1 //===-- lib/Semantics/tools.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Parser/tools.h" 10 #include "flang/Common/Fortran.h" 11 #include "flang/Common/indirection.h" 12 #include "flang/Parser/dump-parse-tree.h" 13 #include "flang/Parser/message.h" 14 #include "flang/Parser/parse-tree.h" 15 #include "flang/Semantics/scope.h" 16 #include "flang/Semantics/semantics.h" 17 #include "flang/Semantics/symbol.h" 18 #include "flang/Semantics/tools.h" 19 #include "flang/Semantics/type.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <algorithm> 22 #include <set> 23 #include <variant> 24 25 namespace Fortran::semantics { 26 27 // Find this or containing scope that matches predicate 28 static const Scope *FindScopeContaining( 29 const Scope &start, std::function<bool(const Scope &)> predicate) { 30 for (const Scope *scope{&start};; scope = &scope->parent()) { 31 if (predicate(*scope)) { 32 return scope; 33 } 34 if (scope->IsTopLevel()) { 35 return nullptr; 36 } 37 } 38 } 39 40 const Scope &GetTopLevelUnitContaining(const Scope &start) { 41 CHECK(!start.IsTopLevel()); 42 return DEREF(FindScopeContaining( 43 start, [](const Scope &scope) { return scope.parent().IsTopLevel(); })); 44 } 45 46 const Scope &GetTopLevelUnitContaining(const Symbol &symbol) { 47 return GetTopLevelUnitContaining(symbol.owner()); 48 } 49 50 const Scope *FindModuleContaining(const Scope &start) { 51 return FindScopeContaining( 52 start, [](const Scope &scope) { return scope.IsModule(); }); 53 } 54 55 const Scope *FindModuleFileContaining(const Scope &start) { 56 return FindScopeContaining( 57 start, [](const Scope &scope) { return scope.IsModuleFile(); }); 58 } 59 60 const Scope &GetProgramUnitContaining(const Scope &start) { 61 CHECK(!start.IsTopLevel()); 62 return DEREF(FindScopeContaining(start, [](const Scope &scope) { 63 switch (scope.kind()) { 64 case Scope::Kind::Module: 65 case Scope::Kind::MainProgram: 66 case Scope::Kind::Subprogram: 67 case Scope::Kind::BlockData: 68 return true; 69 default: 70 return false; 71 } 72 })); 73 } 74 75 const Scope &GetProgramUnitContaining(const Symbol &symbol) { 76 return GetProgramUnitContaining(symbol.owner()); 77 } 78 79 const Scope &GetProgramUnitOrBlockConstructContaining(const Scope &start) { 80 CHECK(!start.IsTopLevel()); 81 return DEREF(FindScopeContaining(start, [](const Scope &scope) { 82 switch (scope.kind()) { 83 case Scope::Kind::Module: 84 case Scope::Kind::MainProgram: 85 case Scope::Kind::Subprogram: 86 case Scope::Kind::BlockData: 87 case Scope::Kind::BlockConstruct: 88 return true; 89 default: 90 return false; 91 } 92 })); 93 } 94 95 const Scope &GetProgramUnitOrBlockConstructContaining(const Symbol &symbol) { 96 return GetProgramUnitOrBlockConstructContaining(symbol.owner()); 97 } 98 99 const Scope *FindPureProcedureContaining(const Scope &start) { 100 // N.B. We only need to examine the innermost containing program unit 101 // because an internal subprogram of a pure subprogram must also 102 // be pure (C1592). 103 if (start.IsTopLevel()) { 104 return nullptr; 105 } else { 106 const Scope &scope{GetProgramUnitContaining(start)}; 107 return IsPureProcedure(scope) ? &scope : nullptr; 108 } 109 } 110 111 const Scope *FindOpenACCConstructContaining(const Scope *scope) { 112 return scope ? FindScopeContaining(*scope, 113 [](const Scope &s) { 114 return s.kind() == Scope::Kind::OpenACCConstruct; 115 }) 116 : nullptr; 117 } 118 119 // 7.5.2.4 "same derived type" test -- rely on IsTkCompatibleWith() and its 120 // infrastructure to detect and handle comparisons on distinct (but "same") 121 // sequence/bind(C) derived types 122 static bool MightBeSameDerivedType( 123 const std::optional<evaluate::DynamicType> &lhsType, 124 const std::optional<evaluate::DynamicType> &rhsType) { 125 return lhsType && rhsType && lhsType->IsTkCompatibleWith(*rhsType); 126 } 127 128 Tristate IsDefinedAssignment( 129 const std::optional<evaluate::DynamicType> &lhsType, int lhsRank, 130 const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) { 131 if (!lhsType || !rhsType) { 132 return Tristate::No; // error or rhs is untyped 133 } 134 if (lhsType->IsUnlimitedPolymorphic()) { 135 return Tristate::No; 136 } 137 if (rhsType->IsUnlimitedPolymorphic()) { 138 return Tristate::Maybe; 139 } 140 TypeCategory lhsCat{lhsType->category()}; 141 TypeCategory rhsCat{rhsType->category()}; 142 if (rhsRank > 0 && lhsRank != rhsRank) { 143 return Tristate::Yes; 144 } else if (lhsCat != TypeCategory::Derived) { 145 return ToTristate(lhsCat != rhsCat && 146 (!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat) || 147 lhsCat == TypeCategory::Unsigned || 148 rhsCat == TypeCategory::Unsigned)); 149 } else if (MightBeSameDerivedType(lhsType, rhsType)) { 150 return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic 151 } else { 152 return Tristate::Yes; 153 } 154 } 155 156 bool IsIntrinsicRelational(common::RelationalOperator opr, 157 const evaluate::DynamicType &type0, int rank0, 158 const evaluate::DynamicType &type1, int rank1) { 159 if (!evaluate::AreConformable(rank0, rank1)) { 160 return false; 161 } else { 162 auto cat0{type0.category()}; 163 auto cat1{type1.category()}; 164 if (cat0 == TypeCategory::Unsigned || cat1 == TypeCategory::Unsigned) { 165 return cat0 == cat1; 166 } else if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) { 167 // numeric types: EQ/NE always ok, others ok for non-complex 168 return opr == common::RelationalOperator::EQ || 169 opr == common::RelationalOperator::NE || 170 (cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex); 171 } else { 172 // not both numeric: only Character is ok 173 return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character; 174 } 175 } 176 } 177 178 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) { 179 return IsNumericTypeCategory(type0.category()); 180 } 181 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0, 182 const evaluate::DynamicType &type1, int rank1) { 183 return evaluate::AreConformable(rank0, rank1) && 184 IsNumericTypeCategory(type0.category()) && 185 IsNumericTypeCategory(type1.category()); 186 } 187 188 bool IsIntrinsicLogical(const evaluate::DynamicType &type0) { 189 return type0.category() == TypeCategory::Logical; 190 } 191 bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0, 192 const evaluate::DynamicType &type1, int rank1) { 193 return evaluate::AreConformable(rank0, rank1) && 194 type0.category() == TypeCategory::Logical && 195 type1.category() == TypeCategory::Logical; 196 } 197 198 bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0, 199 const evaluate::DynamicType &type1, int rank1) { 200 return evaluate::AreConformable(rank0, rank1) && 201 type0.category() == TypeCategory::Character && 202 type1.category() == TypeCategory::Character && 203 type0.kind() == type1.kind(); 204 } 205 206 bool IsGenericDefinedOp(const Symbol &symbol) { 207 const Symbol &ultimate{symbol.GetUltimate()}; 208 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 209 return generic->kind().IsDefinedOperator(); 210 } else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) { 211 return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp; 212 } else { 213 return false; 214 } 215 } 216 217 bool IsDefinedOperator(SourceName name) { 218 const char *begin{name.begin()}; 219 const char *end{name.end()}; 220 return begin != end && begin[0] == '.' && end[-1] == '.'; 221 } 222 223 std::string MakeOpName(SourceName name) { 224 std::string result{name.ToString()}; 225 return IsDefinedOperator(name) ? "OPERATOR(" + result + ")" 226 : result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result) 227 : result; 228 } 229 230 bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) { 231 const auto &objects{block.get<CommonBlockDetails>().objects()}; 232 return llvm::is_contained(objects, object); 233 } 234 235 bool IsUseAssociated(const Symbol &symbol, const Scope &scope) { 236 const Scope &owner{GetTopLevelUnitContaining(symbol.GetUltimate().owner())}; 237 return owner.kind() == Scope::Kind::Module && 238 owner != GetTopLevelUnitContaining(scope); 239 } 240 241 bool DoesScopeContain( 242 const Scope *maybeAncestor, const Scope &maybeDescendent) { 243 return maybeAncestor && !maybeDescendent.IsTopLevel() && 244 FindScopeContaining(maybeDescendent.parent(), 245 [&](const Scope &scope) { return &scope == maybeAncestor; }); 246 } 247 248 bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) { 249 return DoesScopeContain(maybeAncestor, symbol.owner()); 250 } 251 252 static const Symbol &FollowHostAssoc(const Symbol &symbol) { 253 for (const Symbol *s{&symbol};;) { 254 const auto *details{s->detailsIf<HostAssocDetails>()}; 255 if (!details) { 256 return *s; 257 } 258 s = &details->symbol(); 259 } 260 } 261 262 bool IsHostAssociated(const Symbol &symbol, const Scope &scope) { 263 const Symbol &base{FollowHostAssoc(symbol)}; 264 return base.owner().IsTopLevel() || 265 DoesScopeContain(&GetProgramUnitOrBlockConstructContaining(base), 266 GetProgramUnitOrBlockConstructContaining(scope)); 267 } 268 269 bool IsHostAssociatedIntoSubprogram(const Symbol &symbol, const Scope &scope) { 270 const Symbol &base{FollowHostAssoc(symbol)}; 271 return base.owner().IsTopLevel() || 272 DoesScopeContain(&GetProgramUnitOrBlockConstructContaining(base), 273 GetProgramUnitContaining(scope)); 274 } 275 276 bool IsInStmtFunction(const Symbol &symbol) { 277 if (const Symbol * function{symbol.owner().symbol()}) { 278 return IsStmtFunction(*function); 279 } 280 return false; 281 } 282 283 bool IsStmtFunctionDummy(const Symbol &symbol) { 284 return IsDummy(symbol) && IsInStmtFunction(symbol); 285 } 286 287 bool IsStmtFunctionResult(const Symbol &symbol) { 288 return IsFunctionResult(symbol) && IsInStmtFunction(symbol); 289 } 290 291 bool IsPointerDummy(const Symbol &symbol) { 292 return IsPointer(symbol) && IsDummy(symbol); 293 } 294 295 bool IsBindCProcedure(const Symbol &original) { 296 const Symbol &symbol{original.GetUltimate()}; 297 if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) { 298 if (procDetails->procInterface()) { 299 // procedure component with a BIND(C) interface 300 return IsBindCProcedure(*procDetails->procInterface()); 301 } 302 } 303 return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol); 304 } 305 306 bool IsBindCProcedure(const Scope &scope) { 307 if (const Symbol * symbol{scope.GetSymbol()}) { 308 return IsBindCProcedure(*symbol); 309 } else { 310 return false; 311 } 312 } 313 314 static const Symbol *FindPointerComponent( 315 const Scope &scope, std::set<const Scope *> &visited) { 316 if (!scope.IsDerivedType()) { 317 return nullptr; 318 } 319 if (!visited.insert(&scope).second) { 320 return nullptr; 321 } 322 // If there's a top-level pointer component, return it for clearer error 323 // messaging. 324 for (const auto &pair : scope) { 325 const Symbol &symbol{*pair.second}; 326 if (IsPointer(symbol)) { 327 return &symbol; 328 } 329 } 330 for (const auto &pair : scope) { 331 const Symbol &symbol{*pair.second}; 332 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 333 if (const DeclTypeSpec * type{details->type()}) { 334 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 335 if (const Scope * nested{derived->scope()}) { 336 if (const Symbol * 337 pointer{FindPointerComponent(*nested, visited)}) { 338 return pointer; 339 } 340 } 341 } 342 } 343 } 344 } 345 return nullptr; 346 } 347 348 const Symbol *FindPointerComponent(const Scope &scope) { 349 std::set<const Scope *> visited; 350 return FindPointerComponent(scope, visited); 351 } 352 353 const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) { 354 if (const Scope * scope{derived.scope()}) { 355 return FindPointerComponent(*scope); 356 } else { 357 return nullptr; 358 } 359 } 360 361 const Symbol *FindPointerComponent(const DeclTypeSpec &type) { 362 if (const DerivedTypeSpec * derived{type.AsDerived()}) { 363 return FindPointerComponent(*derived); 364 } else { 365 return nullptr; 366 } 367 } 368 369 const Symbol *FindPointerComponent(const DeclTypeSpec *type) { 370 return type ? FindPointerComponent(*type) : nullptr; 371 } 372 373 const Symbol *FindPointerComponent(const Symbol &symbol) { 374 return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType()); 375 } 376 377 // C1594 specifies several ways by which an object might be globally visible. 378 const Symbol *FindExternallyVisibleObject( 379 const Symbol &object, const Scope &scope, bool isPointerDefinition) { 380 // TODO: Storage association with any object for which this predicate holds, 381 // once EQUIVALENCE is supported. 382 const Symbol &ultimate{GetAssociationRoot(object)}; 383 if (IsDummy(ultimate)) { 384 if (IsIntentIn(ultimate)) { 385 return &ultimate; 386 } 387 if (!isPointerDefinition && IsPointer(ultimate) && 388 IsPureProcedure(ultimate.owner()) && IsFunction(ultimate.owner())) { 389 return &ultimate; 390 } 391 } else if (ultimate.owner().IsDerivedType()) { 392 return nullptr; 393 } else if (&GetProgramUnitContaining(ultimate) != 394 &GetProgramUnitContaining(scope)) { 395 return &object; 396 } else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) { 397 return block; 398 } 399 return nullptr; 400 } 401 402 const Symbol &BypassGeneric(const Symbol &symbol) { 403 const Symbol &ultimate{symbol.GetUltimate()}; 404 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 405 if (const Symbol * specific{generic->specific()}) { 406 return *specific; 407 } 408 } 409 return symbol; 410 } 411 412 const Symbol &GetCrayPointer(const Symbol &crayPointee) { 413 const Symbol *found{nullptr}; 414 for (const auto &[pointee, pointer] : 415 crayPointee.GetUltimate().owner().crayPointers()) { 416 if (pointee == crayPointee.name()) { 417 found = &pointer.get(); 418 break; 419 } 420 } 421 return DEREF(found); 422 } 423 424 bool ExprHasTypeCategory( 425 const SomeExpr &expr, const common::TypeCategory &type) { 426 auto dynamicType{expr.GetType()}; 427 return dynamicType && dynamicType->category() == type; 428 } 429 430 bool ExprTypeKindIsDefault( 431 const SomeExpr &expr, const SemanticsContext &context) { 432 auto dynamicType{expr.GetType()}; 433 return dynamicType && 434 dynamicType->category() != common::TypeCategory::Derived && 435 dynamicType->kind() == context.GetDefaultKind(dynamicType->category()); 436 } 437 438 // If an analyzed expr or assignment is missing, dump the node and die. 439 template <typename T> 440 static void CheckMissingAnalysis( 441 bool crash, SemanticsContext *context, const T &x) { 442 if (crash && !