1 //===-- Unittests for the UInt integer class ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "src/__support/CPP/optional.h" 10 #include "src/__support/big_int.h" 11 #include "src/__support/integer_literals.h" // parse_unsigned_bigint 12 #include "src/__support/macros/config.h" 13 #include "src/__support/macros/properties/types.h" // LIBC_TYPES_HAS_INT128 14 15 #include "hdr/math_macros.h" // HUGE_VALF, HUGE_VALF 16 #include "test/UnitTest/Test.h" 17 18 namespace LIBC_NAMESPACE_DECL { 19 20 enum Value { ZERO, ONE, TWO, MIN, MAX }; 21 22 template <typename T> auto create(Value value) { 23 switch (value) { 24 case ZERO: 25 return T(0); 26 case ONE: 27 return T(1); 28 case TWO: 29 return T(2); 30 case MIN: 31 return T::min(); 32 case MAX: 33 return T::max(); 34 } 35 __builtin_unreachable(); 36 } 37 38 using Types = testing::TypeList< // 39 #ifdef LIBC_TYPES_HAS_INT64 40 BigInt<64, false, uint64_t>, // 64-bits unsigned (1 x uint64_t) 41 BigInt<64, true, uint64_t>, // 64-bits signed (1 x uint64_t) 42 #endif 43 #ifdef LIBC_TYPES_HAS_INT128 44 BigInt<128, false, __uint128_t>, // 128-bits unsigned (1 x __uint128_t) 45 BigInt<128, true, __uint128_t>, // 128-bits signed (1 x __uint128_t) 46 #endif 47 BigInt<16, false, uint16_t>, // 16-bits unsigned (1 x uint16_t) 48 BigInt<16, true, uint16_t>, // 16-bits signed (1 x uint16_t) 49 BigInt<64, false, uint16_t>, // 64-bits unsigned (4 x uint16_t) 50 BigInt<64, true, uint16_t> // 64-bits signed (4 x uint16_t) 51 >; 52 53 #define ASSERT_SAME(A, B) ASSERT_TRUE((A) == (B)) 54 55 TYPED_TEST(LlvmLibcUIntClassTest, Additions, Types) { 56 ASSERT_SAME(create<T>(ZERO) + create<T>(ZERO), create<T>(ZERO)); 57 ASSERT_SAME(create<T>(ONE) + create<T>(ZERO), create<T>(ONE)); 58 ASSERT_SAME(create<T>(ZERO) + create<T>(ONE), create<T>(ONE)); 59 ASSERT_SAME(create<T>(ONE) + create<T>(ONE), create<T>(TWO)); 60 // 2's complement addition works for signed and unsigned types. 61 // - unsigned : 0xff + 0x01 = 0x00 (255 + 1 = 0) 62 // - signed : 0xef + 0x01 = 0xf0 (127 + 1 = -128) 63 ASSERT_SAME(create<T>(MAX) + create<T>(ONE), create<T>(MIN)); 64 } 65 66 TYPED_TEST(LlvmLibcUIntClassTest, Subtraction, Types) { 67 ASSERT_SAME(create<T>(ZERO) - create<T>(ZERO), create<T>(ZERO)); 68 ASSERT_SAME(create<T>(ONE) - create<T>(ONE), create<T>(ZERO)); 69 ASSERT_SAME(create<T>(ONE) - create<T>(ZERO), create<T>(ONE)); 70 // 2's complement subtraction works for signed and unsigned types. 71 // - unsigned : 0x00 - 0x01 = 0xff ( 0 - 1 = 255) 72 // - signed : 0xf0 - 0x01 = 0xef (-128 - 1 = 127) 73 ASSERT_SAME(create<T>(MIN) - create<T>(ONE), create<T>(MAX)); 74 } 75 76 TYPED_TEST(LlvmLibcUIntClassTest, Multiplication, Types) { 77 ASSERT_SAME(create<T>(ZERO) * create<T>(ZERO), create<T>(ZERO)); 78 ASSERT_SAME(create<T>(ZERO) * create<T>(ONE), create<T>(ZERO)); 79 ASSERT_SAME(create<T>(ONE) * create<T>(ZERO), create<T>(ZERO)); 80 ASSERT_SAME(create<T>(ONE) * create<T>(ONE), create<T>(ONE)); 81 ASSERT_SAME(create<T>(ONE) * create<T>(TWO), create<T>(TWO)); 82 ASSERT_SAME(create<T>(TWO) * create<T>(ONE), create<T>(TWO)); 83 // - unsigned : 0xff x 0xff = 0x01 (mod 0xff) 84 // - signed : 0xef x 0xef = 0x01 (mod 0xff) 85 ASSERT_SAME(create<T>(MAX) * create<T>(MAX), create<T>(ONE)); 86 } 87 88 template <typename T> void print(const char *msg, T value) { 89 testing::tlog << msg; 90 IntegerToString<T, radix::Hex> buffer(value); 91 testing::tlog << buffer.view() << "\n"; 92 } 93 94 TEST(LlvmLibcUIntClassTest, SignedAddSub) { 95 // Computations performed by https://www.wolframalpha.com/ 96 using T = BigInt<128, true, uint32_t>; 97 const T a = parse_bigint<T>("1927508279017230597"); 98 const T b = parse_bigint<T>("278789278723478925"); 99 const T s = parse_bigint<T>("2206297557740709522"); 100 // Addition 101 ASSERT_SAME(a + b, s); 102 ASSERT_SAME(b + a, s); // commutative 103 // Subtraction 104 ASSERT_SAME(a - s, -b); 105 ASSERT_SAME(s - a, b); 106 } 107 108 TEST(LlvmLibcUIntClassTest, SignedMulDiv) { 109 // Computations performed by https://www.wolframalpha.com/ 110 using T = BigInt<128, true, uint16_t>; 111 struct { 112 const char *a; 113 const char *b; 114 const char *mul; 115 } const test_cases[] = {{"-4", "3", "-12"}, 116 {"-3", "-3", "9"}, 117 {"1927508279017230597", "278789278723478925", 118 "537368642840747885329125014794668225"}}; 119 for (auto tc : test_cases) { 120 const T a = parse_bigint<T>(tc.a); 121 const T b = parse_bigint<T>(tc.b); 122 const T mul = parse_bigint<T>(tc.mul); 123 // Multiplication 124 ASSERT_SAME(a * b, mul); 125 ASSERT_SAME(b * a, mul); // commutative 126 ASSERT_SAME(a * -b, -mul); // sign 127 ASSERT_SAME(-a * b, -mul); // sign 128 ASSERT_SAME(-a * -b, mul); // sign 129 // Division 130 ASSERT_SAME(mul / a, b); 131 ASSERT_SAME(mul / b, a); 132 ASSERT_SAME(-mul / a, -b); // sign 133 ASSERT_SAME(mul / -a, -b); // sign 134 ASSERT_SAME(-mul / -a, b); // sign 135 } 136 } 137 138 TYPED_TEST(LlvmLibcUIntClassTest, Division, Types) { 139 ASSERT_SAME(create<T>(ZERO) / create<T>(ONE), create<T>(ZERO)); 140 ASSERT_SAME(create<T>(MAX) / create<T>(ONE), create<T>(MAX)); 141 ASSERT_SAME(create<T>(MAX) / create<T>(MAX), create<T>(ONE)); 142 ASSERT_SAME(create<T>(ONE) / create<T>(ONE), create<T>(ONE)); 143 if constexpr (T::SIGNED) { 144 // Special case found by fuzzing. 145 ASSERT_SAME(create<T>(MIN) / create<T>(MIN), create<T>(ONE)); 146 } 147 // - unsigned : 0xff / 0x02 = 0x7f 148 // - signed : 0xef / 0x02 = 0x77 149 ASSERT_SAME(create<T>(MAX) / create<T>(TWO), (create<T>(MAX) >> 1)); 150 151 using word_type = typename T::word_type; 152 const T zero_one_repeated = T::all_ones() / T(0xff); 153 const word_type pattern = word_type(~0) / word_type(0xff); 154 for (const word_type part : zero_one_repeated.val) { 155 if constexpr (T::SIGNED == false) { 156 EXPECT_EQ(part, pattern); 157 } 158 } 159 } 160 161 TYPED_TEST(LlvmLibcUIntClassTest, is_neg, Types) { 162 EXPECT_FALSE(create<T>(ZERO).is_neg()); 163 EXPECT_FALSE(create<T>(ONE).is_neg()); 164 EXPECT_FALSE(create<T>(TWO).is_neg()); 165 EXPECT_EQ(create<T>(MIN).is_neg(), T::SIGNED); 166 EXPECT_FALSE(create<T>(MAX).is_neg()); 167 } 168 169 TYPED_TEST(LlvmLibcUIntClassTest, Masks, Types) { 170 if constexpr (!T::SIGNED) { 171 constexpr size_t BITS = T::BITS; 172 // mask_trailing_ones 173 ASSERT_SAME((mask_trailing_ones<T, 0>()), T::zero()); 174 ASSERT_SAME((mask_trailing_ones<T, 1>()), T::one()); 175 ASSERT_SAME((mask_trailing_ones<T, BITS - 1>()), T::all_ones() >> 1); 176 ASSERT_SAME((mask_trailing_ones<T, BITS>()), T::all_ones()); 177 // mask_leading_ones 178 ASSERT_SAME((mask_leading_ones<T, 0>()), T::zero()); 179 ASSERT_SAME((mask_leading_ones<T, 1>()), T::one() << (BITS - 1)); 180 ASSERT_SAME((mask_leading_ones<T, BITS - 1>()), T::all_ones() - T::one()); 181 ASSERT_SAME((mask_leading_ones<T, BITS>()), T::all_ones()); 182 // mask_trailing_zeros 183 ASSERT_SAME((mask_trailing_zeros<T, 0>()), T::all_ones()); 184 ASSERT_SAME((mask_trailing_zeros<T, 1>()), T::all_ones() - T::one()); 185 ASSERT_SAME((mask_trailing_zeros<T, BITS - 1>()), T::one() << (BITS - 1)); 186 ASSERT_SAME((mask_trailing_zeros<T, BITS>()), T::zero()); 187 // mask_trailing_zeros 188 ASSERT_SAME((mask_leading_zeros<T, 0>()), T::all_ones()); 189 ASSERT_SAME((mask_leading_zeros<T, 1>()), T::all_ones() >> 1); 190 ASSERT_SAME((mask_leading_zeros<T, BITS - 1>()), T::one()); 191 ASSERT_SAME((mask_leading_zeros<T, BITS>()), T::zero()); 192 } 193 } 194 195 TYPED_TEST(LlvmLibcUIntClassTest, CountBits, Types) { 196 if constexpr (!T::SIGNED) { 197 for (size_t i = 0; i < T::BITS; ++i) { 198 const auto l_one = T::all_ones() << i; // 0b111...000 199 const auto r_one = T::all_ones() >> i; // 0b000...111 200 const int zeros = i; 201 const int ones = T::BITS - zeros; 202 ASSERT_EQ(cpp::countr_one(r_one), ones); 203 ASSERT_EQ(cpp::countl_one(l_one), ones); 204 ASSERT_EQ(cpp::countr_zero(l_one), zeros); 205 ASSERT_EQ(cpp::countl_zero(r_one), zeros); 206 } 207 } 208 } 209 210 using LL_UInt16 = UInt<16>; 211 using LL_UInt64 = UInt<64>; 212 // We want to test UInt<128> explicitly. So, for 213 // convenience, we use a sugar which does not conflict with the UInt128 type 214 // which can resolve to __uint128_t