1 //===-- Unittests for the UInt integer class ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "src/__support/CPP/optional.h" 10 #include "src/__support/big_int.h" 11 #include "src/__support/integer_literals.h" // parse_unsigned_bigint 12 #include "src/__support/macros/config.h" 13 #include "src/__support/macros/properties/types.h" // LIBC_TYPES_HAS_INT128 14 15 #include "hdr/math_macros.h" // HUGE_VALF, HUGE_VALF 16 #include "test/UnitTest/Test.h" 17 18 namespace LIBC_NAMESPACE_DECL { 19 20 enum Value { ZERO, ONE, TWO, MIN, MAX }; 21 22 template <typename T> auto create(Value value) { 23 switch (value) { 24 case ZERO: 25 return T(0); 26 case ONE: 27 return T(1); 28 case TWO: 29 return T(2); 30 case MIN: 31 return T::min(); 32 case MAX: 33 return T::max(); 34 } 35 } 36 37 using Types = testing::TypeList< // 38 #ifdef LIBC_TYPES_HAS_INT64 39 BigInt<64, false, uint64_t>, // 64-bits unsigned (1 x uint64_t) 40 BigInt<64, true, uint64_t>, // 64-bits signed (1 x uint64_t) 41 #endif 42 #ifdef LIBC_TYPES_HAS_INT128 43 BigInt<128, false, __uint128_t>, // 128-bits unsigned (1 x __uint128_t) 44 BigInt<128, true, __uint128_t>, // 128-bits signed (1 x __uint128_t) 45 #endif 46 BigInt<16, false, uint16_t>, // 16-bits unsigned (1 x uint16_t) 47 BigInt<16, true, uint16_t>, // 16-bits signed (1 x uint16_t) 48 BigInt<64, false, uint16_t>, // 64-bits unsigned (4 x uint16_t) 49 BigInt<64, true, uint16_t> // 64-bits signed (4 x uint16_t) 50 >; 51 52 #define ASSERT_SAME(A, B) ASSERT_TRUE((A) == (B)) 53 54 TYPED_TEST(LlvmLibcUIntClassTest, Additions, Types) { 55 ASSERT_SAME(create<T>(ZERO) + create<T>(ZERO), create<T>(ZERO)); 56 ASSERT_SAME(create<T>(ONE) + create<T>(ZERO), create<T>(ONE)); 57 ASSERT_SAME(create<T>(ZERO) + create<T>(ONE), create<T>(ONE)); 58 ASSERT_SAME(create<T>(ONE) + create<T>(ONE), create<T>(TWO)); 59 // 2's complement addition works for signed and unsigned types. 60 // - unsigned : 0xff + 0x01 = 0x00 (255 + 1 = 0) 61 // - signed : 0xef + 0x01 = 0xf0 (127 + 1 = -128) 62 ASSERT_SAME(create<T>(MAX) + create<T>(ONE), create<T>(MIN)); 63 } 64 65 TYPED_TEST(LlvmLibcUIntClassTest, Subtraction, Types) { 66 ASSERT_SAME(create<T>(ZERO) - create<T>(ZERO), create<T>(ZERO)); 67 ASSERT_SAME(create<T>(ONE) - create<T>(ONE), create<T>(ZERO)); 68 ASSERT_SAME(create<T>(ONE) - create<T>(ZERO), create<T>(ONE)); 69 // 2's complement subtraction works for signed and unsigned types. 70 // - unsigned : 0x00 - 0x01 = 0xff ( 0 - 1 = 255) 71 // - signed : 0xf0 - 0x01 = 0xef (-128 - 1 = 127) 72 ASSERT_SAME(create<T>(MIN) - create<T>(ONE), create<T>(MAX)); 73 } 74 75 TYPED_TEST(LlvmLibcUIntClassTest, Multiplication, Types) { 76 ASSERT_SAME(create<T>(ZERO) * create<T>(ZERO), create<T>(ZERO)); 77 ASSERT_SAME(create<T>(ZERO) * create<T>(ONE), create<T>(ZERO)); 78 ASSERT_SAME(create<T>(ONE) * create<T>(ZERO), create<T>(ZERO)); 79 ASSERT_SAME(create<T>(ONE) * create<T>(ONE), create<T>(ONE)); 80 ASSERT_SAME(create<T>(ONE) * create<T>(TWO), create<T>(TWO)); 81 ASSERT_SAME(create<T>(TWO) * create<T>(ONE), create<T>(TWO)); 82 // - unsigned : 0xff x 0xff = 0x01 (mod 0xff) 83 // - signed : 0xef x 0xef = 0x01 (mod 0xff) 84 ASSERT_SAME(create<T>(MAX) * create<T>(MAX), create<T>(ONE)); 85 } 86 87 template <typename T> void print(const char *msg, T value) { 88 testing::tlog << msg; 89 IntegerToString<T, radix::Hex> buffer(value); 90 testing::tlog << buffer.view() << "\n"; 91 } 92 93 TEST(LlvmLibcUIntClassTest, SignedAddSub) { 94 // Computations performed by https://www.wolframalpha.com/ 95 using T = BigInt<128, true, uint32_t>; 96 const T a = parse_bigint<T>("1927508279017230597"); 97 const T b = parse_bigint<T>("278789278723478925"); 98 const T s = parse_bigint<T>("2206297557740709522"); 99 // Addition 100 ASSERT_SAME(a + b, s); 101 ASSERT_SAME(b + a, s); // commutative 102 // Subtraction 103 ASSERT_SAME(a - s, -b); 104 ASSERT_SAME(s - a, b); 105 } 106 107 TEST(LlvmLibcUIntClassTest, SignedMulDiv) { 108 // Computations performed by https://www.wolframalpha.com/ 109 using T = BigInt<128, true, uint16_t>; 110 struct { 111 const