1 //===-- Unittests for the UInt integer class ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "src/__support/CPP/optional.h" 10 #include "src/__support/big_int.h" 11 #include "src/__support/integer_literals.h" // parse_unsigned_bigint 12 #include "src/__support/macros/properties/types.h" // LIBC_TYPES_HAS_INT128 13 14 #include "hdr/math_macros.h" // HUGE_VALF, HUGE_VALF 15 #include "test/UnitTest/Test.h" 16 17 namespace LIBC_NAMESPACE { 18 19 enum Value { ZERO, ONE, TWO, MIN, MAX }; 20 21 template <typename T> auto create(Value value) { 22 switch (value) { 23 case ZERO: 24 return T(0); 25 case ONE: 26 return T(1); 27 case TWO: 28 return T(2); 29 case MIN: 30 return T::min(); 31 case MAX: 32 return T::max(); 33 } 34 } 35 36 using Types = testing::TypeList< // 37 #ifdef LIBC_TYPES_HAS_INT64 38 BigInt<64, false, uint64_t>, // 64-bits unsigned (1 x uint64_t) 39 BigInt<64, true, uint64_t>, // 64-bits signed (1 x uint64_t) 40 #endif 41 #ifdef LIBC_TYPES_HAS_INT128 42 BigInt<128, false, __uint128_t>, // 128-bits unsigned (1 x __uint128_t) 43 BigInt<128, true, __uint128_t>, // 128-bits signed (1 x __uint128_t) 44 #endif 45 BigInt<16, false, uint16_t>, // 16-bits unsigned (1 x uint16_t) 46 BigInt<16, true, uint16_t>, // 16-bits signed (1 x uint16_t) 47 BigInt<64, false, uint16_t>, // 64-bits unsigned (4 x uint16_t) 48 BigInt<64, true, uint16_t> // 64-bits signed (4 x uint16_t) 49 >; 50 51 #define ASSERT_SAME(A, B) ASSERT_TRUE((A) == (B)) 52 53 TYPED_TEST(LlvmLibcUIntClassTest, Additions, Types) { 54 ASSERT_SAME(create<T>(ZERO) + create<T>(ZERO), create<T>(ZERO)); 55 ASSERT_SAME(create<T>(ONE) + create<T>(ZERO), create<T>(ONE)); 56 ASSERT_SAME(create<T>(ZERO) + create<T>(ONE), create<T>(ONE)); 57 ASSERT_SAME(create<T>(ONE) + create<T>(ONE), create<T>(TWO)); 58 // 2's complement addition works for signed and unsigned types. 59 // - unsigned : 0xff + 0x01 = 0x00 (255 + 1 = 0) 60 // - signed : 0xef + 0x01 = 0xf0 (127 + 1 = -128) 61 ASSERT_SAME(create<T>(MAX) + create<T>(ONE), create<T>(MIN)); 62 } 63 64 TYPED_TEST(LlvmLibcUIntClassTest, Subtraction, Types) { 65 ASSERT_SAME(create<T>(ZERO) - create<T>(ZERO), create<T>(ZERO)); 66 ASSERT_SAME(create<T>(ONE) - create<T>(ONE), create<T>(ZERO)); 67 ASSERT_SAME(create<T>(ONE) - create<T>(ZERO), create<T>(ONE)); 68 // 2's complement subtraction works for signed and unsigned types. 69 // - unsigned : 0x00 - 0x01 = 0xff ( 0 - 1 = 255) 70 // - signed : 0xf0 - 0x01 = 0xef (-128 - 1 = 127) 71 ASSERT_SAME(create<T>(MIN) - create<T>(ONE), create<T>(MAX)); 72 } 73 74 TYPED_TEST(LlvmLibcUIntClassTest, Multiplication, Types) { 75 ASSERT_SAME(create<T>(ZERO) * create<T>(ZERO), create<T>(ZERO)); 76 ASSERT_SAME(create<T>(ZERO) * create<T>(ONE), create<T>(ZERO)); 77 ASSERT_SAME(create<T>(ONE) * create<T>(ZERO), create<T>(ZERO)); 78 ASSERT_SAME(create<T>(ONE) * create<T>(ONE), create<T>(ONE)); 79 ASSERT_SAME(create<T>(ONE) * create<T>(TWO), create<T>(TWO)); 80 ASSERT_SAME(create<T>(TWO) * create<T>(ONE), create<T>(TWO)); 81 // - unsigned : 0xff x 0xff = 0x01 (mod 0xff) 82 // - signed : 0xef x 0xef = 0x01 (mod 0xff) 83 ASSERT_SAME(create<T>(MAX) * create<T>(MAX), create<T>(ONE)); 84 } 85 86 template <typename T> void print(const char *msg, T value) { 87 testing::tlog << msg; 88 IntegerToString<T, radix::Hex> buffer(value); 89 testing::tlog << buffer.view() << "\n"; 90 } 91 92 TEST(LlvmLibcUIntClassTest, SignedAddSub) { 93 // Computations performed by https://www.wolframalpha.com/ 94 using T = BigInt<128, true, uint32_t>; 95 const T a = parse_bigint<T>("1927508279017230597"); 96 const T b = parse_bigint<T>("278789278723478925"); 97 const T s = parse_bigint<T>("2206297557740709522"); 98 // Addition 99 ASSERT_SAME(a + b, s); 100 ASSERT_SAME(b + a, s); // commutative 101 // Subtraction 102 ASSERT_SAME(a - s, -b); 103 ASSERT_SAME(s - a, b); 104 } 105 106 TEST(LlvmLibcUIntClassTest, SignedMulDiv) { 107 // Computations performed by https://www.wolframalpha.com/ 108 using T = BigInt<128, true, uint16_t>; 109 struct { 110 const char *a; 111 const char *b; 112 const char *mul; 113 } const test_cases[] = {{"-4", "3", "-12"}, 114 {"-3", "-3", "9"}, 115 {"1927508279017230597", "278789278723478925", 116 "537368642840747885329125014794668225"}}; 117 for (auto tc : test_cases) { 118 const T a = parse_bigint<T>(tc.a); 119 const T b = parse_bigint<T>(tc.b); 120 const T mul = parse_bigint<T>(tc.mul); 121 // Multiplication 122 ASSERT_SAME(a * b, mul); 123 ASSERT_SAME(b * a, mul); // commutative 124 ASSERT_SAME(a * -b, -mul); // sign 125 ASSERT_SAME(-a * b, -mul); // sign 126 ASSERT_SAME(-a * -b, mul); // sign 127 // Division 128 ASSERT_SAME(mul / a, b); 129 ASSERT_SAME(mul / b, a); 130 ASSERT_SAME(-mul / a, -b); // sign 131 ASSERT_SAME(mul / -a, -b); // sign 132 ASSERT_SAME(-mul / -a, b); // sign 133 } 134 } 135 136 TYPED_TEST(LlvmLibcUIntClassTest, Division, Types) { 137 ASSERT_SAME(create<T>(ZERO) / create<T>(ONE), create<T>(ZERO)); 138 ASSERT_SAME(create<T>(MAX) / create<T>(ONE), create<T>(MAX)); 139 ASSERT_SAME(create<T>(MAX) / create<T>(MAX), create<T>(ONE)); 140 ASSERT_SAME(create<T>(ONE) / create<T>(ONE), create<T>(ONE)); 141 if constexpr (T::SIGNED) { 142 // Special case found by fuzzing. 143 ASSERT_SAME(create<T>(MIN) / create<T>(MIN), create<T>(ONE)); 144 } 145 // - unsigned : 0xff / 0x02 = 0x7f 146 // - signed : 0xef / 0x02 = 0x77 147 ASSERT_SAME(create<T>(MAX) / create<T>(TWO), (create<T>(MAX) >> 1)); 148 149 using word_type = typename T::word_type; 150 const T zero_one_repeated = T::all_ones() / T(0xff); 151 const word_type pattern = word_type(~0) / word_type(0xff); 152 for (const word_type part : zero_one_repeated.val) { 153 if constexpr (T::SIGNED == false) { 154 EXPECT_EQ(part, pattern); 155 } 156 } 157 } 158 159 TYPED_TEST(LlvmLibcUIntClassTest, is_neg, Types) { 160 EXPECT_FALSE(create<T>(ZERO).is_neg()); 161 EXPECT_FALSE(create<T>(ONE).is_neg()); 162 EXPECT_FALSE(create<T>(TWO).is_neg()); 163 EXPECT_EQ(create<T>(MIN).is_neg(), T::SIGNED); 164 EXPECT_FALSE(create<T>(MAX).is_neg()); 165 } 166 167 TYPED_TEST(LlvmLibcUIntClassTest, Masks, Types) { 168 if constexpr (!T::SIGNED) { 169 constexpr size_t BITS = T::BITS; 170 // mask_trailing_ones 171 ASSERT_SAME((mask_trailing_ones<T, 0>()), T::zero()); 172 ASSERT_SAME((mask_trailing_ones<T, 1>()), T::one()); 173 ASSERT_SAME((mask_trailing_ones<T, BITS - 1>()), T::all_ones() >> 1); 174 ASSERT_SAME((mask_trailing_ones<T, BITS>()), T::all_ones()); 175 // mask_leading_ones 176 ASSERT_SAME((mask_leading_ones<T, 0>()), T::zero()); 177 ASSERT_SAME((mask_leading_ones<T, 1>()), T::one() << (BITS - 1)); 178 ASSERT_SAME((mask_leading_ones<T, BITS - 1>()), T::all_ones() - T::one()); 179 ASSERT_SAME((mask_leading_ones<T, BITS>()), T::all_ones()); 180 // mask_trailing_zeros 181 ASSERT_SAME((mask_trailing_zeros<T, 0>()), T::all_ones()); 182 ASSERT_SAME((mask_trailing_zeros<T, 1>()), T::all_ones() - T::one()); 183 ASSERT_SAME((mask_trailing_zeros<T, BITS - 1>()), T::one() << (BITS - 1)); 184 ASSERT_SAME((mask_trailing_zeros<T, BITS>()), T::zero()); 185 // mask_trailing_zeros 186 ASSERT_SAME((mask_leading_zeros<T, 0>()), T::all_ones()); 187 ASSERT_SAME((mask_leading_zeros<T, 1>()), T::all_ones() >> 1); 188 ASSERT_SAME((mask_leading_zeros<T, BITS - 1>()), T::one()); 189 ASSERT_SAME((mask_leading_zeros<T, BITS>()), T::zero()); 190 } 191 } 192 193 TYPED_TEST(LlvmLibcUIntClassTest, CountBits, Types) { 194 if constexpr (!T::SIGNED) { 195 for (size_t i = 0; i < T::BITS; ++i) { 196 const auto l_one = T::all_ones() << i; // 0b111...000 197 const auto r_one = T::all_ones() >> i; // 0b000...111 198 const int zeros = i; 199 const int ones = T::BITS - zeros; 200 ASSERT_EQ(cpp::countr_one(r_one), ones); 201 ASSERT_EQ(cpp::countl_one(l_one), ones); 202 ASSERT_EQ(cpp::countr_zero(l_one), zeros); 203 ASSERT_EQ(cpp::countl_zero(r_one), zeros); 204 } 205 } 206 } 207 208 using LL_UInt16 = UInt<16>; 209 using LL_UInt64 = UInt<64>; 210 // We want to test UInt<128> explicitly. So, for 211 // convenience, we use a sugar which does not conflict with the UInt128 type 212 // which can resolve to __uint128_t if the platform has it. 213 using