1 //===-- lib/Semantics/tools.cpp -------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Parser/tools.h" 10 #include "flang/Common/Fortran.h" 11 #include "flang/Common/indirection.h" 12 #include "flang/Parser/dump-parse-tree.h" 13 #include "flang/Parser/message.h" 14 #include "flang/Parser/parse-tree.h" 15 #include "flang/Semantics/scope.h" 16 #include "flang/Semantics/semantics.h" 17 #include "flang/Semantics/symbol.h" 18 #include "flang/Semantics/tools.h" 19 #include "flang/Semantics/type.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <algorithm> 22 #include <set> 23 #include <variant> 24 25 namespace Fortran::semantics { 26 27 // Find this or containing scope that matches predicate 28 static const Scope *FindScopeContaining( 29 const Scope &start, std::function<bool(const Scope &)> predicate) { 30 for (const Scope *scope{&start};; scope = &scope->parent()) { 31 if (predicate(*scope)) { 32 return scope; 33 } 34 if (scope->IsTopLevel()) { 35 return nullptr; 36 } 37 } 38 } 39 40 const Scope &GetTopLevelUnitContaining(const Scope &start) { 41 CHECK(!start.IsTopLevel()); 42 return DEREF(FindScopeContaining( 43 start, [](const Scope &scope) { return scope.parent().IsTopLevel(); })); 44 } 45 46 const Scope &GetTopLevelUnitContaining(const Symbol &symbol) { 47 return GetTopLevelUnitContaining(symbol.owner()); 48 } 49 50 const Scope *FindModuleContaining(const Scope &start) { 51 return FindScopeContaining( 52 start, [](const Scope &scope) { return scope.IsModule(); }); 53 } 54 55 const Scope *FindModuleFileContaining(const Scope &start) { 56 return FindScopeContaining( 57 start, [](const Scope &scope) { return scope.IsModuleFile(); }); 58 } 59 60 const Scope &GetProgramUnitContaining(const Scope &start) { 61 CHECK(!start.IsTopLevel()); 62 return DEREF(FindScopeContaining(start, [](const Scope &scope) { 63 switch (scope.kind()) { 64 case Scope::Kind::Module: 65 case Scope::Kind::MainProgram: 66 case Scope::Kind::Subprogram: 67 case Scope::Kind::BlockData: 68 return true; 69 default: 70 return false; 71 } 72 })); 73 } 74 75 const Scope &GetProgramUnitContaining(const Symbol &symbol) { 76 return GetProgramUnitContaining(symbol.owner()); 77 } 78 79 const Scope &GetProgramUnitOrBlockConstructContaining(const Scope &start) { 80 CHECK(!start.IsTopLevel()); 81 return DEREF(FindScopeContaining(start, [](const Scope &scope) { 82 switch (scope.kind()) { 83 case Scope::Kind::Module: 84 case Scope::Kind::MainProgram: 85 case Scope::Kind::Subprogram: 86 case Scope::Kind::BlockData: 87 case Scope::Kind::BlockConstruct: 88 return true; 89 default: 90 return false; 91 } 92 })); 93 } 94 95 const Scope &GetProgramUnitOrBlockConstructContaining(const Symbol &symbol) { 96 return GetProgramUnitOrBlockConstructContaining(symbol.owner()); 97 } 98 99 const Scope *FindPureProcedureContaining(const Scope &start) { 100 // N.B. We only need to examine the innermost containing program unit 101 // because an internal subprogram of a pure subprogram must also 102 // be pure (C1592). 103 if (start.IsTopLevel()) { 104 return nullptr; 105 } else { 106 const Scope &scope{GetProgramUnitContaining(start)}; 107 return IsPureProcedure(scope) ? &scope : nullptr; 108 } 109 } 110 111 const Scope *FindOpenACCConstructContaining(const Scope *scope) { 112 return scope ? FindScopeContaining(*scope, 113 [](const Scope &s) { 114 return s.kind() == Scope::Kind::OpenACCConstruct; 115 }) 116 : nullptr; 117 } 118 119 // 7.5.2.4 "same derived type" test -- rely on IsTkCompatibleWith() and its 120 // infrastructure to detect and handle comparisons on distinct (but "same") 121 // sequence/bind(C) derived types 122 static bool MightBeSameDerivedType( 123 const std::optional<evaluate::DynamicType> &lhsType, 124 const std::optional<evaluate::DynamicType> &rhsType) { 125 return lhsType && rhsType && lhsType->IsTkCompatibleWith(*rhsType); 126 } 127 128 Tristate IsDefinedAssignment( 129 const std::optional<evaluate::DynamicType> &lhsType, int lhsRank, 130 const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) { 131 if (!lhsType || !rhsType) { 132 return Tristate::No; // error or rhs is untyped 133 } 134 if (lhsType->IsUnlimitedPolymorphic()) { 135 return Tristate::No; 136 } 137 if (rhsType->IsUnlimitedPolymorphic()) { 138 return Tristate::Maybe; 139 } 140 TypeCategory lhsCat{lhsType->category()}; 141 TypeCategory rhsCat{rhsType->category()}; 142 if (rhsRank > 0 && lhsRank != rhsRank) { 143 return Tristate::Yes; 144 } else if (lhsCat != TypeCategory::Derived) { 145 return ToTristate(lhsCat != rhsCat && 146 (!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat))); 147 } else if (MightBeSameDerivedType(lhsType, rhsType)) { 148 return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic 149 } else { 150 return Tristate::Yes; 151 } 152 } 153 154 bool IsIntrinsicRelational(common::RelationalOperator opr, 155 const evaluate::DynamicType &type0, int rank0, 156 const evaluate::DynamicType &type1, int rank1) { 157 if (!evaluate::AreConformable(rank0, rank1)) { 158 return false; 159 } else { 160 auto cat0{type0.category()}; 161 auto cat1{type1.category()}; 162 if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) { 163 // numeric types: EQ/NE always ok, others ok for non-complex 164 return opr == common::RelationalOperator::EQ || 165 opr == common::RelationalOperator::NE || 166 (cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex); 167 } else { 168 // not both numeric: only Character is ok 169 return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character; 170 } 171 } 172 } 173 174 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) { 175 return IsNumericTypeCategory(type0.category()); 176 } 177 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0, 178 const evaluate::DynamicType &type1, int rank1) { 179 return evaluate::AreConformable(rank0, rank1) && 180 IsNumericTypeCategory(type0.category()) && 181 IsNumericTypeCategory(type1.category()); 182 } 183 184 bool IsIntrinsicLogical(const evaluate::DynamicType &type0) { 185 return type0.category() == TypeCategory::Logical; 186 } 187 bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0, 188 const evaluate::DynamicType &type1, int rank1) { 189 return evaluate::AreConformable(rank0, rank1) && 190 type0.category() == TypeCategory::Logical && 191 type1.category() == TypeCategory::Logical; 192 } 193 194 bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0, 195 const evaluate::DynamicType &type1, int rank1) { 196 return evaluate::AreConformable(rank0, rank1) && 197 type0.category() == TypeCategory::Character && 198 type1.category() == TypeCategory::Character && 199 type0.kind() == type1.kind(); 200 } 201 202 bool IsGenericDefinedOp(const Symbol &symbol) { 203 const Symbol &ultimate{symbol.GetUltimate()}; 204 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 205 return generic->kind().IsDefinedOperator(); 206 } else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) { 207 return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp; 208 } else { 209 return false; 210 } 211 } 212 213 bool IsDefinedOperator(SourceName name) { 214 const char *begin{name.begin()}; 215 const char *end{name.end()}; 216 return begin != end && begin[0] == '.' && end[-1] == '.'; 217 } 218 219 std::string MakeOpName(SourceName name) { 220 std::string result{name.ToString()}; 221 return IsDefinedOperator(name) ? "OPERATOR(" + result + ")" 222 : result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result) 223 : result; 224 } 225 226 bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) { 227 const auto &objects{block.get<CommonBlockDetails>().objects()}; 228 return llvm::is_contained(objects, object); 229 } 230 231 bool IsUseAssociated(const Symbol &symbol, const Scope &scope) { 232 const Scope &owner{GetTopLevelUnitContaining(symbol.GetUltimate().owner())}; 233 return owner.kind() == Scope::Kind::Module && 234 owner != GetTopLevelUnitContaining(scope); 235 } 236 237 bool DoesScopeContain( 238 const Scope *maybeAncestor, const Scope &maybeDescendent) { 239 return maybeAncestor && !maybeDescendent.IsTopLevel() && 240 FindScopeContaining(maybeDescendent.parent(), 241 [&](const Scope &scope) { return &scope == maybeAncestor; }); 242 } 243 244 bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) { 245 return DoesScopeContain(maybeAncestor, symbol.owner()); 246 } 247 248 static const Symbol &FollowHostAssoc(const Symbol &symbol) { 249 for (const Symbol *s{&symbol};;) { 250 const auto *details{s->detailsIf<HostAssocDetails>()}; 251 if (!details) { 252 return *s; 253 } 254 s = &details->symbol(); 255 } 256 } 257 258 bool IsHostAssociated(const Symbol &symbol, const Scope &scope) { 259 return DoesScopeContain( 260 &GetProgramUnitOrBlockConstructContaining(FollowHostAssoc(symbol)), 261 GetProgramUnitOrBlockConstructContaining(scope)); 262 } 263 264 bool IsHostAssociatedIntoSubprogram(const Symbol &symbol, const Scope &scope) { 265 return DoesScopeContain( 266 &GetProgramUnitOrBlockConstructContaining(FollowHostAssoc(symbol)), 267 GetProgramUnitContaining(scope)); 268 } 269 270 bool IsInStmtFunction(const Symbol &symbol) { 271 if (const Symbol * function{symbol.owner().symbol()}) { 272 return IsStmtFunction(*function); 273 } 274 return false; 275 } 276 277 bool IsStmtFunctionDummy(const Symbol &symbol) { 278 return IsDummy(symbol) && IsInStmtFunction(symbol); 279 } 280 281 bool IsStmtFunctionResult(const Symbol &symbol) { 282 return IsFunctionResult(symbol) && IsInStmtFunction(symbol); 283 } 284 285 bool IsPointerDummy(const Symbol &symbol) { 286 return IsPointer(symbol) && IsDummy(symbol); 287 } 288 289 bool IsBindCProcedure(const Symbol &original) { 290 const Symbol &symbol{original.GetUltimate()}; 291 if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) { 292 if (procDetails->procInterface()) { 293 // procedure component with a BIND(C) interface 294 return IsBindCProcedure(*procDetails->procInterface()); 295 } 296 } 297 return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol); 298 } 299 300 bool IsBindCProcedure(const Scope &scope) { 301 if (const Symbol * symbol{scope.GetSymbol()}) { 302 return IsBindCProcedure(*symbol); 303 } else { 304 return false; 305 } 306 } 307 308 static const Symbol *FindPointerComponent( 309 const Scope &scope, std::set<const Scope *> &visited) { 310 if (!scope.IsDerivedType()) { 311 return nullptr; 312 } 313 if (!visited.insert(&scope).second) { 314 return nullptr; 315 } 316 // If there's a top-level pointer component, return it for clearer error 317 // messaging. 318 for (const auto &pair : scope) { 319 const Symbol &symbol{*pair.second}; 320 if (IsPointer(symbol)) { 321 return &symbol; 322 } 323 } 324 for (const auto &pair : scope) { 325 const Symbol &symbol{*pair.second}; 326 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 327 if (const DeclTypeSpec * type{details->type()}) { 328 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 329 if (const Scope * nested{derived->scope()}) { 330 if (const Symbol * 331 pointer{FindPointerComponent(*nested, visited)}) { 332 return pointer; 333 } 334 } 335 } 336 } 337 } 338 } 339 return nullptr; 340 } 341 342 const Symbol *FindPointerComponent(const Scope &scope) { 343 std::set<const Scope *> visited; 344 return FindPointerComponent(scope, visited); 345 } 346 347 const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) { 348 if (const Scope * scope{derived.scope()}) { 349 return FindPointerComponent(*scope); 350 } else { 351 return nullptr; 352 } 353 } 354 355 const Symbol *FindPointerComponent(const DeclTypeSpec &type) { 356 if (const DerivedTypeSpec * derived{type.AsDerived()}) { 357 return FindPointerComponent(*derived); 358 } else { 359 return nullptr; 360 } 361 } 362 363 const Symbol *FindPointerComponent(const DeclTypeSpec *type) { 364 return type ? FindPointerComponent(*type) : nullptr; 365 } 366 367 const Symbol *FindPointerComponent(const Symbol &symbol) { 368 return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType()); 369 } 370 371 // C1594 specifies several ways by which an object might be globally visible. 372 const Symbol *FindExternallyVisibleObject( 373 const Symbol &object, const Scope &scope, bool isPointerDefinition) { 374 // TODO: Storage association with any object for which this predicate holds, 375 // once EQUIVALENCE is supported. 