182d6e770STue Ly //===-- Single-precision tan function -------------------------------------===// 282d6e770STue Ly // 382d6e770STue Ly // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 482d6e770STue Ly // See https://llvm.org/LICENSE.txt for license information. 582d6e770STue Ly // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 682d6e770STue Ly // 782d6e770STue Ly //===----------------------------------------------------------------------===// 882d6e770STue Ly 982d6e770STue Ly #include "src/math/tanf.h" 10e15b2da4STue Ly #include "sincosf_utils.h" 1182d6e770STue Ly #include "src/__support/FPUtil/FEnvImpl.h" 1282d6e770STue Ly #include "src/__support/FPUtil/FPBits.h" 1382d6e770STue Ly #include "src/__support/FPUtil/PolyEval.h" 1482d6e770STue Ly #include "src/__support/FPUtil/except_value_utils.h" 1582d6e770STue Ly #include "src/__support/FPUtil/multiply_add.h" 1682d6e770STue Ly #include "src/__support/FPUtil/nearest_integer.h" 1782d6e770STue Ly #include "src/__support/common.h" 18*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h" 19737e1cd1SGuillaume Chatelet #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY 20737e1cd1SGuillaume Chatelet #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA 2182d6e770STue Ly 22*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL { 2382d6e770STue Ly 2482d6e770STue Ly // Exceptional cases for tanf. 25e15b2da4STue Ly constexpr size_t N_EXCEPTS = 6; 2682d6e770STue Ly 27e15b2da4STue Ly constexpr fputil::ExceptValues<float, N_EXCEPTS> TANF_EXCEPTS{{ 28a4d48e3bSTue Ly // (inputs, RZ output, RU offset, RD offset, RN offset) 29e15b2da4STue Ly // x = 0x1.ada6aap27, tan(x) = 0x1.e80304p-3 (RZ) 30e15b2da4STue Ly {0x4d56d355, 0x3e740182, 1, 0, 0}, 31e15b2da4STue Ly // x = 0x1.862064p33, tan(x) = -0x1.8dee56p-3 (RZ) 32e15b2da4STue Ly {0x50431032, 0xbe46f72b, 0, 1, 1}, 33a4d48e3bSTue Ly // x = 0x1.af61dap48, tan(x) = 0x1.60d1c6p-2 (RZ) 34a4d48e3bSTue Ly {0x57d7b0ed, 0x3eb068e3, 1, 0, 1}, 35e15b2da4STue Ly // x = 0x1.0088bcp52, tan(x) = 0x1.ca1edp0 (RZ) 36e15b2da4STue Ly {0x5980445e, 0x3fe50f68, 1, 0, 0}, 37e15b2da4STue Ly // x = 0x1.f90dfcp72, tan(x) = 0x1.597f9cp-1 (RZ) 38e15b2da4STue Ly {0x63fc86fe, 0x3f2cbfce, 1, 0, 0}, 39a4d48e3bSTue Ly // x = 0x1.a6ce12p86, tan(x) = -0x1.c5612ep-1 (RZ) 40a4d48e3bSTue Ly {0x6ad36709, 0xbf62b097, 0, 1, 0}, 4182d6e770STue Ly }}; 4282d6e770STue Ly 4382d6e770STue Ly LLVM_LIBC_FUNCTION(float, tanf, (float x)) { 4482d6e770STue Ly using FPBits = typename fputil::FPBits<float>; 4582d6e770STue Ly FPBits xbits(x); 46e15b2da4STue Ly bool x_sign = xbits.uintval() >> 31; 47e15b2da4STue Ly uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU; 4882d6e770STue Ly 4982d6e770STue Ly // |x| < pi/32 5029f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs <= 0x3dc9'0fdbU)) { 5182d6e770STue Ly double xd = static_cast<double>(x); 5282d6e770STue Ly 5382d6e770STue Ly // |x| < 0x1.0p-12f 5429f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs < 0x3980'0000U)) { 5529f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs == 0U)) { 5682d6e770STue Ly // For signed zeros. 5782d6e770STue Ly return x; 5882d6e770STue Ly } 5982d6e770STue Ly // When |x| < 2^-12, the relative error of the approximation tan(x) ~ x 6082d6e770STue Ly // is: 6182d6e770STue Ly // |tan(x) - x| / |tan(x)| < |x^3| / (3|x|) 6282d6e770STue Ly // = x^2 / 3 6382d6e770STue Ly // < 2^-25 6482d6e770STue Ly // < epsilon(1)/2. 6582d6e770STue Ly // So the correctly rounded values of tan(x) are: 6682d6e770STue Ly // = x + sign(x)*eps(x) if rounding mode = FE_UPWARD and x is positive, 6782d6e770STue Ly // or (rounding mode = FE_DOWNWARD and x is 6882d6e770STue Ly // negative), 6982d6e770STue Ly // = x otherwise. 7082d6e770STue Ly // To simplify the rounding decision and make it more efficient, we use 7182d6e770STue Ly // fma(x, 2^-25, x) instead. 