1 //===-- Loader Implementation for AMDHSA devices --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file impelements a simple loader to run images supporting the AMDHSA 10 // architecture. The file launches the '_start' kernel which should be provided 11 // by the device application start code and call ultimately call the 'main' 12 // function. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "Loader.h" 17 18 #if defined(__has_include) 19 #if __has_include("hsa/hsa.h") 20 #include "hsa/hsa.h" 21 #include "hsa/hsa_ext_amd.h" 22 #elif __has_include("hsa.h") 23 #include "hsa.h" 24 #include "hsa_ext_amd.h" 25 #endif 26 #else 27 #include "hsa/hsa.h" 28 #include "hsa/hsa_ext_amd.h" 29 #endif 30 31 #include <atomic> 32 #include <cstdio> 33 #include <cstdlib> 34 #include <cstring> 35 #include <thread> 36 #include <tuple> 37 #include <utility> 38 39 // The implicit arguments of COV5 AMDGPU kernels. 40 struct implicit_args_t { 41 uint32_t grid_size_x; 42 uint32_t grid_size_y; 43 uint32_t grid_size_z; 44 uint16_t workgroup_size_x; 45 uint16_t workgroup_size_y; 46 uint16_t workgroup_size_z; 47 uint8_t Unused0[46]; 48 uint16_t grid_dims; 49 uint8_t Unused1[190]; 50 }; 51 52 /// Print the error code and exit if \p code indicates an error. 53 static void handle_error_impl(const char *file, int32_t line, 54 hsa_status_t code) { 55 if (code == HSA_STATUS_SUCCESS || code == HSA_STATUS_INFO_BREAK) 56 return; 57 58 const char *desc; 59 if (hsa_status_string(code, &desc) != HSA_STATUS_SUCCESS) 60 desc = "Unknown error"; 61 fprintf(stderr, "%s:%d:0: Error: %s\n", file, line, desc); 62 exit(EXIT_FAILURE); 63 } 64 65 /// Generic interface for iterating using the HSA callbacks. 66 template <typename elem_ty, typename func_ty, typename callback_ty> 67 hsa_status_t iterate(func_ty func, callback_ty cb) { 68 auto l = [](elem_ty elem, void *data) -> hsa_status_t { 69 callback_ty *unwrapped = static_cast<callback_ty *>(data); 70 return (*unwrapped)(elem); 71 }; 72 return func(l, static_cast<void *>(&cb)); 73 } 74 75 /// Generic interface for iterating using the HSA callbacks. 76 template <typename elem_ty, typename func_ty, typename func_arg_ty, 77 typename callback_ty> 78 hsa_status_t iterate(func_ty func, func_arg_ty func_arg, callback_ty cb) { 79 auto l = [](elem_ty elem, void *data) -> hsa_status_t { 80 callback_ty *unwrapped = static_cast<callback_ty *>(data); 81 return (*unwrapped)(elem); 82 }; 83 return func(func_arg, l, static_cast<void *>(&cb)); 84 } 85 86 /// Iterate through all availible agents. 87 template <typename callback_ty> 88 hsa_status_t iterate_agents(callback_ty callback) { 89 return iterate<hsa_agent_t>(hsa_iterate_agents, callback); 90 } 91 92 /// Iterate through all availible memory pools. 93 template <typename callback_ty> 94 hsa_status_t iterate_agent_memory_pools(hsa_agent_t agent, callback_ty cb) { 95 return iterate<hsa_amd_memory_pool_t>(hsa_amd_agent_iterate_memory_pools, 96 agent, cb); 97 } 98 99 template <hsa_device_type_t flag> 100 hsa_status_t get_agent(hsa_agent_t *output_agent) { 101 // Find the first agent with a matching device type. 102 auto cb = [&](hsa_agent_t hsa_agent) -> hsa_status_t { 103 hsa_device_type_t type; 104 hsa_status_t status = 105 hsa_agent_get_info(hsa_agent, HSA_AGENT_INFO_DEVICE, &type); 106 if (status != HSA_STATUS_SUCCESS) 107 return status; 108 109 if (type == flag) { 110 // Ensure that a GPU agent supports kernel dispatch packets. 111 if (type == HSA_DEVICE_TYPE_GPU) { 112 hsa_agent_feature_t features; 113 status = 114 hsa_agent_get_info(hsa_agent, HSA_AGENT_INFO_FEATURE, &features); 115 if (status != HSA_STATUS_SUCCESS) 116 return status; 117 if (features & HSA_AGENT_FEATURE_KERNEL_DISPATCH) 118 *output_agent = hsa_agent; 119 } else { 120 *output_agent = hsa_agent; 121 } 122 return HSA_STATUS_INFO_BREAK; 123 } 124 return HSA_STATUS_SUCCESS; 125 }; 126 127 return iterate_agents(cb); 128 } 129 130 void print_kernel_resources(const char *kernel_name) { 131 fprintf(stderr, "Kernel resources on AMDGPU is not supported yet.