char *a; 112 const char *b; 113 const char *mul; 114 } const test_cases[] = {{"-4", "3", "-12"}, 115 {"-3", "-3", "9"}, 116 {"1927508279017230597", "278789278723478925", 117 "537368642840747885329125014794668225"}}; 118 for (auto tc : test_cases) { 119 const T a = parse_bigint<T>(tc.a); 120 const T b = parse_bigint<T>(tc.b); 121 const T mul = parse_bigint<T>(tc.mul); 122 // Multiplication 123 ASSERT_SAME(a * b, mul); 124 ASSERT_SAME(b * a, mul); // commutative 125 ASSERT_SAME(a * -b, -mul); // sign 126 ASSERT_SAME(-a * b, -mul); // sign 127 ASSERT_SAME(-a * -b, mul); // sign 128 // Division 129 ASSERT_SAME(mul / a, b); 130 ASSERT_SAME(mul / b, a); 131 ASSERT_SAME(-mul / a, -b); // sign 132 ASSERT_SAME(mul / -a, -b); // sign 133 ASSERT_SAME(-mul / -a, b); // sign 134 } 135 } 136 137 TYPED_TEST(LlvmLibcUIntClassTest, Division, Types) { 138 ASSERT_SAME(create<T>(ZERO) / create<T>(ONE), create<T>(ZERO)); 139 ASSERT_SAME(create<T>(MAX) / create<T>(ONE), create<T>(MAX)); 140 ASSERT_SAME(create<T>(MAX) / create<T>(MAX), create<T>(ONE)); 141 ASSERT_SAME(create<T>(ONE) / create<T>(ONE), create<T>(ONE)); 142 if constexpr (T::SIGNED) { 143 // Special case found by fuzzing. 144 ASSERT_SAME(create<T>(MIN) / create<T>(MIN), create<T>(ONE)); 145 } 146 // - unsigned : 0xff / 0x02 = 0x7f 147 // - signed : 0xef / 0x02 = 0x77 148 ASSERT_SAME(create<T>(MAX) / create<T>(TWO), (create<T>(MAX) >> 1)); 149 150 using word_type = typename T::word_type; 151 const T zero_one_repeated = T::all_ones() / T(0xff); 152 const word_type pattern = word_type(~0) / word_type(0xff); 153 for (const word_type part : zero_one_repeated.val) { 154 if constexpr (T::SIGNED == false) { 155 EXPECT_EQ(part, pattern); 156 } 157 } 158 } 159 160 TYPED_TEST(LlvmLibcUIntClassTest, is_neg, Types) { 161 EXPECT_FALSE(create<T>(ZERO).is_neg()); 162 EXPECT_FALSE(create<T>(ONE).is_neg()); 163 EXPECT_FALSE(create<T>(TWO).is_neg()); 164 EXPECT_EQ(create<T>(MIN).is_neg(), T::SIGNED); 165 EXPECT_FALSE(create<T>(MAX).is_neg()); 166 } 167 168 TYPED_TEST(LlvmLibcUIntClassTest, Masks, Types) { 169 if constexpr (!T::SIGNED) { 170 constexpr size_t BITS = T::BITS; 171 // mask_trailing_ones 172 ASSERT_SAME((mask_trailing_ones<T, 0>()), T::zero()); 173 ASSERT_SAME((mask_trailing_ones<T, 1>()), T::one()); 174 ASSERT_SAME((mask_trailing_ones<T, BITS - 1>()), T::all_ones() >> 1); 175 ASSERT_SAME((mask_trailing_ones<T, BITS>()), T::all_ones()); 176 // mask_leading_ones 177 ASSERT_SAME((mask_leading_ones<T, 0>()), T::zero()); 178 ASSERT_SAME((mask_leading_ones<T, 1>()), T::one() << (BITS - 1)); 179 ASSERT_SAME((mask_leading_ones<T, BITS - 1>()), T::all_ones() - T::one()); 180 ASSERT_SAME((mask_leading_ones<T, BITS>()), T::all_ones()); 181 // mask_trailing_zeros 182 ASSERT_SAME((mask_trailing_zeros<T, 0>()), T::all_ones()); 183 ASSERT_SAME((mask_trailing_zeros<T, 1>()), T::all_ones() - T::one()); 184 ASSERT_SAME((mask_trailing_zeros<T, BITS - 1>()), T::one() << (BITS - 1)); 185 ASSERT_SAME((mask_trailing_zeros<T, BITS>()), T::zero()); 186 // mask_trailing_zeros 187 ASSERT_SAME((mask_leading_zeros<T, 0>()), T::all_ones()); 188 ASSERT_SAME((mask_leading_zeros<T, 1>()), T::all_ones() >> 1); 189 ASSERT_SAME((mask_leading_zeros<T, BITS - 1>()), T::one()); 190 ASSERT_SAME((mask_leading_zeros<T, BITS>()), T::zero()); 191 } 192 } 193 194 TYPED_TEST(LlvmLibcUIntClassTest, CountBits, Types) { 195 if constexpr (!T::SIGNED) { 196 for (size_t i = 0; i < T::BITS; ++i) { 197 const auto l_one = T::all_ones() << i; // 0b111...000 198 const auto r_one = T::all_ones() >> i; // 0b000...111 199 const int zeros = i; 200 const int ones = T::BITS - zeros; 201 ASSERT_EQ(cpp::countr_one(r_one), ones); 202 ASSERT_EQ(cpp::countl_one(l_one), ones); 203 ASSERT_EQ(cpp::countr_zero(l_one), zeros); 204 ASSERT_EQ(cpp::countl_zero(r_one), zeros); 205 } 206 } 207 } 208 209 using LL_UInt16 = UInt<16>; 210 using LL_UInt64 = UInt<64>; 211 // We want to test UInt<128> explicitly. So, for 212 // convenience, we use a sugar which does not conflict with the UInt128 type 213 // which can resolve to __uint128_t