bytes_dumped;
862     output_stream_p->EOL();
863   }
864 
865   OptionGroupOptions m_option_group;
866   OptionGroupFormat m_format_options;
867   OptionGroupReadMemory m_memory_options;
868   OptionGroupOutputFile m_outfile_options;
869   OptionGroupValueObjectDisplay m_varobj_options;
870   OptionGroupMemoryTag m_memory_tag_options;
871   lldb::addr_t m_next_addr = LLDB_INVALID_ADDRESS;
872   lldb::addr_t m_prev_byte_size = 0;
873   OptionGroupFormat m_prev_format_options;
874   OptionGroupReadMemory m_prev_memory_options;
875   OptionGroupOutputFile m_prev_outfile_options;
876   OptionGroupValueObjectDisplay m_prev_varobj_options;
877   OptionGroupMemoryTag m_prev_memory_tag_options;
878   CompilerType m_prev_compiler_type;
879 };
880 
881 #define LLDB_OPTIONS_memory_find
882 #include "CommandOptions.inc"
883 
884 // Find the specified data in memory
885 class CommandObjectMemoryFind : public CommandObjectParsed {
886 public:
887   class OptionGroupFindMemory : public OptionGroup {
888   public:
889     OptionGroupFindMemory() : m_count(1), m_offset(0) {}
890 
891     ~OptionGroupFindMemory() override = default;
892 
893     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
894       return llvm::ArrayRef(g_memory_find_options);
895     }
896 
897     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
898                           ExecutionContext *execution_context) override {
899       Status error;
900       const int short_option = g_memory_find_options[option_idx].short_option;
901 
902       switch (short_option) {
903       case 'e':
904         m_expr.SetValueFromString(option_value);
905         break;
906 
907       case 's':
908         m_string.SetValueFromString(option_value);
909         break;
910 
911       case 'c':
912         if (m_count.SetValueFromString(option_value).Fail())
913           error.SetErrorString("unrecognized value for count");
914         break;
915 
916       case 'o':
917         if (m_offset.SetValueFromString(option_value).Fail())
918           error.SetErrorString("unrecognized value for dump-offset");
919         break;
920 
921       default:
922         llvm_unreachable("Unimplemented option");
923       }
924       return error;
925     }
926 
927     void OptionParsingStarting(ExecutionContext *execution_context) override {
928       m_expr.Clear();
929       m_string.Clear();
930       m_count.Clear();
931     }
932 
933     OptionValueString m_expr;
934     OptionValueString m_string;
935     OptionValueUInt64 m_count;
936     OptionValueUInt64 m_offset;
937   };
938 
939   CommandObjectMemoryFind(CommandInterpreter &interpreter)
940       : CommandObjectParsed(
941             interpreter, "memory find",
942             "Find a value in the memory of the current target process.",
943             nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched) {
944     CommandArgumentEntry arg1;
945     CommandArgumentEntry arg2;
946     CommandArgumentData addr_arg;
947     CommandArgumentData value_arg;
948 
949     // Define the first (and only) variant of this arg.
950     addr_arg.arg_type = eArgTypeAddressOrExpression;
951     addr_arg.arg_repetition = eArgRepeatPlain;
952 
953     // There is only one variant this argument could be; put it into the
954     // argument entry.
955     arg1.push_back(addr_arg);
956 
957     // Define the first (and only) variant of this arg.
958     value_arg.arg_type = eArgTypeAddressOrExpression;
959     value_arg.arg_repetition = eArgRepeatPlain;
960 
961     // There is only one variant this argument could be; put it into the
962     // argument entry.
963     arg2.push_back(value_arg);
964 
965     // Push the data for the first argument into the m_arguments vector.