376 const Symbol &ultimate{GetAssociationRoot(object)}; 377 if (IsDummy(ultimate)) { 378 if (IsIntentIn(ultimate)) { 379 return &ultimate; 380 } 381 if (!isPointerDefinition && IsPointer(ultimate) && 382 IsPureProcedure(ultimate.owner()) && IsFunction(ultimate.owner())) { 383 return &ultimate; 384 } 385 } else if (ultimate.owner().IsDerivedType()) { 386 return nullptr; 387 } else if (&GetProgramUnitContaining(ultimate) != 388 &GetProgramUnitContaining(scope)) { 389 return &object; 390 } else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) { 391 return block; 392 } 393 return nullptr; 394 } 395 396 const Symbol &BypassGeneric(const Symbol &symbol) { 397 const Symbol &ultimate{symbol.GetUltimate()}; 398 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 399 if (const Symbol * specific{generic->specific()}) { 400 return *specific; 401 } 402 } 403 return symbol; 404 } 405 406 const Symbol &GetCrayPointer(const Symbol &crayPointee) { 407 const Symbol *found{nullptr}; 408 for (const auto &[pointee, pointer] : 409 crayPointee.GetUltimate().owner().crayPointers()) { 410 if (pointee == crayPointee.name()) { 411 found = &pointer.get(); 412 break; 413 } 414 } 415 return DEREF(found); 416 } 417 418 bool ExprHasTypeCategory( 419 const SomeExpr &expr, const common::TypeCategory &type) { 420 auto dynamicType{expr.GetType()}; 421 return dynamicType && dynamicType->category() == type; 422 } 423 424 bool ExprTypeKindIsDefault( 425 const SomeExpr &expr, const SemanticsContext &context) { 426 auto dynamicType{expr.GetType()}; 427 return dynamicType && 428 dynamicType->category() != common::TypeCategory::Derived && 429 dynamicType->kind() == context.GetDefaultKind(dynamicType->category()); 430 } 431 432 // If an analyzed expr or assignment is missing, dump the node and die. 433 template <typename T> 434 static void CheckMissingAnalysis( 435 bool crash, SemanticsContext *context, const T &x) { 436 if (crash && !(context && context->AnyFatalError())) { 437 std::string buf; 438 llvm::raw_string_ostream ss{buf}; 439 ss << "node has not been analyzed:\n"; 440 parser::DumpTree(ss, x); 441 common::die(ss.str().c_str()); 442 } 443 } 444 445 const SomeExpr *GetExprHelper::Get(const parser::Expr &x) { 446 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 447 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 448 } 449 const SomeExpr *GetExprHelper::Get(const parser::Variable &x) { 450 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 451 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 452 } 453 const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) { 454 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 455 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 456 } 457 const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) { 458 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 459 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 460 } 461 const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) { 462 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x); 463 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr; 464 } 465 466 const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) { 467 return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v) 468 : nullptr; 469 } 470 const evaluate::Assignment *GetAssignment( 471 const parser::PointerAssignmentStmt &x) { 472 return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v) 473 : nullptr; 474 } 475 476 const Symbol *FindInterface(const Symbol &symbol) { 477 return common::visit( 478 common::visitors{ 479 [](const ProcEntityDetails &details) { 480 const Symbol *interface{details.procInterface()}; 481 return interface ? FindInterface(*interface) : nullptr; 482 }, 483 [](const ProcBindingDetails &details) { 484 return FindInterface(details.symbol()); 485 }, 486 [&](const SubprogramDetails &) { return &symbol; }, 487 [](const UseDetails &details) { 488 return FindInterface(details.symbol()); 489 }, 490 [](const HostAssocDetails &details) { 491 return FindInterface(details.symbol()); 492 }, 493 [](const GenericDetails &details) { 494 return details.specific() ? FindInterface(*details.specific()) 495 : nullptr; 496 }, 497 [](const auto &) -> const Symbol * { return nullptr; }, 498 }, 499 symbol.details()); 500 } 501 502 const Symbol *FindSubprogram(const Symbol &symbol) { 503 return common::visit( 504 common::visitors{ 505 [&](const ProcEntityDetails &details) -> const Symbol * { 506 if (details.procInterface()) { 507 return FindSubprogram(*details.procInterface()); 508 } else { 509 return &symbol; 510 } 511 }, 512 [](const ProcBindingDetails &details) { 513 return FindSubprogram(details.symbol()); 514 }, 515 [&](const SubprogramDetails &) { return &symbol; }, 516 [](const UseDetails &details) { 517 return FindSubprogram(details.symbol()); 518 }, 519 [](const HostAssocDetails &details) { 520 return FindSubprogram(details.symbol()); 521 }, 522 [](const GenericDetails &details) { 523 return details.specific() ? FindSubprogram(*details.specific()) 524 : nullptr; 525 }, 526 [](const auto &) -> const Symbol * { return nullptr; }, 527 }, 528 symbol.details()); 529 } 530 531 const Symbol *FindOverriddenBinding( 532 const Symbol &symbol, bool &isInaccessibleDeferred) { 533 isInaccessibleDeferred = false; 534 if (symbol.has<ProcBindingDetails>()) { 535 if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) { 536 if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) { 537 if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) { 538 if (const Symbol * 539 overridden{parentScope->FindComponent(symbol.name())}) { 540 // 7.5.7.3 p1: only accessible bindings are overridden 541 if (!overridden->attrs().test(Attr::PRIVATE) || 542 FindModuleContaining(overridden->owner()) == 543 FindModuleContaining(symbol.owner())) { 544 return overridden; 545 } else if (overridden->attrs().test(Attr::DEFERRED)) { 546 isInaccessibleDeferred = true; 547 return overridden; 548 } 549 } 550 } 551 } 552 } 553 } 554 return nullptr; 555 } 556 557 const Symbol *FindGlobal(const Symbol &original) { 558 const Symbol &ultimate{original.GetUltimate()}; 559 if (ultimate.owner().IsGlobal()) { 560 return &ultimate; 561 } 562 bool isLocal{false}; 563 if (IsDummy(ultimate)) { 564 } else if (IsPointer(ultimate)) { 565 } else if (ultimate.has<ProcEntityDetails>()) { 566 isLocal = IsExternal(ultimate); 567 } else if (const auto *subp{ultimate.detailsIf<SubprogramDetails>()}) { 568 isLocal = subp->isInterface(); 569 } 570 if (isLocal) { 571 const std::string *bind{ultimate.GetBindName()}; 572 if (!bind || ultimate.name() == *bind) { 573 const Scope &globalScope{ultimate.owner().context().globalScope()}; 574 if (auto iter{globalScope.find(ultimate.name())}; 575 iter != globalScope.end()) { 576 const Symbol &global{*iter->second}; 577 const std::string *globalBind{global.GetBindName()}; 578 if (!globalBind || global.name() == *globalBind) { 579 return &global; 580 } 581 } 582 } 583 } 584 return nullptr; 585 } 586 587 const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) { 588 return FindParentTypeSpec(derived.typeSymbol()); 589 } 590 591 const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) { 592 if (const DerivedTypeSpec * derived{decl.AsDerived()}) { 593 return FindParentTypeSpec(*derived); 594 } else { 595 return nullptr; 596 } 597 } 598 599 