(context && context->AnyFatalError())) { 443 std::string buf; 444 llvm::raw_string_ostream ss{buf}; 445 ss << "node has not been analyzed:\n"; 446 parser::DumpTree(ss, x); 447 common::die(buf.c_str()); 448 } 449 } 450 451 const SomeExpr *GetExprHelper::Get(const parser::Expr &x) { 452 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 453 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 454 } 455 const SomeExpr *GetExprHelper::Get(const parser::Variable &x) { 456 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 457 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 458 } 459 const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) { 460 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 461 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 462 } 463 const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) { 464 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 465 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 466 } 467 const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) { 468 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 469 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 470 } 471 472 const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) { 473 return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v) 474 : nullptr; 475 } 476 const evaluate::Assignment *GetAssignment( 477 const parser::PointerAssignmentStmt &x) { 478 return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v) 479 : nullptr; 480 } 481 482 const Symbol *FindInterface(const Symbol &symbol) { 483 return common::visit( 484 common::visitors{ 485 [](const ProcEntityDetails &details) { 486 const Symbol *interface{details.procInterface()}; 487 return interface ? FindInterface(*interface) : nullptr; 488 }, 489 [](const ProcBindingDetails &details) { 490 return FindInterface(details.symbol()); 491 }, 492 [&](const SubprogramDetails &) { return &symbol; }, 493 [](const UseDetails &details) { 494 return FindInterface(details.symbol()); 495 }, 496 [](const HostAssocDetails &details) { 497 return FindInterface(details.symbol()); 498 }, 499 [](const GenericDetails &details) { 500 return details.specific() ? FindInterface(*details.specific()) 501 : nullptr; 502 }, 503 [](const auto &) -> const Symbol * { return nullptr; }, 504 }, 505 symbol.details()); 506 } 507 508 const Symbol *FindSubprogram(const Symbol &symbol) { 509 return common::visit( 510 common::visitors{ 511 [&](const ProcEntityDetails &details) -> const Symbol * { 512 if (details.procInterface()) { 513 return FindSubprogram(*details.procInterface()); 514 } else { 515 return &symbol; 516 } 517 }, 518 [](const ProcBindingDetails &details) { 519 return FindSubprogram(details.symbol()); 520 }, 521 [&](const SubprogramDetails &) { return &symbol; }, 522 [](const UseDetails &details) { 523 return FindSubprogram(details.symbol()); 524 }, 525 [](const HostAssocDetails &details) { 526 return FindSubprogram(details.symbol()); 527 }, 528 [](const GenericDetails &details) { 529 return details.specific() ? FindSubprogram(*details.specific()) 530 : nullptr; 531 }, 532 [](const auto &) -> const Symbol * { return nullptr; }, 533 }, 534 symbol.details()); 535 } 536 537 const Symbol *FindOverriddenBinding( 538 const Symbol &symbol, bool &isInaccessibleDeferred) { 539 isInaccessibleDeferred = false; 540 if (symbol.has<ProcBindingDetails>()) { 541 if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) { 542 if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) { 543 if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) { 544 if (const Symbol * 545 overridden{parentScope->FindComponent(symbol.name())}) { 546 // 7.5.7.3 p1: only accessible bindings are overridden 547 if (!overridden->attrs().test(Attr::PRIVATE) || 548 FindModuleContaining(overridden->owner()) == 549 FindModuleContaining(symbol.owner())) { 550 return overridden; 551 } else if (overridden->attrs().test(Attr::DEFERRED)) { 552 isInaccessibleDeferred = true; 553 return overridden; 554 } 555 } 556 } 557 } 558 } 559 } 560 return nullptr; 561 } 562 563 const Symbol *FindGlobal(const Symbol &original) { 564 const Symbol &ultimate{original.GetUltimate()}; 565 if (ultimate.owner().IsGlobal()) { 566 return &ultimate; 567 } 568 bool isLocal{false}; 569 if (IsDummy(ultimate)) { 570 } else if (IsPointer(ultimate)) { 571 } else if (ultimate.has<ProcEntityDetails>()) { 572 isLocal = IsExternal(ultimate); 573 } else if (const auto *subp{ultimate.detailsIf<SubprogramDetails>()}) { 574 isLocal = subp->isInterface(); 575 } 576 if (isLocal) { 577 const std::string *bind{ultimate.GetBindName()}; 578 if (!bind || ultimate.name() == *bind) { 579 const Scope &globalScope{ultimate.owner().context().globalScope()}; 580 if (auto iter{globalScope.find(ultimate.name())}; 581 iter != globalScope.end()) { 582 const Symbol &global{*iter->second}; 583 const std::string *globalBind{global.GetBindName()}; 584 if (!globalBind || global.name() == *globalBind) { 585 return &global; 586 } 587 } 588 } 589 } 590 return nullptr; 591 } 592 593 const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) { 594 return FindParentTypeSpec(derived.typeSymbol()); 595 } 596 597 const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) { 598 if (const DerivedTypeSpec * derived{decl.AsDerived()}) { 599 return FindParentTypeSpec(*derived); 600 } else { 601 return nullptr; 602 } 603 } 604 605 const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) { 606 if (scope.kind() == Scope::Kind::DerivedType) { 607 if (const auto *symbol{scope.symbol()}) { 608 return FindParentTypeSpec(*symbol); 609 } 610 } 611 return nullptr; 612 } 613 614 const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) { 615 if (const Scope * scope{symbol.scope()}) { 616 if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) { 617 if (const Symbol * parent{details->GetParentComponent(*scope)}) { 618 return parent->GetType(); 619 } 620 } 621 } 622 return nullptr; 623 } 624 625 const EquivalenceSet *FindEquivalenceSet(const Symbol &symbol) { 626 const Symbol &ultimate{symbol.GetUltimate()}; 627 for (const EquivalenceSet &set : ultimate.owner().equivalenceSets()) { 628 for (const EquivalenceObject &object : set) { 629 if (object.symbol == ultimate) { 630 return &set; 631 } 632 } 633 } 634 return nullptr; 635 } 636 637 bool IsOrContainsEventOrLockComponent(const Symbol &original) { 638 const Symbol &symbol{ResolveAssociations(original)}; 639 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 640 if (const DeclTypeSpec * type{details->type()}) { 641 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 642 return IsEventTypeOrLockType(derived) || 643 FindEventOrLockPotentialComponent(*derived); 644 } 645 } 646 } 647 return false; 648 } 649 650 // Check this symbol suitable as a type-bound procedure - C769 651 bool CanBeTypeBoundProc(const Symbol &symbol) { 652 if (IsDummy(symbol) || IsProcedurePointer(symbol)) { 653 return false; 654 } else if (symbol.has<SubprogramNameDetails>()) { 655 return symbol.owner().kind() == Scope::Kind::Module; 656 } else if (auto *details{symbol.detailsIf<SubprogramDetails>()}) { 657 if (details->isInterface()) { 658 return !symbol.attrs().test(Attr::ABSTRACT); 659 } else { 660 return symbol.owner().kind() == Scope::Kind::Module; 661 } 662 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) { 663 return !symbol.attrs().test(Attr::INTRINSIC) && 664 proc->HasExplicitInterface(); 665 } else { 666 return false; 667 } 668 } 669 670 bool HasDeclarationInitializer(const Symbol &symbol) { 671 if (IsNamedConstant(symbol)) { 672 return false; 673 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 674 return object->init().has_value(); 675 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) { 676 return proc->init().has_value(); 677 } else { 678 return false; 679 } 680 } 681 682 bool IsInitialized(const Symbol &symbol, bool ignoreDataStatements, 683 bool ignoreAllocatable, bool ignorePointer) { 684 if (!ignoreAllocatable && IsAllocatable(symbol)) { 685 return true; 686 } else if (!ignoreDataStatements && symbol.test(Symbol::Flag::InDataStmt)) { 687 return true; 688 } else if (HasDeclarationInitializer(symbol)) { 689 return true; 690 } else if (IsPointer(symbol)) { 691 return !ignorePointer; 692 } else if (IsNamedConstant(symbol)) { 693 return false; 694 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 695 if ((!object->isDummy() || IsIntentOut(symbol)) && object->type()) { 696 if (const auto *derived{object->type()->AsDerived()}) { 697 return derived->HasDefaultInitialization( 698 ignoreAllocatable, ignorePointer); 699 } 700 } 701 } 702 return false; 703 } 704 705 bool IsDestructible(const Symbol &symbol, const Symbol *derivedTypeSymbol) { 706 if (IsAllocatable(symbol) || IsAutomatic(symbol)) { 707 return true; 708 } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) || 709 IsPointer(symbol)) { 710 return false; 711 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 712 if ((!object->isDummy() || IsIntentOut(symbol)) && object->type()) { 713 if (const auto *derived{object->type()->AsDerived()}) { 714 return &derived->typeSymbol() != derivedTypeSymbol && 715 derived->HasDestruction(); 716 } 717 } 718 } 719 return false; 720 } 721 722 bool HasIntrinsicTypeName(const Symbol &symbol) { 723 std::string name{symbol.name().ToString()}; 724 if (name == "doubleprecision") { 725 return true; 726 } else if (name == "derived") { 727 return false; 728 } else { 729 for (int i{0}; i != common::TypeCategory_enumSize; ++i) { 730 if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) { 731 return true; 732 } 733 } 734 return false; 735 } 736 } 737 738 bool IsSeparateModuleProcedureInterface(const Symbol *symbol) { 739 if (symbol && symbol->attrs().test(Attr::MODULE)) { 740 if (auto *details{symbol->detailsIf<SubprogramDetails>()}) { 741 return details->isInterface(); 742 } 743 } 744 return false; 745 } 746 747 SymbolVector FinalsForDerivedTypeInstantiation(const DerivedTypeSpec &spec) { 748 SymbolVector result; 749 const Symbol &typeSymbol{spec.typeSymbol()}; 750 if (const auto *derived{typeSymbol.detailsIf<DerivedTypeDetails>()}) { 751 for (const auto &pair : derived->finals()) { 752 const Symbol &subr{*pair.second}; 753 // Errors in FINAL subroutines are caught in CheckFinal 754 // in check-declarations.cpp. 755 if (const auto *subprog{subr.detailsIf<SubprogramDetails>()}; 756 subprog && subprog->dummyArgs().size() == 1) { 757 if (const Symbol * arg{subprog->dummyArgs()[0]}) { 758 if (const DeclTypeSpec * type{arg->GetType()}) { 759 if (type->category() == DeclTypeSpec::TypeDerived && 760 evaluate::AreSameDerivedType(spec, type->derivedTypeSpec())) { 761 result.emplace_back(subr); 762 } 763 } 764 } 765 } 766 } 767 } 768 return result; 769 } 770 771 const Symbol *IsFinalizable(const Symbol &symbol, 772 std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer) { 773 if (IsPointer(symbol) || evaluate::IsAssumedRank(symbol)) { 774 return nullptr; 775 } 776 if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 777 if (object->isDummy() && !IsIntentOut(symbol)) { 778 return nullptr; 779 } 780 const DeclTypeSpec *type{object->type()}; 781 if (const DerivedTypeSpec * typeSpec{type ? type->AsDerived() : nullptr}) { 782 return IsFinalizable( 783 *typeSpec, inProgress, withImpureFinalizer, symbol.Rank()); 784 } 785 } 786 return nullptr; 787 } 788 789 const Symbol *IsFinalizable(const DerivedTypeSpec &derived, 790 std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer, 791 std::optional<int> rank) { 792 const Symbol *elemental{nullptr}; 793 for (auto ref : FinalsForDerivedTypeInstantiation(derived)) { 794 const Symbol *symbol{&ref->GetUltimate()}; 795 if (const auto *binding{symbol->detailsIf<ProcBindingDetails>()}) { 796 symbol = &binding->symbol(); 797 } 798 if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) { 799 symbol = proc->procInterface(); 800 } 801 if (!symbol) { 802 } else if (IsElementalProcedure(*symbol)) { 803 elemental = symbol; 804 } else { 805 if (rank) { 806 if (const SubprogramDetails * 807 subp{symbol->detailsIf<SubprogramDetails>()}) { 808 if (const auto &args{subp->dummyArgs()}; !args.empty() && 809 args.at(0) && !evaluate::IsAssumedRank(*args.at(0)) && 810 args.at(0)->Rank() != *rank) { 811 continue; // not a finalizer for this rank 812 } 813 } 814 } 815 if (!withImpureFinalizer || !IsPureProcedure(*symbol)) { 816 return symbol; 817 } 818 // Found non-elemental pure finalizer of matching rank, but still 819 // need to check components for an impure finalizer. 820 elemental = nullptr; 821 break; 822 } 823 } 824 if (elemental && (!withImpureFinalizer || !IsPureProcedure(*elemental))) { 825 return elemental; 826 } 827 // Check components (including ancestors) 828 std::set<const DerivedTypeSpec *> basis; 829 if (inProgress) { 830 if (inProgress->find(&derived) != inProgress->end()) { 831 return nullptr; // don't loop on recursive type 832 } 833 } else { 834 inProgress = &basis; 835 } 836 auto iterator{inProgress->insert(&derived).first}; 837 const Symbol *result{nullptr}; 838 for (const Symbol &component : PotentialComponentIterator{derived}) { 839 result = IsFinalizable(component, inProgress, withImpureFinalizer); 840 if (result) { 841 break; 842 } 843 } 844 inProgress->erase(iterator); 845 return result; 846 } 847 848 static const Symbol *HasImpureFinal( 849 const DerivedTypeSpec &derived, std::optional<int> rank) { 850 return IsFinalizable(derived, nullptr, /*withImpureFinalizer=*/true, rank); 851 } 852 853 const Symbol *HasImpureFinal(const Symbol &original, std::optional<int> rank) { 854 const Symbol &symbol{ResolveAssociations(original)}; 855 if (symbol.has<ObjectEntityDetails>()) { 856 if (const DeclTypeSpec * symType{symbol.GetType()}) { 857 if (const DerivedTypeSpec * derived{symType->AsDerived()}) { 858 if (evaluate::IsAssumedRank(symbol)) { 859 // finalizable assumed-rank not allowed (C839) 860 return nullptr; 861 } else { 862 int actualRank{rank.value_or(symbol.Rank())}; 863 return HasImpureFinal(*derived, actualRank); 864 } 865 } 866 } 867 } 868 return nullptr; 869 } 870 871 bool MayRequireFinalization(const DerivedTypeSpec &derived) { 872 return IsFinalizable(derived) || 873 FindPolymorphicAllocatablePotentialComponent(derived); 874 } 875 876 bool HasAllocatableDirectComponent(const DerivedTypeSpec &derived) { 877 DirectComponentIterator directs{derived}; 878 return std::any_of(directs.begin(), directs.end(), IsAllocatable); 879 } 880 881 bool IsAssumedLengthCharacter(const Symbol &symbol) { 882 if (const DeclTypeSpec * type{symbol.GetType()}) { 883 return type->category() == DeclTypeSpec::Character && 884 type->characterTypeSpec().length().isAssumed(); 885 } else { 886 return false; 887 } 888 } 889 890 bool IsInBlankCommon(const Symbol &symbol) { 891 const Symbol *block{FindCommonBlockContaining(symbol)}; 892 return block && block->name().empty(); 893 } 894 895 // C722 and C723: For a function to be assumed length, it must be external and 896 // of CHARACTER type 897 bool IsExternal(const Symbol &symbol) { 898 return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External; 899 } 900 901 // Most scopes have no EQUIVALENCE, and this function is a fast no-op for them. 902 std::list<std::list<SymbolRef>> GetStorageAssociations(const Scope &scope) { 903 UnorderedSymbolSet distinct; 904 for (const EquivalenceSet &set : scope.equivalenceSets()) { 905 for (const EquivalenceObject &object : set) { 906 distinct.emplace(object.symbol); 907 } 908 } 909 // This set is ordered by ascending offsets, with ties broken by greatest 910 // size. A multiset is used here because multiple symbols may have the 911 // same offset and size; the symbols in the set, however, are distinct. 