xref: /llvm-project/libc/src/math/generic/exp2f_impl.h (revision 5ff3ff33ff930e4ec49da7910612d8a41eb068cb)
1 //===-- Single-precision 2^x function -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H
10 #define LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H
11 
12 #include "src/__support/FPUtil/FEnvImpl.h"
13 #include "src/__support/FPUtil/FPBits.h"
14 #include "src/__support/FPUtil/PolyEval.h"
15 #include "src/__support/FPUtil/except_value_utils.h"
16 #include "src/__support/FPUtil/multiply_add.h"
17 #include "src/__support/FPUtil/nearest_integer.h"
18 #include "src/__support/FPUtil/rounding_mode.h"
19 #include "src/__support/common.h"
20 #include "src/__support/macros/config.h"
21 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
22 #include "src/__support/macros/properties/cpu_features.h"
23 
24 #include <errno.h>
25 
26 #include "explogxf.h"
27 
28 namespace LIBC_NAMESPACE_DECL {
29 namespace generic {
30 
31 LIBC_INLINE float exp2f(float x) {
32   constexpr uint32_t EXVAL1 = 0x3b42'9d37U;
33   constexpr uint32_t EXVAL2 = 0xbcf3'a937U;
34   constexpr uint32_t EXVAL_MASK = EXVAL1 & EXVAL2;
35 
36   using FPBits = typename fputil::FPBits<float>;
37   FPBits xbits(x);
38 
39   uint32_t x_u = xbits.uintval();
40   uint32_t x_abs = x_u & 0x7fff'ffffU;
41 
42   // When |x| >= 128, or x is nan, or |x| <= 2^-5
43   if (LIBC_UNLIKELY(x_abs >= 0x4300'0000U || x_abs <= 0x3d00'0000U)) {
44     // |x| <= 2^-5
45     if (x_abs <= 0x3d00'0000) {
46       // |x| < 2^-25
47       if (LIBC_UNLIKELY(x_abs <= 0x3280'0000U)) {
48         return 1.0f + x;
49       }
50 
51       // Check exceptional values.
52       if (LIBC_UNLIKELY((x_u & EXVAL_MASK) == EXVAL_MASK)) {
53         if (LIBC_UNLIKELY(x_u == EXVAL1)) { // x = 0x1.853a6ep-9f
54           return fputil::round_result_slightly_down(0x1.00870ap+0f);
55         } else if (LIBC_UNLIKELY(x_u == EXVAL2)) { // x = -0x1.e7526ep-6f
56           return fputil::round_result_slightly_down(0x1.f58d62p-1f);
57         }
58       }
59 
60       // Minimax polynomial generated by Sollya with:
61       // > P = fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]);
62       constexpr double COEFFS[] = {
63           0x1.62e42fefa39f3p-1, 0x1.ebfbdff82c57bp-3,  0x1.c6b08d6f2d7aap-5,
64           0x1.3b2ab6fc92f5dp-7, 0x1.5d897cfe27125p-10, 0x1.43090e61e6af1p-13};
65       double xd = static_cast<double>(x);
66       double xsq = xd * xd;
67       double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]);
68       double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]);
69       double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]);
70       double p = fputil::polyeval(xsq, c0, c1, c2);
71       double r = fputil::multiply_add(p, xd, 1.0);
72       return static_cast<float>(r);
73     }
74 
75     // x >= 128
76     if (xbits.is_pos()) {
77       // x is finite
78       if (x_u < 0x7f80'0000U) {
79         int rounding = fputil::quick_get_round();
80         if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
81           return FPBits::max_normal().get_val();
82 
83         fputil::set_errno_if_required(ERANGE);
84         fputil::raise_except_if_required(FE_OVERFLOW);
85       }
86       // x is +inf or nan
87       return x + FPBits::inf().get_val();
88     }
89     // x <= -150
90     if (x_u >= 0xc316'0000U) {
91       // exp(-Inf) = 0
92       if (xbits.is_inf())
93         return 0.0f;
94       // exp(nan) = nan
95       if (xbits.is_nan())
96         return x;
97       if (fputil::fenv_is_round_up())
98         return FPBits::min_subnormal().get_val();
99       if (x != 0.0f) {
100         fputil::set_errno_if_required(ERANGE);
101         fputil::raise_except_if_required(FE_UNDERFLOW);
102       }
103       return 0.0f;
104     }
105   }
106 
107   // For -150 < x < 128, to compute 2^x, we perform the following range
108   // reduction: find hi, mid, lo such that:
109   //   x = hi + mid + lo, in which
110   //     hi is an integer,
111   //     0 <= mid * 2^5 < 32 is an integer
112   //     -2^(-6) <= lo <= 2^-6.
113   // In particular,
114   //   hi + mid = round(x * 2^5) * 2^(-5).
115   // Then,
116   //   2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo.
117   // 2^mid is stored in the lookup table of 32 elements.
118   // 2^lo is computed using a degree-5 minimax polynomial
119   // generated by Sollya.
120   // We perform 2^hi * 2^mid by simply add hi to the exponent field
121   // of 2^mid.
122 
123   // kf = (hi + mid) * 2^5 = round(x * 2^5)
124   float kf;
125   int k;
126 #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT
127   kf = fputil::nearest_integer(x * 32.0f);
128   k = static_cast<int>(kf);
129 #else
130   constexpr float HALF[2] = {0.5f, -0.5f};
131   k = static_cast<int>(fputil::multiply_add(x, 32.0f, HALF[x < 0.0f]));
132   kf = static_cast<float>(k);
133 #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT
134 
135   // dx = lo = x - (hi + mid) = x - kf * 2^(-5)
136   double dx = fputil::multiply_add(-0x1.0p-5f, kf, x);
137 
138   // hi = floor(kf * 2^(-4))
139   // exp_hi = shift hi to the exponent field of double precision.
140   int64_t exp_hi =
141       static_cast<int64_t>(static_cast<uint64_t>(k >> ExpBase::MID_BITS)
142                            << fputil::FPBits<double>::FRACTION_LEN);
143   // mh = 2^hi * 2^mid
144   // mh_bits = bit field of mh
145   int64_t mh_bits = ExpBase::EXP_2_MID[k & ExpBase::MID_MASK] + exp_hi;
146   double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val();
147 
148   // Degree-5 polynomial approximating (2^x - 1)/x generating by Sollya with:
149   // > P = fpminimax((2^x - 1)/x, 5, [|D...|], [-1/32. 1/32]);
150   constexpr double COEFFS[5] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff8131c4p-3,
151                                 0x1.c6b08d7061695p-5, 0x1.3b2b1bee74b2ap-7,
152                                 0x1.5d88091198529p-10};
153   double dx_sq = dx * dx;
154   double c1 = fputil::multiply_add(dx, COEFFS[0], 1.0);
155   double c2 = fputil::multiply_add(dx, COEFFS[2], COEFFS[1]);
156   double c3 = fputil::multiply_add(dx, COEFFS[4], COEFFS[3]);
157   double p = fputil::multiply_add(dx_sq, c3, c2);
158   // 2^x = 2^(hi + mid + lo)
159   //     = 2^(hi + mid) * 2^lo
160   //     ~ mh * (1 + lo * P(lo))
161   //     = mh + (mh*lo) * P(lo)
162   return static_cast<float>(fputil::multiply_add(p, dx_sq * mh, c1 * mh));
163 }
164 
165 } // namespace generic
166 } // namespace LIBC_NAMESPACE_DECL
167 
168 #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H
169