xref: /llvm-project/lldb/source/Commands/CommandObjectMemory.cpp (revision 068f14f1e4ec69d218df544487f9420f2b3ab29b)
1 //===-- CommandObjectMemory.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "CommandObjectMemory.h"
10 #include "CommandObjectMemoryTag.h"
11 #include "lldb/Core/DumpDataExtractor.h"
12 #include "lldb/Core/Section.h"
13 #include "lldb/Core/ValueObjectMemory.h"
14 #include "lldb/Expression/ExpressionVariable.h"
15 #include "lldb/Host/OptionParser.h"
16 #include "lldb/Interpreter/CommandReturnObject.h"
17 #include "lldb/Interpreter/OptionArgParser.h"
18 #include "lldb/Interpreter/OptionGroupFormat.h"
19 #include "lldb/Interpreter/OptionGroupMemoryTag.h"
20 #include "lldb/Interpreter/OptionGroupOutputFile.h"
21 #include "lldb/Interpreter/OptionGroupValueObjectDisplay.h"
22 #include "lldb/Interpreter/OptionValueLanguage.h"
23 #include "lldb/Interpreter/OptionValueString.h"
24 #include "lldb/Interpreter/Options.h"
25 #include "lldb/Symbol/SymbolFile.h"
26 #include "lldb/Symbol/TypeList.h"
27 #include "lldb/Target/ABI.h"
28 #include "lldb/Target/Language.h"
29 #include "lldb/Target/MemoryHistory.h"
30 #include "lldb/Target/MemoryRegionInfo.h"
31 #include "lldb/Target/Process.h"
32 #include "lldb/Target/StackFrame.h"
33 #include "lldb/Target/Target.h"
34 #include "lldb/Target/Thread.h"
35 #include "lldb/Utility/Args.h"
36 #include "lldb/Utility/DataBufferHeap.h"
37 #include "lldb/Utility/StreamString.h"
38 #include "llvm/Support/MathExtras.h"
39 #include <cinttypes>
40 #include <memory>
41 
42 using namespace lldb;
43 using namespace lldb_private;
44 
45 #define LLDB_OPTIONS_memory_read
46 #include "CommandOptions.inc"
47 
48 class OptionGroupReadMemory : public OptionGroup {
49 public:
50   OptionGroupReadMemory()
51       : m_num_per_line(1, 1), m_offset(0, 0),
52         m_language_for_type(eLanguageTypeUnknown) {}
53 
54   ~OptionGroupReadMemory() override = default;
55 
56   llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
57     return llvm::makeArrayRef(g_memory_read_options);
58   }
59 
60   Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
61                         ExecutionContext *execution_context) override {
62     Status error;
63     const int short_option = g_memory_read_options[option_idx].short_option;
64 
65     switch (short_option) {
66     case 'l':
67       error = m_num_per_line.SetValueFromString(option_value);
68       if (m_num_per_line.GetCurrentValue() == 0)
69         error.SetErrorStringWithFormat(
70             "invalid value for --num-per-line option '%s'",
71             option_value.str().c_str());
72       break;
73 
74     case 'b':
75       m_output_as_binary = true;
76       break;
77 
78     case 't':
79       error = m_view_as_type.SetValueFromString(option_value);
80       break;
81 
82     case 'r':
83       m_force = true;
84       break;
85 
86     case 'x':
87       error = m_language_for_type.SetValueFromString(option_value);
88       break;
89 
90     case 'E':
91       error = m_offset.SetValueFromString(option_value);
92       break;
93 
94     default:
95       llvm_unreachable("Unimplemented option");
96     }
97     return error;
98   }
99 
100   void OptionParsingStarting(ExecutionContext *execution_context) override {
101     m_num_per_line.Clear();
102     m_output_as_binary = false;
103     m_view_as_type.Clear();
104     m_force = false;
105     m_offset.Clear();
106     m_language_for_type.Clear();
107   }
108 
109   Status FinalizeSettings(Target *target, OptionGroupFormat &format_options) {
110     Status error;
111     OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue();
112     OptionValueUInt64 &count_value = format_options.GetCountValue();
113     const bool byte_size_option_set = byte_size_value.OptionWasSet();
114     const bool num_per_line_option_set = m_num_per_line.OptionWasSet();
115     const bool count_option_set = format_options.GetCountValue().OptionWasSet();
116 
117     switch (format_options.GetFormat()) {
118     default:
119       break;
120 
121     case eFormatBoolean:
122       if (!byte_size_option_set)
123         byte_size_value = 1;
124       if (!num_per_line_option_set)
125         m_num_per_line = 1;
126       if (!count_option_set)
127         format_options.GetCountValue() = 8;
128       break;
129 
130     case eFormatCString:
131       break;
132 
133     case eFormatInstruction:
134       if (count_option_set)
135         byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize();
136       m_num_per_line = 1;
137       break;
138 
139     case eFormatAddressInfo:
140       if (!byte_size_option_set)
141         byte_size_value = target->GetArchitecture().GetAddressByteSize();
142       m_num_per_line = 1;
143       if (!count_option_set)
144         format_options.GetCountValue() = 8;
145       break;
146 
147     case eFormatPointer:
148       byte_size_value = target->GetArchitecture().GetAddressByteSize();
149       if (!num_per_line_option_set)
150         m_num_per_line = 4;
151       if (!count_option_set)
152         format_options.GetCountValue() = 8;
153       break;
154 
155     case eFormatBinary:
156     case eFormatFloat:
157     case eFormatOctal:
158     case eFormatDecimal:
159     case eFormatEnum:
160     case eFormatUnicode8:
161     case eFormatUnicode16:
162     case eFormatUnicode32:
163     case eFormatUnsigned:
164     case eFormatHexFloat:
165       if (!byte_size_option_set)
166         byte_size_value = 4;
167       if (!num_per_line_option_set)
168         m_num_per_line = 1;
169       if (!count_option_set)
170         format_options.GetCountValue() = 8;
171       break;
172 
173     case eFormatBytes:
174     case eFormatBytesWithASCII:
175       if (byte_size_option_set) {
176         if (byte_size_value > 1)
177           error.SetErrorStringWithFormat(
178               "display format (bytes/bytes with ASCII) conflicts with the "
179               "specified byte size %" PRIu64 "\n"
180               "\tconsider using a different display format or don't specify "
181               "the byte size.",
182               byte_size_value.GetCurrentValue());
183       } else
184         byte_size_value = 1;
185       if (!num_per_line_option_set)
186         m_num_per_line = 16;
187       if (!count_option_set)
188         format_options.GetCountValue() = 32;
189       break;
190 
191     case eFormatCharArray:
192     case eFormatChar:
193     case eFormatCharPrintable:
194       if (!byte_size_option_set)
195         byte_size_value = 1;
196       if (!num_per_line_option_set)
197         m_num_per_line = 32;
198       if (!count_option_set)
199         format_options.GetCountValue() = 64;
200       break;
201 
202     case eFormatComplex:
203       if (!byte_size_option_set)
204         byte_size_value = 8;
205       if (!num_per_line_option_set)
206         m_num_per_line = 1;
207       if (!count_option_set)
208         format_options.GetCountValue() = 8;
209       break;
210 
211     case eFormatComplexInteger:
212       if (!byte_size_option_set)
213         byte_size_value = 8;
214       if (!num_per_line_option_set)
215         m_num_per_line = 1;
216       if (!count_option_set)
217         format_options.GetCountValue() = 8;
218       break;
219 
220     case eFormatHex:
221       if (!byte_size_option_set)
222         byte_size_value = 4;
223       if (!num_per_line_option_set) {
224         switch (byte_size_value) {
225         case 1:
226         case 2:
227           m_num_per_line = 8;
228           break;
229         case 4:
230           m_num_per_line = 4;
231           break;
232         case 8:
233           m_num_per_line = 2;
234           break;
235         default:
236           m_num_per_line = 1;
237           break;
238         }
239       }
240       if (!count_option_set)
241         count_value = 8;
242       break;
243 
244     case eFormatVectorOfChar:
245     case eFormatVectorOfSInt8:
246     case eFormatVectorOfUInt8:
247     case eFormatVectorOfSInt16:
248     case eFormatVectorOfUInt16:
249     case eFormatVectorOfSInt32:
250     case eFormatVectorOfUInt32:
251     case eFormatVectorOfSInt64:
252     case eFormatVectorOfUInt64:
253     case eFormatVectorOfFloat16:
254     case eFormatVectorOfFloat32:
255     case eFormatVectorOfFloat64:
256     case eFormatVectorOfUInt128:
257       if (!byte_size_option_set)
258         byte_size_value = 128;
259       if (!num_per_line_option_set)
260         m_num_per_line = 1;
261       if (!count_option_set)
262         count_value = 4;
263       break;
264     }
265     return error;
266   }
267 
268   bool AnyOptionWasSet() const {
269     return m_num_per_line.OptionWasSet() || m_output_as_binary ||
270            m_view_as_type.OptionWasSet() || m_offset.OptionWasSet() ||
271            m_language_for_type.OptionWasSet();
272   }
273 
274   OptionValueUInt64 m_num_per_line;
275   bool m_output_as_binary = false;
276   OptionValueString m_view_as_type;
277   bool m_force;
278   OptionValueUInt64 m_offset;
279   OptionValueLanguage m_language_for_type;
280 };
281 
282 // Read memory from the inferior process
283 class CommandObjectMemoryRead : public CommandObjectParsed {
284 public:
285   CommandObjectMemoryRead(CommandInterpreter &interpreter)
286       : CommandObjectParsed(
287             interpreter, "memory read",
288             "Read from the memory of the current target process.", nullptr,
289             eCommandRequiresTarget | eCommandProcessMustBePaused),
290         m_format_options(eFormatBytesWithASCII, 1, 8),
291         m_memory_tag_options(/*note_binary=*/true),
292         m_prev_format_options(eFormatBytesWithASCII, 1, 8) {
293     CommandArgumentEntry arg1;
294     CommandArgumentEntry arg2;
295     CommandArgumentData start_addr_arg;
296     CommandArgumentData end_addr_arg;
297 
298     // Define the first (and only) variant of this arg.