912 std::multiset<SymbolRef, SymbolOffsetCompare> associated; 913 for (SymbolRef ref : distinct) { 914 associated.emplace(*ref); 915 } 916 std::list<std::list<SymbolRef>> result; 917 std::size_t limit{0}; 918 const Symbol *currentCommon{nullptr}; 919 for (const Symbol &symbol : associated) { 920 const Symbol *thisCommon{FindCommonBlockContaining(symbol)}; 921 if (result.empty() || symbol.offset() >= limit || 922 thisCommon != currentCommon) { 923 // Start a new group 924 result.emplace_back(std::list<SymbolRef>{}); 925 limit = 0; 926 currentCommon = thisCommon; 927 } 928 result.back().emplace_back(symbol); 929 limit = std::max(limit, symbol.offset() + symbol.size()); 930 } 931 return result; 932 } 933 934 bool IsModuleProcedure(const Symbol &symbol) { 935 return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module; 936 } 937 938 class ImageControlStmtHelper { 939 using ImageControlStmts = 940 std::variant<parser::ChangeTeamConstruct, parser::CriticalConstruct, 941 parser::EventPostStmt, parser::EventWaitStmt, parser::FormTeamStmt, 942 parser::LockStmt, parser::SyncAllStmt, parser::SyncImagesStmt, 943 parser::SyncMemoryStmt, parser::SyncTeamStmt, parser::UnlockStmt>; 944 945 public: 946 template <typename T> bool operator()(const T &) { 947 return common::HasMember<T, ImageControlStmts>; 948 } 949 template <typename T> bool operator()(const common::Indirection<T> &x) { 950 return (*this)(x.value()); 951 } 952 template <typename A> bool operator()(const parser::Statement<A> &x) { 953 return (*this)(x.statement); 954 } 955 bool operator()(const parser::AllocateStmt &stmt) { 956 const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)}; 957 for (const auto &allocation : allocationList) { 958 const auto &allocateObject{ 959 std::get<parser::AllocateObject>(allocation.t)}; 960 if (IsCoarrayObject(allocateObject)) { 961 return true; 962 } 963 } 964 return false; 965 } 966 bool operator()(const parser::DeallocateStmt &stmt) { 967 const auto &allocateObjectList{ 968 std::get<std::list<parser::AllocateObject>>(stmt.t)}; 969 for (const auto &allocateObject : allocateObjectList) { 970 if (IsCoarrayObject(allocateObject)) { 971 return true; 972 } 973 } 974 return false; 975 } 976 bool operator()(const parser::CallStmt &stmt) { 977 const auto &procedureDesignator{ 978 std::get<parser::ProcedureDesignator>(stmt.call.t)}; 979 if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) { 980 // TODO: also ensure that the procedure is, in fact, an intrinsic 981 if (name->source == "move_alloc") { 982 const auto &args{ 983 std::get<std::list<parser::ActualArgSpec>>(stmt.call.t)}; 984 if (!args.empty()) { 985 const parser::ActualArg &actualArg{ 986 std::get<parser::ActualArg>(args.front().t)}; 987 if (const auto *argExpr{ 988 std::get_if<common::Indirection<parser::Expr>>( 989 &actualArg.u)}) { 990 return HasCoarray(argExpr->value()); 991 } 992 } 993 } 994 } 995 return false; 996 } 997 bool operator()(const parser::StopStmt &stmt) { 998 // STOP is an image control statement; ERROR STOP is not 999 return std::get<parser::StopStmt::Kind>(stmt.t) == 1000 parser::StopStmt::Kind::Stop; 1001 } 1002 bool operator()(const parser::IfStmt &stmt) { 1003 return (*this)( 1004 std::get<parser::UnlabeledStatement<parser::ActionStmt>>(stmt.t) 1005 .statement); 1006 } 1007 bool operator()(const parser::ActionStmt &stmt) { 1008 return common::visit(*this, stmt.u); 1009 } 1010 1011 private: 1012 bool IsCoarrayObject(const parser::AllocateObject &allocateObject) { 1013 const parser::Name &name{GetLastName(allocateObject)}; 1014 return name.symbol && evaluate::IsCoarray(*name.symbol); 1015 } 1016 }; 1017 1018 bool IsImageControlStmt(const parser::ExecutableConstruct &construct) { 1019 return common::visit(ImageControlStmtHelper{}, construct.u); 1020 } 1021 1022 std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg( 1023 const parser::ExecutableConstruct &construct) { 1024 if (const auto *actionStmt{ 1025 std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) { 1026 return common::visit( 1027 common::visitors{ 1028 [](const common::Indirection<parser::AllocateStmt> &) 1029 -> std::optional<parser::MessageFixedText> { 1030 return "ALLOCATE of a coarray is an image control" 1031 " statement"_en_US; 1032 }, 1033 [](const common::Indirection<parser::DeallocateStmt> &) 1034 -> std::optional<parser::MessageFixedText> { 1035 return "DEALLOCATE of a coarray is an image control" 1036 " statement"_en_US; 1037 }, 1038 [](const common::Indirection<parser::CallStmt> &) 1039 -> std::optional<parser::MessageFixedText> { 1040 return "MOVE_ALLOC of a coarray is an image control" 1041 " statement "_en_US; 1042 }, 1043 [](const auto &) -> std::optional<parser::MessageFixedText> { 1044 return std::nullopt; 1045 }, 1046 }, 1047 actionStmt->statement.u); 1048 } 1049 return std::nullopt; 1050 } 1051 1052 parser::CharBlock GetImageControlStmtLocation( 1053 const parser::ExecutableConstruct &executableConstruct) { 1054 return common::visit( 1055 common::visitors{ 1056 [](const common::Indirection<parser::ChangeTeamConstruct> 1057 &construct) { 1058 return std::get<parser::Statement<parser::ChangeTeamStmt>>( 1059 construct.value().t) 1060 .source; 1061 }, 1062 [](const common::Indirection<parser::CriticalConstruct> &construct) { 1063 return std::get<parser::Statement<parser::CriticalStmt>>( 1064 construct.value().t) 1065 .source; 1066 }, 1067 [](const parser::Statement<parser::ActionStmt> &actionStmt) { 1068 return actionStmt.source; 1069 }, 1070 [](const auto &) { return parser::CharBlock{}; }, 1071 }, 1072 executableConstruct.u); 1073 } 1074 1075 bool HasCoarray(const parser::Expr &expression) { 1076 if (const auto *expr{GetExpr(nullptr, expression)}) { 1077 for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) { 1078 if (evaluate::IsCoarray(symbol)) { 1079 return true; 1080 } 1081 } 1082 } 1083 return false; 1084 } 1085 1086 bool IsAssumedType(const Symbol &symbol) { 1087 if (const DeclTypeSpec * type{symbol.GetType()}) { 1088 return type->IsAssumedType(); 1089 } 1090 return false; 1091 } 1092 1093 bool IsPolymorphic(const Symbol &symbol) { 1094 if (const DeclTypeSpec * type{symbol.GetType()}) { 1095 return type->IsPolymorphic(); 1096 } 1097 return false; 1098 } 1099 1100 bool IsUnlimitedPolymorphic(const Symbol &symbol) { 1101 if (const DeclTypeSpec * type{symbol.GetType()}) { 1102 return type->IsUnlimitedPolymorphic(); 1103 } 1104 return false; 1105 } 1106 1107 bool IsPolymorphicAllocatable(const Symbol &symbol) { 1108 return IsAllocatable(symbol) && IsPolymorphic(symbol); 1109 } 1110 1111 const Scope *FindCUDADeviceContext(const Scope *scope) { 1112 return !scope ? nullptr : FindScopeContaining(*scope, [](const Scope &s) { 1113 return IsCUDADeviceContext(&s); 1114 }); 1115 } 1116 1117 std::optional<common::CUDADataAttr> GetCUDADataAttr(const Symbol *symbol) { 1118 const auto *object{ 1119 symbol ? symbol->detailsIf<ObjectEntityDetails>() : nullptr}; 1120 return object ? object->cudaDataAttr() : std::nullopt; 1121 } 1122 1123 std::optional<parser::MessageFormattedText> CheckAccessibleSymbol( 1124 const Scope &scope, const Symbol &symbol) { 1125 if (symbol.attrs().test(Attr::PRIVATE)) { 1126 if (FindModuleFileContaining(scope)) { 1127 // Don't enforce component accessibility checks in module files; 1128 // there may be forward-substituted named constants of derived type 1129 // whose structure constructors reference private components. 