7282d6e770STue Ly // Note: to use the formula x + 2^-25*x to decide the correct rounding, we 7382d6e770STue Ly // do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when 7482d6e770STue Ly // |x| < 2^-125. For targets without FMA instructions, we simply use 7582d6e770STue Ly // double for intermediate results as it is more efficient than using an 7682d6e770STue Ly // emulated version of FMA. 77a2569a76SGuillaume Chatelet #if defined(LIBC_TARGET_CPU_HAS_FMA) 7882d6e770STue Ly return fputil::multiply_add(x, 0x1.0p-25f, x); 7982d6e770STue Ly #else 8082d6e770STue Ly return static_cast<float>(fputil::multiply_add(xd, 0x1.0p-25, xd)); 81a2569a76SGuillaume Chatelet #endif // LIBC_TARGET_CPU_HAS_FMA 8282d6e770STue Ly } 8382d6e770STue Ly 8482d6e770STue Ly // |x| < pi/32 8582d6e770STue Ly double xsq = xd * xd; 8682d6e770STue Ly 8782d6e770STue Ly // Degree-9 minimax odd polynomial of tan(x) generated by Sollya with: 8882d6e770STue Ly // > P = fpminimax(tan(x)/x, [|0, 2, 4, 6, 8|], [|1, D...|], [0, pi/32]); 8982d6e770STue Ly double result = 9082d6e770STue Ly fputil::polyeval(xsq, 1.0, 0x1.555555553d022p-2, 0x1.111111ce442c1p-3, 9182d6e770STue Ly 0x1.ba180a6bbdecdp-5, 0x1.69c0a88a0b71fp-6); 927d11a592SAlex Brachet return static_cast<float>(xd * result); 9382d6e770STue Ly } 9482d6e770STue Ly 95e15b2da4STue Ly // Check for exceptional values 9629f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs == 0x3f8a1f62U)) { 97e15b2da4STue Ly // |x| = 0x1.143ec4p0 98e15b2da4STue Ly float sign = x_sign ? -1.0f : 1.0f; 99e15b2da4STue Ly 100135cea49STue Ly // volatile is used to prevent compiler (gcc) from optimizing the 101135cea49STue Ly // computation, making the results incorrect in different rounding modes. 102135cea49STue Ly volatile float tmp = 0x1.ddf9f4p0f; 103135cea49STue Ly tmp = fputil::multiply_add(sign, tmp, sign * 0x1.1p-24f); 104135cea49STue Ly 105135cea49STue Ly return tmp; 106e15b2da4STue Ly } 107e15b2da4STue Ly 108e15b2da4STue Ly // |x| > 0x1.ada6a8p+27f 10929f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs > 0x4d56'd354U)) { 11082d6e770STue Ly // Inf or NaN 11129f8e076SGuillaume Chatelet if (LIBC_UNLIKELY(x_abs >= 0x7f80'0000U)) { 11282d6e770STue Ly if (x_abs == 0x7f80'0000U) { 1130aa9593cSTue Ly fputil::set_errno_if_required(EDOM); 1140aa9593cSTue Ly fputil::raise_except_if_required(FE_INVALID); 11582d6e770STue Ly } 116ace383dfSGuillaume Chatelet return x + FPBits::quiet_nan().get_val(); 11782d6e770STue Ly } 118e15b2da4STue Ly // Other large exceptional values 119e15b2da4STue Ly if (auto r = TANF_EXCEPTS.lookup_odd(x_abs, x_sign); 12029f8e076SGuillaume Chatelet LIBC_UNLIKELY(r.has_value())) 121a4d48e3bSTue Ly return r.value(); 12282d6e770STue Ly } 12382d6e770STue Ly 124e15b2da4STue Ly // For |x| >= pi/32, we use the definition of tan(x) function: 125e15b2da4STue Ly // tan(x) = sin(x) / cos(x) 126e15b2da4STue Ly // The we follow the same computations of sin(x) and cos(x) as sinf, cosf, 127e15b2da4STue Ly // and sincosf. 12882d6e770STue Ly 129e15b2da4STue Ly double xd = static_cast<double>(x); 130e15b2da4STue Ly double sin_k, cos_k, sin_y, cosm1_y; 13182d6e770STue Ly 132e15b2da4STue Ly sincosf_eval(xd, x_abs, sin_k, cos_k, sin_y, cosm1_y); 133e15b2da4STue Ly // tan(x) = sin(x) / cos(x) 134e15b2da4STue Ly // = (sin_y * cos_k + cos_y * sin_k) / (cos_y * cos_k - sin_y * sin_k) 135e15b2da4STue Ly using fputil::multiply_add; 1367d11a592SAlex Brachet return static_cast<float>( 1377d11a592SAlex Brachet multiply_add(sin_y, cos_k, multiply_add(cosm1_y, sin_k, sin_k)) / 1387d11a592SAlex Brachet multiply_add(sin_y, -sin_k, multiply_add(cosm1_y, cos_k, cos_k))); 13982d6e770STue Ly } 14082d6e770STue Ly 141*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL 142