if the platform has it. 214 using LL_UInt128 = UInt<128>; 215 using LL_UInt192 = UInt<192>; 216 using LL_UInt256 = UInt<256>; 217 using LL_UInt320 = UInt<320>; 218 using LL_UInt512 = UInt<512>; 219 using LL_UInt1024 = UInt<1024>; 220 221 using LL_Int128 = Int<128>; 222 using LL_Int192 = Int<192>; 223 224 TEST(LlvmLibcUIntClassTest, BitCastToFromDouble) { 225 static_assert(cpp::is_trivially_copyable<LL_UInt64>::value); 226 static_assert(sizeof(LL_UInt64) == sizeof(double)); 227 const double inf = HUGE_VAL; 228 const double max = DBL_MAX; 229 const double array[] = {0.0, 0.1, 1.0, max, inf}; 230 for (double value : array) { 231 LL_UInt64 back = cpp::bit_cast<LL_UInt64>(value); 232 double forth = cpp::bit_cast<double>(back); 233 EXPECT_TRUE(value == forth); 234 } 235 } 236 237 #ifdef LIBC_TYPES_HAS_INT128 238 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeUint128) { 239 static_assert(cpp::is_trivially_copyable<LL_UInt128>::value); 240 static_assert(sizeof(LL_UInt128) == sizeof(__uint128_t)); 241 const __uint128_t array[] = {0, 1, ~__uint128_t(0)}; 242 for (__uint128_t value : array) { 243 LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value); 244 __uint128_t forth = cpp::bit_cast<__uint128_t>(back); 245 EXPECT_TRUE(value == forth); 246 } 247 } 248 #endif // LIBC_TYPES_HAS_INT128 249 250 #ifdef LIBC_TYPES_HAS_FLOAT128 251 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat128) { 252 static_assert(cpp::is_trivially_copyable<LL_UInt128>::value); 253 static_assert(sizeof(LL_UInt128) == sizeof(float128)); 254 const float128 array[] = {0, 0.1, 1}; 255 for (float128 value : array) { 256 LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value); 257 float128 forth = cpp::bit_cast<float128>(back); 258 EXPECT_TRUE(value == forth); 259 } 260 } 261 #endif // LIBC_TYPES_HAS_FLOAT128 262 263 #ifdef LIBC_TYPES_HAS_FLOAT16 264 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat16) { 265 static_assert(cpp::is_trivially_copyable<LL_UInt16>::value); 266 static_assert(sizeof(LL_UInt16) == sizeof(float16)); 267 const float16 array[] = {0, 0.1, 1}; 268 for (float16 value : array) { 269 LL_UInt16 back = cpp::bit_cast<LL_UInt16>(value); 270 float16 forth = cpp::bit_cast<float16>(back); 271 EXPECT_TRUE(value == forth); 272 } 273 } 274 #endif // LIBC_TYPES_HAS_FLOAT16 275 276 TEST(LlvmLibcUIntClassTest, BasicInit) { 277 LL_UInt128 half_val(12345); 278 LL_UInt128 full_val({12345, 67890}); 279 ASSERT_TRUE(half_val != full_val); 280 } 281 282 TEST(LlvmLibcUIntClassTest, AdditionTests) { 283 LL_UInt128 val1(12345); 284 LL_UInt128 val2(54321); 285 LL_UInt128 result1(66666); 286 EXPECT_EQ(val1 + val2, result1); 287 EXPECT_EQ((val1 + val2), (val2 + val1)); // addition is commutative 288 289 // Test overflow 290 LL_UInt128 val3({0xf000000000000001, 0}); 291 LL_UInt128 val4({0x100000000000000f, 0}); 292 LL_UInt128 result2({0x10, 0x1}); 293 EXPECT_EQ(val3 + val4, result2); 294 EXPECT_EQ(val3 + val4, val4 + val3); 295 296 // Test overflow 297 LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210}); 298 LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd}); 299 LL_UInt128 result3({0x12346789bcdf1233, 0xa987765443210fed}); 300 EXPECT_EQ(val5 + val6, result3); 301 EXPECT_EQ(val5 + val6, val6 + val5); 302 303 // Test 192-bit addition 304 LL_UInt192 val7({0x0123456789abcdef, 0xfedcba9876543210, 0xfedcba9889abcdef}); 305 LL_UInt192 val8({0x1111222233334444, 0xaaaabbbbccccdddd, 0xeeeeffffeeeeffff}); 306 LL_UInt192 result4( 307 {0x12346789bcdf1233, 0xa987765443210fed, 0xedcbba98789acdef}); 308 EXPECT_EQ(val7 + val8, result4); 309 EXPECT_EQ(val7 + val8, val8 + val7); 310 311 // Test 256-bit addition 312 LL_UInt256 val9({0x1f1e1d1c1b1a1918, 0xf1f2f3f4f5f6f7f8, 0x0123456789abcdef, 313 0xfedcba9876543210}); 314 LL_UInt256 val10({0x1111222233334444, 0xaaaabbbbccccdddd, 0x1111222233334444, 315 0xaaaabbbbccccdddd}); 316 LL_UInt256 result5({0x302f3f3e4e4d5d5c, 0x9c9dafb0c2c3d5d5, 317 0x12346789bcdf1234, 0xa987765443210fed}); 318 EXPECT_EQ(val9 + val10, result5); 319 EXPECT_EQ(val9 + val10, val10 + val9); 320 } 