299     start_addr_arg.arg_type = eArgTypeAddressOrExpression;
300     start_addr_arg.arg_repetition = eArgRepeatPlain;
301 
302     // There is only one variant this argument could be; put it into the
303     // argument entry.
304     arg1.push_back(start_addr_arg);
305 
306     // Define the first (and only) variant of this arg.
307     end_addr_arg.arg_type = eArgTypeAddressOrExpression;
308     end_addr_arg.arg_repetition = eArgRepeatOptional;
309 
310     // There is only one variant this argument could be; put it into the
311     // argument entry.
312     arg2.push_back(end_addr_arg);
313 
314     // Push the data for the first argument into the m_arguments vector.
315     m_arguments.push_back(arg1);
316     m_arguments.push_back(arg2);
317 
318     // Add the "--format" and "--count" options to group 1 and 3
319     m_option_group.Append(&m_format_options,
320                           OptionGroupFormat::OPTION_GROUP_FORMAT |
321                               OptionGroupFormat::OPTION_GROUP_COUNT,
322                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
323     m_option_group.Append(&m_format_options,
324                           OptionGroupFormat::OPTION_GROUP_GDB_FMT,
325                           LLDB_OPT_SET_1 | LLDB_OPT_SET_3);
326     // Add the "--size" option to group 1 and 2
327     m_option_group.Append(&m_format_options,
328                           OptionGroupFormat::OPTION_GROUP_SIZE,
329                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
330     m_option_group.Append(&m_memory_options);
331     m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL,
332                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3);
333     m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3);
334     m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
335                           LLDB_OPT_SET_ALL);
336     m_option_group.Finalize();
337   }
338 
339   ~CommandObjectMemoryRead() override = default;
340 
341   Options *GetOptions() override { return &m_option_group; }
342 
343   llvm::Optional<std::string> GetRepeatCommand(Args &current_command_args,
344                                                uint32_t index) override {
345     return m_cmd_name;
346   }
347 
348 protected:
349   bool DoExecute(Args &command, CommandReturnObject &result) override {
350     // No need to check "target" for validity as eCommandRequiresTarget ensures
351     // it is valid
352     Target *target = m_exe_ctx.GetTargetPtr();
353 
354     const size_t argc = command.GetArgumentCount();
355 
356     if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) {
357       result.AppendErrorWithFormat("%s takes a start address expression with "
358                                    "an optional end address expression.\n",
359                                    m_cmd_name.c_str());
360       result.AppendWarning("Expressions should be quoted if they contain "
361                            "spaces or other special characters.");
362       return false;
363     }
364 
365     CompilerType compiler_type;
366     Status error;
367 
368     const char *view_as_type_cstr =
369         m_memory_options.m_view_as_type.GetCurrentValue();
370     if (view_as_type_cstr && view_as_type_cstr[0]) {
371       // We are viewing memory as a type
372 
373       const bool exact_match = false;
374       TypeList type_list;
375       uint32_t reference_count = 0;
376       uint32_t pointer_count = 0;
377       size_t idx;
378 
379 #define ALL_KEYWORDS                                                           \
380   KEYWORD("const")                                                             \
381   KEYWORD("volatile")                                                          \
382   KEYWORD("restrict")                                                          \
383   KEYWORD("struct")                                                            \
384   KEYWORD("class")                                                             \
385   KEYWORD("union")
386 
387 #define KEYWORD(s) s,
388       static const char *g_keywords[] = {ALL_KEYWORDS};
389 #undef KEYWORD
390 
391 #define KEYWORD(s) (sizeof(s) - 1),
392       static const int g_keyword_lengths[] = {ALL_KEYWORDS};
393 #undef KEYWORD
394 
395 #undef ALL_KEYWORDS
396 
397       static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *);
398       std::string type_str(view_as_type_cstr);
399 
400       // Remove all instances of g_keywords that are followed by spaces
401       for (size_t i = 0; i < g_num_keywords; ++i) {
402         const char *keyword = g_keywords[i];
403         int keyword_len = g_keyword_lengths[i];
404 
405         idx = 0;
406         while ((idx = type_str.find(keyword, idx)) != std::string::npos) {
407           if (type_str[idx + keyword_len] == ' ' ||
408               type_str[idx + keyword_len] == '\t') {
409             type_str.erase(idx, keyword_len + 1);
410             idx = 0;
411           } else {
412             idx += keyword_len;
413           }
414         }
415       }
416       bool done = type_str.empty();
417       //
418       idx = type_str.find_first_not_of(" \t");
419       if (idx > 0 && idx != std::string::npos)
420         type_str.erase(0, idx);
421       while (!done) {
422         // Strip trailing spaces
423         if (type_str.empty())
424           done = true;
425         else {
426           switch (type_str[type_str.size() - 1]) {
427           case '*':
428             ++pointer_count;
429             LLVM_FALLTHROUGH;
430           case ' ':
431           case '\t':
432             type_str.erase(type_str.size() - 1);
433             break;
434 
435           case '&':
436             if (reference_count == 0) {
437               reference_count = 1;
438               type_str.erase(type_str.size() - 1);
439             } else {
440               result.AppendErrorWithFormat("invalid type string: '%s'\n",
441                                            view_as_type_cstr);
442               return false;
443             }
444             break;
445 
446           default:
447             done = true;
448             break;
449           }
450         }
451       }
452 
453       llvm::DenseSet<lldb_private::SymbolFile *> searched_symbol_files;
454       ConstString lookup_type_name(type_str.c_str());
455       StackFrame *frame = m_exe_ctx.GetFramePtr();
456       ModuleSP search_first;
457       if (frame) {
458         search_first = frame->GetSymbolContext(eSymbolContextModule).module_sp;
459       }
460       target->GetImages().FindTypes(search_first.get(), lookup_type_name,
461                                     exact_match, 1, searched_symbol_files,
462                                     type_list);
463 
464       if (type_list.GetSize() == 0 && lookup_type_name.GetCString()) {
465         LanguageType language_for_type =
466             m_memory_options.m_language_for_type.GetCurrentValue();
467         std::set<LanguageType> languages_to_check;
468         if (language_for_type != eLanguageTypeUnknown) {
469           languages_to_check.insert(language_for_type);
470         } else {
471           languages_to_check = Language::GetSupportedLanguages();
472         }
473 
474         std::set<CompilerType> user_defined_types;
475         for (auto lang : languages_to_check) {
476           if (auto *persistent_vars =
477                   target->GetPersistentExpressionStateForLanguage(lang)) {
478             if (llvm::Optional<CompilerType> type =
479                     persistent_vars->GetCompilerTypeFromPersistentDecl(
480                         lookup_type_name)) {
481               user_defined_types.emplace(*type);
482             }
483           }
484         }
485 
486         if (user_defined_types.size() > 1) {
487           result.AppendErrorWithFormat(
488               "Mutiple types found matching raw type '%s', please disambiguate "
489               "by specifying the language with -x",
490               lookup_type_name.GetCString());
491           return false;
492         }
493 
494         if (user_defined_types.size() == 1) {
495           compiler_type = *user_defined_types.begin();
496         }
497       }
498 
499       if (!compiler_type.IsValid()) {
500         if (type_list.GetSize() == 0) {
501           result.AppendErrorWithFormat("unable to find any types that match "
502                                        "the raw type '%s' for full type '%s'\n",
503                                        lookup_type_name.GetCString(),
504                                        view_as_type_cstr);
505           return false;
506         } else {
507           TypeSP type_sp(type_list.GetTypeAtIndex(0));
508           compiler_type = type_sp->GetFullCompilerType();
509         }
510       }
511 
512       while (pointer_count > 0) {
513         CompilerType pointer_type = compiler_type.GetPointerType();
514         if (pointer_type.IsValid())
515           compiler_type = pointer_type;
516         else {
517           result.AppendError("unable make a pointer type\n");
518           return false;
519         }
520         --pointer_count;
521       }
522 
523       llvm::Optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
524       if (!size) {
525         result.AppendErrorWithFormat(
526             "unable to get the byte size of the type '%s'\n",
527             view_as_type_cstr);
528         return false;
529       }
530       m_format_options.GetByteSizeValue() = *size;
531 
532       if (!m_format_options.GetCountValue().OptionWasSet())
533         m_format_options.GetCountValue() = 1;
534     } else {
535       error = m_memory_options.FinalizeSettings(target, m_format_options);
536     }
537 
538     // Look for invalid combinations of settings
539     if (error.Fail()) {
540       result.AppendError(error.AsCString());
541       return false;
542     }
543 
544     lldb::addr_t addr;
545     size_t total_byte_size = 0;
546     if (argc == 0) {
547       // Use the last address and byte size and all options as they were if no
548       // options have been set
549       addr = m_next_addr;
550       total_byte_size = m_prev_byte_size;
551       compiler_type = m_prev_compiler_type;
552       if (!m_format_options.AnyOptionWasSet() &&
553           !m_memory_options.AnyOptionWasSet() &&
554           !m_outfile_options.AnyOptionWasSet() &&
555           !m_varobj_options.AnyOptionWasSet() &&
556           !m_memory_tag_options.AnyOptionWasSet()) {
557         m_format_options = m_prev_format_options;
558         m_memory_options = m_prev_memory_options;
559         m_outfile_options = m_prev_outfile_options;
560         m_varobj_options = m_prev_varobj_options;
561         m_memory_tag_options = m_prev_memory_tag_options;
562       }
563     }
564 
565     size_t item_count = m_format_options.GetCountValue().GetCurrentValue();
566 
567     // TODO For non-8-bit byte addressable architectures this needs to be
568     // revisited to fully support all lldb's range of formatting options.