LL_UInt128 = UInt<128>; 214 using LL_UInt192 = UInt<192>; 215 using LL_UInt256 = UInt<256>; 216 using LL_UInt320 = UInt<320>; 217 using LL_UInt512 = UInt<512>; 218 using LL_UInt1024 = UInt<1024>; 219 220 using LL_Int128 = Int<128>; 221 using LL_Int192 = Int<192>; 222 223 TEST(LlvmLibcUIntClassTest, BitCastToFromDouble) { 224 static_assert(cpp::is_trivially_copyable<LL_UInt64>::value); 225 static_assert(sizeof(LL_UInt64) == sizeof(double)); 226 const double inf = HUGE_VAL; 227 const double max = DBL_MAX; 228 const double array[] = {0.0, 0.1, 1.0, max, inf}; 229 for (double value : array) { 230 LL_UInt64 back = cpp::bit_cast<LL_UInt64>(value); 231 double forth = cpp::bit_cast<double>(back); 232 EXPECT_TRUE(value == forth); 233 } 234 } 235 236 #ifdef LIBC_TYPES_HAS_INT128 237 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeUint128) { 238 static_assert(cpp::is_trivially_copyable<LL_UInt128>::value); 239 static_assert(sizeof(LL_UInt128) == sizeof(__uint128_t)); 240 const __uint128_t array[] = {0, 1, ~__uint128_t(0)}; 241 for (__uint128_t value : array) { 242 LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value); 243 __uint128_t forth = cpp::bit_cast<__uint128_t>(back); 244 EXPECT_TRUE(value == forth); 245 } 246 } 247 #endif // LIBC_TYPES_HAS_INT128 248 249 #ifdef LIBC_TYPES_HAS_FLOAT128 250 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat128) { 251 static_assert(cpp::is_trivially_copyable<LL_UInt128>::value); 252 static_assert(sizeof(LL_UInt128) == sizeof(float128)); 253 const float128 array[] = {0, 0.1, 1}; 254 for (float128 value : array) { 255 LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value); 256 float128 forth = cpp::bit_cast<float128>(back); 257 EXPECT_TRUE(value == forth); 258 } 259 } 260 #endif // LIBC_TYPES_HAS_FLOAT128 261 262 #ifdef LIBC_TYPES_HAS_FLOAT16 263 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat16) { 264 static_assert(cpp::is_trivially_copyable<LL_UInt16>::value); 265 static_assert(sizeof(LL_UInt16) == sizeof(float16)); 266 const float16 array[] = {0, 0.1, 1}; 267 for (float16 value : array) { 268 LL_UInt16 back = cpp::bit_cast<LL_UInt16>(value); 269 float16 forth = cpp::bit_cast<float16>(back); 270 EXPECT_TRUE(value == forth); 271 } 272 } 273 #endif // LIBC_TYPES_HAS_FLOAT16 274 275 TEST(LlvmLibcUIntClassTest, BasicInit) { 276 LL_UInt128 half_val(12345); 277 LL_UInt128 full_val({12345, 67890}); 278 ASSERT_TRUE(half_val != full_val); 279 } 280 281 TEST(LlvmLibcUIntClassTest, AdditionTests) { 282 LL_UInt128 val1(12345); 283 LL_UInt128 val2(54321); 284 LL_UInt128 result1(66666); 285 EXPECT_EQ(val1 + val2, result1); 286 EXPECT_EQ((val1 + val2), (val2 + val1)); // addition is commutative 287 288 // Test overflow 289 LL_UInt128 val3({0xf000000000000001, 0}); 290 LL_UInt128 val4({0x100000000000000f, 0}); 291 LL_UInt128 result2({0x10, 0x1}); 292 EXPECT_EQ(val3 + val4, result2); 293 EXPECT_EQ(val3 + val4, val4 + val3); 294 295 // Test overflow 296 LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210}); 297 LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd}); 298 LL_UInt128 result3({0x12346789bcdf1233, 0xa987765443210fed}); 299 EXPECT_EQ(val5 + val6, result3); 300 EXPECT_EQ(val5 + val6, val6 + val5); 301 302 // Test 192-bit addition 303 LL_UInt192 val7({0x0123456789abcdef, 0xfedcba9876543210, 0xfedcba9889abcdef}); 304 LL_UInt192 val8({0x1111222233334444, 0xaaaabbbbccccdddd, 0xeeeeffffeeeeffff}); 305 LL_UInt192 result4( 306 {0x12346789bcdf1233, 0xa987765443210fed, 0xedcbba98789acdef}); 307 EXPECT_EQ(val7 + val8, result4); 308 EXPECT_EQ(val7 + val8, val8 + val7); 309 310 // Test 256-bit addition 311 LL_UInt256 val9({0x1f1e1d1c1b1a1918, 0xf1f2f3f4f5f6f7f8, 0x0123456789abcdef, 312 0xfedcba9876543210}); 313 LL_UInt256 val10({0x1111222233334444, 0xaaaabbbbccccdddd, 0x1111222233334444, 314 0xaaaabbbbccccdddd}); 315 LL_UInt256 result5({0x302f3f3e4e4d5d5c, 0x9c9dafb0c2c3d5d5, 316 0x12346789bcdf1234, 0xa987765443210fed}); 317 EXPECT_EQ(val9 + val10, result5); 318 EXPECT_EQ(val9 + val10, val10 + val9); 319 } 320 321 