321 322 TEST(LlvmLibcUIntClassTest, SubtractionTests) { 323 LL_UInt128 val1(12345); 324 LL_UInt128 val2(54321); 325 LL_UInt128 result1({0xffffffffffff5c08, 0xffffffffffffffff}); 326 LL_UInt128 result2(0xa3f8); 327 EXPECT_EQ(val1 - val2, result1); 328 EXPECT_EQ(val1, val2 + result1); 329 EXPECT_EQ(val2 - val1, result2); 330 EXPECT_EQ(val2, val1 + result2); 331 332 LL_UInt128 val3({0xf000000000000001, 0}); 333 LL_UInt128 val4({0x100000000000000f, 0}); 334 LL_UInt128 result3(0xdffffffffffffff2); 335 LL_UInt128 result4({0x200000000000000e, 0xffffffffffffffff}); 336 EXPECT_EQ(val3 - val4, result3); 337 EXPECT_EQ(val3, val4 + result3); 338 EXPECT_EQ(val4 - val3, result4); 339 EXPECT_EQ(val4, val3 + result4); 340 341 LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210}); 342 LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd}); 343 LL_UInt128 result5({0xf0122345567889ab, 0x5431fedca9875432}); 344 LL_UInt128 result6({0x0feddcbaa9877655, 0xabce01235678abcd}); 345 EXPECT_EQ(val5 - val6, result5); 346 EXPECT_EQ(val5, val6 + result5); 347 EXPECT_EQ(val6 - val5, result6); 348 EXPECT_EQ(val6, val5 + result6); 349 } 350 351 TEST(LlvmLibcUIntClassTest, MultiplicationTests) { 352 LL_UInt128 val1({5, 0}); 353 LL_UInt128 val2({10, 0}); 354 LL_UInt128 result1({50, 0}); 355 EXPECT_EQ((val1 * val2), result1); 356 EXPECT_EQ((val1 * val2), (val2 * val1)); // multiplication is commutative 357 358 // Check that the multiplication works accross the whole number 359 LL_UInt128 val3({0xf, 0}); 360 LL_UInt128 val4({0x1111111111111111, 0x1111111111111111}); 361 LL_UInt128 result2({0xffffffffffffffff, 0xffffffffffffffff}); 362 EXPECT_EQ((val3 * val4), result2); 363 EXPECT_EQ((val3 * val4), (val4 * val3)); 364 365 // Check that multiplication doesn't reorder the bits. 366 LL_UInt128 val5({2, 0}); 367 LL_UInt128 val6({0x1357024675316420, 0x0123456776543210}); 368 LL_UInt128 result3({0x26ae048cea62c840, 0x02468aceeca86420}); 369 370 EXPECT_EQ((val5 * val6), result3); 371 EXPECT_EQ((val5 * val6), (val6 * val5)); 372 373 // Make sure that multiplication handles overflow correctly. 374 LL_UInt128 val7(2); 375 LL_UInt128 val8({0x8000800080008000, 0x8000800080008000}); 376 LL_UInt128 result4({0x0001000100010000, 0x0001000100010001}); 377 EXPECT_EQ((val7 * val8), result4); 378 EXPECT_EQ((val7 * val8), (val8 * val7)); 379 380 // val9 is the 128 bit mantissa of 1e60 as a float, val10 is the mantissa for 381 // 1e-60. They almost cancel on the high bits, but the result we're looking 382 // for is just the low bits. The full result would be 383 // 0x7fffffffffffffffffffffffffffffff3a4f32d17f40d08f917cf11d1e039c50 384 LL_UInt128 val9({0x01D762422C946590, 0x9F4F2726179A2245}); 385 LL_UInt128 val10({0x3792F412CB06794D, 0xCDB02555653131B6}); 386 LL_UInt128 result5({0x917cf11d1e039c50, 0x3a4f32d17f40d08f}); 387 EXPECT_EQ((val9 * val10), result5); 388 EXPECT_EQ((val9 * val10), (val10 * val9)); 389 390 // Test 192-bit multiplication 391 LL_UInt192 val11( 392 {0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245}); 393 LL_UInt192 val12( 394 {0xffffffffffffffff, 0x3792F412CB06794D, 0xCDB02555653131B6}); 395 396 LL_UInt192 result6( 397 {0x0000000000000001, 0xc695a9ab08652121, 0x5de7faf698d32732}); 398 EXPECT_EQ((val11 * val12), result6); 399 EXPECT_EQ((val11 * val12), (val12 * val11)); 400 401 LL_UInt256 val13({0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245, 402 0xffffffffffffffff}); 403 LL_UInt256 val14({0xffffffffffffffff, 0xffffffffffffffff, 0x3792F412CB06794D, 404 0xCDB02555653131B6}); 405 LL_UInt256 result7({0x0000000000000001, 0xfe289dbdd36b9a6f, 406 0x291de4c71d5f646c, 0xfd37221cb06d4978}); 407 EXPECT_EQ((val13 * val14), result7); 408 EXPECT_EQ((val13 * val14), (val14 * val13)); 409 } 410 411 TEST(LlvmLibcUIntClassTest, DivisionTests) { 412 LL_UInt128 val1({10, 0}); 413 LL_UInt128 val2({5, 0}); 414 LL_UInt128 result1({2, 0}); 415 EXPECT_EQ((val1 / val2), result1); 416 EXPECT_EQ((val1 / result1), val2); 417 418 // Check that the division works accross the whole number 419 LL_UInt128 val3({0xffffffffffffffff, 0xffffffffffffffff}); 420 LL_UInt128 val4({0xf, 0}); 421 LL_UInt128 result2({0x1111111111111111, 0x1111111111111111}); 422 EXPECT_EQ((val3 / val4), result2); 423 EXPECT_EQ((val3 / result2), val4); 424 425 // Check that division doesn't reorder the bits. 426 LL_UInt128 val5({0x26ae048cea62c840, 0x02468aceeca86420}); 427 LL_UInt128 val6({2, 0}); 428 LL_UInt128 result3({0x1357024675316420, 0x0123456776543210}); 429 EXPECT_EQ((val5 / val6), result3); 430 EXPECT_EQ((val5 / result3), val6); 431 432 // Make sure that division handles inexact results correctly. 