966     m_arguments.push_back(arg1);
967     m_arguments.push_back(arg2);
968 
969     m_option_group.Append(&m_memory_options);
970     m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
971                           LLDB_OPT_SET_ALL);
972     m_option_group.Finalize();
973   }
974 
975   ~CommandObjectMemoryFind() override = default;
976 
977   Options *GetOptions() override { return &m_option_group; }
978 
979 protected:
980   void DoExecute(Args &command, CommandReturnObject &result) override {
981     // No need to check "process" for validity as eCommandRequiresProcess
982     // ensures it is valid
983     Process *process = m_exe_ctx.GetProcessPtr();
984 
985     const size_t argc = command.GetArgumentCount();
986 
987     if (argc != 2) {
988       result.AppendError("two addresses needed for memory find");
989       return;
990     }
991 
992     Status error;
993     lldb::addr_t low_addr = OptionArgParser::ToAddress(
994         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
995     if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
996       result.AppendError("invalid low address");
997       return;
998     }
999     lldb::addr_t high_addr = OptionArgParser::ToAddress(
1000         &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, &error);
1001     if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1002       result.AppendError("invalid high address");
1003       return;
1004     }
1005 
1006     if (high_addr <= low_addr) {
1007       result.AppendError(
1008           "starting address must be smaller than ending address");
1009       return;
1010     }
1011 
1012     lldb::addr_t found_location = LLDB_INVALID_ADDRESS;
1013 
1014     DataBufferHeap buffer;
1015 
1016     if (m_memory_options.m_string.OptionWasSet()) {
1017       llvm::StringRef str =
1018           m_memory_options.m_string.GetValueAs<llvm::StringRef>().value_or("");
1019       if (str.empty()) {
1020         result.AppendError("search string must have non-zero length.");
1021         return;
1022       }
1023       buffer.CopyData(str);
1024     } else if (m_memory_options.m_expr.OptionWasSet()) {
1025       StackFrame *frame = m_exe_ctx.GetFramePtr();
1026       ValueObjectSP result_sp;
1027       if ((eExpressionCompleted ==
1028            process->GetTarget().EvaluateExpression(
1029                m_memory_options.m_expr.GetValueAs<llvm::StringRef>().value_or(
1030                    ""),
1031                frame, result_sp)) &&
1032           result_sp) {
1033         uint64_t value = result_sp->GetValueAsUnsigned(0);
1034         std::optional<uint64_t> size =
1035             result_sp->GetCompilerType().GetByteSize(nullptr);
1036         if (!size)
1037           return;
1038         switch (*size) {
1039         case 1: {
1040           uint8_t byte = (uint8_t)value;
1041           buffer.CopyData(&byte, 1);
1042         } break;
1043         case 2: {
1044           uint16_t word = (uint16_t)value;
1045           buffer.CopyData(&word, 2);
1046         } break;
1047         case 4: {
1048           uint32_t lword = (uint32_t)value;
1049           buffer.CopyData(&lword, 4);
1050         } break;
1051         case 8: {
1052           buffer.CopyData(&value, 8);
1053         } break;
1054         case 3:
1055         case 5:
1056         case 6:
1057         case 7:
1058           result.AppendError("unknown type. pass a string instead");
1059           return;
1060         default:
1061           result.AppendError(
1062               "result size larger than 8 bytes. pass a string instead");
1063           return;
1064         }
1065       } else {
1066         result.AppendError(
1067             "expression evaluation failed. pass a string instead");
1068         return;
1069       }
1070     } else {
1071       result.AppendError(
1072           "please pass either a block of text, or an expression to evaluate.");
1073       return;
1074     }
1075 
1076     size_t count = m_memory_options.m_count.GetCurrentValue();
1077     found_location = low_addr;
1078     bool ever_found = false;
1079     while (count) {
1080       found_location = process->FindInMemory(
1081           found_location, high_addr, buffer.GetBytes(), buffer.GetByteSize());
1082       if (found_location == LLDB_INVALID_ADDRESS) {
1083         if (!ever_found) {
1084           result.AppendMessage("data not found within the range.\n");
1085           result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult);
1086         } else
1087           result.AppendMessage("no more matches within the range.\n");
1088         break;
1089       }
1090       result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n",
1091                                      found_location);
1092 
1093       DataBufferHeap dumpbuffer(32, 0);