TEST(LlvmLibcUIntClassTest, SubtractionTests) { 322 LL_UInt128 val1(12345); 323 LL_UInt128 val2(54321); 324 LL_UInt128 result1({0xffffffffffff5c08, 0xffffffffffffffff}); 325 LL_UInt128 result2(0xa3f8); 326 EXPECT_EQ(val1 - val2, result1); 327 EXPECT_EQ(val1, val2 + result1); 328 EXPECT_EQ(val2 - val1, result2); 329 EXPECT_EQ(val2, val1 + result2); 330 331 LL_UInt128 val3({0xf000000000000001, 0}); 332 LL_UInt128 val4({0x100000000000000f, 0}); 333 LL_UInt128 result3(0xdffffffffffffff2); 334 LL_UInt128 result4({0x200000000000000e, 0xffffffffffffffff}); 335 EXPECT_EQ(val3 - val4, result3); 336 EXPECT_EQ(val3, val4 + result3); 337 EXPECT_EQ(val4 - val3, result4); 338 EXPECT_EQ(val4, val3 + result4); 339 340 LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210}); 341 LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd}); 342 LL_UInt128 result5({0xf0122345567889ab, 0x5431fedca9875432}); 343 LL_UInt128 result6({0x0feddcbaa9877655, 0xabce01235678abcd}); 344 EXPECT_EQ(val5 - val6, result5); 345 EXPECT_EQ(val5, val6 + result5); 346 EXPECT_EQ(val6 - val5, result6); 347 EXPECT_EQ(val6, val5 + result6); 348 } 349 350 TEST(LlvmLibcUIntClassTest, MultiplicationTests) { 351 LL_UInt128 val1({5, 0}); 352 LL_UInt128 val2({10, 0}); 353 LL_UInt128 result1({50, 0}); 354 EXPECT_EQ((val1 * val2), result1); 355 EXPECT_EQ((val1 * val2), (val2 * val1)); // multiplication is commutative 356 357 // Check that the multiplication works accross the whole number 358 LL_UInt128 val3({0xf, 0}); 359 LL_UInt128 val4({0x1111111111111111, 0x1111111111111111}); 360 LL_UInt128 result2({0xffffffffffffffff, 0xffffffffffffffff}); 361 EXPECT_EQ((val3 * val4), result2); 362 EXPECT_EQ((val3 * val4), (val4 * val3)); 363 364 // Check that multiplication doesn't reorder the bits. 365 LL_UInt128 val5({2, 0}); 366 LL_UInt128 val6({0x1357024675316420, 0x0123456776543210}); 367 LL_UInt128 result3({0x26ae048cea62c840, 0x02468aceeca86420}); 368 369 EXPECT_EQ((val5 * val6), result3); 370 EXPECT_EQ((val5 * val6), (val6 * val5)); 371 372 // Make sure that multiplication handles overflow correctly. 373 LL_UInt128 val7(2); 374 LL_UInt128 val8({0x8000800080008000, 0x8000800080008000}); 375 LL_UInt128 result4({0x0001000100010000, 0x0001000100010001}); 376 EXPECT_EQ((val7 * val8), result4); 377 EXPECT_EQ((val7 * val8), (val8 * val7)); 378 379 // val9 is the 128 bit mantissa of 1e60 as a float, val10 is the mantissa for 380 // 1e-60. They almost cancel on the high bits, but the result we're looking 381 // for is just the low bits. The full result would be 382 // 0x7fffffffffffffffffffffffffffffff3a4f32d17f40d08f917cf11d1e039c50 383 LL_UInt128 val9({0x01D762422C946590, 0x9F4F2726179A2245}); 384 LL_UInt128 val10({0x3792F412CB06794D, 0xCDB02555653131B6}); 385 LL_UInt128 result5({0x917cf11d1e039c50, 0x3a4f32d17f40d08f}); 386 EXPECT_EQ((val9 * val10), result5); 387 EXPECT_EQ((val9 * val10), (val10 * val9)); 388 389 // Test 192-bit multiplication 390 LL_UInt192 val11( 391 {0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245}); 392 LL_UInt192 val12( 393 {0xffffffffffffffff, 0x3792F412CB06794D, 0xCDB02555653131B6}); 394 395 LL_UInt192 result6( 396 {0x0000000000000001, 0xc695a9ab08652121, 0x5de7faf698d32732}); 397 EXPECT_EQ((val11 * val12), result6); 398 EXPECT_EQ((val11 * val12), (val12 * val11)); 399 400 LL_UInt256 val13({0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245, 401 0xffffffffffffffff}); 402 LL_UInt256 val14({0xffffffffffffffff, 0xffffffffffffffff, 0x3792F412CB06794D, 403 0xCDB02555653131B6}); 404 LL_UInt256 result7({0x0000000000000001, 0xfe289dbdd36b9a6f, 405 0x291de4c71d5f646c, 0xfd37221cb06d4978}); 406 EXPECT_EQ((val13 * val14), result7); 407 EXPECT_EQ((val13 * val14), (val14 * val13)); 408 } 409 410 TEST(LlvmLibcUIntClassTest, DivisionTests) { 411 LL_UInt128 val1({10, 0}); 412 LL_UInt128 val2({5, 0}); 413 LL_UInt128 result1({2, 0}); 414 EXPECT_EQ((val1 / val2), result1); 415 EXPECT_EQ((val1 / result1), val2); 416 417 // Check that the division works accross the whole number 418 LL_UInt128 val3({0xffffffffffffffff, 0xffffffffffffffff}); 419 LL_UInt128 val4({0xf, 0}); 420 LL_UInt128 result2({0x1111111111111111, 0x1111111111111111}); 421 EXPECT_EQ((val3 / val4), result2); 422 EXPECT_EQ((val3 / result2), val4); 423 424 // Check that division doesn't reorder the bits. 425 LL_UInt128 val5({0x26ae048cea62c840, 0x02468aceeca86420}); 426 LL_UInt128 val6({2, 0}); 427 LL_UInt128 result3({0x1357024675316420, 0x0123456776543210}); 428 EXPECT_EQ((val5 / val6), result3); 429 EXPECT_EQ((val5 / result3), val6); 430 431 // Make sure that division handles inexact results correctly. 