433 LL_UInt128 val7({1001, 0}); 434 LL_UInt128 val8({10, 0}); 435 LL_UInt128 result4({100, 0}); 436 EXPECT_EQ((val7 / val8), result4); 437 EXPECT_EQ((val7 / result4), val8); 438 439 // Make sure that division handles divisors of one correctly. 440 LL_UInt128 val9({0x1234567812345678, 0x9abcdef09abcdef0}); 441 LL_UInt128 val10({1, 0}); 442 LL_UInt128 result5({0x1234567812345678, 0x9abcdef09abcdef0}); 443 EXPECT_EQ((val9 / val10), result5); 444 EXPECT_EQ((val9 / result5), val10); 445 446 // Make sure that division handles results of slightly more than 1 correctly. 447 LL_UInt128 val11({1050, 0}); 448 LL_UInt128 val12({1030, 0}); 449 LL_UInt128 result6({1, 0}); 450 EXPECT_EQ((val11 / val12), result6); 451 452 // Make sure that division handles dividing by zero correctly. 453 LL_UInt128 val13({1234, 0}); 454 LL_UInt128 val14({0, 0}); 455 EXPECT_FALSE(val13.div(val14).has_value()); 456 } 457 458 TEST(LlvmLibcUIntClassTest, ModuloTests) { 459 LL_UInt128 val1({10, 0}); 460 LL_UInt128 val2({5, 0}); 461 LL_UInt128 result1({0, 0}); 462 EXPECT_EQ((val1 % val2), result1); 463 464 LL_UInt128 val3({101, 0}); 465 LL_UInt128 val4({10, 0}); 466 LL_UInt128 result2({1, 0}); 467 EXPECT_EQ((val3 % val4), result2); 468 469 LL_UInt128 val5({10000001, 0}); 470 LL_UInt128 val6({10, 0}); 471 LL_UInt128 result3({1, 0}); 472 EXPECT_EQ((val5 % val6), result3); 473 474 LL_UInt128 val7({12345, 10}); 475 LL_UInt128 val8({0, 1}); 476 LL_UInt128 result4({12345, 0}); 477 EXPECT_EQ((val7 % val8), result4); 478 479 LL_UInt128 val9({12345, 10}); 480 LL_UInt128 val10({0, 11}); 481 LL_UInt128 result5({12345, 10}); 482 EXPECT_EQ((val9 % val10), result5); 483 484 LL_UInt128 val11({10, 10}); 485 LL_UInt128 val12({10, 10}); 486 LL_UInt128 result6({0, 0}); 487 EXPECT_EQ((val11 % val12), result6); 488 489 LL_UInt128 val13({12345, 0}); 490 LL_UInt128 val14({1, 0}); 491 LL_UInt128 result7({0, 0}); 492 EXPECT_EQ((val13 % val14), result7); 493 494 LL_UInt128 val15({0xffffffffffffffff, 0xffffffffffffffff}); 495 LL_UInt128 val16({0x1111111111111111, 0x111111111111111}); 496 LL_UInt128 result8({0xf, 0}); 497 EXPECT_EQ((val15 % val16), result8); 498 499 LL_UInt128 val17({5076944270305263619, 54210108624}); // (10 ^ 30) + 3 500 LL_UInt128 val18({10, 0}); 501 LL_UInt128 result9({3, 0}); 502 EXPECT_EQ((val17 % val18), result9); 503 } 504 505 TEST(LlvmLibcUIntClassTest, PowerTests) { 506 LL_UInt128 val1({10, 0}); 507 val1.pow_n(30); 508 LL_UInt128 result1({5076944270305263616, 54210108624}); // (10 ^ 30) 509 EXPECT_EQ(val1, result1); 510 511 LL_UInt128 val2({1, 0}); 512 val2.pow_n(10); 513 LL_UInt128 result2({1, 0}); 514 EXPECT_EQ(val2, result2); 515 516 LL_UInt128 val3({0, 0}); 517 val3.pow_n(10); 518 LL_UInt128 result3({0, 0}); 519 EXPECT_EQ(val3, result3); 520 521 LL_UInt128 val4({10, 0}); 522 val4.pow_n(0); 523 LL_UInt128 result4({1, 0}); 524 EXPECT_EQ(val4, result4); 525 526 // Test zero to the zero. Currently it returns 1, since that's the easiest 527 // result. 528 LL_UInt128 val5({0, 0}); 529 val5.pow_n(0); 530 LL_UInt128 result5({1, 0}); 531 EXPECT_EQ(val5, result5); 532 533 // Test a number that overflows. 100 ^ 20 is larger than 2 ^ 128. 