\n"); 132 } 133 134 /// Retrieve a global memory pool with a \p flag from the agent. 135 template <hsa_amd_memory_pool_global_flag_t flag> 136 hsa_status_t get_agent_memory_pool(hsa_agent_t agent, 137 hsa_amd_memory_pool_t *output_pool) { 138 auto cb = [&](hsa_amd_memory_pool_t memory_pool) { 139 uint32_t flags; 140 hsa_amd_segment_t segment; 141 if (auto err = hsa_amd_memory_pool_get_info( 142 memory_pool, HSA_AMD_MEMORY_POOL_INFO_SEGMENT, &segment)) 143 return err; 144 if (auto err = hsa_amd_memory_pool_get_info( 145 memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &flags)) 146 return err; 147 148 if (segment != HSA_AMD_SEGMENT_GLOBAL) 149 return HSA_STATUS_SUCCESS; 150 151 if (flags & flag) 152 *output_pool = memory_pool; 153 154 return HSA_STATUS_SUCCESS; 155 }; 156 return iterate_agent_memory_pools(agent, cb); 157 } 158 159 template <typename args_t> 160 hsa_status_t launch_kernel(hsa_agent_t dev_agent, hsa_executable_t executable, 161 hsa_amd_memory_pool_t kernargs_pool, 162 hsa_amd_memory_pool_t coarsegrained_pool, 163 hsa_queue_t *queue, rpc::Server &server, 164 const LaunchParameters ¶ms, 165 const char *kernel_name, args_t kernel_args, 166 bool print_resource_usage) { 167 // Look up the kernel in the loaded executable. 168 hsa_executable_symbol_t symbol; 169 if (hsa_status_t err = hsa_executable_get_symbol_by_name( 170 executable, kernel_name, &dev_agent, &symbol)) 171 return err; 172 173 uint32_t wavefront_size = 0; 174 if (hsa_status_t err = hsa_agent_get_info( 175 dev_agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size)) 176 handle_error(err); 177 // Retrieve different properties of the kernel symbol used for launch. 178 uint64_t kernel; 179 uint32_t args_size; 180 uint32_t group_size; 181 uint32_t private_size; 182 bool dynamic_stack; 183 184 std::pair<hsa_executable_symbol_info_t, void *> symbol_infos[] = { 185 {HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT, &kernel}, 186 {HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, &args_size}, 187 {HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE, &group_size}, 188 {HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_DYNAMIC_CALLSTACK, &dynamic_stack}, 189 {HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE, &private_size}}; 190 191 for (auto &[info, value] : symbol_infos) 192 if (hsa_status_t err = hsa_executable_symbol_get_info(symbol, info, value)) 193 return err; 194 195 // Allocate space for the kernel arguments on the host and allow the GPU agent 196 // to access it. 197 void *args; 198 if (hsa_status_t err = hsa_amd_memory_pool_allocate(kernargs_pool, args_size, 199 /*flags=*/0, &args)) 200 handle_error(err); 201 hsa_amd_agents_allow_access(1, &dev_agent, nullptr, args); 202 203 // Initialize all the arguments (explicit and implicit) to zero, then set the 204 // explicit arguments to the values created above. 205 std::memset(args, 0, args_size); 206 std::memcpy(args, &kernel_args, sizeof(args_t)); 207 208 // Initialize the necessary implicit arguments to the proper values. 209 int dims = 1 + (params.num_blocks_y * params.num_threads_y != 1) + 210 (params.num_blocks_z * params.num_threads_z != 1); 211 implicit_args_t *implicit_args = reinterpret_cast<implicit_args_t *>( 212 reinterpret_cast<uint8_t *>(args) + sizeof(args_t)); 213 implicit_args->grid_dims = dims; 214 implicit_args->grid_size_x = params.num_blocks_x; 215 implicit_args->grid_size_y = params.num_blocks_y; 216 implicit_args->grid_size_z = params.num_blocks_z; 217 implicit_args->workgroup_size_x = params.num_threads_x; 218 implicit_args->workgroup_size_y = params.num_threads_y; 219 implicit_args->workgroup_size_z = params.num_threads_z; 220 221 // Obtain a packet from the queue. 