xref: /llvm-project/flang/lib/Semantics/tools.cpp (revision f4fc959c35eb862776ac2e83cb9f41aa88989e3f)
1 //===-- lib/Semantics/tools.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Parser/tools.h"
10 #include "flang/Common/Fortran.h"
11 #include "flang/Common/indirection.h"
12 #include "flang/Parser/dump-parse-tree.h"
13 #include "flang/Parser/message.h"
14 #include "flang/Parser/parse-tree.h"
15 #include "flang/Semantics/scope.h"
16 #include "flang/Semantics/semantics.h"
17 #include "flang/Semantics/symbol.h"
18 #include "flang/Semantics/tools.h"
19 #include "flang/Semantics/type.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include <algorithm>
22 #include <set>
23 #include <variant>
24 
25 namespace Fortran::semantics {
26 
27 // Find this or containing scope that matches predicate
28 static const Scope *FindScopeContaining(
29     const Scope &start, std::function<bool(const Scope &)> predicate) {
30   for (const Scope *scope{&start};; scope = &scope->parent()) {
31     if (predicate(*scope)) {
32       return scope;
33     }
34     if (scope->IsTopLevel()) {
35       return nullptr;
36     }
37   }
38 }
39 
40 const Scope &GetTopLevelUnitContaining(const Scope &start) {
41   CHECK(!start.IsTopLevel());
42   return DEREF(FindScopeContaining(
43       start, [](const Scope &scope) { return scope.parent().IsTopLevel(); }));
44 }
45 
46 const Scope &GetTopLevelUnitContaining(const Symbol &symbol) {
47   return GetTopLevelUnitContaining(symbol.owner());
48 }
49 
50 const Scope *FindModuleContaining(const Scope &start) {
51   return FindScopeContaining(
52       start, [](const Scope &scope) { return scope.IsModule(); });
53 }
54 
55 const Scope *FindModuleFileContaining(const Scope &start) {
56   return FindScopeContaining(
57       start, [](const Scope &scope) { return scope.IsModuleFile(); });
58 }
59 
60 const Scope &GetProgramUnitContaining(const Scope &start) {
61   CHECK(!start.IsTopLevel());
62   return DEREF(FindScopeContaining(start, [](const Scope &scope) {
63     switch (scope.kind()) {
64     case Scope::Kind::Module:
65     case Scope::Kind::MainProgram:
66     case Scope::Kind::Subprogram:
67     case Scope::Kind::BlockData:
68       return true;
69     default:
70       return false;
71     }
72   }));
73 }
74 
75 const Scope &GetProgramUnitContaining(const Symbol &symbol) {
76   return GetProgramUnitContaining(symbol.owner());
77 }
78 
79 const Scope &GetProgramUnitOrBlockConstructContaining(const Scope &start) {
80   CHECK(!start.IsTopLevel());
81   return DEREF(FindScopeContaining(start, [](const Scope &scope) {
82     switch (scope.kind()) {
83     case Scope::Kind::Module:
84     case Scope::Kind::MainProgram:
85     case Scope::Kind::Subprogram:
86     case Scope::Kind::BlockData:
87     case Scope::Kind::BlockConstruct:
88       return true;
89     default:
90       return false;
91     }
92   }));
93 }
94 
95 const Scope &GetProgramUnitOrBlockConstructContaining(const Symbol &symbol) {
96   return GetProgramUnitOrBlockConstructContaining(symbol.owner());
97 }
98 
99 const Scope *FindPureProcedureContaining(const Scope &start) {
100   // N.B. We only need to examine the innermost containing program unit
101   // because an internal subprogram of a pure subprogram must also
102   // be pure (C1592).
103   if (start.IsTopLevel()) {
104     return nullptr;
105   } else {
106     const Scope &scope{GetProgramUnitContaining(start)};
107     return IsPureProcedure(scope) ? &scope : nullptr;
108   }
109 }
110 
111 const Scope *FindOpenACCConstructContaining(const Scope *scope) {
112   return scope ? FindScopeContaining(*scope,
113                      [](const Scope &s) {
114                        return s.kind() == Scope::Kind::OpenACCConstruct;
115                      })
116                : nullptr;
117 }
118 
119 // 7.5.2.4 "same derived type" test -- rely on IsTkCompatibleWith() and its
120 // infrastructure to detect and handle comparisons on distinct (but "same")
121 // sequence/bind(C) derived types
122 static bool MightBeSameDerivedType(
123     const std::optional<evaluate::DynamicType> &lhsType,
124     const std::optional<evaluate::DynamicType> &rhsType) {
125   return lhsType && rhsType && lhsType->IsTkCompatibleWith(*rhsType);
126 }
127 
128 Tristate IsDefinedAssignment(
129     const std::optional<evaluate::DynamicType> &lhsType, int lhsRank,
130     const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) {
131   if (!lhsType || !rhsType) {
132     return Tristate::No; // error or rhs is untyped
133   }
134   if (lhsType->IsUnlimitedPolymorphic()) {
135     return Tristate::No;
136   }
137   if (rhsType->IsUnlimitedPolymorphic()) {
138     return Tristate::Maybe;
139   }
140   TypeCategory lhsCat{lhsType->category()};
141   TypeCategory rhsCat{rhsType->category()};
142   if (rhsRank > 0 && lhsRank != rhsRank) {
143     return Tristate::Yes;
144   } else if (lhsCat != TypeCategory::Derived) {
145     return ToTristate(lhsCat != rhsCat &&
146         (!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat)));
147   } else if (MightBeSameDerivedType(lhsType, rhsType)) {
148     return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic
149   } else {
150     return Tristate::Yes;
151   }
152 }
153 
154 bool IsIntrinsicRelational(common::RelationalOperator opr,
155     const evaluate::DynamicType &type0, int rank0,
156     const evaluate::DynamicType &type1, int rank1) {
157   if (!evaluate::AreConformable(rank0, rank1)) {
158     return false;
159   } else {
160     auto cat0{type0.category()};
161     auto cat1{type1.category()};
162     if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) {
163       // numeric types: EQ/NE always ok, others ok for non-complex
164       return opr == common::RelationalOperator::EQ ||
165           opr == common::RelationalOperator::NE ||
166           (cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex);
167     } else {
168       // not both numeric: only Character is ok
169       return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character;
170     }
171   }
172 }
173 
174 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) {
175   return IsNumericTypeCategory(type0.category());
176 }
177 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0,
178     const evaluate::DynamicType &type1, int rank1) {
179   return evaluate::AreConformable(rank0, rank1) &&
180       IsNumericTypeCategory(type0.category()) &&
181       IsNumericTypeCategory(type1.category());
182 }
183 
184 bool IsIntrinsicLogical(const evaluate::DynamicType &type0) {
185   return type0.category() == TypeCategory::Logical;
186 }
187 bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0,
188     const evaluate::DynamicType &type1, int rank1) {
189   return evaluate::AreConformable(rank0, rank1) &&
190       type0.category() == TypeCategory::Logical &&
191       type1.category() == TypeCategory::Logical;
192 }
193 
194 bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0,
195     const evaluate::DynamicType &type1, int rank1) {
196   return evaluate::AreConformable(rank0, rank1) &&
197       type0.category() == TypeCategory::Character &&
198       type1.category() == TypeCategory::Character &&
199       type0.kind() == type1.kind();
200 }
201 
202 bool IsGenericDefinedOp(const Symbol &symbol) {
203   const Symbol &ultimate{symbol.GetUltimate()};
204   if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
205     return generic->kind().IsDefinedOperator();
206   } else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) {
207     return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp;
208   } else {
209     return false;
210   }