1094       process->ReadMemory(
1095           found_location + m_memory_options.m_offset.GetCurrentValue(),
1096           dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error);
1097       if (!error.Fail()) {
1098         DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
1099                            process->GetByteOrder(),
1100                            process->GetAddressByteSize());
1101         DumpDataExtractor(
1102             data, &result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1,
1103             dumpbuffer.GetByteSize(), 16,
1104             found_location + m_memory_options.m_offset.GetCurrentValue(), 0, 0,
1105             m_exe_ctx.GetBestExecutionContextScope(),
1106             m_memory_tag_options.GetShowTags().GetCurrentValue());
1107         result.GetOutputStream().EOL();
1108       }
1109 
1110       --count;
1111       found_location++;
1112       ever_found = true;
1113     }
1114 
1115     result.SetStatus(lldb::eReturnStatusSuccessFinishResult);
1116   }
1117 
1118   OptionGroupOptions m_option_group;
1119   OptionGroupFindMemory m_memory_options;
1120   OptionGroupMemoryTag m_memory_tag_options;
1121 };
1122 
1123 #define LLDB_OPTIONS_memory_write
1124 #include "CommandOptions.inc"
1125 
1126 // Write memory to the inferior process
1127 class CommandObjectMemoryWrite : public CommandObjectParsed {
1128 public:
1129   class OptionGroupWriteMemory : public OptionGroup {
1130   public:
1131     OptionGroupWriteMemory() = default;
1132 
1133     ~OptionGroupWriteMemory() override = default;
1134 
1135     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1136       return llvm::ArrayRef(g_memory_write_options);
1137     }
1138 
1139     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1140                           ExecutionContext *execution_context) override {
1141       Status error;
1142       const int short_option = g_memory_write_options[option_idx].short_option;
1143 
1144       switch (short_option) {
1145       case 'i':
1146         m_infile.SetFile(option_value, FileSpec::Style::native);
1147         FileSystem::Instance().Resolve(m_infile);
1148         if (!FileSystem::Instance().Exists(m_infile)) {
1149           m_infile.Clear();
1150           error.SetErrorStringWithFormat("input file does not exist: '%s'",
1151                                          option_value.str().c_str());
1152         }
1153         break;
1154 
1155       case 'o': {
1156         if (option_value.getAsInteger(0, m_infile_offset)) {
1157           m_infile_offset = 0;
1158           error.SetErrorStringWithFormat("invalid offset string '%s'",
1159                                          option_value.str().c_str());
1160         }
1161       } break;
1162 
1163       default:
1164         llvm_unreachable("Unimplemented option");
1165       }
1166       return error;
1167     }
1168 
1169     void OptionParsingStarting(ExecutionContext *execution_context) override {
1170       m_infile.Clear();
1171       m_infile_offset = 0;
1172     }
1173 
1174     FileSpec m_infile;
1175     off_t m_infile_offset;
1176   };
1177 
1178   CommandObjectMemoryWrite(CommandInterpreter &interpreter)
1179       : CommandObjectParsed(
1180             interpreter, "memory write",
1181             "Write to the memory of the current target process.", nullptr,
1182             eCommandRequiresProcess | eCommandProcessMustBeLaunched),
1183         m_format_options(
1184             eFormatBytes, 1, UINT64_MAX,
1185             {std::make_tuple(
1186                  eArgTypeFormat,
1187                  "The format to use for each of the value to be written."),
1188              std::make_tuple(eArgTypeByteSize,
1189                              "The size in bytes to write from input file or "
1190                              "each value.")}) {
1191     CommandArgumentEntry arg1;
1192     CommandArgumentEntry arg2;
1193     CommandArgumentData addr_arg;
1194     CommandArgumentData value_arg;
1195 
1196     // Define the first (and only) variant of this arg.
1197     addr_arg.arg_type = eArgTypeAddress;
1198     addr_arg.arg_repetition = eArgRepeatPlain;
1199 
1200     // There is only one variant this argument could be; put it into the
1201     // argument entry.
1202     arg1.push_back(addr_arg);
1203 
1204     // Define the first (and only) variant of this arg.
1205     value_arg.arg_type = eArgTypeValue;
1206     value_arg.arg_repetition = eArgRepeatPlus;
1207     value_arg.arg_opt_set_association = LLDB_OPT_SET_1;
1208 
1209     // There is only one variant this argument could be; put it into the
1210     // argument entry.
1211     arg2.push_back(value_arg);
1212 
1213     // Push the data for the first argument into the m_arguments vector.