222 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 223 while (packet_id - hsa_queue_load_read_index_scacquire(queue) >= queue->size) 224 ; 225 226 const uint32_t mask = queue->size - 1; 227 hsa_kernel_dispatch_packet_t *packet = 228 static_cast<hsa_kernel_dispatch_packet_t *>(queue->base_address) + 229 (packet_id & mask); 230 231 // Set up the packet for exeuction on the device. We currently only launch 232 // with one thread on the device, forcing the rest of the wavefront to be 233 // masked off. 234 uint16_t setup = (dims) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 235 packet->workgroup_size_x = params.num_threads_x; 236 packet->workgroup_size_y = params.num_threads_y; 237 packet->workgroup_size_z = params.num_threads_z; 238 packet->reserved0 = 0; 239 packet->grid_size_x = params.num_blocks_x * params.num_threads_x; 240 packet->grid_size_y = params.num_blocks_y * params.num_threads_y; 241 packet->grid_size_z = params.num_blocks_z * params.num_threads_z; 242 packet->private_segment_size = 243 dynamic_stack ? 16 * 1024 /* 16 KB */ : private_size; 244 packet->group_segment_size = group_size; 245 packet->kernel_object = kernel; 246 packet->kernarg_address = args; 247 packet->reserved2 = 0; 248 // Create a signal to indicate when this packet has been completed. 249 if (hsa_status_t err = 250 hsa_signal_create(1, 0, nullptr, &packet->completion_signal)) 251 handle_error(err); 252 253 if (print_resource_usage) 254 print_kernel_resources(kernel_name); 255 256 // Initialize the packet header and set the doorbell signal to begin execution 257 // by the HSA runtime. 258 uint16_t header = 259 1u << HSA_PACKET_HEADER_BARRIER | 260 (HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE) | 261 (HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_SCACQUIRE_FENCE_SCOPE) | 262 (HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_SCRELEASE_FENCE_SCOPE); 263 uint32_t header_word = header | (setup << 16u); 264 __atomic_store_n((uint32_t *)&packet->header, header_word, __ATOMIC_RELEASE); 265 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 266 267 std::atomic<bool> finished = false; 268 std::thread server_thread( 269 [](std::atomic<bool> *finished, rpc::Server *server, 270 uint32_t wavefront_size, hsa_agent_t dev_agent, 271 hsa_amd_memory_pool_t coarsegrained_pool) { 272 // Register RPC callbacks for the malloc and free functions on HSA. 273 auto malloc_handler = [&](size_t size) -> void * { 274 void *dev_ptr = nullptr; 275 if (hsa_status_t err = 276 hsa_amd_memory_pool_allocate(coarsegrained_pool, size, 277 /*flags=*/0, &dev_ptr)) 278 dev_ptr = nullptr; 279 hsa_amd_agents_allow_access(1, &dev_agent, nullptr, dev_ptr); 280 return dev_ptr; 281 }; 282 283 auto free_handler = [](void *ptr) -> void { 284 if (hsa_status_t err = 285 hsa_amd_memory_pool_free(reinterpret_cast<void *>(ptr))) 286 handle_error(err); 287 }; 288 289 uint32_t index = 0; 290 while (!*finished) { 291 if (wavefront_size == 32) 292 index = 293 handle_server<32>(*server, index, malloc_handler, free_handler); 294 else 295 index = 296 handle_server<64>(*server, index, malloc_handler, free_handler); 297 } 298 }, 299 &finished, &server, wavefront_size, dev_agent, coarsegrained_pool); 300 301 // Wait until the kernel has completed execution on the device. Periodically 302 // check the RPC client for work to be performed on the server. 303 while (hsa_signal_wait_scacquire(packet->completion_signal, 304 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 305 HSA_WAIT_STATE_BLOCKED) != 0) 306 ; 307 308 finished = true; 309 if (server_thread.joinable()) 310 server_thread.join(); 311 312 // Destroy the resources acquired to launch the kernel and return. 