xref: /llvm-project/libc/src/math/generic/expm1.cpp (revision 1b4a0794b0c7244a0b74ac0a2239fb60a62f9c70)
1 //===-- Double-precision e^x - 1 function ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "src/math/expm1.h"
10 #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
11 #include "explogxf.h"         // ziv_test_denorm.
12 #include "src/__support/CPP/bit.h"
13 #include "src/__support/CPP/optional.h"
14 #include "src/__support/FPUtil/FEnvImpl.h"
15 #include "src/__support/FPUtil/FPBits.h"
16 #include "src/__support/FPUtil/PolyEval.h"
17 #include "src/__support/FPUtil/double_double.h"
18 #include "src/__support/FPUtil/dyadic_float.h"
19 #include "src/__support/FPUtil/except_value_utils.h"
20 #include "src/__support/FPUtil/multiply_add.h"
21 #include "src/__support/FPUtil/nearest_integer.h"
22 #include "src/__support/FPUtil/rounding_mode.h"
23 #include "src/__support/FPUtil/triple_double.h"
24 #include "src/__support/common.h"
25 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
26 
27 #include <errno.h>
28 
29 // #define DEBUGDEBUG
30 
31 #ifdef DEBUGDEBUG
32 #include <iomanip>
33 #include <iostream>
34 #endif
35 
36 namespace LIBC_NAMESPACE {
37 
38 using fputil::DoubleDouble;
39 using fputil::TripleDouble;
40 using Float128 = typename fputil::DyadicFloat<128>;
41 
42 // log2(e)
43 constexpr double LOG2_E = 0x1.71547652b82fep+0;
44 
45 // Error bounds:
46 // Errors when using double precision.
47 // 0x1.8p-63;
48 constexpr uint64_t ERR_D = 0x3c08000000000000;
49 // Errors when using double-double precision.
50 // 0x1.0p-99
51 constexpr uint64_t ERR_DD = 0x39c0000000000000;
52 
53 // -2^-12 * log(2)
54 // > a = -2^-12 * log(2);
55 // > b = round(a, 30, RN);
56 // > c = round(a - b, 30, RN);
57 // > d = round(a - b - c, D, RN);
58 // Errors < 1.5 * 2^-133
59 constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13;
60 constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47;
61 constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47;
62 constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79;
63 
64 // Polynomial approximations with double precision:
65 // Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
66 // For |dx| < 2^-13 + 2^-30:
67 //   | output - expm1(dx) / dx | < 2^-51.
68 LIBC_INLINE double poly_approx_d(double dx) {
69   // dx^2
70   double dx2 = dx * dx;
71   // c0 = 1 + dx / 2
72   double c0 = fputil::multiply_add(dx, 0.5, 1.0);
73   // c1 = 1/6 + dx / 24
74   double c1 =
75       fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3);
76   // p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24
77   double p = fputil::multiply_add(dx2, c1, c0);
78   return p;
79 }
80 
81 // Polynomial approximation with double-double precision:
82 // Return expm1(dx) / dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040
83 // For |dx| < 2^-13 + 2^-30:
84 //   | output - expm1(dx) | < 2^-101
85 DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
86   // Taylor polynomial.
87   constexpr DoubleDouble COEFFS[] = {
88       {0, 0x1p0},                                      // 1
89       {0, 0x1p-1},                                     // 1/2
90       {0x1.5555555555555p-57, 0x1.5555555555555p-3},   // 1/6
91       {0x1.5555555555555p-59, 0x1.5555555555555p-5},   // 1/24
92       {0x1.1111111111111p-63, 0x1.1111111111111p-7},   // 1/120
93       {-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720
94       {0x1.a01a01a01a01ap-73, 0x1.a01a01a01a01ap-13},  // 1/5040
95   };
96 
97   DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
98                                     COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
99   return p;
100 }
101 
102 // Polynomial approximation with 128-bit precision:
103 // Return (exp(dx) - 1)/dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040
104 // For |dx| < 2^-13 + 2^-30:
105 //   | output - exp(dx) | < 2^-126.