1214     m_arguments.push_back(arg1);
1215     m_arguments.push_back(arg2);
1216 
1217     m_option_group.Append(&m_format_options,
1218                           OptionGroupFormat::OPTION_GROUP_FORMAT,
1219                           LLDB_OPT_SET_1);
1220     m_option_group.Append(&m_format_options,
1221                           OptionGroupFormat::OPTION_GROUP_SIZE,
1222                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
1223     m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2);
1224     m_option_group.Finalize();
1225   }
1226 
1227   ~CommandObjectMemoryWrite() override = default;
1228 
1229   Options *GetOptions() override { return &m_option_group; }
1230 
1231 protected:
1232   void DoExecute(Args &command, CommandReturnObject &result) override {
1233     // No need to check "process" for validity as eCommandRequiresProcess
1234     // ensures it is valid
1235     Process *process = m_exe_ctx.GetProcessPtr();
1236 
1237     const size_t argc = command.GetArgumentCount();
1238 
1239     if (m_memory_options.m_infile) {
1240       if (argc < 1) {
1241         result.AppendErrorWithFormat(
1242             "%s takes a destination address when writing file contents.\n",
1243             m_cmd_name.c_str());
1244         return;
1245       }
1246       if (argc > 1) {
1247         result.AppendErrorWithFormat(
1248             "%s takes only a destination address when writing file contents.\n",
1249             m_cmd_name.c_str());
1250         return;
1251       }
1252     } else if (argc < 2) {
1253       result.AppendErrorWithFormat(
1254           "%s takes a destination address and at least one value.\n",
1255           m_cmd_name.c_str());
1256       return;
1257     }
1258 
1259     StreamString buffer(
1260         Stream::eBinary,
1261         process->GetTarget().GetArchitecture().GetAddressByteSize(),
1262         process->GetTarget().GetArchitecture().GetByteOrder());
1263 
1264     OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue();
1265     size_t item_byte_size = byte_size_value.GetCurrentValue();
1266 
1267     Status error;
1268     lldb::addr_t addr = OptionArgParser::ToAddress(
1269         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1270 
1271     if (addr == LLDB_INVALID_ADDRESS) {
1272       result.AppendError("invalid address expression\n");
1273       result.AppendError(error.AsCString());
1274       return;
1275     }
1276 
1277     if (m_memory_options.m_infile) {
1278       size_t length = SIZE_MAX;
1279       if (item_byte_size > 1)
1280         length = item_byte_size;
1281       auto data_sp = FileSystem::Instance().CreateDataBuffer(
1282           m_memory_options.m_infile.GetPath(), length,
1283           m_memory_options.m_infile_offset);
1284       if (data_sp) {
1285         length = data_sp->GetByteSize();
1286         if (length > 0) {
1287           Status error;
1288           size_t bytes_written =
1289               process->WriteMemory(addr, data_sp->GetBytes(), length, error);
1290 
1291           if (bytes_written == length) {
1292             // All bytes written
1293             result.GetOutputStream().Printf(
1294                 "%" PRIu64 " bytes were written to 0x%" PRIx64 "\n",
1295                 (uint64_t)bytes_written, addr);
1296             result.SetStatus(eReturnStatusSuccessFinishResult);
1297           } else if (bytes_written > 0) {
1298             // Some byte written
1299             result.GetOutputStream().Printf(
1300                 "%" PRIu64 " bytes of %" PRIu64
1301                 " requested were written to 0x%" PRIx64 "\n",
1302                 (uint64_t)bytes_written, (uint64_t)length, addr);
1303             result.SetStatus(eReturnStatusSuccessFinishResult);
1304           } else {
1305             result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1306                                          " failed: %s.\n",
1307                                          addr, error.AsCString());
1308           }
1309         }
1310       } else {
1311         result.AppendErrorWithFormat("Unable to read contents of file.\n");
1312       }
1313       return;
1314     } else if (item_byte_size == 0) {
1315       if (m_format_options.GetFormat() == eFormatPointer)
1316         item_byte_size = buffer.GetAddressByteSize();
1317       else
1318         item_byte_size = 1;
1319     }
1320 
1321     command.Shift(); // shift off the address argument
1322     uint64_t uval64;
1323     int64_t sval64;
1324     bool success = false;
1325     for (auto &entry : command) {
1326       switch (m_format_options.GetFormat()) {
1327       case kNumFormats:
1328       case eFormatFloat: // TODO: add support for floats soon
1329       case eFormatCharPrintable:
1330       case eFormatBytesWithASCII:
1331       case eFormatComplex:
1332       case eFormatEnum:
1333       case eFormatUnicode8:
1334       case eFormatUnicode16:
1335       case eFormatUnicode32:
1336       case eFormatVectorOfChar:
1337       case eFormatVectorOfSInt8:
1338       case eFormatVectorOfUInt8:
1339       case eFormatVectorOfSInt16:
1340       case eFormatVectorOfUInt16:
1341       case eFormatVectorOfSInt32:
1342       case eFormatVectorOfUInt32:
1343       case eFormatVectorOfSInt64:
1344       case eFormatVectorOfUInt64:
1345       case eFormatVectorOfFloat16:
1346       case eFormatVectorOfFloat32:
1347       case eFormatVectorOfFloat64:
1348       case eFormatVectorOfUInt128:
1349       case eFormatOSType:
1350       case eFormatComplexInteger:
1351       case eFormatAddressInfo:
1352       case eFormatHexFloat:
1353       case eFormatInstruction:
1354       case eFormatVoid:
1355         result.AppendError("unsupported format for writing memory");
1356         return;
1357 
1358       case eFormatDefault:
1359       case eFormatBytes:
1360       case eFormatHex:
1361       case eFormatHexUppercase:
1362       case eFormatPointer: {