313 if (hsa_status_t err = hsa_amd_memory_pool_free(args)) 314 handle_error(err); 315 if (hsa_status_t err = hsa_signal_destroy(packet->completion_signal)) 316 handle_error(err); 317 318 return HSA_STATUS_SUCCESS; 319 } 320 321 /// Copies data from the source agent to the destination agent. The source 322 /// memory must first be pinned explicitly or allocated via HSA. 323 static hsa_status_t hsa_memcpy(void *dst, hsa_agent_t dst_agent, 324 const void *src, hsa_agent_t src_agent, 325 uint64_t size) { 326 // Create a memory signal to copy information between the host and device. 327 hsa_signal_t memory_signal; 328 if (hsa_status_t err = hsa_signal_create(1, 0, nullptr, &memory_signal)) 329 return err; 330 331 if (hsa_status_t err = hsa_amd_memory_async_copy( 332 dst, dst_agent, src, src_agent, size, 0, nullptr, memory_signal)) 333 return err; 334 335 while (hsa_signal_wait_scacquire(memory_signal, HSA_SIGNAL_CONDITION_EQ, 0, 336 UINT64_MAX, HSA_WAIT_STATE_ACTIVE) != 0) 337 ; 338 339 if (hsa_status_t err = hsa_signal_destroy(memory_signal)) 340 return err; 341 342 return HSA_STATUS_SUCCESS; 343 } 344 345 int load(int argc, const char **argv, const char **envp, void *image, 346 size_t size, const LaunchParameters ¶ms, 347 bool print_resource_usage) { 348 // Initialize the HSA runtime used to communicate with the device. 349 if (hsa_status_t err = hsa_init()) 350 handle_error(err); 351 352 // Register a callback when the device encounters a memory fault. 353 if (hsa_status_t err = hsa_amd_register_system_event_handler( 354 [](const hsa_amd_event_t *event, void *) -> hsa_status_t { 355 if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) 356 return HSA_STATUS_ERROR; 357 return HSA_STATUS_SUCCESS; 358 }, 359 nullptr)) 360 handle_error(err); 361 362 // Obtain a single agent for the device and host to use the HSA memory model. 363 hsa_agent_t dev_agent; 364 hsa_agent_t host_agent; 365 if (hsa_status_t err = get_agent<HSA_DEVICE_TYPE_GPU>(&dev_agent)) 366 handle_error(err); 367 if (hsa_status_t err = get_agent<HSA_DEVICE_TYPE_CPU>(&host_agent)) 368 handle_error(err); 369 370 // Load the code object's ISA information and executable data segments. 371 hsa_code_object_reader_t reader; 372 if (hsa_status_t err = 373 hsa_code_object_reader_create_from_memory(image, size, &reader)) 374 handle_error(err); 375 376 hsa_executable_t executable; 377 if (hsa_status_t err = hsa_executable_create_alt( 378 HSA_PROFILE_FULL, HSA_DEFAULT_FLOAT_ROUNDING_MODE_ZERO, "", 379 &executable)) 380 handle_error(err); 381 382 hsa_loaded_code_object_t object; 383 if (hsa_status_t err = hsa_executable_load_agent_code_object( 384 executable, dev_agent, reader, "", &object)) 385 handle_error(err); 386 387 // No modifications to the executable are allowed after this point. 388 if (hsa_status_t err = hsa_executable_freeze(executable, "")) 389 handle_error(err); 390 391 // Check the validity of the loaded executable. If the agents ISA features do 392 // not match the executable's code object it will fail here. 393 uint32_t result; 394 if (hsa_status_t err = hsa_executable_validate(executable, &result)) 395 handle_error(err); 396 if (result) 397 handle_error(HSA_STATUS_ERROR); 398 399 if (hsa_status_t err = hsa_code_object_reader_destroy(reader)) 400 handle_error(err); 401 402 // Obtain memory pools to exchange data between the host and the device. The 403 // fine-grained pool acts as pinned memory on the host for DMA transfers to 404 // the device, the coarse-grained pool is for allocations directly on the 405 // device, and the kernerl-argument pool is for executing the kernel. 