const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) { 600 if (scope.kind() == Scope::Kind::DerivedType) { 601 if (const auto *symbol{scope.symbol()}) { 602 return FindParentTypeSpec(*symbol); 603 } 604 } 605 return nullptr; 606 } 607 608 const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) { 609 if (const Scope * scope{symbol.scope()}) { 610 if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) { 611 if (const Symbol * parent{details->GetParentComponent(*scope)}) { 612 return parent->GetType(); 613 } 614 } 615 } 616 return nullptr; 617 } 618 619 const EquivalenceSet *FindEquivalenceSet(const Symbol &symbol) { 620 const Symbol &ultimate{symbol.GetUltimate()}; 621 for (const EquivalenceSet &set : ultimate.owner().equivalenceSets()) { 622 for (const EquivalenceObject &object : set) { 623 if (object.symbol == ultimate) { 624 return &set; 625 } 626 } 627 } 628 return nullptr; 629 } 630 631 bool IsOrContainsEventOrLockComponent(const Symbol &original) { 632 const Symbol &symbol{ResolveAssociations(original)}; 633 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 634 if (const DeclTypeSpec * type{details->type()}) { 635 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 636 return IsEventTypeOrLockType(derived) || 637 FindEventOrLockPotentialComponent(*derived); 638 } 639 } 640 } 641 return false; 642 } 643 644 // Check this symbol suitable as a type-bound procedure - C769 645 bool CanBeTypeBoundProc(const Symbol &symbol) { 646 if (IsDummy(symbol) || IsProcedurePointer(symbol)) { 647 return false; 648 } else if (symbol.has<SubprogramNameDetails>()) { 649 return symbol.owner().kind() == Scope::Kind::Module; 650 } else if (auto *details{symbol.detailsIf<SubprogramDetails>()}) { 651 if (details->isInterface()) { 652 return !symbol.attrs().test(Attr::ABSTRACT); 653 } else { 654 return symbol.owner().kind() == Scope::Kind::Module; 655 } 656 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) { 657 return !symbol.attrs().test(Attr::INTRINSIC) && 658 proc->HasExplicitInterface(); 659 } else { 660 return false; 661 } 662 } 663 664 bool HasDeclarationInitializer(const Symbol &symbol) { 665 if (IsNamedConstant(symbol)) { 666 return false; 667 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 668 return object->init().has_value(); 669 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) { 670 return proc->init().has_value(); 671 } else { 672 return false; 673 } 674 } 675 676 bool IsInitialized(const Symbol &symbol, bool ignoreDataStatements, 677 bool ignoreAllocatable, bool ignorePointer) { 678 if (!ignoreAllocatable && IsAllocatable(symbol)) { 679 return true; 680 } else if (!ignoreDataStatements && symbol.test(Symbol::Flag::InDataStmt)) { 681 return true; 682 } else if (HasDeclarationInitializer(symbol)) { 683 return true; 684 } else if (IsPointer(symbol)) { 685 return !ignorePointer; 686 } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol)) { 687 return false; 688 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 689 if (!object->isDummy() && object->type()) { 690 if (const auto *derived{object->type()->AsDerived()}) { 691 return derived->HasDefaultInitialization( 692 ignoreAllocatable, ignorePointer); 693 } 694 } 695 } 696 return false; 697 } 698 699 bool IsDestructible(const Symbol &symbol, const Symbol *derivedTypeSymbol) { 700 if (IsAllocatable(symbol) || IsAutomatic(symbol)) { 701 return true; 702 } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) || 703 IsPointer(symbol)) { 704 return false; 705 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 706 if (!object->isDummy() && object->type()) { 707 if (const auto *derived{object->type()->AsDerived()}) { 708 return &derived->typeSymbol() != derivedTypeSymbol && 709 derived->HasDestruction(); 710 } 711 } 712 } 713 return false; 714 } 715 716 bool HasIntrinsicTypeName(const Symbol &symbol) { 717 std::string name{symbol.name().ToString()}; 718 if (name == "doubleprecision") { 719 return true; 720 } else if (name == "derived") { 721 return false; 722 } else { 723 for (int i{0}; i != common::TypeCategory_enumSize; ++i) { 724 if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) { 725 return true; 726 } 727 } 728 return false; 729 } 730 } 731 732 bool IsSeparateModuleProcedureInterface(const Symbol *symbol) { 733 if (symbol && symbol->attrs().test(Attr::MODULE)) { 734 if (auto *details{symbol->detailsIf<SubprogramDetails>()}) { 735 return details->isInterface(); 736 } 737 } 738 return false; 739 } 740 741 SymbolVector FinalsForDerivedTypeInstantiation(const DerivedTypeSpec &spec) { 742 SymbolVector result; 743 const Symbol &typeSymbol{spec.typeSymbol()}; 744 if (const auto *derived{typeSymbol.detailsIf<DerivedTypeDetails>()}) { 745 for (const auto &pair : derived->finals()) { 746 const Symbol &subr{*pair.second}; 747 // Errors in FINAL subroutines are caught in CheckFinal 748 // in check-declarations.cpp. 749 if (const auto *subprog{subr.detailsIf<SubprogramDetails>()}; 750 subprog && subprog->dummyArgs().size() == 1) { 751 if (const Symbol * arg{subprog->dummyArgs()[0]}) { 752 if (const DeclTypeSpec * type{arg->GetType()}) { 753 if (type->category() == DeclTypeSpec::TypeDerived && 754 evaluate::AreSameDerivedType(spec, type->derivedTypeSpec())) { 755 result.emplace_back(subr); 756 } 757 } 758 } 759 } 760 } 761 } 762 return result; 763 } 764 765 const Symbol *IsFinalizable(const Symbol &symbol, 766 std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer) { 767 if (IsPointer(symbol) || evaluate::IsAssumedRank(symbol)) { 768 return nullptr; 769 } 770 if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 771 if (object->isDummy() && !IsIntentOut(symbol)) { 772 return nullptr; 773 } 774 const DeclTypeSpec *type{object->type()}; 775 if (const DerivedTypeSpec * typeSpec{type ? type->AsDerived() : nullptr}) { 776 return IsFinalizable( 777 *typeSpec, inProgress, withImpureFinalizer, symbol.Rank()); 778 } 779 } 780 return nullptr; 781 } 782 783 const Symbol *IsFinalizable(const DerivedTypeSpec &derived, 784 std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer, 785 std::optional<int> rank) { 786 const Symbol *elemental{nullptr}; 787 for (auto ref : FinalsForDerivedTypeInstantiation(derived)) { 788 const Symbol *symbol{&ref->GetUltimate()}; 789 if (const auto *binding{symbol->detailsIf<ProcBindingDetails>()}) { 790 symbol = &binding->symbol(); 791 } 792 if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) { 793 symbol = proc->procInterface(); 794 } 795 if (!symbol) { 796 } else if (IsElementalProcedure(*symbol)) { 797 elemental = symbol; 798 } else { 799 if (rank) { 800 if (const SubprogramDetails * 801 subp{symbol->detailsIf<SubprogramDetails>()}) { 802 if (const auto &args{subp->dummyArgs()}; !args.empty() && 803 args.at(0) && !evaluate::IsAssumedRank(*args.at(0)) && 804 args.at(0)->Rank() != *rank) { 805 continue; // not a finalizer for this rank 806 } 807 } 808 } 809 if (!withImpureFinalizer || !IsPureProcedure(*symbol)) { 810 return symbol; 811 } 812 // Found non-elemental pure finalizer of matching rank, but still 813 // need to check components for an impure finalizer. 