1363         // Decode hex bytes
1364         // Be careful, getAsInteger with a radix of 16 rejects "0xab" so we
1365         // have to special case that:
1366         bool success = false;
1367         if (entry.ref().starts_with("0x"))
1368           success = !entry.ref().getAsInteger(0, uval64);
1369         if (!success)
1370           success = !entry.ref().getAsInteger(16, uval64);
1371         if (!success) {
1372           result.AppendErrorWithFormat(
1373               "'%s' is not a valid hex string value.\n", entry.c_str());
1374           return;
1375         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1376           result.AppendErrorWithFormat("Value 0x%" PRIx64
1377                                        " is too large to fit in a %" PRIu64
1378                                        " byte unsigned integer value.\n",
1379                                        uval64, (uint64_t)item_byte_size);
1380           return;
1381         }
1382         buffer.PutMaxHex64(uval64, item_byte_size);
1383         break;
1384       }
1385       case eFormatBoolean:
1386         uval64 = OptionArgParser::ToBoolean(entry.ref(), false, &success);
1387         if (!success) {
1388           result.AppendErrorWithFormat(
1389               "'%s' is not a valid boolean string value.\n", entry.c_str());
1390           return;
1391         }
1392         buffer.PutMaxHex64(uval64, item_byte_size);
1393         break;
1394 
1395       case eFormatBinary:
1396         if (entry.ref().getAsInteger(2, uval64)) {
1397           result.AppendErrorWithFormat(
1398               "'%s' is not a valid binary string value.\n", entry.c_str());
1399           return;
1400         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1401           result.AppendErrorWithFormat("Value 0x%" PRIx64
1402                                        " is too large to fit in a %" PRIu64
1403                                        " byte unsigned integer value.\n",
1404                                        uval64, (uint64_t)item_byte_size);
1405           return;
1406         }
1407         buffer.PutMaxHex64(uval64, item_byte_size);
1408         break;
1409 
1410       case eFormatCharArray:
1411       case eFormatChar:
1412       case eFormatCString: {
1413         if (entry.ref().empty())
1414           break;
1415 
1416         size_t len = entry.ref().size();
1417         // Include the NULL for C strings...
1418         if (m_format_options.GetFormat() == eFormatCString)
1419           ++len;
1420         Status error;
1421         if (process->WriteMemory(addr, entry.c_str(), len, error) == len) {
1422           addr += len;
1423         } else {
1424           result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1425                                        " failed: %s.\n",
1426                                        addr, error.AsCString());
1427           return;
1428         }
1429         break;
1430       }
1431       case eFormatDecimal:
1432         if (entry.ref().getAsInteger(0, sval64)) {
1433           result.AppendErrorWithFormat(
1434               "'%s' is not a valid signed decimal value.\n", entry.c_str());
1435           return;
1436         } else if (!llvm::isIntN(item_byte_size * 8, sval64)) {
1437           result.AppendErrorWithFormat(
1438               "Value %" PRIi64 " is too large or small to fit in a %" PRIu64
1439               " byte signed integer value.\n",
1440               sval64, (uint64_t)item_byte_size);
1441           return;
1442         }
1443         buffer.PutMaxHex64(sval64, item_byte_size);
1444         break;
1445 
1446       case eFormatUnsigned:
1447 
1448         if (entry.ref().getAsInteger(0, uval64)) {
1449           result.AppendErrorWithFormat(
1450               "'%s' is not a valid unsigned decimal string value.\n",
1451               entry.c_str());
1452           return;
1453         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1454           result.AppendErrorWithFormat("Value %" PRIu64
1455                                        " is too large to fit in a %" PRIu64
1456                                        " byte unsigned integer value.\n",
1457                                        uval64, (uint64_t)item_byte_size);
1458           return;
1459         }
1460         buffer.PutMaxHex64(uval64, item_byte_size);
1461         break;
1462 
1463       case eFormatOctal:
1464         if (entry.ref().getAsInteger(8, uval64)) {
1465           result.AppendErrorWithFormat(
1466               "'%s' is not a valid octal string value.\n", entry.c_str());
1467           return;
1468         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1469           result.AppendErrorWithFormat("Value %" PRIo64
1470                                        " is too large to fit in a %" PRIu64
1471                                        " byte unsigned integer value.\n",
1472                                        uval64, (uint64_t)item_byte_size);
1473           return;
1474         }
1475         buffer.PutMaxHex64(uval64, item_byte_size);
1476         break;
1477       }
1478     }
1479 
1480     if (!buffer.GetString().empty()) {
1481       Status error;
1482       const char *buffer_data = buffer.GetString().data();
1483       const size_t buffer_size = buffer.GetString().size();
1484       const size_t write_size =
1485           process->WriteMemory(addr, buffer_data, buffer_size, error);
1486 
1487       if (write_size != buffer_size) {
1488         result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1489                                      " failed: %s.\n",
1490                                      addr, error.AsCString());
1491         return;
1492       }
1493     }
1494   }
1495 
1496   OptionGroupOptions m_option_group;
1497   OptionGroupFormat m_format_options;
1498   OptionGroupWriteMemory m_memory_options;
1499 };
1500 
1501 // Get malloc/free history of a memory address.