569     // Furthermore code memory reads (for those architectures) will not be
570     // correctly formatted even w/o formatting options.
571     size_t item_byte_size =
572         target->GetArchitecture().GetDataByteSize() > 1
573             ? target->GetArchitecture().GetDataByteSize()
574             : m_format_options.GetByteSizeValue().GetCurrentValue();
575 
576     const size_t num_per_line =
577         m_memory_options.m_num_per_line.GetCurrentValue();
578 
579     if (total_byte_size == 0) {
580       total_byte_size = item_count * item_byte_size;
581       if (total_byte_size == 0)
582         total_byte_size = 32;
583     }
584 
585     if (argc > 0)
586       addr = OptionArgParser::ToAddress(&m_exe_ctx, command[0].ref(),
587                                         LLDB_INVALID_ADDRESS, &error);
588 
589     if (addr == LLDB_INVALID_ADDRESS) {
590       result.AppendError("invalid start address expression.");
591       result.AppendError(error.AsCString());
592       return false;
593     }
594 
595     ABISP abi = m_exe_ctx.GetProcessPtr()->GetABI();
596     if (abi)
597       addr = abi->FixDataAddress(addr);
598 
599     if (argc == 2) {
600       lldb::addr_t end_addr = OptionArgParser::ToAddress(
601           &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, nullptr);
602       if (end_addr != LLDB_INVALID_ADDRESS && abi)
603         end_addr = abi->FixDataAddress(end_addr);
604 
605       if (end_addr == LLDB_INVALID_ADDRESS) {
606         result.AppendError("invalid end address expression.");
607         result.AppendError(error.AsCString());
608         return false;
609       } else if (end_addr <= addr) {
610         result.AppendErrorWithFormat(
611             "end address (0x%" PRIx64
612             ") must be greater than the start address (0x%" PRIx64 ").\n",
613             end_addr, addr);
614         return false;
615       } else if (m_format_options.GetCountValue().OptionWasSet()) {
616         result.AppendErrorWithFormat(
617             "specify either the end address (0x%" PRIx64
618             ") or the count (--count %" PRIu64 "), not both.\n",
619             end_addr, (uint64_t)item_count);
620         return false;
621       }
622 
623       total_byte_size = end_addr - addr;
624       item_count = total_byte_size / item_byte_size;
625     }
626 
627     uint32_t max_unforced_size = target->GetMaximumMemReadSize();
628 
629     if (total_byte_size > max_unforced_size && !m_memory_options.m_force) {
630       result.AppendErrorWithFormat(
631           "Normally, \'memory read\' will not read over %" PRIu32
632           " bytes of data.\n",
633           max_unforced_size);
634       result.AppendErrorWithFormat(
635           "Please use --force to override this restriction just once.\n");
636       result.AppendErrorWithFormat("or set target.max-memory-read-size if you "
637                                    "will often need a larger limit.\n");
638       return false;
639     }
640 
641     WritableDataBufferSP data_sp;
642     size_t bytes_read = 0;
643     if (compiler_type.GetOpaqueQualType()) {
644       // Make sure we don't display our type as ASCII bytes like the default
645       // memory read
646       if (!m_format_options.GetFormatValue().OptionWasSet())
647         m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault);
648 
649       llvm::Optional<uint64_t> size = compiler_type.GetByteSize(nullptr);
650       if (!size) {
651         result.AppendError("can't get size of type");
652         return false;
653       }
654       bytes_read = *size * m_format_options.GetCountValue().GetCurrentValue();
655 
656       if (argc > 0)
657         addr = addr + (*size * m_memory_options.m_offset.GetCurrentValue());
658     } else if (m_format_options.GetFormatValue().GetCurrentValue() !=
659                eFormatCString) {
660       data_sp = std::make_shared<DataBufferHeap>(total_byte_size, '\0');
661       if (data_sp->GetBytes() == nullptr) {
662         result.AppendErrorWithFormat(
663             "can't allocate 0x%" PRIx32
664             " bytes for the memory read buffer, specify a smaller size to read",
665             (uint32_t)total_byte_size);
666         return false;
667       }
668 
669       Address address(addr, nullptr);
670       bytes_read = target->ReadMemory(address, data_sp->GetBytes(),
671                                       data_sp->GetByteSize(), error, true);
672       if (bytes_read == 0) {
673         const char *error_cstr = error.AsCString();
674         if (error_cstr && error_cstr[0]) {
675           result.AppendError(error_cstr);
676         } else {
677           result.AppendErrorWithFormat(
678               "failed to read memory from 0x%" PRIx64 ".\n", addr);
679         }
680         return false;
681       }
682 
683       if (bytes_read < total_byte_size)
684         result.AppendWarningWithFormat(
685             "Not all bytes (%" PRIu64 "/%" PRIu64
686             ") were able to be read from 0x%" PRIx64 ".\n",
687             (uint64_t)bytes_read, (uint64_t)total_byte_size, addr);
688     } else {
689       // we treat c-strings as a special case because they do not have a fixed
690       // size
691       if (m_format_options.GetByteSizeValue().OptionWasSet() &&
692           !m_format_options.HasGDBFormat())
693         item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue();
694       else
695         item_byte_size = target->GetMaximumSizeOfStringSummary();
696       if (!m_format_options.GetCountValue().OptionWasSet())
697         item_count = 1;
698       data_sp = std::make_shared<DataBufferHeap>(
699           (item_byte_size + 1) * item_count,
700           '\0'); // account for NULLs as necessary
701       if (data_sp->GetBytes() == nullptr) {
702         result.AppendErrorWithFormat(
703             "can't allocate 0x%" PRIx64
704             " bytes for the memory read buffer, specify a smaller size to read",
705             (uint64_t)((item_byte_size + 1) * item_count));
706         return false;
707       }
708       uint8_t *data_ptr = data_sp->GetBytes();
709       auto data_addr = addr;
710       auto count = item_count;
711       item_count = 0;
712       bool break_on_no_NULL = false;
713       while (item_count < count) {
714         std::string buffer;
715         buffer.resize(item_byte_size + 1, 0);
716         Status error;
717         size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0],
718                                                     item_byte_size + 1, error);
719         if (error.Fail()) {
720           result.AppendErrorWithFormat(
721               "failed to read memory from 0x%" PRIx64 ".\n", addr);
722           return false;
723         }
724 
725         if (item_byte_size == read) {
726           result.AppendWarningWithFormat(
727               "unable to find a NULL terminated string at 0x%" PRIx64
728               ". Consider increasing the maximum read length.\n",
729               data_addr);
730           --read;
731           break_on_no_NULL = true;
732         } else
733           ++read; // account for final NULL byte
734 
735         memcpy(data_ptr, &buffer[0], read);
736         data_ptr += read;
737         data_addr += read;
738         bytes_read += read;
739         item_count++; // if we break early we know we only read item_count
740                       // strings
741 
742         if (break_on_no_NULL)
743           break;
744       }
745       data_sp =
746           std::make_shared<DataBufferHeap>(data_sp->GetBytes(), bytes_read + 1);
747     }
748 
749     m_next_addr = addr + bytes_read;
750     m_prev_byte_size = bytes_read;
751     m_prev_format_options = m_format_options;
752     m_prev_memory_options = m_memory_options;
753     m_prev_outfile_options = m_outfile_options;
754     m_prev_varobj_options = m_varobj_options;
755     m_prev_memory_tag_options = m_memory_tag_options;
756     m_prev_compiler_type = compiler_type;
757 
758     std::unique_ptr<Stream> output_stream_storage;
759     Stream *output_stream_p = nullptr;
760     const FileSpec &outfile_spec =
761         m_outfile_options.GetFile().GetCurrentValue();
762 
763     std::string path = outfile_spec.GetPath();
764     if (outfile_spec) {
765 
766       File::OpenOptions open_options =
767           File::eOpenOptionWriteOnly | File::eOpenOptionCanCreate;
768       const bool append = m_outfile_options.GetAppend().GetCurrentValue();
769       open_options |=
770           append ? File::eOpenOptionAppend : File::eOpenOptionTruncate;
771 
772       auto outfile = FileSystem::Instance().Open(outfile_spec, open_options);
773 
774       if (outfile) {
775         auto outfile_stream_up =
776             std::make_unique<StreamFile>(std::move(outfile.get()));
777         if (m_memory_options.m_output_as_binary) {
778           const size_t bytes_written =
779               outfile_stream_up->Write(data_sp->GetBytes(), bytes_read);
780           if (bytes_written > 0) {
781             result.GetOutputStream().Printf(
782                 "%zi bytes %s to '%s'\n", bytes_written,
783                 append ? "appended" : "written", path.c_str());
784             return true;
785           } else {
786             result.AppendErrorWithFormat("Failed to write %" PRIu64
787                                          " bytes to '%s'.\n",
788                                          (uint64_t)bytes_read, path.c_str());
789             return false;
790           }
791         } else {
792           // We are going to write ASCII to the file just point the
793           // output_stream to our outfile_stream...