211 }
212 
213 bool IsDefinedOperator(SourceName name) {
214   const char *begin{name.begin()};
215   const char *end{name.end()};
216   return begin != end && begin[0] == '.' && end[-1] == '.';
217 }
218 
219 std::string MakeOpName(SourceName name) {
220   std::string result{name.ToString()};
221   return IsDefinedOperator(name)         ? "OPERATOR(" + result + ")"
222       : result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result)
223                                          : result;
224 }
225 
226 bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) {
227   const auto &objects{block.get<CommonBlockDetails>().objects()};
228   return llvm::is_contained(objects, object);
229 }
230 
231 bool IsUseAssociated(const Symbol &symbol, const Scope &scope) {
232   const Scope &owner{GetTopLevelUnitContaining(symbol.GetUltimate().owner())};
233   return owner.kind() == Scope::Kind::Module &&
234       owner != GetTopLevelUnitContaining(scope);
235 }
236 
237 bool DoesScopeContain(
238     const Scope *maybeAncestor, const Scope &maybeDescendent) {
239   return maybeAncestor && !maybeDescendent.IsTopLevel() &&
240       FindScopeContaining(maybeDescendent.parent(),
241           [&](const Scope &scope) { return &scope == maybeAncestor; });
242 }
243 
244 bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) {
245   return DoesScopeContain(maybeAncestor, symbol.owner());
246 }
247 
248 static const Symbol &FollowHostAssoc(const Symbol &symbol) {
249   for (const Symbol *s{&symbol};;) {
250     const auto *details{s->detailsIf<HostAssocDetails>()};
251     if (!details) {
252       return *s;
253     }
254     s = &details->symbol();
255   }
256 }
257 
258 bool IsHostAssociated(const Symbol &symbol, const Scope &scope) {
259   return DoesScopeContain(
260       &GetProgramUnitOrBlockConstructContaining(FollowHostAssoc(symbol)),
261       GetProgramUnitOrBlockConstructContaining(scope));
262 }
263 
264 bool IsHostAssociatedIntoSubprogram(const Symbol &symbol, const Scope &scope) {
265   return DoesScopeContain(
266       &GetProgramUnitOrBlockConstructContaining(FollowHostAssoc(symbol)),
267       GetProgramUnitContaining(scope));
268 }
269 
270 bool IsInStmtFunction(const Symbol &symbol) {
271   if (const Symbol * function{symbol.owner().symbol()}) {
272     return IsStmtFunction(*function);
273   }
274   return false;
275 }
276 
277 bool IsStmtFunctionDummy(const Symbol &symbol) {
278   return IsDummy(symbol) && IsInStmtFunction(symbol);
279 }
280 
281 bool IsStmtFunctionResult(const Symbol &symbol) {
282   return IsFunctionResult(symbol) && IsInStmtFunction(symbol);
283 }
284 
285 bool IsPointerDummy(const Symbol &symbol) {
286   return IsPointer(symbol) && IsDummy(symbol);
287 }
288 
289 bool IsBindCProcedure(const Symbol &original) {
290   const Symbol &symbol{original.GetUltimate()};
291   if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
292     if (procDetails->procInterface()) {
293       // procedure component with a BIND(C) interface
294       return IsBindCProcedure(*procDetails->procInterface());
295     }
296   }
297   return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol);
298 }
299 
300 bool IsBindCProcedure(const Scope &scope) {
301   if (const Symbol * symbol{scope.GetSymbol()}) {
302     return IsBindCProcedure(*symbol);
303   } else {
304     return false;
305   }
306 }
307 
308 static const Symbol *FindPointerComponent(
309     const Scope &scope, std::set<const Scope *> &visited) {
310   if (!scope.IsDerivedType()) {
311     return nullptr;
312   }
313   if (!visited.insert(&scope).second) {
314     return nullptr;
315   }
316   // If there's a top-level pointer component, return it for clearer error
317   // messaging.
318   for (const auto &pair : scope) {
319     const Symbol &symbol{*pair.second};
320     if (IsPointer(symbol)) {
321       return &symbol;
322     }
323   }
324   for (const auto &pair : scope) {
325     const Symbol &symbol{*pair.second};
326     if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
327       if (const DeclTypeSpec * type{details->type()}) {
328         if (const DerivedTypeSpec * derived{type->AsDerived()}) {
329           if (const Scope * nested{derived->scope()}) {
330             if (const Symbol *
331                 pointer{FindPointerComponent(*nested, visited)}) {
332               return pointer;
333             }
334           }
335         }
336       }
337     }
338   }
339   return nullptr;
340 }
341 
342 const Symbol *FindPointerComponent(const Scope &scope) {
343   std::set<const Scope *> visited;
344   return FindPointerComponent(scope, visited);
345 }
346 
347 const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) {
348   if (const Scope * scope{derived.scope()}) {
349     return FindPointerComponent(*scope);
350   } else {
351     return nullptr;
352   }
353 }
354 
355 const Symbol *FindPointerComponent(const DeclTypeSpec &type) {
356   if (const DerivedTypeSpec * derived{type.AsDerived()}) {
357     return FindPointerComponent(*derived);
358   } else {
359     return nullptr;
360   }
361 }
362 
363 const Symbol *FindPointerComponent(const DeclTypeSpec *type) {
364   return type ? FindPointerComponent(*type) : nullptr;
365 }
366 
367 const Symbol *FindPointerComponent(const Symbol &symbol) {
368   return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType());
369 }
370 
371 // C1594 specifies several ways by which an object might be globally visible.
372 const Symbol *FindExternallyVisibleObject(
373     const Symbol &object, const Scope &scope, bool isPointerDefinition) {
374   // TODO: Storage association with any object for which this predicate holds,
375   // once EQUIVALENCE is supported.
376   const Symbol &ultimate{GetAssociationRoot(object)};
377   if (IsDummy(ultimate)) {
378     if (IsIntentIn(ultimate)) {
379       return &ultimate;
380     }
381     if (!isPointerDefinition && IsPointer(ultimate) &&
382         IsPureProcedure(ultimate.owner()) && IsFunction(ultimate.owner())) {
383       return &ultimate;
384     }
385   } else if (ultimate.owner().IsDerivedType()) {
386     return nullptr;
387   } else if (&GetProgramUnitContaining(ultimate) !=
388       &GetProgramUnitContaining(scope)) {
389     return &object;
390   } else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) {
391     return block;
392   }
393   return nullptr;
394 }
395 
396 const Symbol &BypassGeneric(const Symbol &symbol) {
397   const Symbol &ultimate{symbol.GetUltimate()};
398   if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
399     if (const Symbol * specific{generic->specific()}) {
400       return *specific;
401     }
402   }
403   return symbol;
404 }
405 
406 const Symbol &GetCrayPointer(const Symbol &crayPointee) {
407   const Symbol *found{nullptr};
408   for (const auto &[pointee, pointer] :
409       crayPointee.GetUltimate().owner().crayPointers()) {
410     if (pointee == crayPointee.name()) {
411       found = &pointer.get();
412       break;
413     }
414   }
415   return DEREF(found);
416 }
417 
418 bool ExprHasTypeCategory(
419     const SomeExpr &expr, const common::TypeCategory &type) {
420   auto dynamicType{expr.GetType()};
421   return dynamicType && dynamicType->category() == type;
422 }
423 
424 bool ExprTypeKindIsDefault(
425     const SomeExpr &expr, const SemanticsContext &context) {
426   auto dynamicType{expr.GetType()};
427   return dynamicType &&
428       dynamicType->category() != common::TypeCategory::Derived &&
429       dynamicType->kind() == context.GetDefaultKind(dynamicType->category());
430 }
431 
432 // If an analyzed expr or assignment is missing, dump the node and die.