if the platform has it. 215 using LL_UInt128 = UInt<128>; 216 using LL_UInt192 = UInt<192>; 217 using LL_UInt256 = UInt<256>; 218 using LL_UInt320 = UInt<320>; 219 using LL_UInt512 = UInt<512>; 220 using LL_UInt1024 = UInt<1024>; 221 222 using LL_Int128 = Int<128>; 223 using LL_Int192 = Int<192>; 224 225 TEST(LlvmLibcUIntClassTest, BitCastToFromDouble) { 226 static_assert(cpp::is_trivially_copyable<LL_UInt64>::value); 227 static_assert(sizeof(LL_UInt64) == sizeof(double)); 228 const double inf = HUGE_VAL; 229 const double max = DBL_MAX; 230 const double array[] = {0.0, 0.1, 1.0, max, inf}; 231 for (double value : array) { 232 LL_UInt64 back = cpp::bit_cast<LL_UInt64>(value); 233 double forth = cpp::bit_cast<double>(back); 234 EXPECT_TRUE(value == forth); 235 } 236 } 237 238 #ifdef LIBC_TYPES_HAS_INT128 239 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeUint128) { 240 static_assert(cpp::is_trivially_copyable<LL_UInt128>::value); 241 static_assert(sizeof(LL_UInt128) == sizeof(__uint128_t)); 242 const __uint128_t array[] = {0, 1, ~__uint128_t(0)}; 243 for (__uint128_t value : array) { 244 LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value); 245 __uint128_t forth = cpp::bit_cast<__uint128_t>(back); 246 EXPECT_TRUE(value == forth); 247 } 248 } 249 #endif // LIBC_TYPES_HAS_INT128 250 251 #ifdef LIBC_TYPES_HAS_FLOAT128 252 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat128) { 253 static_assert(cpp::is_trivially_copyable<LL_UInt128>::value); 254 static_assert(sizeof(LL_UInt128) == sizeof(float128)); 255 const float128 array[] = {0, 0.1, 1}; 256 for (float128 value : array) { 257 LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value); 258 float128 forth = cpp::bit_cast<float128>(back); 259 EXPECT_TRUE(value == forth); 260 } 261 } 262 #endif // LIBC_TYPES_HAS_FLOAT128 263 264 #ifdef LIBC_TYPES_HAS_FLOAT16 265 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat16) { 266 static_assert(cpp::is_trivially_copyable<LL_UInt16>::value); 267 static_assert(sizeof(LL_UInt16) == sizeof(float16)); 268 const float16 array[] = { 269 static_cast<float16>(0.0), 270 static_cast<float16>(0.1), 271 static_cast<float16>(1.0), 272 }; 273 for (float16 value : array) { 274 LL_UInt16 back = cpp::bit_cast<LL_UInt16>(value); 275 float16 forth = cpp::bit_cast<float16>(back); 276 EXPECT_TRUE(value == forth); 277 } 278 } 279 #endif // LIBC_TYPES_HAS_FLOAT16 280 281 TEST(LlvmLibcUIntClassTest, BasicInit) { 282 LL_UInt128 half_val(12345); 283 LL_UInt128 full_val({12345, 67890}); 284 ASSERT_TRUE(half_val != full_val); 285 } 286 287 TEST(LlvmLibcUIntClassTest, AdditionTests) { 288 LL_UInt128 val1(12345); 289 LL_UInt128 val2(54321); 290 LL_UInt128 result1(66666); 291 EXPECT_EQ(val1 + val2, result1); 292 EXPECT_EQ((val1 + val2), (val2 + val1)); // addition is commutative 293 294 // Test overflow 295 LL_UInt128 val3({0xf000000000000001, 0}); 296 LL_UInt128 val4({0x100000000000000f, 0}); 297 LL_UInt128 result2({0x10, 0x1}); 298 EXPECT_EQ(val3 + val4, result2); 299 EXPECT_EQ(val3 + val4, val4 + val3); 300 301 // Test overflow 302 LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210}); 303 LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd}); 304 LL_UInt128 result3({0x12346789bcdf1233, 0xa987765443210fed}); 305 EXPECT_EQ(val5 + val6, result3); 306 EXPECT_EQ(val5 + val6, val6 + val5); 307 308 // Test 192-bit addition 309 LL_UInt192 val7({0x0123456789abcdef, 0xfedcba9876543210, 0xfedcba9889abcdef}); 310 LL_UInt192 val8({0x1111222233334444, 0xaaaabbbbccccdddd, 0xeeeeffffeeeeffff}); 311 LL_UInt192 result4( 312 {0x12346789bcdf1233, 0xa987765443210fed, 0xedcbba98789acdef}); 313 EXPECT_EQ(val7 + val8, result4); 314 EXPECT_EQ(val7 + val8, val8 + val7); 315 316 // Test 256-bit addition 317 LL_UInt256 val9({0x1f1e1d1c1b1a1918, 0xf1f2f3f4f5f6f7f8, 0x0123456789abcdef, 318 0xfedcba9876543210}); 319 LL_UInt256 val10({0x1111222233334444, 0xaaaabbbbccccdddd, 0x1111222233334444, 320 0xaaaabbbbccccdddd}); 321 LL_UInt256 result5({0x302f3f3e4e4d5d5c, 0x9c9dafb0c2c3d5d5, 322 0x12346789bcdf1234, 0xa987765443210fed}); 323 