106 Float128 poly_approx_f128(const Float128 &dx) {
107   using MType = typename Float128::MantissaType;
108 
109   constexpr Float128 COEFFS_128[]{
110       {false, -127, MType({0, 0x8000000000000000})},                  // 1.0
111       {false, -128, MType({0, 0x8000000000000000})},                  // 0.5
112       {false, -130, MType({0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaaa})}, // 1/6
113       {false, -132, MType({0xaaaaaaaaaaaaaaab, 0xaaaaaaaaaaaaaaaa})}, // 1/24
114       {false, -134, MType({0x8888888888888889, 0x8888888888888888})}, // 1/120
115       {false, -137, MType({0x60b60b60b60b60b6, 0xb60b60b60b60b60b})}, // 1/720
116       {false, -140, MType({0x00d00d00d00d00d0, 0xd00d00d00d00d00d})}, // 1/5040
117   };
118 
119   Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
120                                 COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
121                                 COEFFS_128[6]);
122   return p;
123 }
124 
125 #ifdef DEBUGDEBUG
126 std::ostream &operator<<(std::ostream &OS, const Float128 &r) {
127   OS << (r.sign ? "-(" : "(") << r.mantissa.val[0] << " + " << r.mantissa.val[1]
128      << " * 2^64) * 2^" << r.exponent << "\n";
129   return OS;
130 }
131 
132 std::ostream &operator<<(std::ostream &OS, const DoubleDouble &r) {
133   OS << std::hexfloat << r.hi << " + " << r.lo << std::defaultfloat << "\n";
134   return OS;
135 }
136 #endif
137 
138 // Compute exp(x) - 1 using 128-bit precision.
139 // TODO(lntue): investigate triple-double precision implementation for this
140 // step.
141 Float128 expm1_f128(double x, double kd, int idx1, int idx2) {
142   using MType = typename Float128::MantissaType;
143   // Recalculate dx:
144 
145   double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
146   double t2 = kd * MLOG_2_EXP2_M12_MID_30;                     // exact
147   double t3 = kd * MLOG_2_EXP2_M12_LO;                         // Error < 2^-133
148 
149   Float128 dx = fputil::quick_add(
150       Float128(t1), fputil::quick_add(Float128(t2), Float128(t3)));
151 
152   // TODO: Skip recalculating exp_mid1 and exp_mid2.
153   Float128 exp_mid1 =
154       fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
155                         fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
156                                           Float128(EXP2_MID1[idx1].lo)));
157 
158   Float128 exp_mid2 =
159       fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
160                         fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
161                                           Float128(EXP2_MID2[idx2].lo)));
162 
163   Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
164 
165   int hi = static_cast<int>(kd) >> 12;
166   Float128 minus_one{true, -127 - hi, MType({0, 0x8000000000000000})};
167 
168   Float128 exp_mid_m1 = fputil::quick_add(exp_mid, minus_one);
169 
170   Float128 p = poly_approx_f128(dx);
171 
172   // r = exp_mid * (1 + dx * P) - 1
173   //   = (exp_mid - 1) + (dx * exp_mid) * P
174   Float128 r =
175       fputil::multiply_add(fputil::quick_mul(exp_mid, dx), p, exp_mid_m1);
176 
177   r.exponent += hi;
178 
179 #ifdef DEBUGDEBUG
180   std::cout << "=== VERY SLOW PASS ===\n"
181             << "        kd: " << kd << "\n"
182             << "        dx: " << dx << "exp_mid_m1: " << exp_mid_m1
183             << "   exp_mid: " << exp_mid << "         p: " << p
184             << "         r: " << r << std::endl;
185 #endif
186 
187   return r;
188 }
189 
190 // Compute exp(x) - 1 with double-double precision.