433 template <typename T>
434 static void CheckMissingAnalysis(
435     bool crash, SemanticsContext *context, const T &x) {
436   if (crash && !(context && context->AnyFatalError())) {
437     std::string buf;
438     llvm::raw_string_ostream ss{buf};
439     ss << "node has not been analyzed:\n";
440     parser::DumpTree(ss, x);
441     common::die(ss.str().c_str());
442   }
443 }
444 
445 const SomeExpr *GetExprHelper::Get(const parser::Expr &x) {
446   CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
447   return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
448 }
449 const SomeExpr *GetExprHelper::Get(const parser::Variable &x) {
450   CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
451   return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
452 }
453 const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) {
454   CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
455   return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
456 }
457 const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) {
458   CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
459   return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
460 }
461 const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) {
462   CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
463   return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
464 }
465 
466 const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) {
467   return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v)
468                            : nullptr;
469 }
470 const evaluate::Assignment *GetAssignment(
471     const parser::PointerAssignmentStmt &x) {
472   return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v)
473                            : nullptr;
474 }
475 
476 const Symbol *FindInterface(const Symbol &symbol) {
477   return common::visit(
478       common::visitors{
479           [](const ProcEntityDetails &details) {
480             const Symbol *interface{details.procInterface()};
481             return interface ? FindInterface(*interface) : nullptr;
482           },
483           [](const ProcBindingDetails &details) {
484             return FindInterface(details.symbol());
485           },
486           [&](const SubprogramDetails &) { return &symbol; },
487           [](const UseDetails &details) {
488             return FindInterface(details.symbol());
489           },
490           [](const HostAssocDetails &details) {
491             return FindInterface(details.symbol());
492           },
493           [](const GenericDetails &details) {
494             return details.specific() ? FindInterface(*details.specific())
495                                       : nullptr;
496           },
497           [](const auto &) -> const Symbol * { return nullptr; },
498       },
499       symbol.details());
500 }
501 
502 const Symbol *FindSubprogram(const Symbol &symbol) {
503   return common::visit(
504       common::visitors{
505           [&](const ProcEntityDetails &details) -> const Symbol * {
506             if (details.procInterface()) {
507               return FindSubprogram(*details.procInterface());
508             } else {
509               return &symbol;
510             }
511           },
512           [](const ProcBindingDetails &details) {
513             return FindSubprogram(details.symbol());
514           },
515           [&](const SubprogramDetails &) { return &symbol; },
516           [](const UseDetails &details) {
517             return FindSubprogram(details.symbol());
518           },
519           [](const HostAssocDetails &details) {
520             return FindSubprogram(details.symbol());
521           },
522           [](const GenericDetails &details) {
523             return details.specific() ? FindSubprogram(*details.specific())
524                                       : nullptr;
525           },
526           [](const auto &) -> const Symbol * { return nullptr; },
527       },
528       symbol.details());
529 }
530 
531 const Symbol *FindOverriddenBinding(
532     const Symbol &symbol, bool &isInaccessibleDeferred) {
533   isInaccessibleDeferred = false;
534   if (symbol.has<ProcBindingDetails>()) {
535     if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) {
536       if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) {
537         if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) {
538           if (const Symbol *
539               overridden{parentScope->FindComponent(symbol.name())}) {
540             // 7.5.7.3 p1: only accessible bindings are overridden
541             if (!overridden->attrs().test(Attr::PRIVATE) ||
542                 FindModuleContaining(overridden->owner()) ==
543                     FindModuleContaining(symbol.owner())) {
544               return overridden;
545             } else if (overridden->attrs().test(Attr::DEFERRED)) {
546               isInaccessibleDeferred = true;
547               return overridden;
548             }
549           }
550         }
551       }
552     }
553   }
554   return nullptr;
555 }
556 
557 const Symbol *FindGlobal(const Symbol &original) {
558   const Symbol &ultimate{original.GetUltimate()};
559   if (ultimate.owner().IsGlobal()) {
560     return &ultimate;
561   }
562   bool isLocal{false};
563   if (IsDummy(ultimate)) {
564   } else if (IsPointer(ultimate)) {
565   } else if (ultimate.has<ProcEntityDetails>()) {
566     isLocal = IsExternal(ultimate);
567   } else if (const auto *subp{ultimate.detailsIf<SubprogramDetails>()}) {
568     isLocal = subp->isInterface();
569   }
570   if (isLocal) {
571     const std::string *bind{ultimate.GetBindName()};
572     if (!bind || ultimate.name() == *bind) {
573       const Scope &globalScope{ultimate.owner().context().globalScope()};
574       if (auto iter{globalScope.find(ultimate.name())};
575           iter != globalScope.end()) {
576         const Symbol &global{*iter->second};
577         const std::string *globalBind{global.GetBindName()};
578         if (!globalBind || global.name() == *globalBind) {
579           return &global;
580         }
581       }
582     }
583   }
584   return nullptr;
585 }
586 
587 const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) {
588   return FindParentTypeSpec(derived.typeSymbol());
589 }
590 
591 const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) {
592   if (const DerivedTypeSpec * derived{decl.AsDerived()}) {
593     return FindParentTypeSpec(*derived);
594   } else {
595     return nullptr;
596   }
597 }
598 
599 const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) {
600   if (scope.kind() == Scope::Kind::DerivedType) {
601     if (const auto *symbol{scope.symbol()}) {
602       return FindParentTypeSpec(*symbol);
603     }
604   }
605   return nullptr;
606 }
607 
608 const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) {
609   if (const Scope * scope{symbol.scope()}) {
610     if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) {
611       if (const Symbol * parent{details->GetParentComponent(*scope)}) {
612         return parent->GetType();
613       }
614     }
615   }
616   return nullptr;
617 }
618 
619 const EquivalenceSet *FindEquivalenceSet(const Symbol &symbol) {
620   const Symbol &ultimate{symbol.GetUltimate()};
621   for (const EquivalenceSet &set : ultimate.owner().equivalenceSets()) {
622     for (const EquivalenceObject &object : set) {
623       if (object.symbol == ultimate) {
624         return &set;
625       }
626     }
627   }
628   return nullptr;
629 }
630 
631 bool IsOrContainsEventOrLockComponent(const Symbol &original) {
632   const Symbol &symbol{ResolveAssociations(original)};
633   if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
634     if (const DeclTypeSpec * type{details->type()}) {
635       if (const DerivedTypeSpec * derived{type->AsDerived()}) {
636         return IsEventTypeOrLockType(derived) ||
637             FindEventOrLockPotentialComponent(*derived);
638       }
639     }
640   }
641   return false;
642 }
643 
644 // Check this symbol suitable as a type-bound procedure - C769
645 bool CanBeTypeBoundProc(const Symbol &symbol) {
646   if (IsDummy(symbol) || IsProcedurePointer(symbol)) {
647     return false;
648   } else if (symbol.has<SubprogramNameDetails>()) {
649     return symbol.owner().kind() == Scope::Kind::Module;
650   } else if (auto *details{symbol.detailsIf<SubprogramDetails>()}) {
651     if (details->isInterface()) {
652       return !symbol.attrs().test(Attr::ABSTRACT);
653     } else {
654       return symbol.owner().kind() == Scope::Kind::Module;
655     }
656   } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
657     return !symbol.attrs().test(Attr::INTRINSIC) &&
658         proc->HasExplicitInterface();
659   } else {
660     return false;
661   }
662 }
663 
664 bool HasDeclarationInitializer(const Symbol &symbol) {
665   if (IsNamedConstant(symbol)) {
666     return false;
667   } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
668     return object->init().has_value();
669   } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
670     return proc->init().has_value();
671   } else {
672     return false;
673   }
674 }
675 
676 bool IsInitialized(const Symbol &symbol, bool ignoreDataStatements,
677     bool ignoreAllocatable, bool ignorePointer) {
678   if (!ignoreAllocatable && IsAllocatable(symbol)) {
679     return true;
680   } else if (!ignoreDataStatements && symbol.test(Symbol::Flag::InDataStmt)) {
681     return true;
682   } else if (HasDeclarationInitializer(symbol)) {
683     return true;
684   } else if (IsPointer(symbol)) {
685     return !ignorePointer;
686   } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol)) {
687     return false;
688   } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
689     if (!object->isDummy() && object->type()) {
690       if (const auto *derived{object->type()->AsDerived()}) {
691         return derived->HasDefaultInitialization(
692             ignoreAllocatable, ignorePointer);
693       }
694     }
695   }
696   return false;
697 }
698 
699 bool IsDestructible(const Symbol &symbol, const Symbol *derivedTypeSymbol) {
700   if (IsAllocatable(symbol) || IsAutomatic(symbol)) {
701     return true;
702   } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) ||
703       IsPointer(symbol)) {
704     return false;
705   } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
706     if (!object->isDummy() && object->type()) {
707       if (const auto *derived{object->type()->AsDerived()}) {
708         return &derived->typeSymbol() != derivedTypeSymbol &&
709             derived->HasDestruction();
710       }
711     }
712   }
713   return false;
714 }
715 
716 bool HasIntrinsicTypeName(const Symbol &symbol) {
717   std::string name{symbol.name().ToString()};
718   if (name == "doubleprecision") {
719     return true;
720   } else if (name == "derived") {
721     return false;
722   } else {
723     for (int i{0}; i != common::TypeCategory_enumSize; ++i) {
724       if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) {
725         return true;
726       }
727     }
728     return false;
729   }
730 }
731 
732 bool IsSeparateModuleProcedureInterface(const Symbol *symbol) {
733   if (symbol && symbol->attrs().test(Attr::MODULE)) {
734     if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
735       return details->isInterface();
736     }
737   }
738   return false;
739 }
740 
741 SymbolVector FinalsForDerivedTypeInstantiation(const DerivedTypeSpec &spec) {
742   SymbolVector result;
743   const Symbol &typeSymbol{spec.typeSymbol()};
744   if (const auto *derived{typeSymbol.detailsIf<DerivedTypeDetails>()}) {
745     for (const auto &pair : derived->finals()) {
746       const Symbol &subr{*pair.second};
747       // Errors in FINAL subroutines are caught in CheckFinal
748       // in check-declarations.cpp.