1502 class CommandObjectMemoryHistory : public CommandObjectParsed {
1503 public:
1504   CommandObjectMemoryHistory(CommandInterpreter &interpreter)
1505       : CommandObjectParsed(interpreter, "memory history",
1506                             "Print recorded stack traces for "
1507                             "allocation/deallocation events "
1508                             "associated with an address.",
1509                             nullptr,
1510                             eCommandRequiresTarget | eCommandRequiresProcess |
1511                                 eCommandProcessMustBePaused |
1512                                 eCommandProcessMustBeLaunched) {
1513     CommandArgumentEntry arg1;
1514     CommandArgumentData addr_arg;
1515 
1516     // Define the first (and only) variant of this arg.
1517     addr_arg.arg_type = eArgTypeAddress;
1518     addr_arg.arg_repetition = eArgRepeatPlain;
1519 
1520     // There is only one variant this argument could be; put it into the
1521     // argument entry.
1522     arg1.push_back(addr_arg);
1523 
1524     // Push the data for the first argument into the m_arguments vector.
1525     m_arguments.push_back(arg1);
1526   }
1527 
1528   ~CommandObjectMemoryHistory() override = default;
1529 
1530   std::optional<std::string> GetRepeatCommand(Args &current_command_args,
1531                                               uint32_t index) override {
1532     return m_cmd_name;
1533   }
1534 
1535 protected:
1536   void DoExecute(Args &command, CommandReturnObject &result) override {
1537     const size_t argc = command.GetArgumentCount();
1538 
1539     if (argc == 0 || argc > 1) {
1540       result.AppendErrorWithFormat("%s takes an address expression",
1541                                    m_cmd_name.c_str());
1542       return;
1543     }
1544 
1545     Status error;
1546     lldb::addr_t addr = OptionArgParser::ToAddress(
1547         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1548 
1549     if (addr == LLDB_INVALID_ADDRESS) {
1550       result.AppendError("invalid address expression");
1551       result.AppendError(error.AsCString());
1552       return;
1553     }
1554 
1555     Stream *output_stream = &result.GetOutputStream();
1556 
1557     const ProcessSP &process_sp = m_exe_ctx.GetProcessSP();
1558     const MemoryHistorySP &memory_history =
1559         MemoryHistory::FindPlugin(process_sp);
1560 
1561     if (!memory_history) {
1562       result.AppendError("no available memory history provider");
1563       return;
1564     }
1565 
1566     HistoryThreads thread_list = memory_history->GetHistoryThreads(addr);
1567 
1568     const bool stop_format = false;
1569     for (auto thread : thread_list) {
1570       thread->GetStatus(*output_stream, 0, UINT32_MAX, 0, stop_format);
1571     }
1572 
1573     result.SetStatus(eReturnStatusSuccessFinishResult);
1574   }
1575 };
1576 
1577 // CommandObjectMemoryRegion
1578 #pragma mark CommandObjectMemoryRegion
1579 
1580 #define LLDB_OPTIONS_memory_region
1581 #include "CommandOptions.inc"
1582 
1583 class CommandObjectMemoryRegion : public CommandObjectParsed {
1584 public:
1585   class OptionGroupMemoryRegion : public OptionGroup {
1586   public:
1587     OptionGroupMemoryRegion() : m_all(false, false) {}
1588 
1589     ~OptionGroupMemoryRegion() override = default;
1590 
1591     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1592       return llvm::ArrayRef(g_memory_region_options);
1593     }
1594 
1595     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1596                           ExecutionContext *execution_context) override {
1597       Status status;
1598       const int short_option = g_memory_region_options[option_idx].short_option;
1599 
1600       switch (short_option) {
1601       case 'a':
1602         m_all.SetCurrentValue(true);
1603         m_all.SetOptionWasSet();
1604         break;
1605       default:
1606         llvm_unreachable("Unimplemented option");
1607       }
1608 
1609       return status;
1610     }
1611 
1612     void OptionParsingStarting(ExecutionContext *execution_context) override {
1613       m_all.Clear();
1614     }
1615 
1616     OptionValueBoolean m_all;
1617   };
1618 
1619   CommandObjectMemoryRegion(CommandInterpreter &interpreter)
1620       : CommandObjectParsed(interpreter, "memory region",
1621                             "Get information on the memory region containing "
1622                             "an address in the current target process.",
1623                             "memory region <address-expression> (or --all)",
1624                             eCommandRequiresProcess | eCommandTryTargetAPILock |
1625                                 eCommandProcessMustBeLaunched) {
1626     // Address in option set 1.