794           output_stream_storage = std::move(outfile_stream_up);
795           output_stream_p = output_stream_storage.get();
796         }
797       } else {
798         result.AppendErrorWithFormat("Failed to open file '%s' for %s:\n",
799                                      path.c_str(), append ? "append" : "write");
800 
801         result.AppendError(llvm::toString(outfile.takeError()));
802         return false;
803       }
804     } else {
805       output_stream_p = &result.GetOutputStream();
806     }
807 
808     ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope();
809     if (compiler_type.GetOpaqueQualType()) {
810       for (uint32_t i = 0; i < item_count; ++i) {
811         addr_t item_addr = addr + (i * item_byte_size);
812         Address address(item_addr);
813         StreamString name_strm;
814         name_strm.Printf("0x%" PRIx64, item_addr);
815         ValueObjectSP valobj_sp(ValueObjectMemory::Create(
816             exe_scope, name_strm.GetString(), address, compiler_type));
817         if (valobj_sp) {
818           Format format = m_format_options.GetFormat();
819           if (format != eFormatDefault)
820             valobj_sp->SetFormat(format);
821 
822           DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions(
823               eLanguageRuntimeDescriptionDisplayVerbosityFull, format));
824 
825           valobj_sp->Dump(*output_stream_p, options);
826         } else {
827           result.AppendErrorWithFormat(
828               "failed to create a value object for: (%s) %s\n",
829               view_as_type_cstr, name_strm.GetData());
830           return false;
831         }
832       }
833       return true;
834     }
835 
836     result.SetStatus(eReturnStatusSuccessFinishResult);
837     DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(),
838                        target->GetArchitecture().GetAddressByteSize(),
839                        target->GetArchitecture().GetDataByteSize());
840 
841     Format format = m_format_options.GetFormat();
842     if (((format == eFormatChar) || (format == eFormatCharPrintable)) &&
843         (item_byte_size != 1)) {
844       // if a count was not passed, or it is 1
845       if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) {
846         // this turns requests such as
847         // memory read -fc -s10 -c1 *charPtrPtr
848         // which make no sense (what is a char of size 10?) into a request for
849         // fetching 10 chars of size 1 from the same memory location
850         format = eFormatCharArray;
851         item_count = item_byte_size;
852         item_byte_size = 1;
853       } else {
854         // here we passed a count, and it was not 1 so we have a byte_size and
855         // a count we could well multiply those, but instead let's just fail
856         result.AppendErrorWithFormat(
857             "reading memory as characters of size %" PRIu64 " is not supported",
858             (uint64_t)item_byte_size);
859         return false;
860       }
861     }
862 
863     assert(output_stream_p);
864     size_t bytes_dumped = DumpDataExtractor(
865         data, output_stream_p, 0, format, item_byte_size, item_count,
866         num_per_line / target->GetArchitecture().GetDataByteSize(), addr, 0, 0,
867         exe_scope, m_memory_tag_options.GetShowTags().GetCurrentValue());
868     m_next_addr = addr + bytes_dumped;
869     output_stream_p->EOL();
870     return true;
871   }
872 
873   OptionGroupOptions m_option_group;
874   OptionGroupFormat m_format_options;
875   OptionGroupReadMemory m_memory_options;
876   OptionGroupOutputFile m_outfile_options;
877   OptionGroupValueObjectDisplay m_varobj_options;
878   OptionGroupMemoryTag m_memory_tag_options;
879   lldb::addr_t m_next_addr = LLDB_INVALID_ADDRESS;
880   lldb::addr_t m_prev_byte_size = 0;
881   OptionGroupFormat m_prev_format_options;
882   OptionGroupReadMemory m_prev_memory_options;
883   OptionGroupOutputFile m_prev_outfile_options;
884   OptionGroupValueObjectDisplay m_prev_varobj_options;
885   OptionGroupMemoryTag m_prev_memory_tag_options;
886   CompilerType m_prev_compiler_type;
887 };
888 
889 #define LLDB_OPTIONS_memory_find
890 #include "CommandOptions.inc"
891 
892 // Find the specified data in memory
893 class CommandObjectMemoryFind : public CommandObjectParsed {
894 public:
895   class OptionGroupFindMemory : public OptionGroup {
896   public:
897     OptionGroupFindMemory() : m_count(1), m_offset(0) {}
898 
899     ~OptionGroupFindMemory() override = default;
900 
901     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
902       return llvm::makeArrayRef(g_memory_find_options);
903     }
904 
905     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
906                           ExecutionContext *execution_context) override {
907       Status error;
908       const int short_option = g_memory_find_options[option_idx].short_option;
909 
910       switch (short_option) {
911       case 'e':
912         m_expr.SetValueFromString(option_value);
913         break;
914 
915       case 's':
916         m_string.SetValueFromString(option_value);
917         break;
918 
919       case 'c':
920         if (m_count.SetValueFromString(option_value).Fail())
921           error.SetErrorString("unrecognized value for count");
922         break;
923 
924       case 'o':
925         if (m_offset.SetValueFromString(option_value).Fail())
926           error.SetErrorString("unrecognized value for dump-offset");
927         break;
928 
929       default:
930         llvm_unreachable("Unimplemented option");
931       }
932       return error;
933     }
934 
935     void OptionParsingStarting(ExecutionContext *execution_context) override {
936       m_expr.Clear();
937       m_string.Clear();
938       m_count.Clear();
939     }
940 
941     OptionValueString m_expr;
942     OptionValueString m_string;
943     OptionValueUInt64 m_count;
944     OptionValueUInt64 m_offset;
945   };
946 
947   CommandObjectMemoryFind(CommandInterpreter &interpreter)
948       : CommandObjectParsed(
949             interpreter, "memory find",
950             "Find a value in the memory of the current target process.",
951             nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched) {
952     CommandArgumentEntry arg1;
953     CommandArgumentEntry arg2;
954     CommandArgumentData addr_arg;
955     CommandArgumentData value_arg;
956 
957     // Define the first (and only) variant of this arg.
958     addr_arg.arg_type = eArgTypeAddressOrExpression;
959     addr_arg.arg_repetition = eArgRepeatPlain;
960 
961     // There is only one variant this argument could be; put it into the
962     // argument entry.
963     arg1.push_back(addr_arg);
964 
965     // Define the first (and only) variant of this arg.
966     value_arg.arg_type = eArgTypeAddressOrExpression;
967     value_arg.arg_repetition = eArgRepeatPlain;
968 
969     // There is only one variant this argument could be; put it into the
970     // argument entry.
971     arg2.push_back(value_arg);
972 
973     // Push the data for the first argument into the m_arguments vector.