EXPECT_EQ(val9 + val10, result5); 324 EXPECT_EQ(val9 + val10, val10 + val9); 325 } 326 327 TEST(LlvmLibcUIntClassTest, SubtractionTests) { 328 LL_UInt128 val1(12345); 329 LL_UInt128 val2(54321); 330 LL_UInt128 result1({0xffffffffffff5c08, 0xffffffffffffffff}); 331 LL_UInt128 result2(0xa3f8); 332 EXPECT_EQ(val1 - val2, result1); 333 EXPECT_EQ(val1, val2 + result1); 334 EXPECT_EQ(val2 - val1, result2); 335 EXPECT_EQ(val2, val1 + result2); 336 337 LL_UInt128 val3({0xf000000000000001, 0}); 338 LL_UInt128 val4({0x100000000000000f, 0}); 339 LL_UInt128 result3(0xdffffffffffffff2); 340 LL_UInt128 result4({0x200000000000000e, 0xffffffffffffffff}); 341 EXPECT_EQ(val3 - val4, result3); 342 EXPECT_EQ(val3, val4 + result3); 343 EXPECT_EQ(val4 - val3, result4); 344 EXPECT_EQ(val4, val3 + result4); 345 346 LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210}); 347 LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd}); 348 LL_UInt128 result5({0xf0122345567889ab, 0x5431fedca9875432}); 349 LL_UInt128 result6({0x0feddcbaa9877655, 0xabce01235678abcd}); 350 EXPECT_EQ(val5 - val6, result5); 351 EXPECT_EQ(val5, val6 + result5); 352 EXPECT_EQ(val6 - val5, result6); 353 EXPECT_EQ(val6, val5 + result6); 354 } 355 356 TEST(LlvmLibcUIntClassTest, MultiplicationTests) { 357 LL_UInt128 val1({5, 0}); 358 LL_UInt128 val2({10, 0}); 359 LL_UInt128 result1({50, 0}); 360 EXPECT_EQ((val1 * val2), result1); 361 EXPECT_EQ((val1 * val2), (val2 * val1)); // multiplication is commutative 362 363 // Check that the multiplication works accross the whole number 364 LL_UInt128 val3({0xf, 0}); 365 LL_UInt128 val4({0x1111111111111111, 0x1111111111111111}); 366 LL_UInt128 result2({0xffffffffffffffff, 0xffffffffffffffff}); 367 EXPECT_EQ((val3 * val4), result2); 368 EXPECT_EQ((val3 * val4), (val4 * val3)); 369 370 // Check that multiplication doesn't reorder the bits. 371 LL_UInt128 val5({2, 0}); 372 LL_UInt128 val6({0x1357024675316420, 0x0123456776543210}); 373 LL_UInt128 result3({0x26ae048cea62c840, 0x02468aceeca86420}); 374 375 EXPECT_EQ((val5 * val6), result3); 376 EXPECT_EQ((val5 * val6), (val6 * val5)); 377 378 // Make sure that multiplication handles overflow correctly. 379 LL_UInt128 val7(2); 380 LL_UInt128 val8({0x8000800080008000, 0x8000800080008000}); 381 LL_UInt128 result4({0x0001000100010000, 0x0001000100010001}); 382 EXPECT_EQ((val7 * val8), result4); 383 EXPECT_EQ((val7 * val8), (val8 * val7)); 384 385 // val9 is the 128 bit mantissa of 1e60 as a float, val10 is the mantissa for 386 // 1e-60. They almost cancel on the high bits, but the result we're looking 387 // for is just the low bits. The full result would be 388 // 0x7fffffffffffffffffffffffffffffff3a4f32d17f40d08f917cf11d1e039c50 389 LL_UInt128 val9({0x01D762422C946590, 0x9F4F2726179A2245}); 390 LL_UInt128 val10({0x3792F412CB06794D, 0xCDB02555653131B6}); 391 LL_UInt128 result5({0x917cf11d1e039c50, 0x3a4f32d17f40d08f}); 392 EXPECT_EQ((val9 * val10), result5); 393 EXPECT_EQ((val9 * val10), (val10 * val9)); 394 395 // Test 192-bit multiplication 396 LL_UInt192 val11( 397 {0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245}); 398 LL_UInt192 val12( 399 {0xffffffffffffffff, 0x3792F412CB06794D, 0xCDB02555653131B6}); 400 401 LL_UInt192 result6( 402 {0x0000000000000001, 0xc695a9ab08652121, 0x5de7faf698d32732}); 403 EXPECT_EQ((val11 * val12), result6); 404 EXPECT_EQ((val11 * val12), (val12 * val11)); 405 406 LL_UInt256 val13({0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245, 407 0xffffffffffffffff}); 408 LL_UInt256 val14({0xffffffffffffffff, 0xffffffffffffffff, 0x3792F412CB06794D, 409 0xCDB02555653131B6}); 410 LL_UInt256 result7({0x0000000000000001, 0xfe289dbdd36b9a6f, 411 0x291de4c71d5f646c, 0xfd37221cb06d4978}); 412 EXPECT_EQ((val13 * val14), result7); 413 EXPECT_EQ((val13 * val14), (val14 * val13)); 414 } 415 416 TEST(LlvmLibcUIntClassTest, DivisionTests) { 417 LL_UInt128 val1({10, 0}); 418 LL_UInt128 val2({5, 0}); 419 LL_UInt128 result1({2, 0}); 420 EXPECT_EQ((val1 / val2), result1); 421 EXPECT_EQ((val1 / result1), val2); 422 423 // Check that the division works accross