xref: /llvm-project/libc/AOR_v20.02/math/log2.c (revision 0928368f623a0f885894f9c3ef1b740b060c0d9c)
1*0928368fSKristof Beyls /*
2*0928368fSKristof Beyls  * Double-precision log2(x) function.
3*0928368fSKristof Beyls  *
4*0928368fSKristof Beyls  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5*0928368fSKristof Beyls  * See https://llvm.org/LICENSE.txt for license information.
6*0928368fSKristof Beyls  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7*0928368fSKristof Beyls  */
8*0928368fSKristof Beyls 
9*0928368fSKristof Beyls #include <float.h>
10*0928368fSKristof Beyls #include <math.h>
11*0928368fSKristof Beyls #include <stdint.h>
12*0928368fSKristof Beyls #include "math_config.h"
13*0928368fSKristof Beyls 
14*0928368fSKristof Beyls #define T __log2_data.tab
15*0928368fSKristof Beyls #define T2 __log2_data.tab2
16*0928368fSKristof Beyls #define B __log2_data.poly1
17*0928368fSKristof Beyls #define A __log2_data.poly
18*0928368fSKristof Beyls #define InvLn2hi __log2_data.invln2hi
19*0928368fSKristof Beyls #define InvLn2lo __log2_data.invln2lo
20*0928368fSKristof Beyls #define N (1 << LOG2_TABLE_BITS)
21*0928368fSKristof Beyls #define OFF 0x3fe6000000000000
22*0928368fSKristof Beyls 
23*0928368fSKristof Beyls /* Top 16 bits of a double.  */
24*0928368fSKristof Beyls static inline uint32_t
top16(double x)25*0928368fSKristof Beyls top16 (double x)
26*0928368fSKristof Beyls {
27*0928368fSKristof Beyls   return asuint64 (x) >> 48;
28*0928368fSKristof Beyls }
29*0928368fSKristof Beyls 
30*0928368fSKristof Beyls double
log2(double x)31*0928368fSKristof Beyls log2 (double x)
32*0928368fSKristof Beyls {
33*0928368fSKristof Beyls   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
34*0928368fSKristof Beyls   double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
35*0928368fSKristof Beyls   uint64_t ix, iz, tmp;
36*0928368fSKristof Beyls   uint32_t top;
37*0928368fSKristof Beyls   int k, i;
38*0928368fSKristof Beyls 
39*0928368fSKristof Beyls   ix = asuint64 (x);
40*0928368fSKristof Beyls   top = top16 (x);
41*0928368fSKristof Beyls 
42*0928368fSKristof Beyls #if LOG2_POLY1_ORDER == 11
43*0928368fSKristof Beyls # define LO asuint64 (1.0 - 0x1.5b51p-5)
44*0928368fSKristof Beyls # define HI asuint64 (1.0 + 0x1.6ab2p-5)
45*0928368fSKristof Beyls #endif
46*0928368fSKristof Beyls   if (unlikely (ix - LO < HI - LO))
47*0928368fSKristof Beyls     {
48*0928368fSKristof Beyls       /* Handle close to 1.0 inputs separately.  */
49*0928368fSKristof Beyls       /* Fix sign of zero with downward rounding when x==1.  */
50*0928368fSKristof Beyls       if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0)))
51*0928368fSKristof Beyls 	return 0;
52*0928368fSKristof Beyls       r = x - 1.0;
53*0928368fSKristof Beyls #if HAVE_FAST_FMA
54*0928368fSKristof Beyls       hi = r * InvLn2hi;
55*0928368fSKristof Beyls       lo = r * InvLn2lo + fma (r, InvLn2hi, -hi);
56*0928368fSKristof Beyls #else
57*0928368fSKristof Beyls       double_t rhi, rlo;
58*0928368fSKristof Beyls       rhi = asdouble (asuint64 (r) & -1ULL << 32);
59*0928368fSKristof Beyls       rlo = r - rhi;
60*0928368fSKristof Beyls       hi = rhi * InvLn2hi;
61*0928368fSKristof Beyls       lo = rlo * InvLn2hi + r * InvLn2lo;
62*0928368fSKristof Beyls #endif
63*0928368fSKristof Beyls       r2 = r * r; /* rounding error: 0x1p-62.  */
64*0928368fSKristof Beyls       r4 = r2 * r2;
65*0928368fSKristof Beyls #if LOG2_POLY1_ORDER == 11
66*0928368fSKristof Beyls       /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma).  */
67*0928368fSKristof Beyls       p = r2 * (B[0] + r * B[1]);
68*0928368fSKristof Beyls       y = hi + p;
69*0928368fSKristof Beyls       lo += hi - y + p;
70*0928368fSKristof Beyls       lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5])
71*0928368fSKristof Beyls 		  + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
72*0928368fSKristof Beyls       y += lo;
73*0928368fSKristof Beyls #endif
74*0928368fSKristof Beyls       return eval_as_double (y);
75*0928368fSKristof Beyls     }
76*0928368fSKristof Beyls   if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
77*0928368fSKristof Beyls     {
78*0928368fSKristof Beyls       /* x < 0x1p-1022 or inf or nan.  */
79*0928368fSKristof Beyls       if (ix * 2 == 0)
80*0928368fSKristof Beyls 	return __math_divzero (1);
81*0928368fSKristof Beyls       if (ix == asuint64 (INFINITY)) /* log(inf) == inf.  */
82*0928368fSKristof Beyls 	return x;
83*0928368fSKristof Beyls       if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
84*0928368fSKristof Beyls 	return __math_invalid (x);
85*0928368fSKristof Beyls       /* x is subnormal, normalize it.  */
86*0928368fSKristof Beyls       ix = asuint64 (x * 0x1p52);
87*0928368fSKristof Beyls       ix -= 52ULL << 52;
88*0928368fSKristof Beyls     }
89*0928368fSKristof Beyls 
90*0928368fSKristof Beyls   /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
91*0928368fSKristof Beyls      The range is split into N subintervals.