974     m_arguments.push_back(arg1);
975     m_arguments.push_back(arg2);
976 
977     m_option_group.Append(&m_memory_options);
978     m_option_group.Append(&m_memory_tag_options, LLDB_OPT_SET_ALL,
979                           LLDB_OPT_SET_ALL);
980     m_option_group.Finalize();
981   }
982 
983   ~CommandObjectMemoryFind() override = default;
984 
985   Options *GetOptions() override { return &m_option_group; }
986 
987 protected:
988   class ProcessMemoryIterator {
989   public:
990     ProcessMemoryIterator(ProcessSP process_sp, lldb::addr_t base)
991         : m_process_sp(process_sp), m_base_addr(base) {
992       lldbassert(process_sp.get() != nullptr);
993     }
994 
995     bool IsValid() { return m_is_valid; }
996 
997     uint8_t operator[](lldb::addr_t offset) {
998       if (!IsValid())
999         return 0;
1000 
1001       uint8_t retval = 0;
1002       Status error;
1003       if (0 ==
1004           m_process_sp->ReadMemory(m_base_addr + offset, &retval, 1, error)) {
1005         m_is_valid = false;
1006         return 0;
1007       }
1008 
1009       return retval;
1010     }
1011 
1012   private:
1013     ProcessSP m_process_sp;
1014     lldb::addr_t m_base_addr;
1015     bool m_is_valid = true;
1016   };
1017   bool DoExecute(Args &command, CommandReturnObject &result) override {
1018     // No need to check "process" for validity as eCommandRequiresProcess
1019     // ensures it is valid
1020     Process *process = m_exe_ctx.GetProcessPtr();
1021 
1022     const size_t argc = command.GetArgumentCount();
1023 
1024     if (argc != 2) {
1025       result.AppendError("two addresses needed for memory find");
1026       return false;
1027     }
1028 
1029     Status error;
1030     lldb::addr_t low_addr = OptionArgParser::ToAddress(
1031         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1032     if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1033       result.AppendError("invalid low address");
1034       return false;
1035     }
1036     lldb::addr_t high_addr = OptionArgParser::ToAddress(
1037         &m_exe_ctx, command[1].ref(), LLDB_INVALID_ADDRESS, &error);
1038     if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) {
1039       result.AppendError("invalid high address");
1040       return false;
1041     }
1042 
1043     ABISP abi = m_exe_ctx.GetProcessPtr()->GetABI();
1044     if (abi) {
1045       low_addr = abi->FixDataAddress(low_addr);
1046       high_addr = abi->FixDataAddress(high_addr);
1047     }
1048 
1049     if (high_addr <= low_addr) {
1050       result.AppendError(
1051           "starting address must be smaller than ending address");
1052       return false;
1053     }
1054 
1055     lldb::addr_t found_location = LLDB_INVALID_ADDRESS;
1056 
1057     DataBufferHeap buffer;
1058 
1059     if (m_memory_options.m_string.OptionWasSet()) {
1060       llvm::StringRef str = m_memory_options.m_string.GetStringValue();
1061       if (str.empty()) {
1062         result.AppendError("search string must have non-zero length.");
1063         return false;
1064       }
1065       buffer.CopyData(str);
1066     } else if (m_memory_options.m_expr.OptionWasSet()) {
1067       StackFrame *frame = m_exe_ctx.GetFramePtr();
1068       ValueObjectSP result_sp;
1069       if ((eExpressionCompleted ==
1070            process->GetTarget().EvaluateExpression(
1071                m_memory_options.m_expr.GetStringValue(), frame, result_sp)) &&
1072           result_sp) {
1073         uint64_t value = result_sp->GetValueAsUnsigned(0);
1074         llvm::Optional<uint64_t> size =
1075             result_sp->GetCompilerType().GetByteSize(nullptr);
1076         if (!size)
1077           return false;
1078         switch (*size) {
1079         case 1: {
1080           uint8_t byte = (uint8_t)value;
1081           buffer.CopyData(&byte, 1);
1082         } break;
1083         case 2: {
1084           uint16_t word = (uint16_t)value;
1085           buffer.CopyData(&word, 2);
1086         } break;
1087         case 4: {
1088           uint32_t lword = (uint32_t)value;
1089           buffer.CopyData(&lword, 4);
1090         } break;
1091         case 8: {
1092           buffer.CopyData(&value, 8);
1093         } break;
1094         case 3:
1095         case 5:
1096         case 6:
1097         case 7:
1098           result.AppendError("unknown type. pass a string instead");
1099           return false;
1100         default:
1101           result.AppendError(
1102               "result size larger than 8 bytes. pass a string instead");
1103           return false;
1104         }
1105       } else {
1106         result.AppendError(
1107             "expression evaluation failed. pass a string instead");
1108         return false;
1109       }
1110     } else {
1111       result.AppendError(
1112           "please pass either a block of text, or an expression to evaluate.");
1113       return false;
1114     }
1115 
1116     size_t count = m_memory_options.m_count.GetCurrentValue();
1117     found_location = low_addr;
1118     bool ever_found = false;
1119     while (count) {
1120       found_location = FastSearch(found_location, high_addr, buffer.GetBytes(),
1121                                   buffer.GetByteSize());
1122       if (found_location == LLDB_INVALID_ADDRESS) {
1123         if (!ever_found) {
1124           result.AppendMessage("data not found within the range.\n");
1125           result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult);
1126         } else
1127           result.AppendMessage("no more matches within the range.\n");
1128         break;
1129       }
1130       result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n",
1131                                      found_location);
1132 
1133       DataBufferHeap dumpbuffer(32, 0);
1134       process->ReadMemory(
1135           found_location + m_memory_options.m_offset.GetCurrentValue(),
1136           dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error);
1137       if (!error.Fail()) {
1138         DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(),
1139                            process->GetByteOrder(),
1140                            process->GetAddressByteSize());
1141         DumpDataExtractor(
1142             data, &result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1,
1143             dumpbuffer.GetByteSize(), 16,
1144             found_location + m_memory_options.m_offset.GetCurrentValue(), 0, 0,
1145             m_exe_ctx.GetBestExecutionContextScope(),
1146             m_memory_tag_options.GetShowTags().GetCurrentValue());
1147         result.GetOutputStream().EOL();
1148       }
1149 
1150       --count;
1151       found_location++;
1152       ever_found = true;
1153     }
1154 
1155     result.SetStatus(lldb::eReturnStatusSuccessFinishResult);
1156     return true;
1157   }
1158 
1159   lldb::addr_t FastSearch(lldb::addr_t low, lldb::addr_t high, uint8_t *buffer,
1160                           size_t buffer_size) {
1161     const size_t region_size = high - low;
1162 
1163     if (region_size < buffer_size)
1164       return LLDB_INVALID_ADDRESS;
1165 
1166     std::vector<size_t> bad_char_heuristic(256, buffer_size);
1167     ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1168     ProcessMemoryIterator iterator(process_sp, low);
1169 
1170     for (size_t idx = 0; idx < buffer_size - 1; idx++) {
1171       decltype(bad_char_heuristic)::size_type bcu_idx = buffer[idx];
1172       bad_char_heuristic[bcu_idx] = buffer_size - idx - 1;
1173     }
1174     for (size_t s = 0; s <= (region_size - buffer_size);) {
1175       int64_t j = buffer_size - 1;
1176       while (j >= 0 && buffer[j] == iterator[s + j])
1177         j--;
1178       if (j < 0)
1179         return low + s;
1180       else
1181         s += bad_char_heuristic[iterator[s + buffer_size - 1]];
1182     }
1183 
1184     return LLDB_INVALID_ADDRESS;
1185   }
1186 
1187   OptionGroupOptions m_option_group;
1188   OptionGroupFindMemory m_memory_options;
1189   OptionGroupMemoryTag m_memory_tag_options;
1190 };
1191 
1192 #define LLDB_OPTIONS_memory_write
1193 #include "CommandOptions.inc"
1194 
1195 // Write memory to the inferior process
1196 class CommandObjectMemoryWrite : public CommandObjectParsed {
1197 public:
1198   class OptionGroupWriteMemory : public OptionGroup {
1199   public:
1200     OptionGroupWriteMemory() = default;
1201 
1202     ~OptionGroupWriteMemory() override = default;
1203 
1204     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1205       return llvm::makeArrayRef(g_memory_write_options);
1206     }
1207 
1208     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1209                           ExecutionContext *execution_context) override {
1210       Status error;
1211       const int short_option = g_memory_write_options[option_idx].short_option;
1212 
1213       switch (short_option) {
1214       case 'i':
1215         m_infile.SetFile(option_value, FileSpec::Style::native);
1216         FileSystem::Instance().Resolve(m_infile);
1217         if (!FileSystem::Instance().Exists(m_infile)) {
1218           m_infile.Clear();
1219           error.SetErrorStringWithFormat("input file does not exist: '%s'",
1220                                          option_value.str().c_str());
1221         }
1222         break;
1223 
1224       case 'o': {
1225         if (option_value.getAsInteger(0, m_infile_offset)) {
1226           m_infile_offset = 0;
1227           error.SetErrorStringWithFormat("invalid offset string '%s'",
1228                                          option_value.str().c_str());
1229         }
1230       } break;
1231 
1232       default:
1233         llvm_unreachable("Unimplemented option");
1234       }
1235       return error;
1236     }
1237 
1238     void OptionParsingStarting(ExecutionContext *execution_context) override {
1239       m_infile.Clear();
1240       m_infile_offset = 0;
1241     }
1242 
1243     FileSpec m_infile;
1244     off_t m_infile_offset;
1245   };
1246 
1247   CommandObjectMemoryWrite(CommandInterpreter &interpreter)
1248       : CommandObjectParsed(
1249             interpreter, "memory write",
1250             "Write to the memory of the current target process.", nullptr,
1251             eCommandRequiresProcess | eCommandProcessMustBeLaunched),
1252         m_format_options(
1253             eFormatBytes, 1, UINT64_MAX,
1254             {std::make_tuple(
1255                  eArgTypeFormat,
1256                  "The format to use for each of the value to be written."),
1257              std::make_tuple(eArgTypeByteSize,
1258                              "The size in bytes to write from input file or "
1259                              "each value.")}) {
1260     CommandArgumentEntry arg1;
1261     CommandArgumentEntry arg2;
1262     CommandArgumentData addr_arg;
1263     CommandArgumentData value_arg;
1264 
1265     // Define the first (and only) variant of this arg.