432 LL_UInt128 val7({1001, 0}); 433 LL_UInt128 val8({10, 0}); 434 LL_UInt128 result4({100, 0}); 435 EXPECT_EQ((val7 / val8), result4); 436 EXPECT_EQ((val7 / result4), val8); 437 438 // Make sure that division handles divisors of one correctly. 439 LL_UInt128 val9({0x1234567812345678, 0x9abcdef09abcdef0}); 440 LL_UInt128 val10({1, 0}); 441 LL_UInt128 result5({0x1234567812345678, 0x9abcdef09abcdef0}); 442 EXPECT_EQ((val9 / val10), result5); 443 EXPECT_EQ((val9 / result5), val10); 444 445 // Make sure that division handles results of slightly more than 1 correctly. 446 LL_UInt128 val11({1050, 0}); 447 LL_UInt128 val12({1030, 0}); 448 LL_UInt128 result6({1, 0}); 449 EXPECT_EQ((val11 / val12), result6); 450 451 // Make sure that division handles dividing by zero correctly. 452 LL_UInt128 val13({1234, 0}); 453 LL_UInt128 val14({0, 0}); 454 EXPECT_FALSE(val13.div(val14).has_value()); 455 } 456 457 TEST(LlvmLibcUIntClassTest, ModuloTests) { 458 LL_UInt128 val1({10, 0}); 459 LL_UInt128 val2({5, 0}); 460 LL_UInt128 result1({0, 0}); 461 EXPECT_EQ((val1 % val2), result1); 462 463 LL_UInt128 val3({101, 0}); 464 LL_UInt128 val4({10, 0}); 465 LL_UInt128 result2({1, 0}); 466 EXPECT_EQ((val3 % val4), result2); 467 468 LL_UInt128 val5({10000001, 0}); 469 LL_UInt128 val6({10, 0}); 470 LL_UInt128 result3({1, 0}); 471 EXPECT_EQ((val5 % val6), result3); 472 473 LL_UInt128 val7({12345, 10}); 474 LL_UInt128 val8({0, 1}); 475 LL_UInt128 result4({12345, 0}); 476 EXPECT_EQ((val7 % val8), result4); 477 478 LL_UInt128 val9({12345, 10}); 479 LL_UInt128 val10({0, 11}); 480 LL_UInt128 result5({12345, 10}); 481 EXPECT_EQ((val9 % val10), result5); 482 483 LL_UInt128 val11({10, 10}); 484 LL_UInt128 val12({10, 10}); 485 LL_UInt128 result6({0, 0}); 486 EXPECT_EQ((val11 % val12), result6); 487 488 LL_UInt128 val13({12345, 0}); 489 LL_UInt128 val14({1, 0}); 490 LL_UInt128 result7({0, 0}); 491 EXPECT_EQ((val13 % val14), result7); 492 493 LL_UInt128 val15({0xffffffffffffffff, 0xffffffffffffffff}); 494 LL_UInt128 val16({0x1111111111111111, 0x111111111111111}); 495 LL_UInt128 result8({0xf, 0}); 496 EXPECT_EQ((val15 % val16), result8); 497 498 LL_UInt128 val17({5076944270305263619, 54210108624}); // (10 ^ 30) + 3 499 LL_UInt128 val18({10, 0}); 500 LL_UInt128 result9({3, 0}); 501 EXPECT_EQ((val17 % val18), result9); 502 } 503 504 TEST(LlvmLibcUIntClassTest, PowerTests) { 505 LL_UInt128 val1({10, 0}); 506 val1.pow_n(30); 507 LL_UInt128 result1({5076944270305263616, 54210108624}); // (10 ^ 30) 508 EXPECT_EQ(val1, result1); 509 510 LL_UInt128 val2({1, 0}); 511 val2.pow_n(10); 512 LL_UInt128 result2({1, 0}); 513 EXPECT_EQ(val2, result2); 514 515 LL_UInt128 val3({0, 0}); 516 val3.pow_n(10); 517 LL_UInt128 result3({0, 0}); 518 EXPECT_EQ(val3, result3); 519 520 LL_UInt128 val4({10, 0}); 521 val4.pow_n(0); 522 LL_UInt128 result4({1, 0}); 523 EXPECT_EQ(val4, result4); 524 525 // Test zero to the zero. Currently it returns 1, since that's the easiest 526 // result. 527 LL_UInt128 val5({0, 0}); 528 val5.pow_n(0); 529 LL_UInt128 result5({1, 0}); 530 EXPECT_EQ(val5, result5); 531 532 // Test a number that overflows. 100 ^ 20 is larger than 2 ^ 128. 