191 DoubleDouble exp_double_double(double x, double kd, const DoubleDouble &exp_mid,
192                                const DoubleDouble &hi_part) {
193   // Recalculate dx:
194   //   dx = x - k * 2^-12 * log(2)
195   double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
196   double t2 = kd * MLOG_2_EXP2_M12_MID_30;                     // exact
197   double t3 = kd * MLOG_2_EXP2_M12_LO;                         // Error < 2^-130
198 
199   DoubleDouble dx = fputil::exact_add(t1, t2);
200   dx.lo += t3;
201 
202   // Degree-6 Taylor polynomial approximation in double-double precision.
203   // | p - exp(x) | < 2^-100.
204   DoubleDouble p = poly_approx_dd(dx);
205 
206   // Error bounds: 2^-99.
207   DoubleDouble r =
208       fputil::multiply_add(fputil::quick_mult(exp_mid, dx), p, hi_part);
209 
210 #ifdef DEBUGDEBUG
211   std::cout << "=== SLOW PASS ===\n"
212             << "   dx: " << dx << "    p: " << p << "    r: " << r << std::endl;
213 #endif
214 
215   return r;
216 }
217 
218 // Check for exceptional cases when
219 // |x| <= 2^-53 or x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9
220 double set_exceptional(double x) {
221   using FPBits = typename fputil::FPBits<double>;
222   using FloatProp = typename fputil::FloatProperties<double>;
223   FPBits xbits(x);
224 
225   uint64_t x_u = xbits.uintval();
226   uint64_t x_abs = x_u & FloatProp::EXP_MANT_MASK;
227 
228   // |x| <= 2^-53.
229   if (x_abs <= 0x3ca0'0000'0000'0000ULL) {
230     // expm1(x) ~ x.
231 
232     if (LIBC_UNLIKELY(x_abs <= 0x0370'0000'0000'0000ULL)) {
233       if (LIBC_UNLIKELY(x_abs == 0))
234         return x;
235       // |x| <= 2^-968, need to scale up a bit before rounding, then scale it
236       // back down.
237       return 0x1.0p-200 * fputil::multiply_add(x, 0x1.0p+200, 0x1.0p-1022);
238     }
239 
240     // 2^-968 < |x| <= 2^-53.
241     return fputil::round_result_slightly_up(x);
242   }
243 
244   // x < log(2^-54) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan.
245 
246   // x < log(2^-54) or -inf/nan
247   if (x_u >= 0xc042'b708'8723'20e2ULL) {
248     // expm1(-Inf) = -1
249     if (xbits.is_inf())
250       return -1.0;
251 
252     // exp(nan) = nan
253     if (xbits.is_nan())
254       return x;
255 
256     return fputil::round_result_slightly_up(-1.0);
257   }
258 
259   // x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan
260   // x is finite
261   if (x_u < 0x7ff0'0000'0000'0000ULL) {
262     int rounding = fputil::quick_get_round();
263     if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
264       return FPBits::max_normal();
265 
266     fputil::set_errno_if_required(ERANGE);
267     fputil::raise_except_if_required(FE_OVERFLOW);
268   }
269   // x is +inf or nan
270   return x + static_cast<double>(FPBits::inf());
271 }
272 
273 LLVM_LIBC_FUNCTION(double, expm1, (double x)) {
274   using FPBits = typename fputil::FPBits<double>;
275   using FloatProp = typename fputil::FloatProperties<double>;
276   FPBits xbits(x);
277 
278   bool x_sign = xbits.get_sign();
279   uint64_t x_u = xbits.uintval();
280 
281   // Upper bound: max normal number = 2^1023 * (2 - 2^-52)
282   // > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9
283   // > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9
284   // > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9
285   // > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty
286 
287   // Lower bound: log(2^-54) = -0x1.2b708872320e2p5
288   // > round(log(2^-54), D, RN) = -0x1.2b708872320e2p5
289 
290   // x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 or |x| <= 2^-53.
291 
292   if (LIBC_UNLIKELY(x_u >= 0xc042b708872320e2 ||
293                     (x_u <= 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) ||
294                     x_u <= 0x3ca0000000000000)) {
295     return set_exceptional(x);
296   }
297 
298   // Now log(2^-54) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52))
299 
300   // Range reduction:
301   // Let x = log(2) * (hi + mid1 + mid2) + lo
302   // in which:
303   //   hi is an integer
304   //   mid1 * 2^6 is an integer
305   //   mid2 * 2^12 is an integer
306   // then:
307   //   exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo).