406 hsa_amd_memory_pool_t kernargs_pool; 407 hsa_amd_memory_pool_t finegrained_pool; 408 hsa_amd_memory_pool_t coarsegrained_pool; 409 if (hsa_status_t err = 410 get_agent_memory_pool<HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT>( 411 host_agent, &kernargs_pool)) 412 handle_error(err); 413 if (hsa_status_t err = 414 get_agent_memory_pool<HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED>( 415 host_agent, &finegrained_pool)) 416 handle_error(err); 417 if (hsa_status_t err = 418 get_agent_memory_pool<HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED>( 419 dev_agent, &coarsegrained_pool)) 420 handle_error(err); 421 422 // Allocate fine-grained memory on the host to hold the pointer array for the 423 // copied argv and allow the GPU agent to access it. 424 auto allocator = [&](uint64_t size) -> void * { 425 void *dev_ptr = nullptr; 426 if (hsa_status_t err = hsa_amd_memory_pool_allocate(finegrained_pool, size, 427 /*flags=*/0, &dev_ptr)) 428 handle_error(err); 429 hsa_amd_agents_allow_access(1, &dev_agent, nullptr, dev_ptr); 430 return dev_ptr; 431 }; 432 void *dev_argv = copy_argument_vector(argc, argv, allocator); 433 if (!dev_argv) 434 handle_error("Failed to allocate device argv"); 435 436 // Allocate fine-grained memory on the host to hold the pointer array for the 437 // copied environment array and allow the GPU agent to access it. 438 void *dev_envp = copy_environment(envp, allocator); 439 if (!dev_envp) 440 handle_error("Failed to allocate device environment"); 441 442 // Allocate space for the return pointer and initialize it to zero. 443 void *dev_ret; 444 if (hsa_status_t err = 445 hsa_amd_memory_pool_allocate(coarsegrained_pool, sizeof(int), 446 /*flags=*/0, &dev_ret)) 447 handle_error(err); 448 hsa_amd_memory_fill(dev_ret, 0, /*count=*/1); 449 450 // Allocate finegrained memory for the RPC server and client to share. 451 uint32_t wavefront_size = 0; 452 if (hsa_status_t err = hsa_agent_get_info( 453 dev_agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size)) 454 handle_error(err); 455 456 // Set up the RPC server. 457 void *rpc_buffer; 458 if (hsa_status_t err = hsa_amd_memory_pool_allocate( 459 finegrained_pool, 460 rpc::Server::allocation_size(wavefront_size, rpc::MAX_PORT_COUNT), 461 /*flags=*/0, &rpc_buffer)) 462 handle_error(err); 463 hsa_amd_agents_allow_access(1, &dev_agent, nullptr, rpc_buffer); 464 465 rpc::Server server(rpc::MAX_PORT_COUNT, rpc_buffer); 466 rpc::Client client(rpc::MAX_PORT_COUNT, rpc_buffer); 467 468 // Initialize the RPC client on the device by copying the local data to the 469 // device's internal pointer. 470 hsa_executable_symbol_t rpc_client_sym; 471 if (hsa_status_t err = hsa_executable_get_symbol_by_name( 472 executable, "__llvm_libc_rpc_client", &dev_agent, &rpc_client_sym)) 473 handle_error(err); 474 475 void *rpc_client_host; 476 if (hsa_status_t err = 477 hsa_amd_memory_pool_allocate(finegrained_pool, sizeof(void *), 478 /*flags=*/0, &rpc_client_host)) 479 handle_error(err); 480 hsa_amd_agents_allow_access(1, &dev_agent, nullptr, rpc_client_host); 481 482 void *rpc_client_dev; 483 if (hsa_status_t err = hsa_executable_symbol_get_info( 484 rpc_client_sym, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, 485 &rpc_client_dev)) 486 handle_error(err); 487 488 // Copy the address of the client buffer from the device to the host. 489 if (hsa_status_t err = hsa_memcpy(rpc_client_host, host_agent, rpc_client_dev, 490 dev_agent, sizeof(void *))) 491 handle_error(err); 492 493 void *rpc_client_buffer; 494 if (hsa_status_t err = 495 hsa_amd_memory_lock(&client, sizeof(rpc::Client), 496 /*agents=*/nullptr, 0, &rpc_client_buffer)) 497 handle_error(err); 498 499 // Copy the RPC client buffer to the address pointed to by the symbol. 