749       if (const auto *subprog{subr.detailsIf<SubprogramDetails>()};
750           subprog && subprog->dummyArgs().size() == 1) {
751         if (const Symbol * arg{subprog->dummyArgs()[0]}) {
752           if (const DeclTypeSpec * type{arg->GetType()}) {
753             if (type->category() == DeclTypeSpec::TypeDerived &&
754                 evaluate::AreSameDerivedType(spec, type->derivedTypeSpec())) {
755               result.emplace_back(subr);
756             }
757           }
758         }
759       }
760     }
761   }
762   return result;
763 }
764 
765 const Symbol *IsFinalizable(const Symbol &symbol,
766     std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer) {
767   if (IsPointer(symbol) || evaluate::IsAssumedRank(symbol)) {
768     return nullptr;
769   }
770   if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
771     if (object->isDummy() && !IsIntentOut(symbol)) {
772       return nullptr;
773     }
774     const DeclTypeSpec *type{object->type()};
775     if (const DerivedTypeSpec * typeSpec{type ? type->AsDerived() : nullptr}) {
776       return IsFinalizable(
777           *typeSpec, inProgress, withImpureFinalizer, symbol.Rank());
778     }
779   }
780   return nullptr;
781 }
782 
783 const Symbol *IsFinalizable(const DerivedTypeSpec &derived,
784     std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer,
785     std::optional<int> rank) {
786   const Symbol *elemental{nullptr};
787   for (auto ref : FinalsForDerivedTypeInstantiation(derived)) {
788     const Symbol *symbol{&ref->GetUltimate()};
789     if (const auto *binding{symbol->detailsIf<ProcBindingDetails>()}) {
790       symbol = &binding->symbol();
791     }
792     if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) {
793       symbol = proc->procInterface();
794     }
795     if (!symbol) {
796     } else if (IsElementalProcedure(*symbol)) {
797       elemental = symbol;
798     } else {
799       if (rank) {
800         if (const SubprogramDetails *
801             subp{symbol->detailsIf<SubprogramDetails>()}) {
802           if (const auto &args{subp->dummyArgs()}; !args.empty() &&
803               args.at(0) && !evaluate::IsAssumedRank(*args.at(0)) &&
804               args.at(0)->Rank() != *rank) {
805             continue; // not a finalizer for this rank
806           }
807         }
808       }
809       if (!withImpureFinalizer || !IsPureProcedure(*symbol)) {
810         return symbol;
811       }
812       // Found non-elemental pure finalizer of matching rank, but still
813       // need to check components for an impure finalizer.
814       elemental = nullptr;
815       break;
816     }
817   }
818   if (elemental && (!withImpureFinalizer || !IsPureProcedure(*elemental))) {
819     return elemental;
820   }
821   // Check components (including ancestors)
822   std::set<const DerivedTypeSpec *> basis;
823   if (inProgress) {
824     if (inProgress->find(&derived) != inProgress->end()) {
825       return nullptr; // don't loop on recursive type
826     }
827   } else {
828     inProgress = &basis;
829   }
830   auto iterator{inProgress->insert(&derived).first};
831   const Symbol *result{nullptr};
832   for (const Symbol &component : PotentialComponentIterator{derived}) {
833     result = IsFinalizable(component, inProgress, withImpureFinalizer);
834     if (result) {
835       break;
836     }
837   }
838   inProgress->erase(iterator);
839   return result;
840 }
841 
842 static const Symbol *HasImpureFinal(
843     const DerivedTypeSpec &derived, std::optional<int> rank) {
844   return IsFinalizable(derived, nullptr, /*withImpureFinalizer=*/true, rank);
845 }
846 
847 const Symbol *HasImpureFinal(const Symbol &original, std::optional<int> rank) {
848   const Symbol &symbol{ResolveAssociations(original)};
849   if (symbol.has<ObjectEntityDetails>()) {
850     if (const DeclTypeSpec * symType{symbol.GetType()}) {
851       if (const DerivedTypeSpec * derived{symType->AsDerived()}) {
852         if (evaluate::IsAssumedRank(symbol)) {
853           // finalizable assumed-rank not allowed (C839)
854           return nullptr;
855         } else {
856           int actualRank{rank.value_or(symbol.Rank())};
857           return HasImpureFinal(*derived, actualRank);
858         }
859       }
860     }
861   }
862   return nullptr;
863 }
864 
865 bool MayRequireFinalization(const DerivedTypeSpec &derived) {
866   return IsFinalizable(derived) ||
867       FindPolymorphicAllocatableUltimateComponent(derived);
868 }
869 
870 bool HasAllocatableDirectComponent(const DerivedTypeSpec &derived) {
871   DirectComponentIterator directs{derived};
872   return std::any_of(directs.begin(), directs.end(), IsAllocatable);
873 }
874 
875 bool IsAssumedLengthCharacter(const Symbol &symbol) {
876   if (const DeclTypeSpec * type{symbol.GetType()}) {
877     return type->category() == DeclTypeSpec::Character &&
878         type->characterTypeSpec().length().isAssumed();
879   } else {
880     return false;
881   }
882 }
883 
884 bool IsInBlankCommon(const Symbol &symbol) {
885   const Symbol *block{FindCommonBlockContaining(symbol)};
886   return block && block->name().empty();
887 }
888 
889 // C722 and C723:  For a function to be assumed length, it must be external and
890 // of CHARACTER type
891 bool IsExternal(const Symbol &symbol) {
892   return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External;
893 }
894 
895 // Most scopes have no EQUIVALENCE, and this function is a fast no-op for them.
896 std::list<std::list<SymbolRef>> GetStorageAssociations(const Scope &scope) {
897   UnorderedSymbolSet distinct;
898   for (const EquivalenceSet &set : scope.equivalenceSets()) {
899     for (const EquivalenceObject &object : set) {
900       distinct.emplace(object.symbol);
901     }
902   }
903   // This set is ordered by ascending offsets, with ties broken by greatest
904   // size.  A multiset is used here because multiple symbols may have the
905   // same offset and size; the symbols in the set, however, are distinct.