308   // With this formula:
309   //   - multiplying by 2^hi is exact and cheap, simply by adding the exponent
310   //     field.
311   //   - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
312   //   - exp(lo) ~ 1 + lo + a0 * lo^2 + ...
313   //
314   // They can be defined by:
315   //   hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x)
316   // If we store L2E = round(log2(e), D, RN), then:
317   //   log2(e) - L2E ~ 1.5 * 2^(-56)
318   // So the errors when computing in double precision is:
319   //   | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <=
320   //  <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | +
321   //     + | x * 2^12 * L2E - D(x * 2^12 * L2E) |
322   //  <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x))  for RN
323   //     2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes.
324   // So if:
325   //   hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely
326   // in double precision, the reduced argument:
327   //   lo = x - log(2) * (hi + mid1 + mid2) is bounded by:
328   //   |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x))
329   //         < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52))
330   //         < 2^-13 + 2^-41
331   //
332 
333   // The following trick computes the round(x * L2E) more efficiently
334   // than using the rounding instructions, with the tradeoff for less accuracy,
335   // and hence a slightly larger range for the reduced argument `lo`.
336   //
337   // To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9,
338   //   |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23,
339   // So we can fit the rounded result round(x * 2^12 * L2E) in int32_t.
340   // Thus, the goal is to be able to use an additional addition and fixed width
341   // shift to get an int32_t representing round(x * 2^12 * L2E).
342   //
343   // Assuming int32_t using 2-complement representation, since the mantissa part
344   // of a double precision is unsigned with the leading bit hidden, if we add an
345   // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
346   // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
347   // considered as a proper 2-complement representations of x*2^12*L2E.
348   //
349   // One small problem with this approach is that the sum (x*2^12*L2E + C) in
350   // double precision is rounded to the least significant bit of the dorminant
351   // factor C.  In order to minimize the rounding errors from this addition, we
352   // want to minimize e1.  Another constraint that we want is that after
353   // shifting the mantissa so that the least significant bit of int32_t
354   // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
355   // any adjustment.  So combining these 2 requirements, we can choose
356   //   C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
357   // after right shifting the mantissa, the resulting int32_t has correct sign.
358   // With this choice of C, the number of mantissa bits we need to shift to the
359   // right is: 52 - 33 = 19.
360   //
361   // Moreover, since the integer right shifts are equivalent to rounding down,
362   // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
363   // +infinity.  So in particular, we can compute:
364   //   hmm = x * 2^12 * L2E + C,
365   // where C = 2^33 + 2^32 + 2^-1, then if
366   //   k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19),
367   // the reduced argument:
368   //   lo = x - log(2) * 2^-12 * k is bounded by:
369   //   |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19
370   //         = 2^-13 + 2^-31 + 2^-41.
371   //
372   // Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the
373   // exponent 2^12 is not needed.  So we can simply define
374   //   C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
375   //   k = int32_t(lower 51 bits of double(x * L2E + C) >> 19).
376 
377   // Rounding errors <= 2^-31 + 2^-41.
378   double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21);
379   int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
380   double kd = static_cast<double>(k);
381 
382   uint32_t idx1 = (k >> 6) & 0x3f;
383   uint32_t idx2 = k & 0x3f;
384   int hi = k >> 12;
385 
386   DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
387   DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
388 
389   DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
390 
391   // -2^(-hi)
392   double one_scaled =
393       FPBits::create_value(true, FPBits::EXP_BIAS - hi, 0).get_val();
394 
395   // 2^(mid1 + mid2) - 2^(-hi)
396   DoubleDouble hi_part = x_sign ? fputil::exact_add(one_scaled, exp_mid.hi)
397                                 : fputil::exact_add(exp_mid.hi, one_scaled);
398 
399   hi_part.lo += exp_mid.lo;
400 
401   // |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo)
402   //                                        = 2^11 * 2^-13 * 2^-52
403   //                                        = 2^-54.