1266     addr_arg.arg_type = eArgTypeAddress;
1267     addr_arg.arg_repetition = eArgRepeatPlain;
1268 
1269     // There is only one variant this argument could be; put it into the
1270     // argument entry.
1271     arg1.push_back(addr_arg);
1272 
1273     // Define the first (and only) variant of this arg.
1274     value_arg.arg_type = eArgTypeValue;
1275     value_arg.arg_repetition = eArgRepeatPlus;
1276     value_arg.arg_opt_set_association = LLDB_OPT_SET_1;
1277 
1278     // There is only one variant this argument could be; put it into the
1279     // argument entry.
1280     arg2.push_back(value_arg);
1281 
1282     // Push the data for the first argument into the m_arguments vector.
1283     m_arguments.push_back(arg1);
1284     m_arguments.push_back(arg2);
1285 
1286     m_option_group.Append(&m_format_options,
1287                           OptionGroupFormat::OPTION_GROUP_FORMAT,
1288                           LLDB_OPT_SET_1);
1289     m_option_group.Append(&m_format_options,
1290                           OptionGroupFormat::OPTION_GROUP_SIZE,
1291                           LLDB_OPT_SET_1 | LLDB_OPT_SET_2);
1292     m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2);
1293     m_option_group.Finalize();
1294   }
1295 
1296   ~CommandObjectMemoryWrite() override = default;
1297 
1298   Options *GetOptions() override { return &m_option_group; }
1299 
1300 protected:
1301   bool DoExecute(Args &command, CommandReturnObject &result) override {
1302     // No need to check "process" for validity as eCommandRequiresProcess
1303     // ensures it is valid
1304     Process *process = m_exe_ctx.GetProcessPtr();
1305 
1306     const size_t argc = command.GetArgumentCount();
1307 
1308     if (m_memory_options.m_infile) {
1309       if (argc < 1) {
1310         result.AppendErrorWithFormat(
1311             "%s takes a destination address when writing file contents.\n",
1312             m_cmd_name.c_str());
1313         return false;
1314       }
1315       if (argc > 1) {
1316         result.AppendErrorWithFormat(
1317             "%s takes only a destination address when writing file contents.\n",
1318             m_cmd_name.c_str());
1319         return false;
1320       }
1321     } else if (argc < 2) {
1322       result.AppendErrorWithFormat(
1323           "%s takes a destination address and at least one value.\n",
1324           m_cmd_name.c_str());
1325       return false;
1326     }
1327 
1328     StreamString buffer(
1329         Stream::eBinary,
1330         process->GetTarget().GetArchitecture().GetAddressByteSize(),
1331         process->GetTarget().GetArchitecture().GetByteOrder());
1332 
1333     OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue();
1334     size_t item_byte_size = byte_size_value.GetCurrentValue();
1335 
1336     Status error;
1337     lldb::addr_t addr = OptionArgParser::ToAddress(
1338         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1339 
1340     if (addr == LLDB_INVALID_ADDRESS) {
1341       result.AppendError("invalid address expression\n");
1342       result.AppendError(error.AsCString());
1343       return false;
1344     }
1345 
1346     if (m_memory_options.m_infile) {
1347       size_t length = SIZE_MAX;
1348       if (item_byte_size > 1)
1349         length = item_byte_size;
1350       auto data_sp = FileSystem::Instance().CreateDataBuffer(
1351           m_memory_options.m_infile.GetPath(), length,
1352           m_memory_options.m_infile_offset);
1353       if (data_sp) {
1354         length = data_sp->GetByteSize();
1355         if (length > 0) {
1356           Status error;
1357           size_t bytes_written =
1358               process->WriteMemory(addr, data_sp->GetBytes(), length, error);
1359 
1360           if (bytes_written == length) {
1361             // All bytes written
1362             result.GetOutputStream().Printf(
1363                 "%" PRIu64 " bytes were written to 0x%" PRIx64 "\n",
1364                 (uint64_t)bytes_written, addr);
1365             result.SetStatus(eReturnStatusSuccessFinishResult);
1366           } else if (bytes_written > 0) {
1367             // Some byte written
1368             result.GetOutputStream().Printf(
1369                 "%" PRIu64 " bytes of %" PRIu64
1370                 " requested were written to 0x%" PRIx64 "\n",
1371                 (uint64_t)bytes_written, (uint64_t)length, addr);
1372             result.SetStatus(eReturnStatusSuccessFinishResult);
1373           } else {
1374             result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1375                                          " failed: %s.\n",
1376                                          addr, error.AsCString());
1377           }
1378         }
1379       } else {
1380         result.AppendErrorWithFormat("Unable to read contents of file.\n");
1381       }
1382       return result.Succeeded();
1383     } else if (item_byte_size == 0) {
1384       if (m_format_options.GetFormat() == eFormatPointer)
1385         item_byte_size = buffer.GetAddressByteSize();
1386       else
1387         item_byte_size = 1;
1388     }
1389 
1390     command.Shift(); // shift off the address argument
1391     uint64_t uval64;
1392     int64_t sval64;
1393     bool success = false;
1394     for (auto &entry : command) {
1395       switch (m_format_options.GetFormat()) {
1396       case kNumFormats:
1397       case eFormatFloat: // TODO: add support for floats soon
1398       case eFormatCharPrintable:
1399       case eFormatBytesWithASCII:
1400       case eFormatComplex:
1401       case eFormatEnum:
1402       case eFormatUnicode8:
1403       case eFormatUnicode16:
1404       case eFormatUnicode32:
1405       case eFormatVectorOfChar:
1406       case eFormatVectorOfSInt8:
1407       case eFormatVectorOfUInt8:
1408       case eFormatVectorOfSInt16:
1409       case eFormatVectorOfUInt16:
1410       case eFormatVectorOfSInt32:
1411       case eFormatVectorOfUInt32:
1412       case eFormatVectorOfSInt64:
1413       case eFormatVectorOfUInt64:
1414       case eFormatVectorOfFloat16:
1415       case eFormatVectorOfFloat32:
1416       case eFormatVectorOfFloat64:
1417       case eFormatVectorOfUInt128:
1418       case eFormatOSType:
1419       case eFormatComplexInteger:
1420       case eFormatAddressInfo:
1421       case eFormatHexFloat:
1422       case eFormatInstruction:
1423       case eFormatVoid:
1424         result.AppendError("unsupported format for writing memory");
1425         return false;
1426 
1427       case eFormatDefault:
1428       case eFormatBytes:
1429       case eFormatHex:
1430       case eFormatHexUppercase:
1431       case eFormatPointer: {
1432         // Decode hex bytes
1433         // Be careful, getAsInteger with a radix of 16 rejects "0xab" so we
1434         // have to special case that:
1435         bool success = false;
1436         if (entry.ref().startswith("0x"))
1437           success = !entry.ref().getAsInteger(0, uval64);
1438         if (!success)
1439           success = !entry.ref().getAsInteger(16, uval64);
1440         if (!success) {
1441           result.AppendErrorWithFormat(
1442               "'%s' is not a valid hex string value.\n", entry.c_str());
1443           return false;
1444         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1445           result.AppendErrorWithFormat("Value 0x%" PRIx64
1446                                        " is too large to fit in a %" PRIu64
1447                                        " byte unsigned integer value.\n",
1448                                        uval64, (uint64_t)item_byte_size);
1449           return false;
1450         }
1451         buffer.PutMaxHex64(uval64, item_byte_size);
1452         break;
1453       }
1454       case eFormatBoolean:
1455         uval64 = OptionArgParser::ToBoolean(entry.ref(), false, &success);
1456         if (!success) {
1457           result.AppendErrorWithFormat(
1458               "'%s' is not a valid boolean string value.\n", entry.c_str());
1459           return false;
1460         }
1461         buffer.PutMaxHex64(uval64, item_byte_size);
1462         break;
1463 
1464       case eFormatBinary:
1465         if (entry.ref().getAsInteger(2, uval64)) {
1466           result.AppendErrorWithFormat(
1467               "'%s' is not a valid binary string value.\n", entry.c_str());
1468           return false;
1469         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1470           result.AppendErrorWithFormat("Value 0x%" PRIx64
1471                                        " is too large to fit in a %" PRIu64
1472                                        " byte unsigned integer value.\n",
1473                                        uval64, (uint64_t)item_byte_size);
1474           return false;
1475         }
1476         buffer.PutMaxHex64(uval64, item_byte_size);
1477         break;
1478 
1479       case eFormatCharArray:
1480       case eFormatChar:
1481       case eFormatCString: {
1482         if (entry.ref().empty())
1483           break;
1484 
1485         size_t len = entry.ref().size();
1486         // Include the NULL for C strings...