534 LL_UInt128 val6({100, 0}); 535 val6.pow_n(20); 536 LL_UInt128 result6({0xb9f5610000000000, 0x6329f1c35ca4bfab}); 537 EXPECT_EQ(val6, result6); 538 539 // Test that both halves of the number are being used. 540 LL_UInt128 val7({1, 1}); 541 val7.pow_n(2); 542 LL_UInt128 result7({1, 2}); 543 EXPECT_EQ(val7, result7); 544 545 LL_UInt128 val_pow_two; 546 LL_UInt128 result_pow_two; 547 for (size_t i = 0; i < 128; ++i) { 548 val_pow_two = 2; 549 val_pow_two.pow_n(i); 550 result_pow_two = 1; 551 result_pow_two = result_pow_two << i; 552 EXPECT_EQ(val_pow_two, result_pow_two); 553 } 554 } 555 556 TEST(LlvmLibcUIntClassTest, ShiftLeftTests) { 557 LL_UInt128 val1(0x0123456789abcdef); 558 LL_UInt128 result1(0x123456789abcdef0); 559 EXPECT_EQ((val1 << 4), result1); 560 561 LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0}); 562 LL_UInt128 result2({0x02468ace00000000, 0x9abcdef013579bdf}); 563 EXPECT_EQ((val2 << 32), result2); 564 LL_UInt128 val22 = val2; 565 val22 <<= 32; 566 EXPECT_EQ(val22, result2); 567 568 LL_UInt128 result3({0, 0x13579bdf02468ace}); 569 EXPECT_EQ((val2 << 64), result3); 570 571 LL_UInt128 result4({0, 0x02468ace00000000}); 572 EXPECT_EQ((val2 << 96), result4); 573 574 LL_UInt128 result5({0, 0x2468ace000000000}); 575 EXPECT_EQ((val2 << 100), result5); 576 577 LL_UInt192 val3({1, 0, 0}); 578 LL_UInt192 result7({0, 1, 0}); 579 EXPECT_EQ((val3 << 64), result7); 580 } 581 582 TEST(LlvmLibcUIntClassTest, ShiftRightTests) { 583 LL_UInt128 val1(0x0123456789abcdef); 584 LL_UInt128 result1(0x00123456789abcde); 585 EXPECT_EQ((val1 >> 4), result1); 586 587 LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0}); 588 LL_UInt128 result2({0x9abcdef013579bdf, 0x0000000012345678}); 589 EXPECT_EQ((val2 >> 32), result2); 590 LL_UInt128 val22 = val2; 591 val22 >>= 32; 592 EXPECT_EQ(val22, result2); 593 594 LL_UInt128 result3({0x123456789abcdef0, 0}); 595 EXPECT_EQ((val2 >> 64), result3); 596 597 LL_UInt128 result4({0x0000000012345678, 0}); 598 EXPECT_EQ((val2 >> 96), result4); 599 600 LL_UInt128 result5({0x0000000001234567, 0}); 601 EXPECT_EQ((val2 >> 100), result5); 602 603 LL_UInt128 v1({0x1111222233334444, 0xaaaabbbbccccdddd}); 604 LL_UInt128 r1({0xaaaabbbbccccdddd, 0}); 605 EXPECT_EQ((v1 >> 64), r1); 606 607 LL_UInt192 v2({0x1111222233334444, 0x5555666677778888, 0xaaaabbbbccccdddd}); 608 LL_UInt192 r2({0x5555666677778888, 0xaaaabbbbccccdddd, 0}); 609 LL_UInt192 r3({0xaaaabbbbccccdddd, 0, 0}); 610 EXPECT_EQ((v2 >> 64), r2); 611 EXPECT_EQ((v2 >> 128), r3); 612 EXPECT_EQ((r2 >> 64), r3); 613 614 LL_UInt192 val3({0, 0, 1}); 615 LL_UInt192 result7({0, 1, 0}); 616 EXPECT_EQ((val3 >> 64), result7); 617 } 618 619 TEST(LlvmLibcUIntClassTest, AndTests) { 620 LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000}); 621 LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); 622 uint64_t val64 = 0xf0f0f0f00f0f0f0f; 623 int val32 = 0x0f0f0f0f; 624 LL_UInt128 result128({0xf0f0000000000f0f, 0xff00ff0000000000}); 625 LL_UInt128 result64(0xf0f0000000000f0f); 626 LL_UInt128 result32(0x00000f0f); 627 EXPECT_EQ((base & val128), result128); 628 EXPECT_EQ((base & val64), result64); 629 EXPECT_EQ((base & val32), result32); 630 } 631 632 TEST(LlvmLibcUIntClassTest, OrTests) { 633 LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000}); 634 LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); 635 uint64_t val64 = 0xf0f0f0f00f0f0f0f; 636 int val32 = 0x0f0f0f0f; 637 LL_UInt128 result128({0xfffff0f00f0fffff, 0xffffffff00ff00ff}); 638 LL_UInt128 result64({0xfffff0f00f0fffff, 0xffffffff00000000}); 639 LL_UInt128 result32({0xffff00000f0fffff, 0xffffffff00000000}); 640 EXPECT_EQ((base | val128), result128); 641 EXPECT_EQ((base | val64), result64); 642 EXPECT_EQ((base | val32), result32); 643 } 644 645 TEST(LlvmLibcUIntClassTest, CompoundAssignments) { 646 LL_UInt128 x({0xffff00000000ffff, 0xffffffff00000000}); 647 LL_UInt128 b({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff}); 648 649 LL_UInt128 a = x; 650 a |= b; 651 LL_UInt128 or_result({0xfffff0f00f0fffff, 0xffffffff00ff00ff}); 652 EXPECT_EQ(a, or_result); 653 654 a = x; 655 a &= b; 656 LL_UInt128 and_result({0xf0f0000000000f0f, 0xff00ff0000000000}); 657 EXPECT_EQ(a, and_result); 658 659 a = x; 660 a ^= b; 661 LL_UInt128 xor_result({0x0f0ff0f00f0ff0f0, 0x00ff00ff00ff00ff}); 662 EXPECT_EQ(a, xor_result); 663 664 a = LL_UInt128(uint64_t(0x0123456789abcdef)); 665 LL_UInt128 