533 LL_UInt128 val6({100, 0}); 534 val6.pow_n(20); 535 LL_UInt128 result6({0xb9f5610000000000, 0x6329f1c35ca4bfab}); 536 EXPECT_EQ(val6, result6); 537 538 // Test that both halves of the number are being used. 539 LL_UInt128 val7({1, 1}); 540 val7.pow_n(2); 541 LL_UInt128 result7({1, 2}); 542 EXPECT_EQ(val7, result7); 543 544 LL_UInt128 val_pow_two; 545 LL_UInt128 result_pow_two; 546 for (size_t i = 0; i < 128; ++i) { 547 val_pow_two = 2; 548 val_pow_two.pow_n(i); 549 result_pow_two = 1; 550 result_pow_two = result_pow_two << i; 551 EXPECT_EQ(val_pow_two, result_pow_two); 552 } 553 } 554 555 TEST(LlvmLibcUIntClassTest, ShiftLeftTests) { 556 LL_UInt128 val1(0x0123456789abcdef); 557 LL_UInt128 result1(0x123456789abcdef0); 558 EXPECT_EQ((val1 << 4), result1); 559 560 LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0}); 561 LL_UInt128 result2({0x02468ace00000000, 0x9abcdef013579bdf}); 562 EXPECT_EQ((val2 << 32), result2); 563 LL_UInt128 val22 = val2; 564 val22 <<= 32; 565 EXPECT_EQ(val22, result2); 566 567 LL_UInt128 result3({0, 0x13579bdf02468ace}); 568 EXPECT_EQ((val2 << 64), result3); 569 570 LL_UInt128 result4({0, 0x02468ace00000000}); 571 EXPECT_EQ((val2 << 96), result4); 572 573 LL_UInt128 result5({0, 0x2468ace000000000}); 574 EXPECT_EQ((val2 << 100), result5); 575 576 LL_UInt192 val3({1, 0, 0}); 577 LL_UInt192 result7({0, 1, 0}); 578 EXPECT_EQ((val3 << 64), result7); 579 } 580 581 TEST(LlvmLibcUIntClassTest, ShiftRightTests) { 582 LL_UInt128 val1(0x0123456789abcdef); 583 LL_UInt128 result1(0x00123456789abcde); 584 EXPECT_EQ((val1 >> 4), result1); 585 586 LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0}); 587 LL_UInt128 result2({0x9abcdef013579bdf, 0x0000000012345678}); 588 EXPECT_EQ((val2 >> 32), result2); 589 LL_UInt128 val22 = val2; 590 val22 >>= 32; 591 EXPECT_EQ(val22, result2); 592 593 LL_UInt128 result3({0x123456789abcdef0, 0}); 594 EXPECT_EQ((val2 >> 64), result3); 595 596 LL_UInt128 result4({0x0000000012345678, 0}); 597 EXPECT_EQ((val2 >> 96), result4); 598 599 LL_UInt128 result5({0x0000000001234567, 0}); 600 EXPECT_EQ((val2 >> 100), result5); 601 602 LL_UInt128 v1({0x1111222233334444, 0xaaaabbbbccccdddd}); 603 LL_UInt128 r1({0xaaaabbbbccccdddd, 0}); 604 EXPECT_EQ((v1 >> 64), r1); 605 606 LL_UInt192 v2({0x1111222233334444, 0x5555666677778888, 0xaaaabbbbccccdddd}); 607 LL_UInt192 r2({0x5555666677778888, 0xaaaabbbbccccdddd, 0}); 608 LL_UInt192 r3({0xaaaabbbbccccdddd, 0, 0}); 609 EXPECT_EQ((v2 >> 64), r2); 610 EXPECT_EQ((v2 >> 128), r3); 611 EXPECT_EQ((r2 >> 64), r3); 612 613 LL_UInt192 val3({0, 0, 1}); 614 LL_UInt192 result7({0, 1, 0}); 615 EXPECT_EQ((val3 >> 64), result7); 616 } 617 618 TEST(LlvmLibcUIntClassTest, AndTests) { 619 LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000}); 620 LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); 621 uint64_t val64 = 0xf0f0f0f00f0f0f0f; 622 int val32 = 0x0f0f0f0f; 623 LL_UInt128 result128({0xf0f0000000000f0f, 0xff00ff0000000000}); 624 LL_UInt128 result64(0xf0f0000000000f0f); 625 LL_UInt128 result32(0x00000f0f); 626 EXPECT_EQ((base & val128), result128); 627 EXPECT_EQ((base & val64), result64); 628 EXPECT_EQ((base & val32), result32); 629 } 630 631 TEST(LlvmLibcUIntClassTest, OrTests) { 632 LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000}); 633 LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); 634 uint64_t val64 = 0xf0f0f0f00f0f0f0f; 635 int val32 = 0x0f0f0f0f; 636 LL_UInt128 result128({0xfffff0f00f0fffff, 0xffffffff00ff00ff}); 637 LL_UInt128 result64({0xfffff0f00f0fffff, 0xffffffff00000000}); 638 LL_UInt128 result32({0xffff00000f0fffff, 0xffffffff00000000}); 639 EXPECT_EQ((base | val128), result128); 640 EXPECT_EQ((base | val64), result64); 641 EXPECT_EQ((base | val32), result32); 642 } 643 644 TEST(LlvmLibcUIntClassTest, CompoundAssignments) { 645 LL_UInt128 x({0xffff00000000ffff, 0xffffffff00000000}); 646 LL_UInt128 b({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); 647 648 LL_UInt128 a = x; 649 a |= b; 650 LL_UInt128 or_result({0xfffff0f00f0fffff, 0xffffffff00ff00ff}); 651 EXPECT_EQ(a, or_result); 652 653 a = x; 654 a &= b; 655 LL_UInt128 and_result({0xf0f0000000000f0f, 0xff00ff0000000000}); 656 EXPECT_EQ(a, and_result); 657 658 a = x; 659 a ^= b; 660 LL_UInt128 xor_result({0x0f0ff0f00f0ff0f0, 0x00ff00ff00ff00ff}); 661 EXPECT_EQ(a, xor_result); 662 663 a = LL_UInt128(uint64_t(0x0123456789abcdef)); 664 LL_UInt128 shift_left_result(uint64_t(0x123456789abcdef0)); 