906   std::multiset<SymbolRef, SymbolOffsetCompare> associated;
907   for (SymbolRef ref : distinct) {
908     associated.emplace(*ref);
909   }
910   std::list<std::list<SymbolRef>> result;
911   std::size_t limit{0};
912   const Symbol *currentCommon{nullptr};
913   for (const Symbol &symbol : associated) {
914     const Symbol *thisCommon{FindCommonBlockContaining(symbol)};
915     if (result.empty() || symbol.offset() >= limit ||
916         thisCommon != currentCommon) {
917       // Start a new group
918       result.emplace_back(std::list<SymbolRef>{});
919       limit = 0;
920       currentCommon = thisCommon;
921     }
922     result.back().emplace_back(symbol);
923     limit = std::max(limit, symbol.offset() + symbol.size());
924   }
925   return result;
926 }
927 
928 bool IsModuleProcedure(const Symbol &symbol) {
929   return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module;
930 }
931 
932 class ImageControlStmtHelper {
933   using ImageControlStmts =
934       std::variant<parser::ChangeTeamConstruct, parser::CriticalConstruct,
935           parser::EventPostStmt, parser::EventWaitStmt, parser::FormTeamStmt,
936           parser::LockStmt, parser::SyncAllStmt, parser::SyncImagesStmt,
937           parser::SyncMemoryStmt, parser::SyncTeamStmt, parser::UnlockStmt>;
938 
939 public:
940   template <typename T> bool operator()(const T &) {
941     return common::HasMember<T, ImageControlStmts>;
942   }
943   template <typename T> bool operator()(const common::Indirection<T> &x) {
944     return (*this)(x.value());
945   }
946   template <typename A> bool operator()(const parser::Statement<A> &x) {
947     return (*this)(x.statement);
948   }
949   bool operator()(const parser::AllocateStmt &stmt) {
950     const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)};
951     for (const auto &allocation : allocationList) {
952       const auto &allocateObject{
953           std::get<parser::AllocateObject>(allocation.t)};
954       if (IsCoarrayObject(allocateObject)) {
955         return true;
956       }
957     }
958     return false;
959   }
960   bool operator()(const parser::DeallocateStmt &stmt) {
961     const auto &allocateObjectList{
962         std::get<std::list<parser::AllocateObject>>(stmt.t)};
963     for (const auto &allocateObject : allocateObjectList) {
964       if (IsCoarrayObject(allocateObject)) {
965         return true;
966       }
967     }
968     return false;
969   }
970   bool operator()(const parser::CallStmt &stmt) {
971     const auto &procedureDesignator{
972         std::get<parser::ProcedureDesignator>(stmt.call.t)};
973     if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) {
974       // TODO: also ensure that the procedure is, in fact, an intrinsic
975       if (name->source == "move_alloc") {
976         const auto &args{
977             std::get<std::list<parser::ActualArgSpec>>(stmt.call.t)};
978         if (!args.empty()) {
979           const parser::ActualArg &actualArg{
980               std::get<parser::ActualArg>(args.front().t)};
981           if (const auto *argExpr{
982                   std::get_if<common::Indirection<parser::Expr>>(
983                       &actualArg.u)}) {
984             return HasCoarray(argExpr->value());
985           }
986         }
987       }
988     }
989     return false;
990   }
991   bool operator()(const parser::StopStmt &stmt) {
992     // STOP is an image control statement; ERROR STOP is not
993     return std::get<parser::StopStmt::Kind>(stmt.t) ==
994         parser::StopStmt::Kind::Stop;
995   }
996   bool operator()(const parser::IfStmt &stmt) {
997     return (*this)(
998         std::get<parser::UnlabeledStatement<parser::ActionStmt>>(stmt.t)
999             .statement);
1000   }
1001   bool operator()(const parser::ActionStmt &stmt) {
1002     return common::visit(*this, stmt.u);
1003   }
1004 
1005 private:
1006   bool IsCoarrayObject(const parser::AllocateObject &allocateObject) {
1007     const parser::Name &name{GetLastName(allocateObject)};
1008     return name.symbol && evaluate::IsCoarray(*name.symbol);
1009   }
1010 };
1011 
1012 bool IsImageControlStmt(const parser::ExecutableConstruct &construct) {
1013   return common::visit(ImageControlStmtHelper{}, construct.u);
1014 }
1015 
1016 std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg(
1017     const parser::ExecutableConstruct &construct) {
1018   if (const auto *actionStmt{
1019           std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) {
1020     return common::visit(
1021         common::visitors{
1022             [](const common::Indirection<parser::AllocateStmt> &)
1023                 -> std::optional<parser::MessageFixedText> {
1024               return "ALLOCATE of a coarray is an image control"
1025                      " statement"_en_US;
1026             },
1027             [](const common::Indirection<parser::DeallocateStmt> &)
1028                 -> std::optional<parser::MessageFixedText> {
1029               return "DEALLOCATE of a coarray is an image control"
1030                      " statement"_en_US;
1031             },
1032             [](const common::Indirection<parser::CallStmt> &)
1033                 -> std::optional<parser::MessageFixedText> {
1034               return "MOVE_ALLOC of a coarray is an image control"
1035                      " statement "_en_US;
1036             },
1037             [](const auto &) -> std::optional<parser::MessageFixedText> {
1038               return std::nullopt;
1039             },
1040         },
1041         actionStmt->statement.u);
1042   }
1043   return std::nullopt;
1044 }
1045 
1046 parser::CharBlock GetImageControlStmtLocation(
1047     const parser::ExecutableConstruct &executableConstruct) {
1048   return common::visit(
1049       common::visitors{
1050           [](const common::Indirection<parser::ChangeTeamConstruct>
1051                   &construct) {
1052             return std::get<parser::Statement<parser::ChangeTeamStmt>>(
1053                 construct.value().t)
1054                 .source;
1055           },
1056           [](const common::Indirection<parser::CriticalConstruct> &construct) {
1057             return std::get<parser::Statement<parser::CriticalStmt>>(
1058                 construct.value().t)
1059                 .source;
1060           },
1061           [](const parser::Statement<parser::ActionStmt> &actionStmt) {
1062             return actionStmt.source;
1063           },
1064           [](const auto &) { return parser::CharBlock{}; },
1065       },
1066       executableConstruct.u);
1067 }
1068 
1069 bool HasCoarray(const parser::Expr &expression) {
1070   if (const auto *expr{GetExpr(nullptr, expression)}) {
1071     for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) {
1072       if (evaluate::IsCoarray(symbol)) {
1073         return true;
1074       }
1075     }
1076   }
1077   return false;
1078 }
1079 
1080 bool IsAssumedType(const Symbol &symbol) {
1081   if (const DeclTypeSpec * type{symbol.GetType()}) {
1082     return type->IsAssumedType();
1083   }
1084   return false;
1085 }
1086 
1087 bool IsPolymorphic(const Symbol &symbol) {
1088   if (const DeclTypeSpec * type{symbol.GetType()}) {
1089     return type->IsPolymorphic();
1090   }
1091   return false;
1092 }
1093 
1094 bool IsUnlimitedPolymorphic(const Symbol &symbol) {
1095   if (const DeclTypeSpec * type{symbol.GetType()}) {
1096     return type->IsUnlimitedPolymorphic();
1097   }
1098   return false;
1099 }
1100 
1101 bool IsPolymorphicAllocatable(const Symbol &symbol) {
1102   return IsAllocatable(symbol) && IsPolymorphic(symbol);
1103 }
1104 
1105 const Scope *FindCUDADeviceContext(const Scope *scope) {
1106   return !scope ? nullptr : FindScopeContaining(*scope, [](const Scope &s) {
1107     return IsCUDADeviceContext(&s);
1108   });
1109 }
1110 
1111 std::optional<common::CUDADataAttr> GetCUDADataAttr(const Symbol *symbol) {
1112   const auto *object{
1113       symbol ? symbol->detailsIf<ObjectEntityDetails>() : nullptr};
1114   return object ? object->cudaDataAttr() : std::nullopt;
1115 }
1116 
1117 std::optional<parser::MessageFormattedText> CheckAccessibleSymbol(
1118     const Scope &scope, const Symbol &symbol) {
1119   if (symbol.attrs().test(Attr::PRIVATE)) {
1120     if (FindModuleFileContaining(scope)) {
1121       // Don't enforce component accessibility checks in module files;
1122       // there may be forward-substituted named constants of derived type
1123       // whose structure constructors reference private components.