shift_left_result(uint64_t(0x123456789abcdef0)); 666 a <<= 4; 667 EXPECT_EQ(a, shift_left_result); 668 669 a = LL_UInt128(uint64_t(0x123456789abcdef1)); 670 LL_UInt128 shift_right_result(uint64_t(0x0123456789abcdef)); 671 a >>= 4; 672 EXPECT_EQ(a, shift_right_result); 673 674 a = LL_UInt128({0xf000000000000001, 0}); 675 b = LL_UInt128({0x100000000000000f, 0}); 676 LL_UInt128 add_result({0x10, 0x1}); 677 a += b; 678 EXPECT_EQ(a, add_result); 679 680 a = LL_UInt128({0xf, 0}); 681 b = LL_UInt128({0x1111111111111111, 0x1111111111111111}); 682 LL_UInt128 mul_result({0xffffffffffffffff, 0xffffffffffffffff}); 683 a *= b; 684 EXPECT_EQ(a, mul_result); 685 } 686 687 TEST(LlvmLibcUIntClassTest, UnaryPredecrement) { 688 LL_UInt128 a = LL_UInt128({0x1111111111111111, 0x1111111111111111}); 689 ++a; 690 EXPECT_EQ(a, LL_UInt128({0x1111111111111112, 0x1111111111111111})); 691 692 a = LL_UInt128({0xffffffffffffffff, 0x0}); 693 ++a; 694 EXPECT_EQ(a, LL_UInt128({0x0, 0x1})); 695 696 a = LL_UInt128({0xffffffffffffffff, 0xffffffffffffffff}); 697 ++a; 698 EXPECT_EQ(a, LL_UInt128({0x0, 0x0})); 699 } 700 701 TEST(LlvmLibcUIntClassTest, EqualsTests) { 702 LL_UInt128 a1({0xffffffff00000000, 0xffff00000000ffff}); 703 LL_UInt128 a2({0xffffffff00000000, 0xffff00000000ffff}); 704 LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f}); 705 LL_UInt128 a_reversed({0xffff00000000ffff, 0xffffffff00000000}); 706 LL_UInt128 a_upper(0xffff00000000ffff); 707 LL_UInt128 a_lower(0xffffffff00000000); 708 ASSERT_TRUE(a1 == a1); 709 ASSERT_TRUE(a1 == a2); 710 ASSERT_FALSE(a1 == b); 711 ASSERT_FALSE(a1 == a_reversed); 712 ASSERT_FALSE(a1 == a_lower); 713 ASSERT_FALSE(a1 == a_upper); 714 ASSERT_TRUE(a_lower != a_upper); 715 } 716 717 TEST(LlvmLibcUIntClassTest, ComparisonTests) { 718 LL_UInt128 a({0xffffffff00000000, 0xffff00000000ffff}); 719 LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f}); 720 EXPECT_GT(a, b); 721 EXPECT_GE(a, b); 722 EXPECT_LT(b, a); 723 EXPECT_LE(b, a); 724 725 LL_UInt128 x(0xffffffff00000000); 726 LL_UInt128 y(0x00000000ffffffff); 727 EXPECT_GT(x, y); 728 EXPECT_GE(x, y); 729 EXPECT_LT(y, x); 730 EXPECT_LE(y, x); 731 732 EXPECT_LE(a, a); 733 EXPECT_GE(a, a); 734 } 735 736 TEST(LlvmLibcUIntClassTest, FullMulTests) { 737 LL_UInt128 a({0xffffffffffffffffULL, 0xffffffffffffffffULL}); 738 LL_UInt128 b({0xfedcba9876543210ULL, 0xfefdfcfbfaf9f8f7ULL}); 739 LL_UInt256 r({0x0123456789abcdf0ULL, 0x0102030405060708ULL, 740 0xfedcba987654320fULL, 0xfefdfcfbfaf9f8f7ULL}); 741 LL_UInt128 r_hi({0xfedcba987654320eULL, 0xfefdfcfbfaf9f8f7ULL}); 742 743 EXPECT_EQ(a.ful_mul(b), r); 744 EXPECT_EQ(a.quick_mul_hi(b), r_hi); 745 746 LL_UInt192 c( 747 {0x7766554433221101ULL, 0xffeeddccbbaa9988ULL, 0x1f2f3f4f5f6f7f8fULL}); 748 LL_UInt320 rr({0x8899aabbccddeeffULL, 0x0011223344556677ULL, 749 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL, 750 0x1f2f3f4f5f6f7f8fULL}); 751 752 EXPECT_EQ(a.ful_mul(c), rr); 753 EXPECT_EQ(a.ful_mul(c), c.ful_mul(a)); 754 } 755 756 #define TEST_QUICK_MUL_HI(Bits, Error) \ 757 do { \ 758 LL_UInt##Bits a = ~LL_UInt##Bits(0); \ 759 LL_UInt##Bits hi = a.quick_mul_hi(a); \ 760 LL_UInt##Bits trunc = static_cast<LL_UInt##Bits>(a.ful_mul(a) >> Bits); \ 761 uint64_t overflow = trunc.sub_overflow(hi); \ 762 EXPECT_EQ(overflow, uint64_t(0)); \ 763 EXPECT_LE(uint64_t(trunc), uint64_t(Error)); \ 764 } while (0) 765 766 TEST(LlvmLibcUIntClassTest, QuickMulHiTests) { 767 TEST_QUICK_MUL_HI(128, 1); 768 TEST_QUICK_MUL_HI(192, 2); 769 TEST_QUICK_MUL_HI(256, 3); 770 TEST_QUICK_MUL_HI(512, 7); 771 } 772 773 TEST(LlvmLibcUIntClassTest, ConstexprInitTests) { 774 constexpr LL_UInt128 add = LL_UInt128(1) + LL_UInt128(2); 775 ASSERT_EQ(add, LL_UInt128(3)); 776 constexpr LL_UInt128 sub = LL_UInt128(5) - LL_UInt128(4); 777 ASSERT_EQ(sub, LL_UInt128(1)); 778 } 779 780 #define TEST_QUICK_DIV_UINT32_POW2(x, e) \ 781 do { \ 782 LL_UInt320 y({0x8899aabbccddeeffULL, 0x0011223344556677ULL, \ 783 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL, \ 784 0x1f2f3f4f5f6f7f8fULL}); \ 785 LL_UInt320 d = LL_UInt320(x); \ 786 d <<= e; \ 787 LL_UInt320 