500 if (hsa_status_t err = 501 hsa_memcpy(*reinterpret_cast<void **>(rpc_client_host), dev_agent, 502 rpc_client_buffer, host_agent, sizeof(rpc::Client))) 503 handle_error(err); 504 505 if (hsa_status_t err = hsa_amd_memory_unlock(&client)) 506 handle_error(err); 507 if (hsa_status_t err = hsa_amd_memory_pool_free(rpc_client_host)) 508 handle_error(err); 509 510 // Obtain the GPU's fixed-frequency clock rate and copy it to the GPU. 511 // If the clock_freq symbol is missing, no work to do. 512 hsa_executable_symbol_t freq_sym; 513 if (HSA_STATUS_SUCCESS == 514 hsa_executable_get_symbol_by_name(executable, "__llvm_libc_clock_freq", 515 &dev_agent, &freq_sym)) { 516 517 void *host_clock_freq; 518 if (hsa_status_t err = 519 hsa_amd_memory_pool_allocate(finegrained_pool, sizeof(uint64_t), 520 /*flags=*/0, &host_clock_freq)) 521 handle_error(err); 522 hsa_amd_agents_allow_access(1, &dev_agent, nullptr, host_clock_freq); 523 524 if (HSA_STATUS_SUCCESS == 525 hsa_agent_get_info(dev_agent, 526 static_cast<hsa_agent_info_t>( 527 HSA_AMD_AGENT_INFO_TIMESTAMP_FREQUENCY), 528 host_clock_freq)) { 529 530 void *freq_addr; 531 if (hsa_status_t err = hsa_executable_symbol_get_info( 532 freq_sym, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, 533 &freq_addr)) 534 handle_error(err); 535 536 if (hsa_status_t err = hsa_memcpy(freq_addr, dev_agent, host_clock_freq, 537 host_agent, sizeof(uint64_t))) 538 handle_error(err); 539 } 540 } 541 542 // Obtain a queue with the maximum (power of two) size, used to send commands 543 // to the HSA runtime and launch execution on the device. 544 uint64_t queue_size; 545 if (hsa_status_t err = hsa_agent_get_info( 546 dev_agent, HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size)) 547 handle_error(err); 548 hsa_queue_t *queue = nullptr; 549 if (hsa_status_t err = 550 hsa_queue_create(dev_agent, queue_size, HSA_QUEUE_TYPE_MULTI, nullptr, 551 nullptr, UINT32_MAX, UINT32_MAX, &queue)) 552 handle_error(err); 553 554 LaunchParameters single_threaded_params = {1, 1, 1, 1, 1, 1}; 555 begin_args_t init_args = {argc, dev_argv, dev_envp}; 556 if (hsa_status_t err = launch_kernel(dev_agent, executable, kernargs_pool, 557 coarsegrained_pool, queue, server, 558 single_threaded_params, "_begin.kd", 559 init_args, print_resource_usage)) 560 handle_error(err); 561 562 start_args_t args = {argc, dev_argv, dev_envp, dev_ret}; 563 if (hsa_status_t err = launch_kernel( 564 dev_agent, executable, kernargs_pool, coarsegrained_pool, queue, 565 server, params, "_start.kd", args, print_resource_usage)) 566 handle_error(err); 567 568 void *host_ret; 569 if (hsa_status_t err = 570 hsa_amd_memory_pool_allocate(finegrained_pool, sizeof(int), 571 /*flags=*/0, &host_ret)) 572 handle_error(err); 573 hsa_amd_agents_allow_access(1, &dev_agent, nullptr, host_ret); 574 575 if (hsa_status_t err = 576 hsa_memcpy(host_ret, host_agent, dev_ret, dev_agent, sizeof(int))) 577 handle_error(err); 578 579 // Save the return value and perform basic clean-up. 580 int ret = *static_cast<int *>(host_ret); 581 582 end_args_t fini_args = {ret}; 583 if (hsa_status_t err = launch_kernel(dev_agent, executable, kernargs_pool, 584 coarsegrained_pool, queue, server, 585 single_threaded_params, "_end.kd", 586 fini_args, print_resource_usage)) 587 handle_error(err); 588 589 if (hsa_status_t err = hsa_amd_memory_pool_free(rpc_buffer)) 590 handle_error(err); 591 592 // Free the memory allocated for the device. 593 if (hsa_status_t err = hsa_amd_memory_pool_free(dev_argv)) 594 handle_error(err); 595 if (hsa_status_t err = hsa_amd_memory_pool_free(dev_ret)) 596 handle_error(err); 597 if (hsa_status_t err = hsa_amd_memory_pool_free(host_ret)) 598 handle_error(err); 599 600 if (hsa_status_t err = hsa_queue_destroy(queue)) 601 handle_error(err); 602 603 if (hsa_status_t err = hsa_executable_destroy(executable)) 604 handle_error(err); 605 606 if (hsa_status_t err = hsa_shut_down()) 607 handle_error(err); 608 609 return ret; 610 } 611