xref: /llvm-project/libc/src/math/generic/sincosf_utils.h (revision 5ff3ff33ff930e4ec49da7910612d8a41eb068cb)
1131dda9aSTue Ly //===-- Collection of utils for sinf/cosf/sincosf ---------------*- C++ -*-===//
2bbb75554SSiva Chandra //
3bbb75554SSiva Chandra // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4bbb75554SSiva Chandra // See https://llvm.org/LICENSE.txt for license information.
5bbb75554SSiva Chandra // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6bbb75554SSiva Chandra //
7bbb75554SSiva Chandra //===----------------------------------------------------------------------===//
8bbb75554SSiva Chandra 
9270547f3SGuillaume Chatelet #ifndef LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_UTILS_H
10270547f3SGuillaume Chatelet #define LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_UTILS_H
11bbb75554SSiva Chandra 
12131dda9aSTue Ly #include "src/__support/FPUtil/FPBits.h"
13131dda9aSTue Ly #include "src/__support/FPUtil/PolyEval.h"
14*5ff3ff33SPetr Hosek #include "src/__support/macros/config.h"
15737e1cd1SGuillaume Chatelet #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
16bbb75554SSiva Chandra 
17a2569a76SGuillaume Chatelet #if defined(LIBC_TARGET_CPU_HAS_FMA)
18131dda9aSTue Ly #include "range_reduction_fma.h"
19b6bc9d72SGuillaume Chatelet // using namespace LIBC_NAMESPACE::fma;
20b6bc9d72SGuillaume Chatelet using LIBC_NAMESPACE::fma::FAST_PASS_BOUND;
21b6bc9d72SGuillaume Chatelet using LIBC_NAMESPACE::fma::large_range_reduction;
22b6bc9d72SGuillaume Chatelet using LIBC_NAMESPACE::fma::small_range_reduction;
23ea93c538SHendrik Hübner 
24131dda9aSTue Ly #else
25131dda9aSTue Ly #include "range_reduction.h"
26b6bc9d72SGuillaume Chatelet // using namespace LIBC_NAMESPACE::generic;
27b6bc9d72SGuillaume Chatelet using LIBC_NAMESPACE::generic::FAST_PASS_BOUND;
28b6bc9d72SGuillaume Chatelet using LIBC_NAMESPACE::generic::large_range_reduction;
29b6bc9d72SGuillaume Chatelet using LIBC_NAMESPACE::generic::small_range_reduction;
30a2569a76SGuillaume Chatelet #endif // LIBC_TARGET_CPU_HAS_FMA
31bbb75554SSiva Chandra 
32*5ff3ff33SPetr Hosek namespace LIBC_NAMESPACE_DECL {
33bbb75554SSiva Chandra 
3442f18379STue Ly // Lookup table for sin(k * pi / 32) with k = 0, ..., 63.