q1 = y / d; \ 788 LL_UInt320 r1 = y % d; \ 789 LL_UInt320 r2 = *y.div_uint_half_times_pow_2(x, e); \ 790 EXPECT_EQ(q1, y); \ 791 EXPECT_EQ(r1, r2); \ 792 } while (0) 793 794 TEST(LlvmLibcUIntClassTest, DivUInt32TimesPow2Tests) { 795 for (size_t i = 0; i < 320; i += 32) { 796 TEST_QUICK_DIV_UINT32_POW2(1, i); 797 TEST_QUICK_DIV_UINT32_POW2(13151719, i); 798 } 799 800 TEST_QUICK_DIV_UINT32_POW2(1, 75); 801 TEST_QUICK_DIV_UINT32_POW2(1, 101); 802 803 TEST_QUICK_DIV_UINT32_POW2(1000000000, 75); 804 TEST_QUICK_DIV_UINT32_POW2(1000000000, 101); 805 } 806 807 TEST(LlvmLibcUIntClassTest, ComparisonInt128Tests) { 808 LL_Int128 a(123); 809 LL_Int128 b(0); 810 LL_Int128 c(-1); 811 812 ASSERT_TRUE(a == a); 813 ASSERT_TRUE(b == b); 814 ASSERT_TRUE(c == c); 815 816 ASSERT_TRUE(a != b); 817 ASSERT_TRUE(a != c); 818 ASSERT_TRUE(b != a); 819 ASSERT_TRUE(b != c); 820 ASSERT_TRUE(c != a); 821 ASSERT_TRUE(c != b); 822 823 ASSERT_TRUE(a > b); 824 ASSERT_TRUE(a >= b); 825 ASSERT_TRUE(a > c); 826 ASSERT_TRUE(a >= c); 827 ASSERT_TRUE(b > c); 828 ASSERT_TRUE(b >= c); 829 830 ASSERT_TRUE(b < a); 831 ASSERT_TRUE(b <= a); 832 ASSERT_TRUE(c < a); 833 ASSERT_TRUE(c <= a); 834 ASSERT_TRUE(c < b); 835 ASSERT_TRUE(c <= b); 836 } 837 838 TEST(LlvmLibcUIntClassTest, BasicArithmeticInt128Tests) { 839 LL_Int128 a(123); 840 LL_Int128 b(0); 841 LL_Int128 c(-3); 842 843 ASSERT_EQ(a * a, LL_Int128(123 * 123)); 844 ASSERT_EQ(a * c, LL_Int128(-369)); 845 ASSERT_EQ(c * a, LL_Int128(-369)); 846 ASSERT_EQ(c * c, LL_Int128(9)); 847 ASSERT_EQ(a * b, b); 848 ASSERT_EQ(b * a, b); 849 ASSERT_EQ(b * c, b); 850 ASSERT_EQ(c * b, b); 851 } 852 853 #ifdef LIBC_TYPES_HAS_INT128 854 855 TEST(LlvmLibcUIntClassTest, ConstructorFromUInt128Tests) { 856 __uint128_t a = (__uint128_t(123) << 64) + 1; 857 __int128_t b = -static_cast<__int128_t>(a); 858 LL_Int128 c(a); 859 LL_Int128 d(b); 860 861 LL_Int192 e(a); 862 LL_Int192 f(b); 863 864 ASSERT_EQ(static_cast<int>(c), 1); 865 ASSERT_EQ(static_cast<int>(c >> 64), 123); 866 ASSERT_EQ(static_cast<uint64_t>(d), static_cast<uint64_t>(b)); 867 ASSERT_EQ(static_cast<uint64_t>(d >> 64), static_cast<uint64_t>(b >> 64)); 868 ASSERT_EQ(c + d, LL_Int128(a + b)); 869 870 ASSERT_EQ(static_cast<int>(e), 1); 871 ASSERT_EQ(static_cast<int>(e >> 64), 123); 872 ASSERT_EQ(static_cast<uint64_t>(f), static_cast<uint64_t>(b)); 873 ASSERT_EQ(static_cast<uint64_t>(f >> 64), static_cast<uint64_t>(b >> 64)); 874 ASSERT_EQ(LL_UInt192(e + f), LL_UInt192(a + b)); 875 } 876 877 TEST(LlvmLibcUIntClassTest, WordTypeUInt128Tests) { 878 using LL_UInt256_128 = BigInt<256, false, __uint128_t>; 879 using LL_UInt128_128 = BigInt<128, false, __uint128_t>; 880 881 LL_UInt256_128 a(1); 882 883 ASSERT_EQ(static_cast<int>(a), 1); 884 a = (a << 128) + 2; 885 ASSERT_EQ(static_cast<int>(a), 2); 886 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(2)); 887 a = (a << 32) + 3; 888 ASSERT_EQ(static_cast<int>(a), 3); 889 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x2'0000'0003)); 890 ASSERT_EQ(static_cast<int>(a >> 32), 2); 891 ASSERT_EQ(static_cast<int>(a >> (128 + 32)), 1); 892 893 LL_UInt128_128 b(__uint128_t(1) << 127); 894 LL_UInt128_128 c(b); 895 a = b.ful_mul(c); 896 897 ASSERT_EQ(static_cast<int>(a >> 254), 1); 898 899 LL_UInt256_128 d = LL_UInt256_128(123) << 4; 900 ASSERT_EQ(static_cast<int>(d), 123 << 4); 901 LL_UInt256_128 e = a / d; 902 LL_UInt256_128 f = a % d; 903 LL_UInt256_128 r = *a.div_uint_half_times_pow_2(123, 4); 904 EXPECT_TRUE(e == a); 905 EXPECT_TRUE(f == r); 906 } 907 908 #endif // LIBC_TYPES_HAS_INT128 909 910 TEST(LlvmLibcUIntClassTest, OtherWordTypeTests) { 911 using LL_UInt96 = BigInt<96, false, uint32_t>; 912 913 LL_UInt96 a(1); 914 915 ASSERT_EQ(static_cast<int>(a), 1); 916 a = (a << 32) + 2; 917 ASSERT_EQ(static_cast<int>(a), 2); 918 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x1'0000'0002)); 919 a = (a << 32) + 3; 920 ASSERT_EQ(static_cast<int>(a), 3); 921 ASSERT_EQ(static_cast<int>(a >> 32), 2); 922 ASSERT_EQ(static_cast<int>(a >> 64), 1); 923 } 924 925 } // namespace LIBC_NAMESPACE_DECL 926