665 a <<= 4; 666 EXPECT_EQ(a, shift_left_result); 667 668 a = LL_UInt128(uint64_t(0x123456789abcdef1)); 669 LL_UInt128 shift_right_result(uint64_t(0x0123456789abcdef)); 670 a >>= 4; 671 EXPECT_EQ(a, shift_right_result); 672 673 a = LL_UInt128({0xf000000000000001, 0}); 674 b = LL_UInt128({0x100000000000000f, 0}); 675 LL_UInt128 add_result({0x10, 0x1}); 676 a += b; 677 EXPECT_EQ(a, add_result); 678 679 a = LL_UInt128({0xf, 0}); 680 b = LL_UInt128({0x1111111111111111, 0x1111111111111111}); 681 LL_UInt128 mul_result({0xffffffffffffffff, 0xffffffffffffffff}); 682 a *= b; 683 EXPECT_EQ(a, mul_result); 684 } 685 686 TEST(LlvmLibcUIntClassTest, UnaryPredecrement) { 687 LL_UInt128 a = LL_UInt128({0x1111111111111111, 0x1111111111111111}); 688 ++a; 689 EXPECT_EQ(a, LL_UInt128({0x1111111111111112, 0x1111111111111111})); 690 691 a = LL_UInt128({0xffffffffffffffff, 0x0}); 692 ++a; 693 EXPECT_EQ(a, LL_UInt128({0x0, 0x1})); 694 695 a = LL_UInt128({0xffffffffffffffff, 0xffffffffffffffff}); 696 ++a; 697 EXPECT_EQ(a, LL_UInt128({0x0, 0x0})); 698 } 699 700 TEST(LlvmLibcUIntClassTest, EqualsTests) { 701 LL_UInt128 a1({0xffffffff00000000, 0xffff00000000ffff}); 702 LL_UInt128 a2({0xffffffff00000000, 0xffff00000000ffff}); 703 LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f}); 704 LL_UInt128 a_reversed({0xffff00000000ffff, 0xffffffff00000000}); 705 LL_UInt128 a_upper(0xffff00000000ffff); 706 LL_UInt128 a_lower(0xffffffff00000000); 707 ASSERT_TRUE(a1 == a1); 708 ASSERT_TRUE(a1 == a2); 709 ASSERT_FALSE(a1 == b); 710 ASSERT_FALSE(a1 == a_reversed); 711 ASSERT_FALSE(a1 == a_lower); 712 ASSERT_FALSE(a1 == a_upper); 713 ASSERT_TRUE(a_lower != a_upper); 714 } 715 716 TEST(LlvmLibcUIntClassTest, ComparisonTests) { 717 LL_UInt128 a({0xffffffff00000000, 0xffff00000000ffff}); 718 LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f}); 719 EXPECT_GT(a, b); 720 EXPECT_GE(a, b); 721 EXPECT_LT(b, a); 722 EXPECT_LE(b, a); 723 724 LL_UInt128 x(0xffffffff00000000); 725 LL_UInt128 y(0x00000000ffffffff); 726 EXPECT_GT(x, y); 727 EXPECT_GE(x, y); 728 EXPECT_LT(y, x); 729 EXPECT_LE(y, x); 730 731 EXPECT_LE(a, a); 732 EXPECT_GE(a, a); 733 } 734 735 TEST(LlvmLibcUIntClassTest, FullMulTests) { 736 LL_UInt128 a({0xffffffffffffffffULL, 0xffffffffffffffffULL}); 737 LL_UInt128 b({0xfedcba9876543210ULL, 0xfefdfcfbfaf9f8f7ULL}); 738 LL_UInt256 r({0x0123456789abcdf0ULL, 0x0102030405060708ULL, 739 0xfedcba987654320fULL, 0xfefdfcfbfaf9f8f7ULL}); 740 LL_UInt128 r_hi({0xfedcba987654320eULL, 0xfefdfcfbfaf9f8f7ULL}); 741 742 EXPECT_EQ(a.ful_mul(b), r); 743 EXPECT_EQ(a.quick_mul_hi(b), r_hi); 744 745 LL_UInt192 c( 746 {0x7766554433221101ULL, 0xffeeddccbbaa9988ULL, 0x1f2f3f4f5f6f7f8fULL}); 747 LL_UInt320 rr({0x8899aabbccddeeffULL, 0x0011223344556677ULL, 748 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL, 749 0x1f2f3f4f5f6f7f8fULL}); 750 751 EXPECT_EQ(a.ful_mul(c), rr); 752 EXPECT_EQ(a.ful_mul(c), c.ful_mul(a)); 753 } 754 755 #define TEST_QUICK_MUL_HI(Bits, Error) \ 756 do { \ 757 LL_UInt##Bits a = ~LL_UInt##Bits(0); \ 758 LL_UInt##Bits hi = a.quick_mul_hi(a); \ 759 LL_UInt##Bits trunc = static_cast<LL_UInt##Bits>(a.ful_mul(a) >> Bits); \ 760 uint64_t overflow = trunc.sub_overflow(hi); \ 761 EXPECT_EQ(overflow, uint64_t(0)); \ 762 EXPECT_LE(uint64_t(trunc), uint64_t(Error)); \ 763 } while (0) 764 765 TEST(LlvmLibcUIntClassTest, QuickMulHiTests) { 766 TEST_QUICK_MUL_HI(128, 1); 767 TEST_QUICK_MUL_HI(192, 2); 768 TEST_QUICK_MUL_HI(256, 3); 769 TEST_QUICK_MUL_HI(512, 7); 770 } 771 772 TEST(LlvmLibcUIntClassTest, ConstexprInitTests) { 773 constexpr LL_UInt128 add = LL_UInt128(1) + LL_UInt128(2); 774 ASSERT_EQ(add, LL_UInt128(3)); 775 constexpr LL_UInt128 sub = LL_UInt128(5) - LL_UInt128(4); 776 ASSERT_EQ(sub, LL_UInt128(1)); 777 } 778 779 #define TEST_QUICK_DIV_UINT32_POW2(x, e) \ 780 do { \ 781 LL_UInt320 y({0x8899aabbccddeeffULL, 0x0011223344556677ULL, \ 782 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL, \ 783 0x1f2f3f4f5f6f7f8fULL}); \ 784 LL_UInt320 d = LL_UInt320(x); \ 785 d <<= e; \ 786 LL_UInt320 