1487         if (m_format_options.GetFormat() == eFormatCString)
1488           ++len;
1489         Status error;
1490         if (process->WriteMemory(addr, entry.c_str(), len, error) == len) {
1491           addr += len;
1492         } else {
1493           result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1494                                        " failed: %s.\n",
1495                                        addr, error.AsCString());
1496           return false;
1497         }
1498         break;
1499       }
1500       case eFormatDecimal:
1501         if (entry.ref().getAsInteger(0, sval64)) {
1502           result.AppendErrorWithFormat(
1503               "'%s' is not a valid signed decimal value.\n", entry.c_str());
1504           return false;
1505         } else if (!llvm::isIntN(item_byte_size * 8, sval64)) {
1506           result.AppendErrorWithFormat(
1507               "Value %" PRIi64 " is too large or small to fit in a %" PRIu64
1508               " byte signed integer value.\n",
1509               sval64, (uint64_t)item_byte_size);
1510           return false;
1511         }
1512         buffer.PutMaxHex64(sval64, item_byte_size);
1513         break;
1514 
1515       case eFormatUnsigned:
1516 
1517         if (entry.ref().getAsInteger(0, uval64)) {
1518           result.AppendErrorWithFormat(
1519               "'%s' is not a valid unsigned decimal string value.\n",
1520               entry.c_str());
1521           return false;
1522         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1523           result.AppendErrorWithFormat("Value %" PRIu64
1524                                        " is too large to fit in a %" PRIu64
1525                                        " byte unsigned integer value.\n",
1526                                        uval64, (uint64_t)item_byte_size);
1527           return false;
1528         }
1529         buffer.PutMaxHex64(uval64, item_byte_size);
1530         break;
1531 
1532       case eFormatOctal:
1533         if (entry.ref().getAsInteger(8, uval64)) {
1534           result.AppendErrorWithFormat(
1535               "'%s' is not a valid octal string value.\n", entry.c_str());
1536           return false;
1537         } else if (!llvm::isUIntN(item_byte_size * 8, uval64)) {
1538           result.AppendErrorWithFormat("Value %" PRIo64
1539                                        " is too large to fit in a %" PRIu64
1540                                        " byte unsigned integer value.\n",
1541                                        uval64, (uint64_t)item_byte_size);
1542           return false;
1543         }
1544         buffer.PutMaxHex64(uval64, item_byte_size);
1545         break;
1546       }
1547     }
1548 
1549     if (!buffer.GetString().empty()) {
1550       Status error;
1551       if (process->WriteMemory(addr, buffer.GetString().data(),
1552                                buffer.GetString().size(),
1553                                error) == buffer.GetString().size())
1554         return true;
1555       else {
1556         result.AppendErrorWithFormat("Memory write to 0x%" PRIx64
1557                                      " failed: %s.\n",
1558                                      addr, error.AsCString());
1559         return false;
1560       }
1561     }
1562     return true;
1563   }
1564 
1565   OptionGroupOptions m_option_group;
1566   OptionGroupFormat m_format_options;
1567   OptionGroupWriteMemory m_memory_options;
1568 };
1569 
1570 // Get malloc/free history of a memory address.
1571 class CommandObjectMemoryHistory : public CommandObjectParsed {
1572 public:
1573   CommandObjectMemoryHistory(CommandInterpreter &interpreter)
1574       : CommandObjectParsed(interpreter, "memory history",
1575                             "Print recorded stack traces for "
1576                             "allocation/deallocation events "
1577                             "associated with an address.",
1578                             nullptr,
1579                             eCommandRequiresTarget | eCommandRequiresProcess |
1580                                 eCommandProcessMustBePaused |
1581                                 eCommandProcessMustBeLaunched) {
1582     CommandArgumentEntry arg1;
1583     CommandArgumentData addr_arg;
1584 
1585     // Define the first (and only) variant of this arg.
1586     addr_arg.arg_type = eArgTypeAddress;
1587     addr_arg.arg_repetition = eArgRepeatPlain;
1588 
1589     // There is only one variant this argument could be; put it into the
1590     // argument entry.
1591     arg1.push_back(addr_arg);
1592 
1593     // Push the data for the first argument into the m_arguments vector.
1594     m_arguments.push_back(arg1);
1595   }
1596 
1597   ~CommandObjectMemoryHistory() override = default;
1598 
1599   llvm::Optional<std::string> GetRepeatCommand(Args &current_command_args,
1600                                                uint32_t index) override {
1601     return m_cmd_name;
1602   }
1603 
1604 protected:
1605   bool DoExecute(Args &command, CommandReturnObject &result) override {
1606     const size_t argc = command.GetArgumentCount();
1607 
1608     if (argc == 0 || argc > 1) {
1609       result.AppendErrorWithFormat("%s takes an address expression",
1610                                    m_cmd_name.c_str());
1611       return false;
1612     }
1613 
1614     Status error;
1615     lldb::addr_t addr = OptionArgParser::ToAddress(
1616         &m_exe_ctx, command[0].ref(), LLDB_INVALID_ADDRESS, &error);
1617 
1618     if (addr == LLDB_INVALID_ADDRESS) {
1619       result.AppendError("invalid address expression");
1620       result.AppendError(error.AsCString());
1621       return false;
1622     }
1623 
1624     Stream *output_stream = &result.GetOutputStream();
1625 
1626     const ProcessSP &process_sp = m_exe_ctx.GetProcessSP();
1627     const MemoryHistorySP &memory_history =
1628         MemoryHistory::FindPlugin(process_sp);
1629 
1630     if (!memory_history) {
1631       result.AppendError("no available memory history provider");
1632       return false;
1633     }
1634 
1635     HistoryThreads thread_list = memory_history->GetHistoryThreads(addr);
1636 
1637     const bool stop_format = false;
1638     for (auto thread : thread_list) {
1639       thread->GetStatus(*output_stream, 0, UINT32_MAX, 0, stop_format);
1640     }
1641 
1642     result.SetStatus(eReturnStatusSuccessFinishResult);
1643 
1644     return true;
1645   }
1646 };
1647 
1648 // CommandObjectMemoryRegion
1649 #pragma mark CommandObjectMemoryRegion
1650 
1651 #define LLDB_OPTIONS_memory_region
1652 #include "CommandOptions.inc"
1653 
1654 class CommandObjectMemoryRegion : public CommandObjectParsed {
1655 public:
1656   class OptionGroupMemoryRegion : public OptionGroup {
1657   public:
1658     OptionGroupMemoryRegion() : OptionGroup(), m_all(false, false) {}
1659 
1660     ~OptionGroupMemoryRegion() override = default;
1661 
1662     llvm::ArrayRef<OptionDefinition> GetDefinitions() override {
1663       return llvm::makeArrayRef(g_memory_region_options);
1664     }
1665 
1666     Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value,
1667                           ExecutionContext *execution_context) override {
1668       Status status;
1669       const int short_option = g_memory_region_options[option_idx].short_option;
1670 
1671       switch (short_option) {
1672       case 'a':
1673         m_all.SetCurrentValue(true);
1674         m_all.SetOptionWasSet();
1675         break;
1676       default:
1677         llvm_unreachable("Unimplemented option");
1678       }
1679 
1680       return status;
1681     }
1682 
1683     void OptionParsingStarting(ExecutionContext *execution_context) override {
1684       m_all.Clear();
1685     }
1686 
1687     OptionValueBoolean m_all;
1688   };
1689 
1690   CommandObjectMemoryRegion(CommandInterpreter &interpreter)
1691       : CommandObjectParsed(interpreter, "memory region",
1692                             "Get information on the memory region containing "
1693                             "an address in the current target process.",
1694                             "memory region <address-expression> (or --all)",
1695                             eCommandRequiresProcess | eCommandTryTargetAPILock |
1696                                 eCommandProcessMustBeLaunched) {
1697     // Address in option set 1.