814 elemental = nullptr; 815 break; 816 } 817 } 818 if (elemental && (!withImpureFinalizer || !IsPureProcedure(*elemental))) { 819 return elemental; 820 } 821 // Check components (including ancestors) 822 std::set<const DerivedTypeSpec *> basis; 823 if (inProgress) { 824 if (inProgress->find(&derived) != inProgress->end()) { 825 return nullptr; // don't loop on recursive type 826 } 827 } else { 828 inProgress = &basis; 829 } 830 auto iterator{inProgress->insert(&derived).first}; 831 const Symbol *result{nullptr}; 832 for (const Symbol &component : PotentialComponentIterator{derived}) { 833 result = IsFinalizable(component, inProgress, withImpureFinalizer); 834 if (result) { 835 break; 836 } 837 } 838 inProgress->erase(iterator); 839 return result; 840 } 841 842 static const Symbol *HasImpureFinal( 843 const DerivedTypeSpec &derived, std::optional<int> rank) { 844 return IsFinalizable(derived, nullptr, /*withImpureFinalizer=*/true, rank); 845 } 846 847 const Symbol *HasImpureFinal(const Symbol &original, std::optional<int> rank) { 848 const Symbol &symbol{ResolveAssociations(original)}; 849 if (symbol.has<ObjectEntityDetails>()) { 850 if (const DeclTypeSpec * symType{symbol.GetType()}) { 851 if (const DerivedTypeSpec * derived{symType->AsDerived()}) { 852 if (evaluate::IsAssumedRank(symbol)) { 853 // finalizable assumed-rank not allowed (C839) 854 return nullptr; 855 } else { 856 int actualRank{rank.value_or(symbol.Rank())}; 857 return HasImpureFinal(*derived, actualRank); 858 } 859 } 860 } 861 } 862 return nullptr; 863 } 864 865 bool MayRequireFinalization(const DerivedTypeSpec &derived) { 866 return IsFinalizable(derived) || 867 FindPolymorphicAllocatableUltimateComponent(derived); 868 } 869 870 bool HasAllocatableDirectComponent(const DerivedTypeSpec &derived) { 871 DirectComponentIterator directs{derived}; 872 return std::any_of(directs.begin(), directs.end(), IsAllocatable); 873 } 874 875 bool IsAssumedLengthCharacter(const Symbol &symbol) { 876 if (const DeclTypeSpec * type{symbol.GetType()}) { 877 return type->category() == DeclTypeSpec::Character && 878 type->characterTypeSpec().length().isAssumed(); 879 } else { 880 return false; 881 } 882 } 883 884 bool IsInBlankCommon(const Symbol &symbol) { 885 const Symbol *block{FindCommonBlockContaining(symbol)}; 886 return block && block->name().empty(); 887 } 888 889 // C722 and C723: For a function to be assumed length, it must be external and 890 // of CHARACTER type 891 bool IsExternal(const Symbol &symbol) { 892 return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External; 893 } 894 895 // Most scopes have no EQUIVALENCE, and this function is a fast no-op for them. 896 std::list<std::list<SymbolRef>> GetStorageAssociations(const Scope &scope) { 897 UnorderedSymbolSet distinct; 898 for (const EquivalenceSet &set : scope.equivalenceSets()) { 899 for (const EquivalenceObject &object : set) { 900 distinct.emplace(object.symbol); 901 } 902 } 903 // This set is ordered by ascending offsets, with ties broken by greatest 904 // size. A multiset is used here because multiple symbols may have the 905 // same offset and size; the symbols in the set, however, are distinct. 906 std::multiset<SymbolRef, SymbolOffsetCompare> associated; 907 for (SymbolRef ref : distinct) { 908 associated.emplace(*ref); 909 } 910 std::list<std::list<SymbolRef>> result; 911 std::size_t limit{0}; 912 const Symbol *currentCommon{nullptr}; 913 for (const Symbol &symbol : associated) { 914 const Symbol *thisCommon{FindCommonBlockContaining(symbol)}; 915 if (result.empty() || symbol.offset() >= limit || 916 thisCommon != currentCommon) { 917 // Start a new group 918 result.emplace_back(std::list<SymbolRef>{}); 919 limit = 0; 920 currentCommon = thisCommon; 921 } 922 result.back().emplace_back(symbol); 923 limit = std::max(limit, symbol.offset() + symbol.size()); 924 } 925 return result; 926 } 927 928 bool IsModuleProcedure(const Symbol &symbol) { 929 return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module; 930 } 931 932 class ImageControlStmtHelper { 933 using ImageControlStmts = 934 std::variant<parser::ChangeTeamConstruct, parser::CriticalConstruct, 935 parser::EventPostStmt, parser::EventWaitStmt, parser::FormTeamStmt, 936 parser::LockStmt, parser::SyncAllStmt, parser::SyncImagesStmt, 937 parser::SyncMemoryStmt, parser::SyncTeamStmt, parser::UnlockStmt>; 938 939 public: 940 template <typename T> bool operator()(const T &) { 941 return common::HasMember<T, ImageControlStmts>; 942 } 943 template <typename T> bool operator()(const common::Indirection<T> &x) { 944 return (*this)(x.value()); 945 } 946 template <typename A> bool operator()(const parser::Statement<A> &x) { 947 return (*this)(x.statement); 948 } 949 bool operator()(const parser::AllocateStmt &stmt) { 950 const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)}; 951 for (const auto &allocation : allocationList) { 952 const auto &allocateObject{ 953 std::get<parser::AllocateObject>(allocation.t)}; 954 if (IsCoarrayObject(allocateObject)) { 955 return true; 956 } 957 } 958 return false; 959 } 960 bool operator()(const parser::DeallocateStmt &stmt) { 961 const auto &allocateObjectList{ 962 std::get<std::list<parser::AllocateObject>>(stmt.t)}; 963 for (const auto &allocateObject : allocateObjectList) { 964 if (IsCoarrayObject(allocateObject)) { 965 return true; 966 } 967 } 968 return false; 969 } 970 bool operator()(const parser::CallStmt &stmt) { 971 const auto &procedureDesignator{ 972 std::get<parser::ProcedureDesignator>(stmt.call.t)}; 973 if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) { 974 // TODO: also ensure that the procedure is, in fact, an intrinsic 975 if (name->source == "move_alloc") { 976 const auto &args{ 977 std::get<std::list<parser::ActualArgSpec>>(stmt.call.t)}; 978 if (!args.empty()) { 979 const parser::ActualArg &actualArg{ 980 std::get<parser::ActualArg>(args.front().t)}; 981 if (const auto *argExpr{ 982 std::get_if<common::Indirection<parser::Expr>>( 983 &actualArg.u)}) { 984 return HasCoarray(argExpr->value()); 985 } 986 } 987 } 988 } 989 return false; 990 } 991 bool operator()(const parser::StopStmt &stmt) { 992 // STOP is an image control statement; ERROR STOP is not 993 return std::get<parser::StopStmt::Kind>(stmt.t) == 994 parser::StopStmt::Kind::Stop; 995 } 996 bool operator()(const parser::IfStmt &stmt) { 997 return (*this)( 998 std::get<parser::UnlabeledStatement<parser::ActionStmt>>(stmt.t) 999 .statement); 1000 } 1001 bool operator()(const parser::ActionStmt &stmt) { 1002 return common::visit(*this, stmt.u); 1003 } 1004 1005 private: 1006 bool IsCoarrayObject(const parser::AllocateObject &allocateObject) { 1007 const parser::Name &name{GetLastName(allocateObject)}; 1008 return name.symbol && evaluate::IsCoarray(*name.symbol); 1009 } 1010 }; 1011 1012 bool IsImageControlStmt(const parser::ExecutableConstruct &construct) { 1013 return common::visit(ImageControlStmtHelper{}, construct.u); 1014 } 1015 1016 std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg( 1017 const parser::ExecutableConstruct &construct) { 1018 if (const auto *actionStmt{ 1019 std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) { 1020 return common::visit( 1021 common::visitors{ 1022 [](const common::Indirection<parser::AllocateStmt> &) 1023 -> std::optional<parser::MessageFixedText> { 1024 return "ALLOCATE of a coarray is an image control" 1025 " statement"_en_US; 1026 }, 1027 [](const common::Indirection<parser::DeallocateStmt> &) 1028 -> std::optional<parser::MessageFixedText> { 1029 return "DEALLOCATE of a coarray is an image control" 1030 " statement"_en_US; 1031 }, 1032 [](const common::Indirection<parser::CallStmt> &) 1033 -> std::optional<parser::MessageFixedText> { 1034 return "MOVE_ALLOC of a coarray is an image control" 1035 " statement "_en_US; 1036 }, 1037 [](const auto &) -> std::optional<parser::MessageFixedText> { 1038 return std::nullopt; 1039 }, 1040 }, 1041 actionStmt->statement.u); 1042 } 1043 return std::nullopt; 1044 } 1045 1046 parser::CharBlock GetImageControlStmtLocation( 1047 const parser::ExecutableConstruct &executableConstruct) { 1048 return common::visit( 1049 common::visitors{ 1050 [](const common::Indirection<parser::ChangeTeamConstruct> 1051 &construct) { 1052 return std::get<parser::Statement<parser::ChangeTeamStmt>>( 1053 construct.value().t) 1054 .source; 1055 }, 1056 [](const common::Indirection<parser::CriticalConstruct> &construct) { 1057 return std::get<parser::Statement<parser::CriticalStmt>>( 1058 construct.value().t) 1059 .source; 1060 }, 1061 [](const parser::Statement<parser::ActionStmt> &actionStmt) { 1062 return actionStmt.source; 1063 }, 1064 [](const auto &) { return parser::CharBlock{}; }, 1065 }, 1066 executableConstruct.u); 1067 } 1068 1069 bool HasCoarray(const parser::Expr &expression) { 1070 if (const auto *expr{GetExpr(nullptr, expression)}) { 1071 for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) { 1072 if (evaluate::IsCoarray(symbol)) { 1073 return true; 1074 } 1075 } 1076 } 1077 return false; 1078 } 1079 1080 bool IsAssumedType(const Symbol &symbol) { 1081 if (const DeclTypeSpec * type{symbol.GetType()}) { 1082 return type->IsAssumedType(); 1083 } 1084 return false; 1085 } 1086 1087 bool IsPolymorphic(const Symbol &symbol) { 1088 if (const DeclTypeSpec * type{symbol.GetType()}) { 1089 return type->IsPolymorphic(); 1090 } 1091 return false; 1092 } 1093 1094 bool IsUnlimitedPolymorphic(const Symbol &symbol) { 1095 if (const DeclTypeSpec * type{symbol.GetType()}) { 1096 return type->IsUnlimitedPolymorphic(); 1097 } 1098 return false; 1099 } 1100 1101 bool IsPolymorphicAllocatable(const Symbol &symbol) { 1102 return IsAllocatable(symbol) && IsPolymorphic(symbol); 1103 } 1104 1105 const Scope *FindCUDADeviceContext(const Scope *scope) { 1106 return !scope ? nullptr : FindScopeContaining(*scope, [](const Scope &s) { 1107 return IsCUDADeviceContext(&s); 1108 }); 1109 } 1110 1111 std::optional<common::CUDADataAttr> GetCUDADataAttr(const Symbol *symbol) { 1112 const auto *object{ 1113 symbol ? symbol->detailsIf<ObjectEntityDetails>() : nullptr}; 1114 return object ? object->cudaDataAttr() : std::nullopt; 1115 } 1116 1117 std::optional<parser::MessageFormattedText> CheckAccessibleSymbol( 1118 const Scope &scope, const Symbol &symbol) { 1119 if (symbol.attrs().test(Attr::PRIVATE)) { 1120 if (FindModuleFileContaining(scope)) { 1121 // Don't enforce component accessibility checks in module files; 1122 // there may be forward-substituted named constants of derived type 1123 // whose structure constructors reference private components. 1124 } else if (const Scope * 1125 moduleScope{FindModuleContaining(symbol.owner())}) { 1126 if (!moduleScope->Contains(scope)) { 1127 return parser::MessageFormattedText{ 1128 "PRIVATE name '%s' is only accessible within module '%s'"_err_en_US, 1129 symbol.name(), moduleScope->GetName().value()}; 1130 } 1131 } 1132 } 1133 return std::nullopt; 1134 } 1135 1136 std::list<SourceName> OrderParameterNames(const Symbol &typeSymbol) { 1137 std::list<SourceName> result; 1138 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { 1139 result = OrderParameterNames(spec->typeSymbol()); 1140 } 1141 const auto ¶mNames{typeSymbol.get<DerivedTypeDetails>().paramNames()}; 1142 result.insert(result.end(), paramNames.begin(), paramNames.end()); 1143 return result; 1144 } 1145 1146 SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) { 1147 SymbolVector result; 1148 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) { 1149 result = OrderParameterDeclarations(spec->typeSymbol()); 1150 } 1151 const auto ¶mDecls{typeSymbol.get<DerivedTypeDetails>().paramDecls()}; 1152 result.insert(result.end(), paramDecls.begin(), paramDecls.end()); 1153 return result; 1154 } 1155 1156 const DeclTypeSpec &FindOrInstantiateDerivedType( 1157 Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) { 1158 spec.EvaluateParameters(scope.context()); 1159 if (const DeclTypeSpec * 1160 type{scope.FindInstantiatedDerivedType(spec, category)}) { 1161 return *type; 1162 } 1163 // Create a new instantiation of this parameterized derived type 1164 // for this particular distinct set of actual parameter values. 