the whole number 424 LL_UInt128 val3({0xffffffffffffffff, 0xffffffffffffffff}); 425 LL_UInt128 val4({0xf, 0}); 426 LL_UInt128 result2({0x1111111111111111, 0x1111111111111111}); 427 EXPECT_EQ((val3 / val4), result2); 428 EXPECT_EQ((val3 / result2), val4); 429 430 // Check that division doesn't reorder the bits. 431 LL_UInt128 val5({0x26ae048cea62c840, 0x02468aceeca86420}); 432 LL_UInt128 val6({2, 0}); 433 LL_UInt128 result3({0x1357024675316420, 0x0123456776543210}); 434 EXPECT_EQ((val5 / val6), result3); 435 EXPECT_EQ((val5 / result3), val6); 436 437 // Make sure that division handles inexact results correctly. 438 LL_UInt128 val7({1001, 0}); 439 LL_UInt128 val8({10, 0}); 440 LL_UInt128 result4({100, 0}); 441 EXPECT_EQ((val7 / val8), result4); 442 EXPECT_EQ((val7 / result4), val8); 443 444 // Make sure that division handles divisors of one correctly. 445 LL_UInt128 val9({0x1234567812345678, 0x9abcdef09abcdef0}); 446 LL_UInt128 val10({1, 0}); 447 LL_UInt128 result5({0x1234567812345678, 0x9abcdef09abcdef0}); 448 EXPECT_EQ((val9 / val10), result5); 449 EXPECT_EQ((val9 / result5), val10); 450 451 // Make sure that division handles results of slightly more than 1 correctly. 452 LL_UInt128 val11({1050, 0}); 453 LL_UInt128 val12({1030, 0}); 454 LL_UInt128 result6({1, 0}); 455 EXPECT_EQ((val11 / val12), result6); 456 457 // Make sure that division handles dividing by zero correctly. 458 LL_UInt128 val13({1234, 0}); 459 LL_UInt128 val14({0, 0}); 460 EXPECT_FALSE(val13.div(val14).has_value()); 461 } 462 463 TEST(LlvmLibcUIntClassTest, ModuloTests) { 464 LL_UInt128 val1({10, 0}); 465 LL_UInt128 val2({5, 0}); 466 LL_UInt128 result1({0, 0}); 467 EXPECT_EQ((val1 % val2), result1); 468 469 LL_UInt128 val3({101, 0}); 470 LL_UInt128 val4({10, 0}); 471 LL_UInt128 result2({1, 0}); 472 EXPECT_EQ((val3 % val4), result2); 473 474 LL_UInt128 val5({10000001, 0}); 475 LL_UInt128 val6({10, 0}); 476 LL_UInt128 result3({1, 0}); 477 EXPECT_EQ((val5 % val6), result3); 478 479 LL_UInt128 val7({12345, 10}); 480 LL_UInt128 val8({0, 1}); 481 LL_UInt128 result4({12345, 0}); 482 EXPECT_EQ((val7 % val8), result4); 483 484 LL_UInt128 val9({12345, 10}); 485 LL_UInt128 val10({0, 11}); 486 LL_UInt128 result5({12345, 10}); 487 EXPECT_EQ((val9 % val10), result5); 488 489 LL_UInt128 val11({10, 10}); 490 LL_UInt128 val12({10, 10}); 491 LL_UInt128 result6({0, 0}); 492 EXPECT_EQ((val11 % val12), result6); 493 494 LL_UInt128 val13({12345, 0}); 495 LL_UInt128 val14({1, 0}); 496 LL_UInt128 result7({0, 0}); 497 EXPECT_EQ((val13 % val14), result7); 498 499 LL_UInt128 val15({0xffffffffffffffff, 0xffffffffffffffff}); 500 LL_UInt128 val16({0x1111111111111111, 0x111111111111111}); 501 LL_UInt128 result8({0xf, 0}); 502 EXPECT_EQ((val15 % val16), result8); 503 504 LL_UInt128 val17({5076944270305263619, 54210108624}); // (10 ^ 30) + 3 505 LL_UInt128 val18({10, 0}); 506 LL_UInt128 result9({3, 0}); 507 EXPECT_EQ((val17 % val18), result9); 508 } 509 510 TEST(LlvmLibcUIntClassTest, PowerTests) { 511 LL_UInt128 val1({10, 0}); 512 val1.pow_n(30); 513 LL_UInt128 result1({5076944270305263616, 54210108624}); // (10 ^ 30) 514 EXPECT_EQ(val1, result1); 515 516 LL_UInt128 val2({1, 0}); 517 val2.pow_n(10); 518 LL_UInt128 result2({1, 0}); 519 EXPECT_EQ(val2, result2); 520 521 LL_UInt128 val3({0, 0}); 522 val3.pow_n(10); 523 LL_UInt128 result3({0, 0}); 524 EXPECT_EQ(val3, result3); 525 526 LL_UInt128 val4({10, 0}); 527 val4.pow_n(0); 528 LL_UInt128 result4({1, 0}); 529 EXPECT_EQ(val4, result4); 530 531 // Test zero to the zero. Currently it returns 1, since that's the easiest 532 // result. 533 LL_UInt128 val5({0, 0}); 534 val5.pow_n(0); 535 LL_UInt128 result5({1, 0}); 536 EXPECT_EQ(val5, result5); 537 538 // Test a number that overflows. 100 ^ 20 is larger than 2 ^ 128. 