1698     m_arguments.push_back(CommandArgumentEntry{CommandArgumentData(
1699         eArgTypeAddressOrExpression, eArgRepeatPlain, LLDB_OPT_SET_1)});
1700     // "--all" will go in option set 2.
1701     m_option_group.Append(&m_memory_region_options);
1702     m_option_group.Finalize();
1703   }
1704 
1705   ~CommandObjectMemoryRegion() override = default;
1706 
1707   Options *GetOptions() override { return &m_option_group; }
1708 
1709 protected:
1710   void DumpRegion(CommandReturnObject &result, Target &target,
1711                   const MemoryRegionInfo &range_info, lldb::addr_t load_addr) {
1712     lldb_private::Address addr;
1713     ConstString section_name;
1714     if (target.ResolveLoadAddress(load_addr, addr)) {
1715       SectionSP section_sp(addr.GetSection());
1716       if (section_sp) {
1717         // Got the top most section, not the deepest section
1718         while (section_sp->GetParent())
1719           section_sp = section_sp->GetParent();
1720         section_name = section_sp->GetName();
1721       }
1722     }
1723 
1724     ConstString name = range_info.GetName();
1725     result.AppendMessageWithFormatv(
1726         "[{0:x16}-{1:x16}) {2:r}{3:w}{4:x}{5}{6}{7}{8}",
1727         range_info.GetRange().GetRangeBase(),
1728         range_info.GetRange().GetRangeEnd(), range_info.GetReadable(),
1729         range_info.GetWritable(), range_info.GetExecutable(), name ? " " : "",
1730         name, section_name ? " " : "", section_name);
1731     MemoryRegionInfo::OptionalBool memory_tagged = range_info.GetMemoryTagged();
1732     if (memory_tagged == MemoryRegionInfo::OptionalBool::eYes)
1733       result.AppendMessage("memory tagging: enabled");
1734 
1735     const llvm::Optional<std::vector<addr_t>> &dirty_page_list =
1736         range_info.GetDirtyPageList();
1737     if (dirty_page_list.hasValue()) {
1738       const size_t page_count = dirty_page_list.getValue().size();
1739       result.AppendMessageWithFormat(
1740           "Modified memory (dirty) page list provided, %zu entries.\n",
1741           page_count);
1742       if (page_count > 0) {
1743         bool print_comma = false;
1744         result.AppendMessageWithFormat("Dirty pages: ");
1745         for (size_t i = 0; i < page_count; i++) {
1746           if (print_comma)
1747             result.AppendMessageWithFormat(", ");
1748           else
1749             print_comma = true;
1750           result.AppendMessageWithFormat("0x%" PRIx64,
1751                                          dirty_page_list.getValue()[i]);
1752         }
1753         result.AppendMessageWithFormat(".\n");
1754       }
1755     }
1756   }
1757 
1758   bool DoExecute(Args &command, CommandReturnObject &result) override {
1759     ProcessSP process_sp = m_exe_ctx.GetProcessSP();
1760     if (!process_sp) {
1761       m_prev_end_addr = LLDB_INVALID_ADDRESS;
1762       result.AppendError("invalid process");
1763       return false;
1764     }
1765 
1766     Status error;
1767     lldb::addr_t load_addr = m_prev_end_addr;
1768     m_prev_end_addr = LLDB_INVALID_ADDRESS;
1769 
1770     const size_t argc = command.GetArgumentCount();
1771     const lldb::ABISP &abi = process_sp->GetABI();
1772 
1773     if (argc == 1) {
1774       if (m_memory_region_options.m_all) {
1775         result.AppendError(
1776             "The \"--all\" option cannot be used when an address "
1777             "argument is given");
1778         return false;
1779       }
1780 
1781       auto load_addr_str = command[0].ref();
1782       // Non-address bits in this will be handled later by GetMemoryRegion
1783       load_addr = OptionArgParser::ToAddress(&m_exe_ctx, load_addr_str,
1784                                              LLDB_INVALID_ADDRESS, &error);
1785       if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) {
1786         result.AppendErrorWithFormat("invalid address argument \"%s\": %s\n",
1787                                      command[0].c_str(), error.AsCString());
1788         return false;
1789       }
1790     } else if (argc > 1 ||
1791                // When we're repeating the command, the previous end address is
1792                // used for load_addr. If that was 0xF...F then we must have
1793                // reached the end of memory.
1794                (argc == 0 && !m_memory_region_options.m_all &&
1795                 load_addr == LLDB_INVALID_ADDRESS) ||
1796                // If the target has non-address bits (tags, limited virtual
1797                // address size, etc.), the end of mappable memory will be lower
1798                // than that. So if we find any non-address bit set, we must be
1799                // at the end of the mappable range.
1800                (abi && (abi->FixAnyAddress(load_addr) != load_addr))) {
1801       result.AppendErrorWithFormat(
1802           "'%s' takes one argument or \"--all\" option:\nUsage: %s\n",
1803           m_cmd_name.c_str(), m_cmd_syntax.c_str());
1804       return false;
1805     }
1806 
1807     // Is is important that we track the address used to request the region as
1808     // this will give the correct section name in the case that regions overlap.
1809     // On Windows we get mutliple regions that start at the same place but are
1810     // different sizes and refer to different sections.
1811     std::vector<std::pair<lldb_private::MemoryRegionInfo, lldb::addr_t>>
1812         region_list;
1813     if (m_memory_region_options.m_all) {
1814       // We don't use GetMemoryRegions here because it doesn't include unmapped
1815       // areas like repeating the command would. So instead, emulate doing that.
1816       lldb::addr_t addr = 0;
1817       while (error.Success() && addr != LLDB_INVALID_ADDRESS &&
1818              // When there are non-address bits the last range will not extend
1819              // to LLDB_INVALID_ADDRESS but to the max virtual address.
1820              // This prevents us looping forever if that is the case.
1821              (abi && (abi->FixAnyAddress(addr) == addr))) {
1822         lldb_private::MemoryRegionInfo region_info;
1823         error = process_sp->GetMemoryRegionInfo(addr, region_info);
1824 
1825         if (error.Success()) {
1826           region_list.push_back({region_info, addr});
1827           addr = region_info.GetRange().GetRangeEnd();
1828         }
1829       }
1830 
1831       // Even if we read nothing, don't error for --all
1832       error.Clear();
1833     } else {
1834       lldb_private::MemoryRegionInfo region_info;
1835       error = process_sp->GetMemoryRegionInfo(load_addr, region_info);
1836       if (error.Success())
1837         region_list.push_back({region_info, load_addr});
1838     }
1839 
1840     if (error.Success()) {
1841       for (std::pair<MemoryRegionInfo, addr_t> &range : region_list) {
1842         DumpRegion(result, process_sp->GetTarget(), range.first, range.second);
1843         m_prev_end_addr = range.first.GetRange().GetRangeEnd();
1844       }
1845 
1846       result.SetStatus(eReturnStatusSuccessFinishResult);
1847       return true;
1848     }
1849 
1850     result.AppendErrorWithFormat("%s\n", error.AsCString());
1851     return false;
1852   }
1853 
1854   llvm::Optional<std::string> GetRepeatCommand(Args &current_command_args,
1855                                                uint32_t index) override {
1856     // If we repeat this command, repeat it without any arguments so we can
1857     // show the next memory range
1858     return m_cmd_name;
1859   }
1860 
1861   lldb::addr_t m_prev_end_addr = LLDB_INVALID_ADDRESS;
1862 
1863   OptionGroupOptions m_option_group;
1864   OptionGroupMemoryRegion m_memory_region_options;
1865 };
1866 
1867 // CommandObjectMemory
1868 
1869 CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter)
1870     : CommandObjectMultiword(
1871           interpreter, "memory",
1872           "Commands for operating on memory in the current target process.",
1873           "memory <subcommand> [<subcommand-options>]") {
1874   LoadSubCommand("find",
1875                  CommandObjectSP(new CommandObjectMemoryFind(interpreter)));
1876   LoadSubCommand("read",
1877                  CommandObjectSP(new CommandObjectMemoryRead(interpreter)));
1878   LoadSubCommand("write",
1879                  CommandObjectSP(new CommandObjectMemoryWrite(interpreter)));
1880   LoadSubCommand("history",
1881                  CommandObjectSP(new CommandObjectMemoryHistory(interpreter)));
1882   LoadSubCommand("region",
1883                  CommandObjectSP(new CommandObjectMemoryRegion(interpreter)));
1884   LoadSubCommand("tag",
1885                  CommandObjectSP(new CommandObjectMemoryTag(interpreter)));
1886 }
1887 
1888 CommandObjectMemory::~CommandObjectMemory() = default;
1889