404   // |dx| < 2^-13 + 2^-30.
405   double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
406   double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h);
407 
408   // We use the degree-4 Taylor polynomial to approximate exp(lo):
409   //   exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo)
410   // So that the errors are bounded by:
411   //   |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
412   // Let P_ be an evaluation of P where all intermediate computations are in
413   // double precision.  Using either Horner's or Estrin's schemes, the evaluated
414   // errors can be bounded by:
415   //      |P_(dx) - P(dx)| < 2^-51
416   //   => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64
417   //   => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63.
418   // Since we approximate
419   //   2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
420   // We use the expression:
421   //    (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
422   //  ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
423   // with errors bounded by 1.5 * 2^-63.
424 
425   // Finally, we have the following approximation formula:
426   //   expm1(x) = 2^hi * 2^(mid1 + mid2) * exp(lo) - 1
427   //            = 2^hi * ( 2^(mid1 + mid2) * exp(lo) - 2^(-hi) )
428   //            ~ 2^hi * ( (exp_mid.hi - 2^-hi) +
429   //                       + (exp_mid.hi * dx * P_(dx) + exp_mid.lo))
430 
431   double mid_lo = dx * exp_mid.hi;
432 
433   // Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
434   double p = poly_approx_d(dx);
435 
436   double lo = fputil::multiply_add(p, mid_lo, hi_part.lo);
437 
438   uint64_t err = x_sign ? (static_cast<uint64_t>(-hi) << 52) : 0;
439 
440   double err_d = cpp::bit_cast<double>(ERR_D + err);
441 
442   double upper = hi_part.hi + (lo + err_d);
443   double lower = hi_part.hi + (lo - err_d);
444 
445 #ifdef DEBUGDEBUG
446   std::cout << "=== FAST PASS ===\n"
447             << "      x: " << std::hexfloat << x << std::defaultfloat << "\n"
448             << "      k: " << k << "\n"
449             << "   idx1: " << idx1 << "\n"
450             << "   idx2: " << idx2 << "\n"
451             << "     hi: " << hi << "\n"
452             << "     dx: " << std::hexfloat << dx << std::defaultfloat << "\n"
453             << "exp_mid: " << exp_mid << "hi_part: " << hi_part
454             << " mid_lo: " << std::hexfloat << mid_lo << std::defaultfloat
455             << "\n"
456             << "      p: " << std::hexfloat << p << std::defaultfloat << "\n"
457             << "     lo: " << std::hexfloat << lo << std::defaultfloat << "\n"
458             << "  upper: " << std::hexfloat << upper << std::defaultfloat
459             << "\n"
460             << "  lower: " << std::hexfloat << lower << std::defaultfloat
461             << "\n"
462             << std::endl;
463 #endif
464 
465   if (LIBC_LIKELY(upper == lower)) {
466     // to multiply by 2^hi, a fast way is to simply add hi to the exponent
467     // field.
468     int64_t exp_hi = static_cast<int64_t>(hi) << FloatProp::FRACTION_LEN;
469     double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
470     return r;
471   }
472 
473   // Use double-double
474   DoubleDouble r_dd = exp_double_double(x, kd, exp_mid, hi_part);
475 
476   double err_dd = cpp::bit_cast<double>(ERR_DD + err);
477 
478   double upper_dd = r_dd.hi + (r_dd.lo + err_dd);
479   double lower_dd = r_dd.hi + (r_dd.lo - err_dd);
480 
481   if (LIBC_LIKELY(upper_dd == lower_dd)) {
482     int64_t exp_hi = static_cast<int64_t>(hi) << FloatProp::FRACTION_LEN;
483     double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
484     return r;
485   }
486 
487   // Use 128-bit precision
488   Float128 r_f128 = expm1_f128(x, kd, idx1, idx2);
489 
490   return static_cast<double>(r_f128);
491 }
492 
493 } // namespace LIBC_NAMESPACE
494