1124     } else if (const Scope *
1125         moduleScope{FindModuleContaining(symbol.owner())}) {
1126       if (!moduleScope->Contains(scope)) {
1127         return parser::MessageFormattedText{
1128             "PRIVATE name '%s' is only accessible within module '%s'"_err_en_US,
1129             symbol.name(), moduleScope->GetName().value()};
1130       }
1131     }
1132   }
1133   return std::nullopt;
1134 }
1135 
1136 std::list<SourceName> OrderParameterNames(const Symbol &typeSymbol) {
1137   std::list<SourceName> result;
1138   if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
1139     result = OrderParameterNames(spec->typeSymbol());
1140   }
1141   const auto &paramNames{typeSymbol.get<DerivedTypeDetails>().paramNames()};
1142   result.insert(result.end(), paramNames.begin(), paramNames.end());
1143   return result;
1144 }
1145 
1146 SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) {
1147   SymbolVector result;
1148   if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
1149     result = OrderParameterDeclarations(spec->typeSymbol());
1150   }
1151   const auto &paramDecls{typeSymbol.get<DerivedTypeDetails>().paramDecls()};
1152   result.insert(result.end(), paramDecls.begin(), paramDecls.end());
1153   return result;
1154 }
1155 
1156 const DeclTypeSpec &FindOrInstantiateDerivedType(
1157     Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) {
1158   spec.EvaluateParameters(scope.context());
1159   if (const DeclTypeSpec *
1160       type{scope.FindInstantiatedDerivedType(spec, category)}) {
1161     return *type;
1162   }
1163   // Create a new instantiation of this parameterized derived type
1164   // for this particular distinct set of actual parameter values.
1165   DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))};
1166   type.derivedTypeSpec().Instantiate(scope);
1167   return type;
1168 }
1169 
1170 const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) {
1171   if (proc) {
1172     if (const auto *subprogram{proc->detailsIf<SubprogramDetails>()}) {
1173       if (const Symbol * iface{subprogram->moduleInterface()}) {
1174         return iface;
1175       }
1176     }
1177   }
1178   return nullptr;
1179 }
1180 
1181 ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2
1182   const Symbol &ultimate{symbol.GetUltimate()};
1183   if (!IsProcedure(ultimate)) {
1184     return ProcedureDefinitionClass::None;
1185   } else if (ultimate.attrs().test(Attr::INTRINSIC)) {
1186     return ProcedureDefinitionClass::Intrinsic;
1187   } else if (IsDummy(ultimate)) {
1188     return ProcedureDefinitionClass::Dummy;
1189   } else if (IsProcedurePointer(symbol)) {
1190     return ProcedureDefinitionClass::Pointer;
1191   } else if (ultimate.attrs().test(Attr::EXTERNAL)) {
1192     return ProcedureDefinitionClass::External;
1193   } else if (const auto *nameDetails{
1194                  ultimate.detailsIf<SubprogramNameDetails>()}) {
1195     switch (nameDetails->kind()) {
1196     case SubprogramKind::Module:
1197       return ProcedureDefinitionClass::Module;
1198     case SubprogramKind::Internal:
1199       return ProcedureDefinitionClass::Internal;
1200     }
1201   } else if (const Symbol * subp{FindSubprogram(symbol)}) {
1202     if (const auto *subpDetails{subp->detailsIf<SubprogramDetails>()}) {
1203       if (subpDetails->stmtFunction()) {
1204         return ProcedureDefinitionClass::StatementFunction;
1205       }
1206     }
1207     switch (ultimate.owner().kind()) {
1208     case Scope::Kind::Global:
1209     case Scope::Kind::IntrinsicModules:
1210       return ProcedureDefinitionClass::External;
1211     case Scope::Kind::Module:
1212       return ProcedureDefinitionClass::Module;
1213     case Scope::Kind::MainProgram:
1214     case Scope::Kind::Subprogram:
1215       return ProcedureDefinitionClass::Internal;
1216     default:
1217       break;
1218     }
1219   }
1220   return ProcedureDefinitionClass::None;
1221 }
1222 
1223 // ComponentIterator implementation
1224 
1225 template <ComponentKind componentKind>
1226 typename ComponentIterator<componentKind>::const_iterator
1227 ComponentIterator<componentKind>::const_iterator::Create(
1228     const DerivedTypeSpec &derived) {
1229   const_iterator it{};
1230   it.componentPath_.emplace_back(derived);
1231   it.Increment(); // cue up first relevant component, if any
1232   return it;
1233 }
1234 
1235 template <ComponentKind componentKind>
1236 const DerivedTypeSpec *
1237 ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal(
1238     const Symbol &component) const {
1239   if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
1240     if (const DeclTypeSpec * type{details->type()}) {
1241       if (const auto *derived{type->AsDerived()}) {
1242         bool traverse{false};
1243         if constexpr (componentKind == ComponentKind::Ordered) {
1244           // Order Component (only visit parents)
1245           traverse = component.test(Symbol::Flag::ParentComp);
1246         } else if constexpr (componentKind == ComponentKind::Direct) {
1247           traverse = !IsAllocatableOrObjectPointer(&component);
1248         } else if constexpr (componentKind == ComponentKind::Ultimate) {
1249           traverse = !IsAllocatableOrObjectPointer(&component);
1250         } else if constexpr (componentKind == ComponentKind::Potential) {
1251           traverse = !IsPointer(component);
1252         } else if constexpr (componentKind == ComponentKind::Scope) {
1253           traverse = !IsAllocatableOrObjectPointer(&component);
1254         } else if constexpr (componentKind ==
1255             ComponentKind::PotentialAndPointer) {
1256           traverse = !IsPointer(component);
1257         }
1258         if (traverse) {
1259           const Symbol &newTypeSymbol{derived->typeSymbol()};
1260           // Avoid infinite loop if the type is already part of the types
1261           // being visited. It is possible to have "loops in type" because
1262           // C744 does not forbid to use not yet declared type for
1263           // ALLOCATABLE or POINTER components.
1264           for (const auto &node : componentPath_) {
1265             if (&newTypeSymbol == &node.GetTypeSymbol()) {
1266               return nullptr;
1267             }
1268           }
1269           return derived;
1270         }
1271       }
1272     } // intrinsic & unlimited polymorphic not traversable
1273   }
1274   return nullptr;
1275 }
1276 
1277 template <ComponentKind componentKind>
1278 static bool StopAtComponentPre(const Symbol &component) {
1279   if constexpr (componentKind == ComponentKind::Ordered) {
1280     // Parent components need to be iterated upon after their
1281     // sub-components in structure constructor analysis.