q1 = y / d; \ 787 LL_UInt320 r1 = y % d; \ 788 LL_UInt320 r2 = *y.div_uint_half_times_pow_2(x, e); \ 789 EXPECT_EQ(q1, y); \ 790 EXPECT_EQ(r1, r2); \ 791 } while (0) 792 793 TEST(LlvmLibcUIntClassTest, DivUInt32TimesPow2Tests) { 794 for (size_t i = 0; i < 320; i += 32) { 795 TEST_QUICK_DIV_UINT32_POW2(1, i); 796 TEST_QUICK_DIV_UINT32_POW2(13151719, i); 797 } 798 799 TEST_QUICK_DIV_UINT32_POW2(1, 75); 800 TEST_QUICK_DIV_UINT32_POW2(1, 101); 801 802 TEST_QUICK_DIV_UINT32_POW2(1000000000, 75); 803 TEST_QUICK_DIV_UINT32_POW2(1000000000, 101); 804 } 805 806 TEST(LlvmLibcUIntClassTest, ComparisonInt128Tests) { 807 LL_Int128 a(123); 808 LL_Int128 b(0); 809 LL_Int128 c(-1); 810 811 ASSERT_TRUE(a == a); 812 ASSERT_TRUE(b == b); 813 ASSERT_TRUE(c == c); 814 815 ASSERT_TRUE(a != b); 816 ASSERT_TRUE(a != c); 817 ASSERT_TRUE(b != a); 818 ASSERT_TRUE(b != c); 819 ASSERT_TRUE(c != a); 820 ASSERT_TRUE(c != b); 821 822 ASSERT_TRUE(a > b); 823 ASSERT_TRUE(a >= b); 824 ASSERT_TRUE(a > c); 825 ASSERT_TRUE(a >= c); 826 ASSERT_TRUE(b > c); 827 ASSERT_TRUE(b >= c); 828 829 ASSERT_TRUE(b < a); 830 ASSERT_TRUE(b <= a); 831 ASSERT_TRUE(c < a); 832 ASSERT_TRUE(c <= a); 833 ASSERT_TRUE(c < b); 834 ASSERT_TRUE(c <= b); 835 } 836 837 TEST(LlvmLibcUIntClassTest, BasicArithmeticInt128Tests) { 838 LL_Int128 a(123); 839 LL_Int128 b(0); 840 LL_Int128 c(-3); 841 842 ASSERT_EQ(a * a, LL_Int128(123 * 123)); 843 ASSERT_EQ(a * c, LL_Int128(-369)); 844 ASSERT_EQ(c * a, LL_Int128(-369)); 845 ASSERT_EQ(c * c, LL_Int128(9)); 846 ASSERT_EQ(a * b, b); 847 ASSERT_EQ(b * a, b); 848 ASSERT_EQ(b * c, b); 849 ASSERT_EQ(c * b, b); 850 } 851 852 #ifdef LIBC_TYPES_HAS_INT128 853 854 TEST(LlvmLibcUIntClassTest, ConstructorFromUInt128Tests) { 855 __uint128_t a = (__uint128_t(123) << 64) + 1; 856 __int128_t b = -static_cast<__int128_t>(a); 857 LL_Int128 c(a); 858 LL_Int128 d(b); 859 860 LL_Int192 e(a); 861 LL_Int192 f(b); 862 863 ASSERT_EQ(static_cast<int>(c), 1); 864 ASSERT_EQ(static_cast<int>(c >> 64), 123); 865 ASSERT_EQ(static_cast<uint64_t>(d), static_cast<uint64_t>(b)); 866 ASSERT_EQ(static_cast<uint64_t>(d >> 64), static_cast<uint64_t>(b >> 64)); 867 ASSERT_EQ(c + d, LL_Int128(a + b)); 868 869 ASSERT_EQ(static_cast<int>(e), 1); 870 ASSERT_EQ(static_cast<int>(e >> 64), 123); 871 ASSERT_EQ(static_cast<uint64_t>(f), static_cast<uint64_t>(b)); 872 ASSERT_EQ(static_cast<uint64_t>(f >> 64), static_cast<uint64_t>(b >> 64)); 873 ASSERT_EQ(LL_UInt192(e + f), LL_UInt192(a + b)); 874 } 875 876 TEST(LlvmLibcUIntClassTest, WordTypeUInt128Tests) { 877 using LL_UInt256_128 = BigInt<256, false, __uint128_t>; 878 using LL_UInt128_128 = BigInt<128, false, __uint128_t>; 879 880 LL_UInt256_128 a(1); 881 882 ASSERT_EQ(static_cast<int>(a), 1); 883 a = (a << 128) + 2; 884 ASSERT_EQ(static_cast<int>(a), 2); 885 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(2)); 886 a = (a << 32) + 3; 887 ASSERT_EQ(static_cast<int>(a), 3); 888 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x2'0000'0003)); 889 ASSERT_EQ(static_cast<int>(a >> 32), 2); 890 ASSERT_EQ(static_cast<int>(a >> (128 + 32)), 1); 891 892 LL_UInt128_128 b(__uint128_t(1) << 127); 893 LL_UInt128_128 c(b); 894 a = b.ful_mul(c); 895 896 ASSERT_EQ(static_cast<int>(a >> 254), 1); 897 898 LL_UInt256_128 d = LL_UInt256_128(123) << 4; 899 ASSERT_EQ(static_cast<int>(d), 123 << 4); 900 LL_UInt256_128 e = a / d; 901 LL_UInt256_128 f = a % d; 902 LL_UInt256_128 r = *a.div_uint_half_times_pow_2(123, 4); 903 EXPECT_TRUE(e == a); 904 EXPECT_TRUE(f == r); 905 } 906 907 #endif // LIBC_TYPES_HAS_INT128 908 909 TEST(LlvmLibcUIntClassTest, OtherWordTypeTests) { 910 using LL_UInt96 = BigInt<96, false, uint32_t>; 911 912 LL_UInt96 a(1); 913 914 ASSERT_EQ(static_cast<int>(a), 1); 915 a = (a << 32) + 2; 916 ASSERT_EQ(static_cast<int>(a), 2); 917 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x1'0000'0002)); 918 a = (a << 32) + 3; 919 ASSERT_EQ(static_cast<int>(a), 3); 920 ASSERT_EQ(static_cast<int>(a >> 32), 2); 921 ASSERT_EQ(static_cast<int>(a >> 64), 1); 922 } 923 924 } // namespace LIBC_NAMESPACE 925