35131dda9aSTue Ly // Table is generated with Sollya as follow:
36131dda9aSTue Ly // > display = hexadecimal;
3742f18379STue Ly // > for k from 0 to 63 do { D(sin(k * pi/32)); };
3842f18379STue Ly const double SIN_K_PI_OVER_32[64] = {
3942f18379STue Ly     0x0.0000000000000p+0,  0x1.917a6bc29b42cp-4,  0x1.8f8b83c69a60bp-3,
4042f18379STue Ly     0x1.294062ed59f06p-2,  0x1.87de2a6aea963p-2,  0x1.e2b5d3806f63bp-2,
4142f18379STue Ly     0x1.1c73b39ae68c8p-1,  0x1.44cf325091dd6p-1,  0x1.6a09e667f3bcdp-1,
4242f18379STue Ly     0x1.8bc806b151741p-1,  0x1.a9b66290ea1a3p-1,  0x1.c38b2f180bdb1p-1,
4342f18379STue Ly     0x1.d906bcf328d46p-1,  0x1.e9f4156c62ddap-1,  0x1.f6297cff75cbp-1,
4442f18379STue Ly     0x1.fd88da3d12526p-1,  0x1.0000000000000p+0,  0x1.fd88da3d12526p-1,
4542f18379STue Ly     0x1.f6297cff75cbp-1,   0x1.e9f4156c62ddap-1,  0x1.d906bcf328d46p-1,
4642f18379STue Ly     0x1.c38b2f180bdb1p-1,  0x1.a9b66290ea1a3p-1,  0x1.8bc806b151741p-1,
4742f18379STue Ly     0x1.6a09e667f3bcdp-1,  0x1.44cf325091dd6p-1,  0x1.1c73b39ae68c8p-1,
4842f18379STue Ly     0x1.e2b5d3806f63bp-2,  0x1.87de2a6aea963p-2,  0x1.294062ed59f06p-2,
4942f18379STue Ly     0x1.8f8b83c69a60bp-3,  0x1.917a6bc29b42cp-4,  0x0.0000000000000p+0,
5042f18379STue Ly     -0x1.917a6bc29b42cp-4, -0x1.8f8b83c69a60bp-3, -0x1.294062ed59f06p-2,
5142f18379STue Ly     -0x1.87de2a6aea963p-2, -0x1.e2b5d3806f63bp-2, -0x1.1c73b39ae68c8p-1,
5242f18379STue Ly     -0x1.44cf325091dd6p-1, -0x1.6a09e667f3bcdp-1, -0x1.8bc806b151741p-1,
5342f18379STue Ly     -0x1.a9b66290ea1a3p-1, -0x1.c38b2f180bdb1p-1, -0x1.d906bcf328d46p-1,
5442f18379STue Ly     -0x1.e9f4156c62ddap-1, -0x1.f6297cff75cbp-1,  -0x1.fd88da3d12526p-1,
5542f18379STue Ly     -0x1.0000000000000p+0, -0x1.fd88da3d12526p-1, -0x1.f6297cff75cbp-1,
5642f18379STue Ly     -0x1.e9f4156c62ddap-1, -0x1.d906bcf328d46p-1, -0x1.c38b2f180bdb1p-1,
5742f18379STue Ly     -0x1.a9b66290ea1a3p-1, -0x1.8bc806b151741p-1, -0x1.6a09e667f3bcdp-1,
5842f18379STue Ly     -0x1.44cf325091dd6p-1, -0x1.1c73b39ae68c8p-1, -0x1.e2b5d3806f63bp-2,
5942f18379STue Ly     -0x1.87de2a6aea963p-2, -0x1.294062ed59f06p-2, -0x1.8f8b83c69a60bp-3,
6042f18379STue Ly     -0x1.917a6bc29b42cp-4,
6142f18379STue Ly };
62bbb75554SSiva Chandra 
63ea93c538SHendrik Hübner static LIBC_INLINE void sincosf_poly_eval(int64_t k, double y, double &sin_k,
64ea93c538SHendrik Hübner                                           double &cos_k, double &sin_y,
65ea93c538SHendrik Hübner                                           double &cosm1_y) {
6642f18379STue Ly   // After range reduction, k = round(x * 32 / pi) and y = (x * 32 / pi) - k.
67131dda9aSTue Ly   // So k is an integer and -0.5 <= y <= 0.5.
6842f18379STue Ly   // Then sin(x) = sin((k + y)*pi/32)
6942f18379STue Ly   //             = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
70bbb75554SSiva Chandra 
7142f18379STue Ly   sin_k = SIN_K_PI_OVER_32[k & 63];
7242f18379STue Ly   // cos(k * pi/32) = sin(k * pi/32 + pi/2) = sin((k + 16) * pi/32).