539 LL_UInt128 val6({100, 0}); 540 val6.pow_n(20); 541 LL_UInt128 result6({0xb9f5610000000000, 0x6329f1c35ca4bfab}); 542 EXPECT_EQ(val6, result6); 543 544 // Test that both halves of the number are being used. 545 LL_UInt128 val7({1, 1}); 546 val7.pow_n(2); 547 LL_UInt128 result7({1, 2}); 548 EXPECT_EQ(val7, result7); 549 550 LL_UInt128 val_pow_two; 551 LL_UInt128 result_pow_two; 552 for (size_t i = 0; i < 128; ++i) { 553 val_pow_two = 2; 554 val_pow_two.pow_n(i); 555 result_pow_two = 1; 556 result_pow_two = result_pow_two << i; 557 EXPECT_EQ(val_pow_two, result_pow_two); 558 } 559 } 560 561 TEST(LlvmLibcUIntClassTest, ShiftLeftTests) { 562 LL_UInt128 val1(0x0123456789abcdef); 563 LL_UInt128 result1(0x123456789abcdef0); 564 EXPECT_EQ((val1 << 4), result1); 565 566 LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0}); 567 LL_UInt128 result2({0x02468ace00000000, 0x9abcdef013579bdf}); 568 EXPECT_EQ((val2 << 32), result2); 569 LL_UInt128 val22 = val2; 570 val22 <<= 32; 571 EXPECT_EQ(val22, result2); 572 573 LL_UInt128 result3({0, 0x13579bdf02468ace}); 574 EXPECT_EQ((val2 << 64), result3); 575 576 LL_UInt128 result4({0, 0x02468ace00000000}); 577 EXPECT_EQ((val2 << 96), result4); 578 579 LL_UInt128 result5({0, 0x2468ace000000000}); 580 EXPECT_EQ((val2 << 100), result5); 581 582 LL_UInt192 val3({1, 0, 0}); 583 LL_UInt192 result7({0, 1, 0}); 584 EXPECT_EQ((val3 << 64), result7); 585 } 586 587 TEST(LlvmLibcUIntClassTest, ShiftRightTests) { 588 LL_UInt128 val1(0x0123456789abcdef); 589 LL_UInt128 result1(0x00123456789abcde); 590 EXPECT_EQ((val1 >> 4), result1); 591 592 LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0}); 593 LL_UInt128 result2({0x9abcdef013579bdf, 0x0000000012345678}); 594 EXPECT_EQ((val2 >> 32), result2); 595 LL_UInt128 val22 = val2; 596 val22 >>= 32; 597 EXPECT_EQ(val22, result2); 598 599 LL_UInt128 result3({0x123456789abcdef0, 0}); 600 EXPECT_EQ((val2 >> 64), result3); 601 602 LL_UInt128 result4({0x0000000012345678, 0}); 603 EXPECT_EQ((val2 >> 96), result4); 604 605 LL_UInt128 result5({0x0000000001234567, 0}); 606 EXPECT_EQ((val2 >> 100), result5); 607 608 LL_UInt128 v1({0x1111222233334444, 0xaaaabbbbccccdddd}); 609 LL_UInt128 r1({0xaaaabbbbccccdddd, 0}); 610 EXPECT_EQ((v1 >> 64), r1); 611 612 LL_UInt192 v2({0x1111222233334444, 0x5555666677778888, 0xaaaabbbbccccdddd}); 613 LL_UInt192 r2({0x5555666677778888, 0xaaaabbbbccccdddd, 0}); 614 LL_UInt192 r3({0xaaaabbbbccccdddd, 0, 0}); 615 EXPECT_EQ((v2 >> 64), r2); 616 EXPECT_EQ((v2 >> 128), r3); 617 EXPECT_EQ((r2 >> 64), r3); 618 619 LL_UInt192 val3({0, 0, 1}); 620 LL_UInt192 result7({0, 1, 0}); 621 EXPECT_EQ((val3 >> 64), result7); 622 } 623 624 TEST(LlvmLibcUIntClassTest, AndTests) { 625 LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000}); 626 LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); 627 uint64_t val64 = 0xf0f0f0f00f0f0f0f; 628 int val32 = 0x0f0f0f0f; 629 LL_UInt128 result128({0xf0f0000000000f0f, 0xff00ff0000000000}); 630 LL_UInt128 result64(0xf0f0000000000f0f); 631 LL_UInt128 result32(0x00000f0f); 632 EXPECT_EQ((base & val128), result128); 633 EXPECT_EQ((base & val64), result64); 634 EXPECT_EQ((base & val32), result32); 635 } 636 637 TEST(LlvmLibcUIntClassTest, OrTests) { 638 LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000}); 639 LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); 640 uint64_t val64 = 0xf0f0f0f00f0f0f0f; 641 int val32 = 0x0f0f0f0f; 642 LL_UInt128 result128({0xfffff0f00f0fffff, 0xffffffff00ff00ff}); 643 LL_UInt128 result64({0xfffff0f00f0fffff, 0xffffffff00000000}); 644 LL_UInt128 result32({0xffff00000f0fffff, 0xffffffff00000000}); 645 EXPECT_EQ((base | val128), result128); 646 EXPECT_EQ((base | val64), result64); 647 EXPECT_EQ((base | val32), result32); 648 } 649 650 TEST(LlvmLibcUIntClassTest, CompoundAssignments) { 651 LL_UInt128 x({0xffff00000000ffff, 0xffffffff00000000}); 652 LL_UInt128 b({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); 653 654 LL_UInt128 a = x; 655 a |= b; 656 LL_UInt128 or_result({0xfffff0f00f0fffff, 0xffffffff00ff00ff}); 657 EXPECT_EQ(a, or_result); 658 659 a = x; 660 a &= b; 661 LL_UInt128 and_result({0xf0f0000000000f0f, 0xff00ff0000000000}); 662 EXPECT_EQ(a, and_result); 663 664 a = x; 665 a ^= b; 666 LL_UInt128 xor_result({0x0f0ff0f00f0ff0f0, 0x00ff00ff00ff00ff}); 667 EXPECT_EQ(a, xor_result); 668 669 a = LL_UInt128(uint64_t(0x0123456789abcdef)); 670 