1282     return !component.test(Symbol::Flag::ParentComp);
1283   } else if constexpr (componentKind == ComponentKind::Direct) {
1284     return true;
1285   } else if constexpr (componentKind == ComponentKind::Ultimate) {
1286     return component.has<ProcEntityDetails>() ||
1287         IsAllocatableOrObjectPointer(&component) ||
1288         (component.has<ObjectEntityDetails>() &&
1289             component.get<ObjectEntityDetails>().type() &&
1290             component.get<ObjectEntityDetails>().type()->AsIntrinsic());
1291   } else if constexpr (componentKind == ComponentKind::Potential) {
1292     return !IsPointer(component);
1293   } else if constexpr (componentKind == ComponentKind::PotentialAndPointer) {
1294     return true;
1295   } else {
1296     DIE("unexpected ComponentKind");
1297   }
1298 }
1299 
1300 template <ComponentKind componentKind>
1301 static bool StopAtComponentPost(const Symbol &component) {
1302   return componentKind == ComponentKind::Ordered &&
1303       component.test(Symbol::Flag::ParentComp);
1304 }
1305 
1306 template <ComponentKind componentKind>
1307 void ComponentIterator<componentKind>::const_iterator::Increment() {
1308   while (!componentPath_.empty()) {
1309     ComponentPathNode &deepest{componentPath_.back()};
1310     if (deepest.component()) {
1311       if (!deepest.descended()) {
1312         deepest.set_descended(true);
1313         if (const DerivedTypeSpec *
1314             derived{PlanComponentTraversal(*deepest.component())}) {
1315           componentPath_.emplace_back(*derived);
1316           continue;
1317         }
1318       } else if (!deepest.visited()) {
1319         deepest.set_visited(true);
1320         return; // this is the next component to visit, after descending
1321       }
1322     }
1323     auto &nameIterator{deepest.nameIterator()};
1324     if (nameIterator == deepest.nameEnd()) {
1325       componentPath_.pop_back();
1326     } else if constexpr (componentKind == ComponentKind::Scope) {
1327       deepest.set_component(*nameIterator++->second);
1328       deepest.set_descended(false);
1329       deepest.set_visited(true);
1330       return; // this is the next component to visit, before descending
1331     } else {
1332       const Scope &scope{deepest.GetScope()};
1333       auto scopeIter{scope.find(*nameIterator++)};
1334       if (scopeIter != scope.cend()) {
1335         const Symbol &component{*scopeIter->second};
1336         deepest.set_component(component);
1337         deepest.set_descended(false);
1338         if (StopAtComponentPre<componentKind>(component)) {
1339           deepest.set_visited(true);
1340           return; // this is the next component to visit, before descending
1341         } else {
1342           deepest.set_visited(!StopAtComponentPost<componentKind>(component));
1343         }
1344       }
1345     }
1346   }
1347 }
1348 
1349 template <ComponentKind componentKind>
1350 std::string
1351 ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName()
1352     const {
1353   std::string designator;
1354   for (const auto &node : componentPath_) {
1355     designator += "%" + DEREF(node.component()).name().ToString();
1356   }
1357   return designator;
1358 }
1359 
1360 template class ComponentIterator<ComponentKind::Ordered>;
1361 template class ComponentIterator<ComponentKind::Direct>;
1362 template class ComponentIterator<ComponentKind::Ultimate>;
1363 template class ComponentIterator<ComponentKind::Potential>;
1364 template class ComponentIterator<ComponentKind::Scope>;
1365 template class ComponentIterator<ComponentKind::PotentialAndPointer>;
1366 
1367 UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent(
1368     const DerivedTypeSpec &derived) {
1369   UltimateComponentIterator ultimates{derived};
1370   return std::find_if(ultimates.begin(), ultimates.end(),
1371       [](const Symbol &symbol) { return evaluate::IsCoarray(symbol); });
1372 }
1373 
1374 UltimateComponentIterator::const_iterator FindPointerUltimateComponent(
1375     const DerivedTypeSpec &derived) {
1376   UltimateComponentIterator ultimates{derived};
1377   return std::find_if(ultimates.begin(), ultimates.end(), IsPointer);
1378 }
1379 
1380 PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent(
1381     const DerivedTypeSpec &derived) {
1382   PotentialComponentIterator potentials{derived};
1383   return std::find_if(
1384       potentials.begin(), potentials.end(), [](const Symbol &component) {
1385         if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
1386           const DeclTypeSpec *type{details->type()};
1387           return type && IsEventTypeOrLockType(type->AsDerived());
1388         }
1389         return false;
1390       });
1391 }
1392 
1393 UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent(
1394     const DerivedTypeSpec &derived) {
1395   UltimateComponentIterator ultimates{derived};
1396   return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable);
1397 }
1398 
1399 DirectComponentIterator::const_iterator FindAllocatableOrPointerDirectComponent(
1400     const DerivedTypeSpec &derived) {
1401   DirectComponentIterator directs{derived};
1402   return std::find_if(directs.begin(), directs.end(), IsAllocatableOrPointer);
1403 }
1404 
1405 UltimateComponentIterator::const_iterator
1406 FindPolymorphicAllocatableUltimateComponent(const DerivedTypeSpec &derived) {
1407   UltimateComponentIterator ultimates{derived};
1408   return std::find_if(
1409       ultimates.begin(), ultimates.end(), IsPolymorphicAllocatable);
1410 }
1411 
1412 const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived,
1413     const std::function<bool(const Symbol &)> &predicate) {
1414   UltimateComponentIterator ultimates{derived};
1415   if (auto it{std::find_if(ultimates.begin(), ultimates.end(),
1416           [&predicate](const Symbol &component) -> bool {
1417             return predicate(component);
1418           })}) {
1419     return &*it;
1420   }
1421   return nullptr;
1422 }
1423 
1424 const Symbol *FindUltimateComponent(const Symbol &symbol,
1425     const std::function<bool(const Symbol &)> &predicate) {
1426   if (predicate(symbol)) {
1427     return &symbol;
1428   } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
1429     if (const auto *type{object->type()}) {
1430       if (const auto *derived{type->AsDerived()}) {
1431         return FindUltimateComponent(*derived, predicate);
1432       }
1433     }
1434   }
1435   return nullptr;
1436 }
1437 
1438 const Symbol *FindImmediateComponent(const DerivedTypeSpec &type,
1439     const std::function<bool(const Symbol &)> &predicate) {
1440   if (const Scope * scope{type.scope()}) {
1441     const Symbol *parent{nullptr};
1442     for (const auto &pair : *scope) {
1443       const Symbol *symbol{&*pair.second};
1444       if (predicate(*symbol)) {
1445         return symbol;
1446       }
1447       if (symbol->test(Symbol::Flag::ParentComp)) {
1448         parent = symbol;
1449       }
1450     }
1451     if (parent) {
1452       if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) {
1453         if (const auto *type{object->type()}) {
1454           if (const auto *derived{type->AsDerived()}) {
1455             return FindImmediateComponent(*derived, predicate);
1456           }
1457         }
1458       }
1459     }
1460   }
1461   return nullptr;
1462 }
1463 
1464 const Symbol *IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) {
1465   if (IsFunctionResult(symbol)) {
1466     if (const Symbol * function{symbol.owner().symbol()}) {
1467       if (symbol.name() == function->name()) {
1468         return function;
1469       }
1470     }
1471     // Check ENTRY result symbols too
1472     const Scope &outer{symbol.owner().parent()};
1473     auto iter{outer.find(symbol.name())};
1474     if (iter != outer.end()) {
1475       const Symbol &outerSym{*iter->second};
1476       if (const auto *subp{outerSym.detailsIf<SubprogramDetails>()}) {
1477         if (subp->entryScope() == &symbol.owner() &&
1478             symbol.name() == outerSym.name()) {
1479           return &outerSym;
1480         }
1481       }
1482     }
1483   }
1484   return nullptr;
1485 }
1486 
1487 void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) {
1488   checkLabelUse(gotoStmt.v);
1489 }
1490 void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) {
1491   for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) {
1492     checkLabelUse(i);
1493   }
1494 }
1495 
1496 void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) {
1497   checkLabelUse(std::get<1>(arithmeticIfStmt.t));
1498   checkLabelUse(std::get<2>(arithmeticIfStmt.t));
1499   checkLabelUse(std::get<3>(arithmeticIfStmt.t));