1165 DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))}; 1166 type.derivedTypeSpec().Instantiate(scope); 1167 return type; 1168 } 1169 1170 const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) { 1171 if (proc) { 1172 if (const auto *subprogram{proc->detailsIf<SubprogramDetails>()}) { 1173 if (const Symbol * iface{subprogram->moduleInterface()}) { 1174 return iface; 1175 } 1176 } 1177 } 1178 return nullptr; 1179 } 1180 1181 ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2 1182 const Symbol &ultimate{symbol.GetUltimate()}; 1183 if (!IsProcedure(ultimate)) { 1184 return ProcedureDefinitionClass::None; 1185 } else if (ultimate.attrs().test(Attr::INTRINSIC)) { 1186 return ProcedureDefinitionClass::Intrinsic; 1187 } else if (IsDummy(ultimate)) { 1188 return ProcedureDefinitionClass::Dummy; 1189 } else if (IsProcedurePointer(symbol)) { 1190 return ProcedureDefinitionClass::Pointer; 1191 } else if (ultimate.attrs().test(Attr::EXTERNAL)) { 1192 return ProcedureDefinitionClass::External; 1193 } else if (const auto *nameDetails{ 1194 ultimate.detailsIf<SubprogramNameDetails>()}) { 1195 switch (nameDetails->kind()) { 1196 case SubprogramKind::Module: 1197 return ProcedureDefinitionClass::Module; 1198 case SubprogramKind::Internal: 1199 return ProcedureDefinitionClass::Internal; 1200 } 1201 } else if (const Symbol * subp{FindSubprogram(symbol)}) { 1202 if (const auto *subpDetails{subp->detailsIf<SubprogramDetails>()}) { 1203 if (subpDetails->stmtFunction()) { 1204 return ProcedureDefinitionClass::StatementFunction; 1205 } 1206 } 1207 switch (ultimate.owner().kind()) { 1208 case Scope::Kind::Global: 1209 case Scope::Kind::IntrinsicModules: 1210 return ProcedureDefinitionClass::External; 1211 case Scope::Kind::Module: 1212 return ProcedureDefinitionClass::Module; 1213 case Scope::Kind::MainProgram: 1214 case Scope::Kind::Subprogram: 1215 return ProcedureDefinitionClass::Internal; 1216 default: 1217 break; 1218 } 1219 } 1220 return ProcedureDefinitionClass::None; 1221 } 1222 1223 // ComponentIterator implementation 1224 1225 template <ComponentKind componentKind> 1226 typename ComponentIterator<componentKind>::const_iterator 1227 ComponentIterator<componentKind>::const_iterator::Create( 1228 const DerivedTypeSpec &derived) { 1229 const_iterator it{}; 1230 it.componentPath_.emplace_back(derived); 1231 it.Increment(); // cue up first relevant component, if any 1232 return it; 1233 } 1234 1235 template <ComponentKind componentKind> 1236 const DerivedTypeSpec * 1237 ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal( 1238 const Symbol &component) const { 1239 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 1240 if (const DeclTypeSpec * type{details->type()}) { 1241 if (const auto *derived{type->AsDerived()}) { 1242 bool traverse{false}; 1243 if constexpr (componentKind == ComponentKind::Ordered) { 1244 // Order Component (only visit parents) 1245 traverse = component.test(Symbol::Flag::ParentComp); 1246 } else if constexpr (componentKind == ComponentKind::Direct) { 1247 traverse = !IsAllocatableOrObjectPointer(&component); 1248 } else if constexpr (componentKind == ComponentKind::Ultimate) { 1249 traverse = !IsAllocatableOrObjectPointer(&component); 1250 } else if constexpr (componentKind == ComponentKind::Potential) { 1251 traverse = !IsPointer(component); 1252 } else if constexpr (componentKind == ComponentKind::Scope) { 1253 traverse = !IsAllocatableOrObjectPointer(&component); 1254 } else if constexpr (componentKind == 1255 ComponentKind::PotentialAndPointer) { 1256 traverse = !IsPointer(component); 1257 } 1258 if (traverse) { 1259 const Symbol &newTypeSymbol{derived->typeSymbol()}; 1260 // Avoid infinite loop if the type is already part of the types 1261 // being visited. It is possible to have "loops in type" because 1262 // C744 does not forbid to use not yet declared type for 1263 // ALLOCATABLE or POINTER components. 1264 for (const auto &node : componentPath_) { 1265 if (&newTypeSymbol == &node.GetTypeSymbol()) { 1266 return nullptr; 1267 } 1268 } 1269 return derived; 1270 } 1271 } 1272 } // intrinsic & unlimited polymorphic not traversable 1273 } 1274 return nullptr; 1275 } 1276 1277 template <ComponentKind componentKind> 1278 static bool StopAtComponentPre(const Symbol &component) { 1279 if constexpr (componentKind == ComponentKind::Ordered) { 1280 // Parent components need to be iterated upon after their 1281 // sub-components in structure constructor analysis. 1282 return !component.test(Symbol::Flag::ParentComp); 1283 } else if constexpr (componentKind == ComponentKind::Direct) { 1284 return true; 1285 } else if constexpr (componentKind == ComponentKind::Ultimate) { 1286 return component.has<ProcEntityDetails>() || 1287 IsAllocatableOrObjectPointer(&component) || 1288 (component.has<ObjectEntityDetails>() && 1289 component.get<ObjectEntityDetails>().type() && 1290 component.get<ObjectEntityDetails>().type()->AsIntrinsic()); 1291 } else if constexpr (componentKind == ComponentKind::Potential) { 1292 return !IsPointer(component); 1293 } else if constexpr (componentKind == ComponentKind::PotentialAndPointer) { 1294 return true; 1295 } else { 1296 DIE("unexpected ComponentKind"); 1297 } 1298 } 1299 1300 template <ComponentKind componentKind> 1301 static bool StopAtComponentPost(const Symbol &component) { 1302 return componentKind == ComponentKind::Ordered && 1303 component.test(Symbol::Flag::ParentComp); 1304 } 1305 1306 template <ComponentKind componentKind> 1307 void ComponentIterator<componentKind>::const_iterator::Increment() { 1308 while (!componentPath_.empty()) { 1309 ComponentPathNode &deepest{componentPath_.back()}; 1310 if (deepest.component()) { 1311 if (!deepest.descended()) { 1312 deepest.set_descended(true); 1313 if (const DerivedTypeSpec * 1314 derived{PlanComponentTraversal(*deepest.component())}) { 1315 componentPath_.emplace_back(*derived); 1316 continue; 1317 } 1318 } else if (!deepest.visited()) { 1319 deepest.set_visited(true); 1320 return; // this is the next component to visit, after descending 1321 } 1322 } 1323 auto &nameIterator{deepest.nameIterator()}; 1324 if (nameIterator == deepest.nameEnd()) { 1325 componentPath_.pop_back(); 1326 } else if constexpr (componentKind == ComponentKind::Scope) { 1327 deepest.set_component(*nameIterator++->second); 1328 deepest.set_descended(false); 1329 deepest.set_visited(true); 1330 return; // this is the next component to visit, before descending 1331 } else { 1332 const Scope &scope{deepest.GetScope()}; 1333 auto scopeIter{scope.find(*nameIterator++)}; 1334 if (scopeIter != scope.cend()) { 1335 const Symbol &component{*scopeIter->second}; 1336 deepest.set_component(component); 1337 deepest.set_descended(false); 1338 if (StopAtComponentPre<componentKind>(component)) { 1339 deepest.set_visited(true); 1340 return; // this is the next component to visit, before