1627     m_arguments.push_back(CommandArgumentEntry{CommandArgumentData(
1628         eArgTypeAddressOrExpression, eArgRepeatPlain, LLDB_OPT_SET_1)});
1629     // "--all" will go in option set 2.
1630     m_option_group.Append(&m_memory_region_options);
1631     m_option_group.Finalize();
1632   }
1633 
1634   ~CommandObjectMemoryRegion() override = default;
1635 
1636   Options *GetOptions() override { return &m_option_group; }
1637 
1638 protected:
1639   void DumpRegion(CommandReturnObject &result, Target &target,
1640                   const MemoryRegionInfo &range_info, lldb::addr_t load_addr) {
1641     lldb_private::Address addr;
1642     ConstString section_name;
1643     if (target.ResolveLoadAddress(load_addr, addr)) {
1644       SectionSP section_sp(addr.GetSection());
1645       if (section_sp) {
1646         // Got the top most section, not the deepest section
1647         while (section_sp->GetParent())
1648           section_sp = section_sp->GetParent();
1649         section_name = section_sp->GetName();
1650       }
1651     }
1652 
1653     ConstString name = range_info.GetName();
1654     result.AppendMessageWithFormatv(
1655         "[{0:x16}-{1:x16}) {2:r}{3:w}{4:x}{5}{6}{7}{8}",
1656         range_info.GetRange().GetRangeBase(),
1657         range_info.GetRange().GetRangeEnd(), range_info.GetReadable(),
1658         range_info.GetWritable(), range_info.GetExecutable(), name ? " " : "",
1659         name, section_name ? " " : "", section_name);
1660     MemoryRegionInfo::OptionalBool memory_tagged = range_info.GetMemoryTagged();
1661     if (memory_tagged == MemoryRegionInfo::OptionalBool::eYes)
1662       result.AppendMessage("memory tagging: enabled");
1663 
1664     const std::optional<std::vector<addr_t>> &dirty_page_list =
1665         range_info.GetDirtyPageList();
1666     if (dirty_page_list) {
1667       const size_t page_count = dirty_page_list->size();
1668       result.AppendMessageWithFormat(
1669           "Modified memory (dirty) page list provided, %zu entries.\n",
1670           page_count);
1671       if (page_count > 0) {
1672         bool print_comma = false;
1673         result.AppendMessageWithFormat("Dirty pages: ");
1674         for (size_t i = 0; i < page_count; i++) {
1675           if (print_comma)
1676             result.AppendMessageWithFormat(", ");
1677           else
1678             print_comma = true;
1679           result.AppendMessageWithFormat("0x%" PRIx64, (*dirty_page_list)[i]);
1680         }
1681         result.AppendMessageWithFormat(".\n");
1682       }
1683     }
1684   }
1685 
1686   void DoExecute(Args &command, CommandReturnObject &result) override {
1687     ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1688     if (!process_sp) {
1689       m_prev_end_addr = LLDB_INVALID_ADDRESS;
1690       result.AppendError("invalid process");
1691       return;
1692     }
1693 
1694     Status error;
1695     lldb::addr_t load_addr = m_prev_end_addr;
1696     m_prev_end_addr = LLDB_INVALID_ADDRESS;
1697 
1698     const size_t argc = command.GetArgumentCount();
1699     const lldb::ABISP &abi = process_sp->GetABI();
1700 
1701     if (argc == 1) {
1702       if (m_memory_region_options.m_all) {
1703         result.AppendError(
1704             "The \"--all\" option cannot be used when an address "
1705             "argument is given");
1706         return;
1707       }
1708 
1709       auto load_addr_str = command[0].ref();
1710       load_addr = OptionArgParser::ToAddress(&m_exe_ctx, load_addr_str,
1711                                              LLDB_INVALID_ADDRESS, &error);
1712       if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) {
1713         result.AppendErrorWithFormat("invalid address argument \"%s\": %s\n",
1714                                      command[0].c_str(), error.AsCString());
1715         return;
1716       }
1717     } else if (argc > 1 ||
1718                // When we're repeating the command, the previous end address is
1719                // used for load_addr. If that was 0xF...F then we must have
1720                // reached the end of memory.