92*0928368fSKristof Beyls      The ith subinterval contains z and c is near its center.  */
93*0928368fSKristof Beyls   tmp = ix - OFF;
94*0928368fSKristof Beyls   i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
95*0928368fSKristof Beyls   k = (int64_t) tmp >> 52; /* arithmetic shift */
96*0928368fSKristof Beyls   iz = ix - (tmp & 0xfffULL << 52);
97*0928368fSKristof Beyls   invc = T[i].invc;
98*0928368fSKristof Beyls   logc = T[i].logc;
99*0928368fSKristof Beyls   z = asdouble (iz);
100*0928368fSKristof Beyls   kd = (double_t) k;
101*0928368fSKristof Beyls 
102*0928368fSKristof Beyls   /* log2(x) = log2(z/c) + log2(c) + k.  */
103*0928368fSKristof Beyls   /* r ~= z/c - 1, |r| < 1/(2*N).  */
104*0928368fSKristof Beyls #if HAVE_FAST_FMA
105*0928368fSKristof Beyls   /* rounding error: 0x1p-55/N.  */
106*0928368fSKristof Beyls   r = fma (z, invc, -1.0);
107*0928368fSKristof Beyls   t1 = r * InvLn2hi;
108*0928368fSKristof Beyls   t2 = r * InvLn2lo + fma (r, InvLn2hi, -t1);
109*0928368fSKristof Beyls #else
110*0928368fSKristof Beyls   double_t rhi, rlo;
111*0928368fSKristof Beyls   /* rounding error: 0x1p-55/N + 0x1p-65.  */
112*0928368fSKristof Beyls   r = (z - T2[i].chi - T2[i].clo) * invc;
113*0928368fSKristof Beyls   rhi = asdouble (asuint64 (r) & -1ULL << 32);
114*0928368fSKristof Beyls   rlo = r - rhi;
115*0928368fSKristof Beyls   t1 = rhi * InvLn2hi;
116*0928368fSKristof Beyls   t2 = rlo * InvLn2hi + r * InvLn2lo;
117*0928368fSKristof Beyls #endif
118*0928368fSKristof Beyls 
119*0928368fSKristof Beyls   /* hi + lo = r/ln2 + log2(c) + k.  */
120*0928368fSKristof Beyls   t3 = kd + logc;
121*0928368fSKristof Beyls   hi = t3 + t1;
122*0928368fSKristof Beyls   lo = t3 - hi + t1 + t2;
123*0928368fSKristof Beyls 
124*0928368fSKristof Beyls   /* log2(r+1) = r/ln2 + r^2*poly(r).  */
125*0928368fSKristof Beyls   /* Evaluation is optimized assuming superscalar pipelined execution.  */
126*0928368fSKristof Beyls   r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
127*0928368fSKristof Beyls   r4 = r2 * r2;
128*0928368fSKristof Beyls #if LOG2_POLY_ORDER == 7
129*0928368fSKristof Beyls   /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
130*0928368fSKristof Beyls      ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma).  */
131*0928368fSKristof Beyls   p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
132*0928368fSKristof Beyls   y = lo + r2 * p + hi;
133*0928368fSKristof Beyls #endif
134*0928368fSKristof Beyls   return eval_as_double (y);
135*0928368fSKristof Beyls }
136*0928368fSKristof Beyls #if USE_GLIBC_ABI
strong_alias(log2,__log2_finite)137*0928368fSKristof Beyls strong_alias (log2, __log2_finite)
138*0928368fSKristof Beyls hidden_alias (log2, __ieee754_log2)
139*0928368fSKristof Beyls # if LDBL_MANT_DIG == 53
140*0928368fSKristof Beyls long double log2l (long double x) { return log2 (x); }
141*0928368fSKristof Beyls # endif
142*0928368fSKristof Beyls #endif
143