7342f18379STue Ly   // cos_k = cos(k * pi/32)
7442f18379STue Ly   cos_k = SIN_K_PI_OVER_32[(k + 16) & 63];
75bbb75554SSiva Chandra 
76131dda9aSTue Ly   double ysq = y * y;
77bbb75554SSiva Chandra 
7842f18379STue Ly   // Degree-6 minimax even polynomial for sin(y*pi/32)/y generated by Sollya
79131dda9aSTue Ly   // with:
8042f18379STue Ly   // > Q = fpminimax(sin(y*pi/32)/y, [|0, 2, 4, 6|], [|D...|], [0, 0.5]);
8142f18379STue Ly   sin_y =
8242f18379STue Ly       y * fputil::polyeval(ysq, 0x1.921fb54442d18p-4, -0x1.4abbce625abb1p-13,
8342f18379STue Ly                            0x1.466bc624f2776p-24, -0x1.32c3a619d4a7ep-36);
8482d6e770STue Ly   // Degree-6 minimax even polynomial for cos(y*pi/32) generated by Sollya with:
8542f18379STue Ly   // > P = fpminimax(cos(x*pi/32), [|0, 2, 4, 6|], [|1, D...|], [0, 0.5]);
8642f18379STue Ly   // Note that cosm1_y = cos(y*pi/32) - 1.
8742f18379STue Ly   cosm1_y = ysq * fputil::polyeval(ysq, -0x1.3bd3cc9be430bp-8,
8842f18379STue Ly                                    0x1.03c1f070c2e27p-18, -0x1.55cc84bd942p-30);
89bbb75554SSiva Chandra }
90bbb75554SSiva Chandra 
91ea93c538SHendrik Hübner LIBC_INLINE void sincosf_eval(double xd, uint32_t x_abs, double &sin_k,
92ea93c538SHendrik Hübner                               double &cos_k, double &sin_y, double &cosm1_y) {
93ea93c538SHendrik Hübner   int64_t k;
94ea93c538SHendrik Hübner   double y;
95ea93c538SHendrik Hübner 
96ea93c538SHendrik Hübner   if (LIBC_LIKELY(x_abs < FAST_PASS_BOUND)) {
97ea93c538SHendrik Hübner     k = small_range_reduction(xd, y);
98ea93c538SHendrik Hübner   } else {
99ea93c538SHendrik Hübner     fputil::FPBits<float> x_bits(x_abs);
100ea93c538SHendrik Hübner     k = large_range_reduction(xd, x_bits.get_exponent(), y);
101ea93c538SHendrik Hübner   }
102ea93c538SHendrik Hübner 
103ea93c538SHendrik Hübner   sincosf_poly_eval(k, y, sin_k, cos_k, sin_y, cosm1_y);
104ea93c538SHendrik Hübner }
105ea93c538SHendrik Hübner 
106ea93c538SHendrik Hübner // Return k and y, where
107ea93c538SHendrik Hübner //   k = round(x * 32) and y = (x * 32) - k.
108ea93c538SHendrik Hübner //   => pi * x = (k + y) * pi / 32
109ea93c538SHendrik Hübner static LIBC_INLINE int64_t range_reduction_sincospi(double x, double &y) {
110ea93c538SHendrik Hübner   double kd = fputil::nearest_integer(x * 32);
111ea93c538SHendrik Hübner   y = fputil::multiply_add<double>(x, 32.0, -kd);
112ea93c538SHendrik Hübner 
113ea93c538SHendrik Hübner   return static_cast<int64_t>(kd);
114ea93c538SHendrik Hübner }
115ea93c538SHendrik Hübner 
116ea93c538SHendrik Hübner LIBC_INLINE void sincospif_eval(double xd, double &sin_k, double &cos_k,
117ea93c538SHendrik Hübner                                 double &sin_y, double &cosm1_y) {
118ea93c538SHendrik Hübner   double y;
119ea93c538SHendrik Hübner   int64_t k = range_reduction_sincospi(xd, y);
120ea93c538SHendrik Hübner   sincosf_poly_eval(k, y, sin_k, cos_k, sin_y, cosm1_y);
121ea93c538SHendrik Hübner }
122ea93c538SHendrik Hübner 
123*5ff3ff33SPetr Hosek } // namespace LIBC_NAMESPACE_DECL
124bbb75554SSiva Chandra 
125270547f3SGuillaume Chatelet #endif // LLVM_LIBC_SRC_MATH_GENERIC_SINCOSF_UTILS_H
126