1500 }
1501 
1502 void LabelEnforce::Post(const parser::AssignStmt &assignStmt) {
1503   checkLabelUse(std::get<parser::Label>(assignStmt.t));
1504 }
1505 
1506 void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) {
1507   for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) {
1508     checkLabelUse(i);
1509   }
1510 }
1511 
1512 void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) {
1513   checkLabelUse(altReturnSpec.v);
1514 }
1515 
1516 void LabelEnforce::Post(const parser::ErrLabel &errLabel) {
1517   checkLabelUse(errLabel.v);
1518 }
1519 void LabelEnforce::Post(const parser::EndLabel &endLabel) {
1520   checkLabelUse(endLabel.v);
1521 }
1522 void LabelEnforce::Post(const parser::EorLabel &eorLabel) {
1523   checkLabelUse(eorLabel.v);
1524 }
1525 
1526 void LabelEnforce::checkLabelUse(const parser::Label &labelUsed) {
1527   if (labels_.find(labelUsed) == labels_.end()) {
1528     SayWithConstruct(context_, currentStatementSourcePosition_,
1529         parser::MessageFormattedText{
1530             "Control flow escapes from %s"_err_en_US, construct_},
1531         constructSourcePosition_);
1532   }
1533 }
1534 
1535 parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() {
1536   return {"Enclosing %s statement"_en_US, construct_};
1537 }
1538 
1539 void LabelEnforce::SayWithConstruct(SemanticsContext &context,
1540     parser::CharBlock stmtLocation, parser::MessageFormattedText &&message,
1541     parser::CharBlock constructLocation) {
1542   context.Say(stmtLocation, message)
1543       .Attach(constructLocation, GetEnclosingConstructMsg());
1544 }
1545 
1546 bool HasAlternateReturns(const Symbol &subprogram) {
1547   for (const auto *dummyArg : subprogram.get<SubprogramDetails>().dummyArgs()) {
1548     if (!dummyArg) {
1549       return true;
1550     }
1551   }
1552   return false;
1553 }
1554 
1555 bool IsAutomaticallyDestroyed(const Symbol &symbol) {
1556   return symbol.has<ObjectEntityDetails>() &&
1557       (symbol.owner().kind() == Scope::Kind::Subprogram ||
1558           symbol.owner().kind() == Scope::Kind::BlockConstruct) &&
1559       (!IsDummy(symbol) || IsIntentOut(symbol)) && !IsPointer(symbol) &&
1560       !IsSaved(symbol) && !FindCommonBlockContaining(symbol);
1561 }
1562 
1563 const std::optional<parser::Name> &MaybeGetNodeName(
1564     const ConstructNode &construct) {
1565   return common::visit(
1566       common::visitors{
1567           [&](const parser::BlockConstruct *blockConstruct)
1568               -> const std::optional<parser::Name> & {
1569             return std::get<0>(blockConstruct->t).statement.v;
1570           },
1571           [&](const auto *a) -> const std::optional<parser::Name> & {
1572             return std::get<0>(std::get<0>(a->t).statement.t);
1573           },
1574       },
1575       construct);
1576 }
1577 
1578 std::optional<ArraySpec> ToArraySpec(
1579     evaluate::FoldingContext &context, const evaluate::Shape &shape) {
1580   if (auto extents{evaluate::AsConstantExtents(context, shape)}) {
1581     ArraySpec result;
1582     for (const auto &extent : *extents) {
1583       result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent}));
1584     }
1585     return {std::move(result)};
1586   } else {
1587     return std::nullopt;
1588   }
1589 }
1590 
1591 std::optional<ArraySpec> ToArraySpec(evaluate::FoldingContext &context,
1592     const std::optional<evaluate::Shape> &shape) {
1593   return shape ? ToArraySpec(context, *shape) : std::nullopt;
1594 }
1595 
1596 static const DeclTypeSpec *GetDtvArgTypeSpec(const Symbol &proc) {
1597   if (const auto *subp{proc.detailsIf<SubprogramDetails>()};
1598       subp && !subp->dummyArgs().empty()) {
1599     if (const auto *arg{subp->dummyArgs()[0]}) {
1600       return arg->GetType();
1601     }
1602   }
1603   return nullptr;
1604 }
1605 
1606 const DerivedTypeSpec *GetDtvArgDerivedType(const Symbol &proc) {
1607   if (const auto *type{GetDtvArgTypeSpec(proc)}) {
1608     return type->AsDerived();
1609   } else {
1610     return nullptr;
1611   }
1612 }
1613 
1614 bool HasDefinedIo(common::DefinedIo which, const DerivedTypeSpec &derived,
1615     const Scope *scope) {
1616   if (const Scope * dtScope{derived.scope()}) {
1617     for (const auto &pair : *dtScope) {
1618       const Symbol &symbol{*pair.second};
1619       if (const auto *generic{symbol.detailsIf<GenericDetails>()}) {
1620         GenericKind kind{generic->kind()};
1621         if (const auto *io{std::get_if<common::DefinedIo>(&kind.u)}) {
1622           if (*io == which) {
1623             return true; // type-bound GENERIC exists
1624           }
1625         }
1626       }
1627     }
1628   }
1629   if (scope) {
1630     SourceName name{GenericKind::AsFortran(which)};
1631     evaluate::DynamicType dyDerived{derived};
1632     for (; scope && !scope->IsGlobal(); scope = &scope->parent()) {
1633       auto iter{scope->find(name)};
1634       if (iter != scope->end()) {
1635         const auto &generic{iter->second->GetUltimate().get<GenericDetails>()};
1636         for (auto ref : generic.specificProcs()) {
1637           const Symbol &procSym{ref->GetUltimate()};
1638           if (const DeclTypeSpec * dtSpec{GetDtvArgTypeSpec(procSym)}) {
1639             if (auto dyDummy{evaluate::DynamicType::From(*dtSpec)}) {
1640               if (dyDummy->IsTkCompatibleWith(dyDerived)) {
1641                 return true; // GENERIC or INTERFACE not in type
1642               }
1643             }
1644           }
1645         }
1646       }
1647     }
1648   }
1649   return false;
1650 }
1651 
1652 void WarnOnDeferredLengthCharacterScalar(SemanticsContext &context,
1653     const SomeExpr *expr, parser::CharBlock at, const char *what) {
1654   if (context.languageFeatures().ShouldWarn(
1655           common::UsageWarning::F202XAllocatableBreakingChange)) {
1656     if (const Symbol *
1657         symbol{evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)}) {
1658       const Symbol &ultimate{ResolveAssociations(*symbol)};
1659       if (const DeclTypeSpec * type{ultimate.GetType()}; type &&
1660           type->category() == DeclTypeSpec::Category::Character &&
1661           type->characterTypeSpec().length().isDeferred() &&
1662           IsAllocatable(ultimate) && ultimate.Rank() == 0) {
1663         context.Say(at,
1664             "The deferred length allocatable character scalar variable '%s' may be reallocated to a different length under the new Fortran 202X standard semantics for %s"_port_en_US,
1665             symbol->name(), what);
1666       }
1667     }
1668   }
1669 }
1670 
1671 bool CouldBeDataPointerValuedFunction(const Symbol *original) {
1672   if (original) {
1673     const Symbol &ultimate{original->GetUltimate()};
1674     if (const Symbol * result{FindFunctionResult(ultimate)}) {
1675       return IsPointer(*result) && !IsProcedure(*result);
1676     }
1677     if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
1678       for (const SymbolRef &ref : generic->specificProcs()) {
1679         if (CouldBeDataPointerValuedFunction(&*ref)) {
1680           return true;
1681         }
1682       }
1683     }
1684   }
1685   return false;
1686 }
1687 
1688 std::string GetModuleOrSubmoduleName(const Symbol &symbol) {
1689   const auto &details{symbol.get<ModuleDetails>()};
1690   std::string result{symbol.name().ToString()};
1691   if (details.ancestor() && details.ancestor()->symbol()) {
1692     result = details.ancestor()->symbol()->name().ToString() + ':' + result;
1693   }
1694   return result;
1695 }
1696 
1697 std::string GetCommonBlockObjectName(const Symbol &common, bool underscoring) {
1698   if (const std::string * bind{common.GetBindName()}) {
1699     return *bind;
1700   }
1701   if (common.name().empty()) {
1702     return Fortran::common::blankCommonObjectName;
1703   }
1704   return underscoring ? common.name().ToString() + "_"s
1705                       : common.name().ToString();
1706 }
1707 
1708 bool HadUseError(
1709     SemanticsContext &context, SourceName at, const Symbol *symbol) {
1710   if (const auto *details{
1711           symbol ? symbol->detailsIf<UseErrorDetails>() : nullptr}) {
1712     auto &msg{context.Say(
1713         at, "Reference to '%s' is ambiguous"_err_en_US, symbol->name())};
1714     for (const auto &[location, module] : details->occurrences()) {
1715       msg.Attach(location, "'%s' was use-associated from module '%s'"_en_US, at,
1716           module->GetName().value());
1717     }
1718     context.SetError(*symbol);
1719     return true;
1720   } else {
1721     return false;
1722   }
1723 }
1724 
1725 } // namespace Fortran::semantics
1726