LL_UInt128 shift_left_result(uint64_t(0x123456789abcdef0)); 671 a <<= 4; 672 EXPECT_EQ(a, shift_left_result); 673 674 a = LL_UInt128(uint64_t(0x123456789abcdef1)); 675 LL_UInt128 shift_right_result(uint64_t(0x0123456789abcdef)); 676 a >>= 4; 677 EXPECT_EQ(a, shift_right_result); 678 679 a = LL_UInt128({0xf000000000000001, 0}); 680 b = LL_UInt128({0x100000000000000f, 0}); 681 LL_UInt128 add_result({0x10, 0x1}); 682 a += b; 683 EXPECT_EQ(a, add_result); 684 685 a = LL_UInt128({0xf, 0}); 686 b = LL_UInt128({0x1111111111111111, 0x1111111111111111}); 687 LL_UInt128 mul_result({0xffffffffffffffff, 0xffffffffffffffff}); 688 a *= b; 689 EXPECT_EQ(a, mul_result); 690 } 691 692 TEST(LlvmLibcUIntClassTest, UnaryPredecrement) { 693 LL_UInt128 a = LL_UInt128({0x1111111111111111, 0x1111111111111111}); 694 ++a; 695 EXPECT_EQ(a, LL_UInt128({0x1111111111111112, 0x1111111111111111})); 696 697 a = LL_UInt128({0xffffffffffffffff, 0x0}); 698 ++a; 699 EXPECT_EQ(a, LL_UInt128({0x0, 0x1})); 700 701 a = LL_UInt128({0xffffffffffffffff, 0xffffffffffffffff}); 702 ++a; 703 EXPECT_EQ(a, LL_UInt128({0x0, 0x0})); 704 } 705 706 TEST(LlvmLibcUIntClassTest, EqualsTests) { 707 LL_UInt128 a1({0xffffffff00000000, 0xffff00000000ffff}); 708 LL_UInt128 a2({0xffffffff00000000, 0xffff00000000ffff}); 709 LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f}); 710 LL_UInt128 a_reversed({0xffff00000000ffff, 0xffffffff00000000}); 711 LL_UInt128 a_upper(0xffff00000000ffff); 712 LL_UInt128 a_lower(0xffffffff00000000); 713 ASSERT_TRUE(a1 == a1); 714 ASSERT_TRUE(a1 == a2); 715 ASSERT_FALSE(a1 == b); 716 ASSERT_FALSE(a1 == a_reversed); 717 ASSERT_FALSE(a1 == a_lower); 718 ASSERT_FALSE(a1 == a_upper); 719 ASSERT_TRUE(a_lower != a_upper); 720 } 721 722 TEST(LlvmLibcUIntClassTest, ComparisonTests) { 723 LL_UInt128 a({0xffffffff00000000, 0xffff00000000ffff}); 724 LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f}); 725 EXPECT_GT(a, b); 726 EXPECT_GE(a, b); 727 EXPECT_LT(b, a); 728 EXPECT_LE(b, a); 729 730 LL_UInt128 x(0xffffffff00000000); 731 LL_UInt128 y(0x00000000ffffffff); 732 EXPECT_GT(x, y); 733 EXPECT_GE(x, y); 734 EXPECT_LT(y, x); 735 EXPECT_LE(y, x); 736 737 EXPECT_LE(a, a); 738 EXPECT_GE(a, a); 739 } 740 741 TEST(LlvmLibcUIntClassTest, FullMulTests) { 742 LL_UInt128 a({0xffffffffffffffffULL, 0xffffffffffffffffULL}); 743 LL_UInt128 b({0xfedcba9876543210ULL, 0xfefdfcfbfaf9f8f7ULL}); 744 LL_UInt256 r({0x0123456789abcdf0ULL, 0x0102030405060708ULL, 745 0xfedcba987654320fULL, 0xfefdfcfbfaf9f8f7ULL}); 746 LL_UInt128 r_hi({0xfedcba987654320eULL, 0xfefdfcfbfaf9f8f7ULL}); 747 748 EXPECT_EQ(a.ful_mul(b), r); 749 EXPECT_EQ(a.quick_mul_hi(b), r_hi); 750 751 LL_UInt192 c( 752 {0x7766554433221101ULL, 0xffeeddccbbaa9988ULL, 0x1f2f3f4f5f6f7f8fULL}); 753 LL_UInt320 rr({0x8899aabbccddeeffULL, 0x0011223344556677ULL, 754 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL, 755 0x1f2f3f4f5f6f7f8fULL}); 756 757 EXPECT_EQ(a.ful_mul(c), rr); 758 EXPECT_EQ(a.ful_mul(c), c.ful_mul(a)); 759 } 760 761 #define TEST_QUICK_MUL_HI(Bits, Error) \ 762 do { \ 763 LL_UInt##Bits a = ~LL_UInt##Bits(0); \ 764 LL_UInt##Bits hi = a.quick_mul_hi(a); \ 765 LL_UInt##Bits trunc = static_cast<LL_UInt##Bits>(a.ful_mul(a) >> Bits); \ 766 uint64_t overflow = trunc.sub_overflow(hi); \ 767 EXPECT_EQ(overflow, uint64_t(0)); \ 768 EXPECT_LE(uint64_t(trunc), uint64_t(Error)); \ 769 } while (0) 770 771 TEST(LlvmLibcUIntClassTest, QuickMulHiTests) { 772 TEST_QUICK_MUL_HI(128, 1); 773 TEST_QUICK_MUL_HI(192, 2); 774 TEST_QUICK_MUL_HI(256, 3); 775 TEST_QUICK_MUL_HI(512, 7); 776 } 777 778 TEST(LlvmLibcUIntClassTest, ConstexprInitTests) { 779 constexpr LL_UInt128 add = LL_UInt128(1) + LL_UInt128(2); 780 ASSERT_EQ(add, LL_UInt128(3)); 781 constexpr LL_UInt128 sub = LL_UInt128(5) - LL_UInt128(4); 782 ASSERT_EQ(sub, LL_UInt128(1)); 783 } 784 785 #define TEST_QUICK_DIV_UINT32_POW2(x, e) \ 786 do { \ 787 LL_UInt320 y({0x8899aabbccddeeffULL, 0x0011223344556677ULL, \ 788 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL, \ 789 0x1f2f3f4f5f6f7f8fULL}); \ 790 LL_UInt320 d = LL_UInt320(x); \ 791 d <<= e; \ 792 LL_UInt320 q1 = y / d; \ 793 LL_UInt320 r1 = y % d; \ 794 LL_UInt320 r2 = *y.div_uint_half_times_pow_2(x, e); \ 795 EXPECT_EQ(q1, y); \ 796 EXPECT_EQ(r1, r2); \ 797 } while (0) 798 799 TEST(LlvmLibcUIntClassTest, DivUInt32TimesPow2Tests) { 800 for (size_t i = 0; i < 320; i += 32) { 801 TEST_QUICK_DIV_UINT32_POW2(1, i); 802 TEST_QUICK_DIV_UINT32_POW2(13151719, i); 803 } 804 805 TEST_QUICK_DIV_UINT32_POW2(1, 75); 806 TEST_QUICK_DIV_UINT32_POW2(1, 101); 807 808 TEST_QUICK_DIV_UINT32_POW2(1000000000, 75); 809 TEST_QUICK_DIV_UINT32_POW2(1000000000, 101); 810 } 811 812 TEST(LlvmLibcUIntClassTest, ComparisonInt128Tests) { 813 LL_Int128 a(123); 814 LL_Int128 b(0); 815 LL_Int128 c(-1); 816 817 ASSERT_TRUE(a == a); 818 ASSERT_TRUE(b == b); 819 ASSERT_TRUE(c == c); 820 821 ASSERT_TRUE(a != b); 822 ASSERT_TRUE(a != c); 823 ASSERT_TRUE(b != a); 824 ASSERT_TRUE(b != c); 825 ASSERT_TRUE(c != a); 826 ASSERT_TRUE(c != b); 827 828 ASSERT_TRUE(a > b); 829 ASSERT_TRUE(a >= b); 830 ASSERT_TRUE(a > c); 831 ASSERT_TRUE(a >= c); 832 ASSERT_TRUE(b > c); 833 ASSERT_TRUE(b >= c); 834 835 ASSERT_TRUE(b < a); 836 ASSERT_TRUE(b <= a); 837 ASSERT_TRUE(c < a); 838 ASSERT_TRUE(c <= a); 839 ASSERT_TRUE(c < b); 840 ASSERT_TRUE(c <= b); 841 } 842 843 TEST(LlvmLibcUIntClassTest, BasicArithmeticInt128Tests) { 844 LL_Int128 a(123); 845 LL_Int128 b(0); 846 LL_Int128 c(-3); 847 848 ASSERT_EQ(a * a, LL_Int128(123 * 123)); 849 ASSERT_EQ(a * c, LL_Int128(-369)); 850 ASSERT_EQ(c * a, LL_Int128(-369)); 851 ASSERT_EQ(c * c, LL_Int128(9)); 852 ASSERT_EQ(a * b, b); 853 ASSERT_EQ(b * a, b); 854 ASSERT_EQ(b * c, b); 855 ASSERT_EQ(c * b, b); 856 } 857 858 #ifdef LIBC_TYPES_HAS_INT128 859 860 TEST(LlvmLibcUIntClassTest, ConstructorFromUInt128Tests) { 861 __uint128_t a = (__uint128_t(123) << 64) + 1; 862 __int128_t b = -static_cast<__int128_t>(a); 863 LL_Int128 c(a); 864 LL_Int128 d(b); 865 866 LL_Int192 e(a); 867 LL_Int192 f(b); 868 869 ASSERT_EQ(static_cast<int>(c), 1); 870 ASSERT_EQ(static_cast<int>(c >> 64), 123); 871 ASSERT_EQ(static_cast<uint64_t>(d), static_cast<uint64_t>(b)); 872 ASSERT_EQ(static_cast<uint64_t>(d >> 64), static_cast<uint64_t>(b >> 64)); 873 ASSERT_EQ(c + d, LL_Int128(a + b)); 874 875 ASSERT_EQ(static_cast<int>(e), 1); 876 ASSERT_EQ(static_cast<int>(e >> 64), 123); 877 ASSERT_EQ(static_cast<uint64_t>(f), static_cast<uint64_t>(b)); 878 ASSERT_EQ(static_cast<uint64_t>(f >> 64), static_cast<uint64_t>(b >> 64)); 879 ASSERT_EQ(LL_UInt192(e + f), LL_UInt192(a + b)); 880 } 881 882 TEST(LlvmLibcUIntClassTest, WordTypeUInt128Tests) { 883 using LL_UInt256_128 = BigInt<256, false, __uint128_t>; 884 using LL_UInt128_128 = BigInt<128, false, __uint128_t>; 885 886 LL_UInt256_128 a(1); 887 888 ASSERT_EQ(static_cast<int>(a), 1); 889 a = (a << 128) + 2; 890 ASSERT_EQ(static_cast<int>(a), 2); 891 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(2)); 892 a = (a << 32) + 3; 893 ASSERT_EQ(static_cast<int>(a), 3); 894 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x2'0000'0003)); 895 ASSERT_EQ(static_cast<int>(a >> 32), 2); 896 ASSERT_EQ(static_cast<int>(a >> (128 + 32)), 1); 897 898 LL_UInt128_128 b(__uint128_t(1) << 127); 899 LL_UInt128_128 c(b); 900 a = b.ful_mul(c); 901 902 ASSERT_EQ(static_cast<int>(a >> 254), 1); 903 904 LL_UInt256_128 d = LL_UInt256_128(123) << 4; 905 ASSERT_EQ(static_cast<int>(d), 123 << 4); 906 LL_UInt256_128 e = a / d; 907 LL_UInt256_128 f = a % d; 908 LL_UInt256_128 r = *a.div_uint_half_times_pow_2(123, 4); 909 EXPECT_TRUE(e == a); 910 EXPECT_TRUE(f == r); 911 } 912 913 #endif // LIBC_TYPES_HAS_INT128 914 915 TEST(LlvmLibcUIntClassTest, OtherWordTypeTests) { 916 using LL_UInt96 = BigInt<96, false, uint32_t>; 917 918 LL_UInt96 a(1); 919 920 ASSERT_EQ(static_cast<int>(a), 1); 921 a = (a << 32) + 2; 922 ASSERT_EQ(static_cast<int>(a), 2); 923 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x1'0000'0002)); 924 a = (a << 32) + 3; 925 ASSERT_EQ(static_cast<int>(a), 3); 926 ASSERT_EQ(static_cast<int>(a >> 32), 2); 927 ASSERT_EQ(static_cast<int>(a >> 64), 1); 928 } 929 930 } // namespace LIBC_NAMESPACE_DECL 931