1721                (argc == 0 && !m_memory_region_options.m_all &&
1722                 load_addr == LLDB_INVALID_ADDRESS) ||
1723                // If the target has non-address bits (tags, limited virtual
1724                // address size, etc.), the end of mappable memory will be lower
1725                // than that. So if we find any non-address bit set, we must be
1726                // at the end of the mappable range.
1727                (abi && (abi->FixAnyAddress(load_addr) != load_addr))) {
1728       result.AppendErrorWithFormat(
1729           "'%s' takes one argument or \"--all\" option:\nUsage: %s\n",
1730           m_cmd_name.c_str(), m_cmd_syntax.c_str());
1731       return;
1732     }
1733 
1734     // It is important that we track the address used to request the region as
1735     // this will give the correct section name in the case that regions overlap.
1736     // On Windows we get mutliple regions that start at the same place but are
1737     // different sizes and refer to different sections.
1738     std::vector<std::pair<lldb_private::MemoryRegionInfo, lldb::addr_t>>
1739         region_list;
1740     if (m_memory_region_options.m_all) {
1741       // We don't use GetMemoryRegions here because it doesn't include unmapped
1742       // areas like repeating the command would. So instead, emulate doing that.
1743       lldb::addr_t addr = 0;
1744       while (error.Success() && addr != LLDB_INVALID_ADDRESS &&
1745              // When there are non-address bits the last range will not extend
1746              // to LLDB_INVALID_ADDRESS but to the max virtual address.
1747              // This prevents us looping forever if that is the case.
1748              (!abi || (abi->FixAnyAddress(addr) == addr))) {
1749         lldb_private::MemoryRegionInfo region_info;
1750         error = process_sp->GetMemoryRegionInfo(addr, region_info);
1751 
1752         if (error.Success()) {
1753           region_list.push_back({region_info, addr});
1754           addr = region_info.GetRange().GetRangeEnd();
1755         }
1756       }
1757     } else {
1758       lldb_private::MemoryRegionInfo region_info;
1759       error = process_sp->GetMemoryRegionInfo(load_addr, region_info);
1760       if (error.Success())
1761         region_list.push_back({region_info, load_addr});
1762     }
1763 
1764     if (error.Success()) {
1765       for (std::pair<MemoryRegionInfo, addr_t> &range : region_list) {
1766         DumpRegion(result, process_sp->GetTarget(), range.first, range.second);
1767         m_prev_end_addr = range.first.GetRange().GetRangeEnd();
1768       }
1769 
1770       result.SetStatus(eReturnStatusSuccessFinishResult);
1771       return;
1772     }
1773 
1774     result.AppendErrorWithFormat("%s\n", error.AsCString());
1775   }
1776 
1777   std::optional<std::string> GetRepeatCommand(Args &current_command_args,
1778                                               uint32_t index) override {
1779     // If we repeat this command, repeat it without any arguments so we can
1780     // show the next memory range
1781     return m_cmd_name;
1782   }
1783 
1784   lldb::addr_t m_prev_end_addr = LLDB_INVALID_ADDRESS;
1785 
1786   OptionGroupOptions m_option_group;
1787   OptionGroupMemoryRegion m_memory_region_options;
1788 };
1789 
1790 // CommandObjectMemory
1791 
1792 CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter)
1793     : CommandObjectMultiword(
1794           interpreter, "memory",
1795           "Commands for operating on memory in the current target process.",
1796           "memory <subcommand> [<subcommand-options>]") {
1797   LoadSubCommand("find",
1798                  CommandObjectSP(new CommandObjectMemoryFind(interpreter)));
1799   LoadSubCommand("read",
1800                  CommandObjectSP(new CommandObjectMemoryRead(interpreter)));
1801   LoadSubCommand("write",
1802                  CommandObjectSP(new CommandObjectMemoryWrite(interpreter)));
1803   LoadSubCommand("history",
1804                  CommandObjectSP(new CommandObjectMemoryHistory(interpreter)));
1805   LoadSubCommand("region",
1806                  CommandObjectSP(new CommandObjectMemoryRegion(interpreter)));
1807   LoadSubCommand("tag",
1808                  CommandObjectSP(new CommandObjectMemoryTag(interpreter)));
1809 }
1810 
1811 CommandObjectMemory::~CommandObjectMemory() = default;
1812