1130 } else if (const Scope * 1131 moduleScope{FindModuleContaining(symbol.owner())}) { 1132 if (!moduleScope->Contains(scope)) { 1133 return parser::MessageFormattedText{ 1134 "PRIVATE name '%s' is only accessible within module '%s'"_err_en_US, 1135 symbol.name(), moduleScope->GetName().value()}; 1136 } 1137 } 1138 } 1139 return std::nullopt; 1140 } 1141 1142 SymbolVector OrderParameterNames(const Symbol &typeSymbol) { 1143 SymbolVector result; 1144 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { 1145 result = OrderParameterNames(spec->typeSymbol()); 1146 } 1147 const auto ¶mNames{typeSymbol.get<DerivedTypeDetails>().paramNameOrder()}; 1148 result.insert(result.end(), paramNames.begin(), paramNames.end()); 1149 return result; 1150 } 1151 1152 SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) { 1153 SymbolVector result; 1154 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { 1155 result = OrderParameterDeclarations(spec->typeSymbol()); 1156 } 1157 const auto ¶mDecls{typeSymbol.get<DerivedTypeDetails>().paramDeclOrder()}; 1158 result.insert(result.end(), paramDecls.begin(), paramDecls.end()); 1159 return result; 1160 } 1161 1162 const DeclTypeSpec &FindOrInstantiateDerivedType( 1163 Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) { 1164 spec.EvaluateParameters(scope.context()); 1165 if (const DeclTypeSpec * 1166 type{scope.FindInstantiatedDerivedType(spec, category)}) { 1167 return *type; 1168 } 1169 // Create a new instantiation of this parameterized derived type 1170 // for this particular distinct set of actual parameter values. 1171 DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))}; 1172 type.derivedTypeSpec().Instantiate(scope); 1173 return type; 1174 } 1175 1176 const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) { 1177 if (proc) { 1178 if (const auto *subprogram{proc->detailsIf<SubprogramDetails>()}) { 1179 if (const Symbol * iface{subprogram->moduleInterface()}) { 1180 return iface; 1181 } 1182 } 1183 } 1184 return nullptr; 1185 } 1186 1187 ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2 1188 const Symbol &ultimate{symbol.GetUltimate()}; 1189 if (!IsProcedure(ultimate)) { 1190 return ProcedureDefinitionClass::None; 1191 } else if (ultimate.attrs().test(Attr::INTRINSIC)) { 1192 return ProcedureDefinitionClass::Intrinsic; 1193 } else if (IsDummy(ultimate)) { 1194 return ProcedureDefinitionClass::Dummy; 1195 } else if (IsProcedurePointer(symbol)) { 1196 return ProcedureDefinitionClass::Pointer; 1197 } else if (ultimate.attrs().test(Attr::EXTERNAL)) { 1198 return ProcedureDefinitionClass::External; 1199 } else if (const auto *nameDetails{ 1200 ultimate.detailsIf<SubprogramNameDetails>()}) { 1201 switch (nameDetails->kind()) { 1202 case SubprogramKind::Module: 1203 return ProcedureDefinitionClass::Module; 1204 case SubprogramKind::Internal: 1205 return ProcedureDefinitionClass::Internal; 1206 } 1207 } else if (const Symbol * subp{FindSubprogram(symbol)}) { 1208 if (const auto *subpDetails{subp->detailsIf<SubprogramDetails>()}) { 1209 if (subpDetails->stmtFunction()) { 1210 return ProcedureDefinitionClass::StatementFunction; 1211 } 1212 } 1213 switch (ultimate.owner().kind()) { 1214 case Scope::Kind::Global: 1215 case Scope::Kind::IntrinsicModules: 1216 return ProcedureDefinitionClass::External; 1217 case Scope::Kind::Module: 1218 return ProcedureDefinitionClass::Module; 1219 case Scope::Kind::MainProgram: 1220 case Scope::Kind::Subprogram: 1221 return ProcedureDefinitionClass::Internal; 1222 default: 1223 break; 1224 } 1225 } 1226 return ProcedureDefinitionClass::None; 1227 } 1228 1229 // ComponentIterator implementation 1230 1231 template <ComponentKind componentKind> 1232 typename ComponentIterator<componentKind>::const_iterator 1233 ComponentIterator<componentKind>::const_iterator::Create( 1234 const DerivedTypeSpec &derived) { 1235 const_iterator it{}; 1236 it.componentPath_.emplace_back(derived); 1237 it.Increment(); // cue up first relevant component, if any 1238 return it; 1239 } 1240 1241 template <ComponentKind componentKind> 1242 const DerivedTypeSpec * 1243 ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal( 1244 const Symbol &component) const { 1245 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 1246 if (const DeclTypeSpec * type{details->type()}) { 1247 if (const auto *derived{type->AsDerived()}) { 1248 bool traverse{false}; 1249 if constexpr (componentKind == ComponentKind::Ordered) { 1250 // Order Component (only visit parents) 1251 traverse = component.test(Symbol::Flag::ParentComp); 1252 } else if constexpr (componentKind == ComponentKind::Direct) { 1253 traverse = !IsAllocatableOrObjectPointer(&component); 1254 } else if constexpr (componentKind == ComponentKind::Ultimate) { 1255 traverse = !IsAllocatableOrObjectPointer(&component); 1256 } else if constexpr (componentKind == ComponentKind::Potential) { 1257 traverse = !IsPointer(component); 1258 } else if constexpr (componentKind == ComponentKind::Scope) { 1259 traverse = !IsAllocatableOrObjectPointer(&component); 1260 } else if constexpr (componentKind == 1261 ComponentKind::PotentialAndPointer) { 1262 traverse = !IsPointer(component); 1263 } 1264 if (traverse) { 1265 const Symbol &newTypeSymbol{derived->typeSymbol()}; 1266 // Avoid infinite loop if the type is already part of the types 1267 // being visited. It is possible to have "loops in type" because 1268 // C744 does not forbid to use not yet declared type for 1269 // ALLOCATABLE or POINTER components. 1270 for (const auto &node : componentPath_) { 1271 if (&newTypeSymbol == &node.GetTypeSymbol()) { 1272 return nullptr; 1273 } 1274 } 1275 return derived; 1276 } 1277 } 1278 } // intrinsic & unlimited polymorphic not traversable 1279 } 1280 return nullptr; 1281 } 1282 1283 template <ComponentKind componentKind> 1284 static bool StopAtComponentPre(const Symbol &component) { 1285 if constexpr (componentKind == ComponentKind::Ordered) { 1286 // Parent components need to be iterated upon after their 1287 // sub-components in structure constructor analysis. 1288 return !component.test(Symbol::Flag::ParentComp); 1289 } else if constexpr (componentKind == ComponentKind::Direct) { 1290 return true; 1291 } else if constexpr (componentKind == ComponentKind::Ultimate) { 1292 return component.has<ProcEntityDetails>() || 1293 IsAllocatableOrObjectPointer(&component) || 1294 (component.has<ObjectEntityDetails>() && 1295 component.get<ObjectEntityDetails>().type() && 1296 component.get<ObjectEntityDetails>().type()->AsIntrinsic()); 1297 } else if constexpr (componentKind == ComponentKind::Potential) { 1298 return !IsPointer(component); 1299 } else if constexpr (componentKind == ComponentKind::PotentialAndPointer) { 1300 return true; 1301 } else { 1302 DIE("unexpected ComponentKind"); 1303 } 1304 } 1305 1306 template <ComponentKind componentKind> 1307 static bool StopAtComponentPost(const Symbol &component) { 1308 return componentKind == ComponentKind::Ordered && 1309 component.test(Symbol::Flag::ParentComp); 1310 } 1311 1312 template <ComponentKind componentKind> 1313 void ComponentIterator<componentKind>::const_iterator::Increment() { 1314 while (!componentPath_.empty()) { 1315 ComponentPathNode &deepest{componentPath_.back()}; 1316 if (deepest.component()) { 1317 if (!deepest.descended()) { 1318 deepest.set_descended(true); 1319 if (const DerivedTypeSpec * 1320 derived{PlanComponentTraversal(*deepest.component())}) { 1321 componentPath_.emplace_back(*derived); 1322 continue; 1323 } 1324 } else if (!deepest.visited()) { 1325 deepest.set_visited(true); 1326 return; // this is the next component to visit, after descending 1327 } 1328 } 1329 auto &nameIterator{deepest.nameIterator()}; 1330 if (nameIterator == deepest.nameEnd()) { 1331 componentPath_.pop_back(); 1332 } else if constexpr (componentKind == ComponentKind::Scope) { 1333 deepest.set_component(*nameIterator++->second); 1334 deepest.set_descended(false); 1335 deepest.set_visited(true); 1336 return; // this is the next component to visit, before descending 1337 } else { 1338 const Scope &scope{deepest.GetScope()}; 1339 auto scopeIter{scope.find(*nameIterator++)}; 1340 if (scopeIter != scope.cend()) { 1341 const Symbol &component{*scopeIter->second}; 1342 deepest.set_component(component); 1343 deepest.set_descended(false); 1344 if (StopAtComponentPre<componentKind>(component)) { 1345 deepest.set_visited(true); 1346 return; // this is the next component to visit, before descending 1347 } else { 1348 deepest.set_visited(!StopAtComponentPost<componentKind>(component)); 1349 } 1350 } 1351 } 1352 } 1353 } 1354 1355 template <ComponentKind componentKind> 1356 std::string 1357 ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName() 1358 const { 1359 std::string designator; 1360 for (const auto &node : componentPath_) { 1361 designator += "%"s + DEREF(node.component()).name().ToString(); 1362 } 1363 return designator; 1364 } 1365 1366 template class ComponentIterator<ComponentKind::Ordered>; 1367 template class ComponentIterator<ComponentKind::Direct>; 1368 template class ComponentIterator<ComponentKind::Ultimate>; 1369 template class ComponentIterator<ComponentKind::Potential>; 1370 template class ComponentIterator<ComponentKind::Scope>; 1371 template class ComponentIterator<ComponentKind::PotentialAndPointer>; 1372 1373 UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent( 1374 const DerivedTypeSpec &derived) { 1375 UltimateComponentIterator ultimates{derived}; 1376 return std::find_if(ultimates.begin(), ultimates.end(), 1377 [](const Symbol &symbol) { return evaluate::IsCoarray(symbol); }); 1378 } 1379 1380 UltimateComponentIterator::const_iterator FindPointerUltimateComponent( 1381 const DerivedTypeSpec &derived) { 1382 UltimateComponentIterator ultimates{derived}; 1383 return std::find_if(ultimates.begin(), ultimates.end(), IsPointer); 1384 } 1385 1386 PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent( 1387 const DerivedTypeSpec &derived) { 1388 PotentialComponentIterator potentials{derived}; 1389 return std::find_if( 1390 potentials.begin(), potentials.end(), [](const Symbol &component) { 1391 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 1392 const DeclTypeSpec *type{details->type()}; 1393 return type && IsEventTypeOrLockType(type->AsDerived()); 1394 } 1395 return false; 1396 }); 1397 } 1398 1399 UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent( 1400 const DerivedTypeSpec &derived) { 1401 UltimateComponentIterator ultimates{derived}; 1402 return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable); 1403 } 1404 1405 DirectComponentIterator::const_iterator FindAllocatableOrPointerDirectComponent( 1406 const DerivedTypeSpec &derived) { 1407 DirectComponentIterator directs{derived}; 1408 return std::find_if(directs.begin(), directs.end(), IsAllocatableOrPointer); 1409 } 1410 1411 PotentialComponentIterator::const_iterator 1412 FindPolymorphicAllocatablePotentialComponent(const DerivedTypeSpec &derived) { 1413 PotentialComponentIterator potentials{derived}; 1414 return std::find_if( 1415 potentials.begin(), potentials.end(), IsPolymorphicAllocatable); 1416 } 1417 1418 const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived, 1419 const std::function<bool(const Symbol &)> &predicate) { 1420 UltimateComponentIterator ultimates{derived}; 1421 if (auto it{std::find_if(ultimates.begin(), ultimates.end(), 1422 [&predicate](const Symbol &component) -> bool { 1423 return predicate(component); 1424 })}) { 1425 return &*it; 1426 } 1427 return nullptr; 1428 } 1429 1430 const Symbol *FindUltimateComponent(const Symbol &symbol, 1431 const std::function<bool(const Symbol &)> &predicate) { 1432 if (predicate(symbol)) { 1433 return &symbol; 1434 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 1435 if (const auto *type{object->type()}) { 1436 if (const auto *derived{type->AsDerived()}) { 1437 return FindUltimateComponent(*derived, predicate); 1438 } 1439 } 1440 } 1441 return nullptr; 1442 } 1443 1444 const Symbol *FindImmediateComponent(const DerivedTypeSpec &type, 1445 const std::function<bool(const Symbol &)> &predicate) { 1446 if (const Scope * scope{type.scope()}) { 1447 const Symbol *parent{nullptr}; 1448 for (const auto &pair : *scope) { 1449 const Symbol *symbol{&*pair.second}; 1450 if (predicate(*symbol)) { 1451 return symbol; 1452 } 1453 if (symbol->test(Symbol::Flag::ParentComp)) { 1454 parent = symbol; 1455 } 1456 } 1457 if (parent) { 1458 if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) { 1459 if (const auto *type{object->type()}) { 1460 if (const auto *derived{type->AsDerived()}) { 1461 return FindImmediateComponent(*derived, predicate); 1462 } 1463 } 1464 } 1465 } 1466 } 1467 return nullptr; 1468 } 1469 1470 const Symbol *IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) { 1471 if (IsFunctionResult(symbol)) { 1472 if (const Symbol * function{symbol.owner().symbol()}) { 1473 if (symbol.name() == function->name()) { 1474 return function; 1475 } 1476 } 1477 // Check ENTRY result symbols too 1478 const Scope &outer{symbol.owner().parent()}; 1479 auto iter{outer.find(symbol.name())}; 1480 if (iter != outer.end()) { 1481 const Symbol &outerSym{*iter->second}; 1482 if (const auto *subp{outerSym.detailsIf<SubprogramDetails>()}) { 1483 if (subp->entryScope() == &symbol.owner() && 1484 symbol.name() == outerSym.name()) { 1485 return &outerSym; 1486 } 1487 } 1488 } 1489 } 1490 return nullptr; 1491 } 1492 1493 void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) { 1494 CheckLabelUse(gotoStmt.v); 1495 } 1496 void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) { 1497 for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) { 1498 CheckLabelUse(i); 1499 } 1500 } 1501 1502 void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) { 1503 CheckLabelUse(std::get<1>(arithmeticIfStmt.t)); 1504 CheckLabelUse(std::get<2>(arithmeticIfStmt.t)); 1505 CheckLabelUse(std::get<3>(arithmeticIfStmt.t)); 1506 } 1507 1508 void LabelEnforce::Post(const parser::AssignStmt &assignStmt) { 1509 CheckLabelUse(std::get<parser::Label>(assignStmt.t)); 1510 } 1511 1512 void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) { 1513 for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) { 1514 CheckLabelUse(i); 1515 } 1516 } 1517 1518 void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) { 1519 CheckLabelUse(altReturnSpec.v); 1520 } 1521 1522 void LabelEnforce::Post(const parser::ErrLabel &errLabel) { 1523 CheckLabelUse(errLabel.v); 1524 } 1525 void LabelEnforce::Post(const parser::EndLabel &endLabel) { 1526 CheckLabelUse(endLabel.v); 1527 } 1528 void LabelEnforce::Post(const parser::EorLabel &eorLabel) { 1529 CheckLabelUse(eorLabel.v); 1530 } 1531 1532 void LabelEnforce::CheckLabelUse(const parser::Label &labelUsed) { 1533 if (labels_.find(labelUsed) == labels_.end()) { 1534 SayWithConstruct(context_, currentStatementSourcePosition_, 1535 parser::MessageFormattedText{ 1536 "Control flow escapes from %s"_err_en_US, construct_}, 1537 constructSourcePosition_); 1538 } 1539 } 1540 1541 parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() { 1542 return {"Enclosing %s statement"_en_US, construct_}; 1543 } 1544 1545 void LabelEnforce::SayWithConstruct(SemanticsContext &context, 1546 parser::CharBlock stmtLocation, parser::MessageFormattedText &&message, 1547 parser::CharBlock constructLocation) { 1548 context.Say(stmtLocation, message) 1549 .Attach(constructLocation, GetEnclosingConstructMsg()); 1550 } 1551 1552 bool HasAlternateReturns(const Symbol &subprogram) { 1553 for (const auto *dummyArg : subprogram.get<SubprogramDetails>().dummyArgs()) { 1554 if (!dummyArg) { 1555 return true; 1556 } 1557 } 1558 return false; 1559 } 1560 1561 bool IsAutomaticallyDestroyed(const Symbol &symbol) { 1562 return symbol.has<ObjectEntityDetails>() && 1563 (symbol.owner().kind() == Scope::Kind::Subprogram || 1564 symbol.owner().kind() == Scope::Kind::BlockConstruct) && 1565 !IsNamedConstant(symbol) && (!IsDummy(symbol) || IsIntentOut(symbol)) && 1566 !IsPointer(symbol) && !IsSaved(symbol) && 1567 !FindCommonBlockContaining(symbol); 1568 } 1569 1570 const std::optional<parser::Name> &MaybeGetNodeName( 1571 const ConstructNode &construct) { 1572 return common::visit( 1573 common::visitors{ 1574 [&](const parser::BlockConstruct *blockConstruct) 1575 -> const std::optional<parser::Name> & { 1576 return std::get<0>(blockConstruct->t).statement.v; 1577 }, 1578 [&](const auto *a) -> const std::optional<parser::Name> & { 1579 return std::get<0>(std::get<0>(a->t).statement.t); 1580 }, 1581 }, 1582 construct); 1583 } 1584 1585 std::optional<ArraySpec> ToArraySpec( 1586 evaluate::FoldingContext &context, const evaluate::Shape &shape) { 1587 if (auto extents{evaluate::AsConstantExtents(context, shape)}) { 1588 ArraySpec result; 1589 for (const auto &extent : *extents) { 1590 result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent})); 1591 } 1592 return {std::move(result)}; 1593 } else { 1594 return std::nullopt; 1595 } 1596 } 1597 1598 std::optional<ArraySpec> ToArraySpec(evaluate::FoldingContext &context, 1599 const std::optional<evaluate::Shape> &shape) { 1600 return shape ? ToArraySpec(context, *shape) : std::nullopt; 1601 } 1602 1603 static const DeclTypeSpec *GetDtvArgTypeSpec(const Symbol &proc) { 1604 if (const auto *subp{proc.detailsIf<SubprogramDetails>()}; 1605 subp && !subp->dummyArgs().empty()) { 1606 if (const auto *arg{subp->dummyArgs()[0]}) { 1607 return arg->GetType(); 1608 } 1609 } 1610 return nullptr; 1611 } 1612 1613 const DerivedTypeSpec *GetDtvArgDerivedType(const Symbol &proc) { 1614 if (const auto *type{GetDtvArgTypeSpec(proc)}) { 1615 return type->AsDerived(); 1616 } else { 1617 return nullptr; 1618 } 1619 } 1620 1621 bool HasDefinedIo(common::DefinedIo which, const DerivedTypeSpec &derived, 1622 const Scope *scope) { 1623 if (const Scope * dtScope{derived.scope()}) { 1624 for (const auto &pair : *dtScope) { 1625 const Symbol &symbol{*pair.second}; 1626 if (const auto *generic{symbol.detailsIf<GenericDetails>()}) { 1627 GenericKind kind{generic->kind()}; 1628 if (const auto *io{std::get_if<common::DefinedIo>(&kind.u)}) { 1629 if (*io == which) { 1630 return true; // type-bound GENERIC exists 1631 } 1632 } 1633 } 1634 } 1635 } 1636 if (scope) { 1637 SourceName name{GenericKind::AsFortran(which)}; 1638 evaluate::DynamicType dyDerived{derived}; 1639 for (; scope && !scope->IsGlobal(); scope = &scope->parent()) { 1640 auto iter{scope->find(name)}; 1641 if (iter != scope->end()) { 1642 const auto &generic{iter->second->GetUltimate().get<GenericDetails>()}; 1643 for (auto ref : generic.specificProcs()) { 1644 const Symbol &procSym{ref->GetUltimate()}; 1645 if (const DeclTypeSpec * dtSpec{GetDtvArgTypeSpec(procSym)}) { 1646 if (auto dyDummy{evaluate::DynamicType::From(*dtSpec)}) { 1647 if (dyDummy->IsTkCompatibleWith(dyDerived)) { 1648 return true; // GENERIC or INTERFACE not in type 1649 } 1650 } 1651 } 1652 } 1653 } 1654 } 1655 } 1656 // Check for inherited defined I/O 1657 const auto *parentType{derived.typeSymbol().GetParentTypeSpec()}; 1658 return parentType && HasDefinedIo(which, *parentType, scope); 1659 } 1660 1661 template <typename E> 1662 std::forward_list<std::string> GetOperatorNames( 1663 const SemanticsContext &context, E opr) { 1664 std::forward_list<std::string> result; 1665 for (const char *name : context.languageFeatures().GetNames(opr)) { 1666 result.emplace_front("operator("s + name + ')'); 1667 } 1668 return result; 1669 } 1670 1671 std::forward_list<std::string> GetAllNames( 1672 const SemanticsContext &context, const SourceName &name) { 1673 std::string str{name.ToString()}; 1674 if (!name.empty() && name.end()[-1] == ')' && 1675 name.ToString().rfind("operator(", 0) == 0) { 1676 for (int i{0}; i != common::LogicalOperator_enumSize; ++i) { 1677 auto names{GetOperatorNames(context, common::LogicalOperator{i})}; 1678 if (llvm::is_contained(names, str)) { 1679 return names; 1680 } 1681 } 1682 for (int i{0}; i != common::RelationalOperator_enumSize; ++i) { 1683 auto names{GetOperatorNames(context, common::RelationalOperator{i})}; 1684 if (llvm::is_contained(names, str)) { 1685 return names; 1686 } 1687 } 1688 } 1689 return {str}; 1690 } 1691 1692 void WarnOnDeferredLengthCharacterScalar(SemanticsContext &context, 1693 const SomeExpr *expr, parser::CharBlock at, const char *what) { 1694 if (context.languageFeatures().ShouldWarn( 1695 common::UsageWarning::F202XAllocatableBreakingChange)) { 1696 if (const Symbol * 1697 symbol{evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)}) { 1698 const Symbol &ultimate{ResolveAssociations(*symbol)}; 1699 if (const DeclTypeSpec * type{ultimate.GetType()}; type && 1700 type->category() == DeclTypeSpec::Category::Character && 1701 type->characterTypeSpec().length().isDeferred() && 1702 IsAllocatable(ultimate) && ultimate.Rank() == 0) { 1703 context.Say(at, 1704 "The deferred length allocatable character scalar variable '%s' may be reallocated to a different length under the new Fortran 202X standard semantics for %s"_port_en_US, 1705 symbol->name(), what); 1706 } 1707 } 1708 } 1709 } 1710 1711 bool CouldBeDataPointerValuedFunction(const Symbol *original) { 1712 if (original) { 1713 const Symbol &ultimate{original->GetUltimate()}; 1714 if (const Symbol * result{FindFunctionResult(ultimate)}) { 1715 return IsPointer(*result) && !IsProcedure(*result); 1716 } 1717 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 1718 for (const SymbolRef &ref : generic->specificProcs()) { 1719 if (CouldBeDataPointerValuedFunction(&*ref)) { 1720 return true; 1721 } 1722 } 1723 } 1724 } 1725 return false; 1726 } 1727 1728 std::string GetModuleOrSubmoduleName(const Symbol &symbol) { 1729 const auto &details{symbol.get<ModuleDetails>()}; 1730 std::string result{symbol.name().ToString()}; 1731 if (details.ancestor() && details.ancestor()->symbol()) { 1732 result = details.ancestor()->symbol()->name().ToString() + ':' + result; 1733 } 1734 return result; 1735 } 1736 1737 std::string GetCommonBlockObjectName(const Symbol &common, bool underscoring) { 1738 if (const std::string * bind{common.GetBindName()}) { 1739 return *bind; 1740 } 1741 if (common.name().empty()) { 1742 return Fortran::common::blankCommonObjectName; 1743 } 1744 return underscoring ? common.name().ToString() + "_"s 1745 : common.name().ToString(); 1746 } 1747 1748 bool HadUseError( 1749 SemanticsContext &context, SourceName at, const Symbol *symbol) { 1750 if (const auto *details{ 1751 symbol ? symbol->detailsIf<UseErrorDetails>() : nullptr}) { 1752 auto &msg{context.Say( 1753 at, "Reference to '%s' is ambiguous"_err_en_US, symbol->name())}; 1754 for (const auto &[location, module] : details->occurrences()) { 1755 msg.Attach(location, "'%s' was use-associated from module '%s'"_en_US, at, 1756 module->GetName().value()); 1757 } 1758 context.SetError(*symbol); 1759 return true; 1760 } else { 1761 return false; 1762 } 1763 } 1764 1765 } // namespace Fortran::semantics 1766