descending 1341 } else { 1342 deepest.set_visited(!StopAtComponentPost<componentKind>(component)); 1343 } 1344 } 1345 } 1346 } 1347 } 1348 1349 template <ComponentKind componentKind> 1350 std::string 1351 ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName() 1352 const { 1353 std::string designator; 1354 for (const auto &node : componentPath_) { 1355 designator += "%" + DEREF(node.component()).name().ToString(); 1356 } 1357 return designator; 1358 } 1359 1360 template class ComponentIterator<ComponentKind::Ordered>; 1361 template class ComponentIterator<ComponentKind::Direct>; 1362 template class ComponentIterator<ComponentKind::Ultimate>; 1363 template class ComponentIterator<ComponentKind::Potential>; 1364 template class ComponentIterator<ComponentKind::Scope>; 1365 template class ComponentIterator<ComponentKind::PotentialAndPointer>; 1366 1367 UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent( 1368 const DerivedTypeSpec &derived) { 1369 UltimateComponentIterator ultimates{derived}; 1370 return std::find_if(ultimates.begin(), ultimates.end(), 1371 [](const Symbol &symbol) { return evaluate::IsCoarray(symbol); }); 1372 } 1373 1374 UltimateComponentIterator::const_iterator FindPointerUltimateComponent( 1375 const DerivedTypeSpec &derived) { 1376 UltimateComponentIterator ultimates{derived}; 1377 return std::find_if(ultimates.begin(), ultimates.end(), IsPointer); 1378 } 1379 1380 PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent( 1381 const DerivedTypeSpec &derived) { 1382 PotentialComponentIterator potentials{derived}; 1383 return std::find_if( 1384 potentials.begin(), potentials.end(), [](const Symbol &component) { 1385 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) { 1386 const DeclTypeSpec *type{details->type()}; 1387 return type && IsEventTypeOrLockType(type->AsDerived()); 1388 } 1389 return false; 1390 }); 1391 } 1392 1393 UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent( 1394 const DerivedTypeSpec &derived) { 1395 UltimateComponentIterator ultimates{derived}; 1396 return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable); 1397 } 1398 1399 DirectComponentIterator::const_iterator FindAllocatableOrPointerDirectComponent( 1400 const DerivedTypeSpec &derived) { 1401 DirectComponentIterator directs{derived}; 1402 return std::find_if(directs.begin(), directs.end(), IsAllocatableOrPointer); 1403 } 1404 1405 UltimateComponentIterator::const_iterator 1406 FindPolymorphicAllocatableUltimateComponent(const DerivedTypeSpec &derived) { 1407 UltimateComponentIterator ultimates{derived}; 1408 return std::find_if( 1409 ultimates.begin(), ultimates.end(), IsPolymorphicAllocatable); 1410 } 1411 1412 const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived, 1413 const std::function<bool(const Symbol &)> &predicate) { 1414 UltimateComponentIterator ultimates{derived}; 1415 if (auto it{std::find_if(ultimates.begin(), ultimates.end(), 1416 [&predicate](const Symbol &component) -> bool { 1417 return predicate(component); 1418 })}) { 1419 return &*it; 1420 } 1421 return nullptr; 1422 } 1423 1424 const Symbol *FindUltimateComponent(const Symbol &symbol, 1425 const std::function<bool(const Symbol &)> &predicate) { 1426 if (predicate(symbol)) { 1427 return &symbol; 1428 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 1429 if (const auto *type{object->type()}) { 1430 if (const auto *derived{type->AsDerived()}) { 1431 return FindUltimateComponent(*derived, predicate); 1432 } 1433 } 1434 } 1435 return nullptr; 1436 } 1437 1438 const Symbol *FindImmediateComponent(const DerivedTypeSpec &type, 1439 const std::function<bool(const Symbol &)> &predicate) { 1440 if (const Scope * scope{type.scope()}) { 1441 const Symbol *parent{nullptr}; 1442 for (const auto &pair : *scope) { 1443 const Symbol *symbol{&*pair.second}; 1444 if (predicate(*symbol)) { 1445 return symbol; 1446 } 1447 if (symbol->test(Symbol::Flag::ParentComp)) { 1448 parent = symbol; 1449 } 1450 } 1451 if (parent) { 1452 if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) { 1453 if (const auto *type{object->type()}) { 1454 if (const auto *derived{type->AsDerived()}) { 1455 return FindImmediateComponent(*derived, predicate); 1456 } 1457 } 1458 } 1459 } 1460 } 1461 return nullptr; 1462 } 1463 1464 const Symbol *IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) { 1465 if (IsFunctionResult(symbol)) { 1466 if (const Symbol * function{symbol.owner().symbol()}) { 1467 if (symbol.name() == function->name()) { 1468 return function; 1469 } 1470 } 1471 // Check ENTRY result symbols too 1472 const Scope &outer{symbol.owner().parent()}; 1473 auto iter{outer.find(symbol.name())}; 1474 if (iter != outer.end()) { 1475 const Symbol &outerSym{*iter->second}; 1476 if (const auto *subp{outerSym.detailsIf<SubprogramDetails>()}) { 1477 if (subp->entryScope() == &symbol.owner() && 1478 symbol.name() == outerSym.name()) { 1479 return &outerSym; 1480 } 1481 } 1482 } 1483 } 1484 return nullptr; 1485 } 1486 1487 void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) { 1488 checkLabelUse(gotoStmt.v); 1489 } 1490 void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) { 1491 for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) { 1492 checkLabelUse(i); 1493 } 1494 } 1495 1496 void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) { 1497 checkLabelUse(std::get<1>(arithmeticIfStmt.t)); 1498 checkLabelUse(std::get<2>(arithmeticIfStmt.t)); 1499 checkLabelUse(std::get<3>(arithmeticIfStmt.t)); 1500 } 1501 1502 void LabelEnforce::Post(const parser::AssignStmt &assignStmt) { 1503 checkLabelUse(std::get<parser::Label>(assignStmt.t)); 1504 } 1505 1506 void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) { 1507 for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) { 1508 checkLabelUse(i); 1509 } 1510 } 1511 1512 void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) { 1513 checkLabelUse(altReturnSpec.v); 1514 } 1515 1516 void LabelEnforce::Post(const parser::ErrLabel &errLabel) { 1517 checkLabelUse(errLabel.v); 1518 } 1519 void LabelEnforce::Post(const parser::EndLabel &endLabel) { 1520 checkLabelUse(endLabel.v); 1521 } 1522 void LabelEnforce::Post(const parser::EorLabel &eorLabel) { 1523 checkLabelUse(eorLabel.v); 1524 } 1525 1526 void LabelEnforce::checkLabelUse(const parser::Label &labelUsed) { 1527 if (labels_.find(labelUsed) == labels_.end()) { 1528 SayWithConstruct(context_, currentStatementSourcePosition_, 1529 parser::MessageFormattedText{ 1530 "Control flow escapes from %s"_err_en_US, construct_}, 1531 constructSourcePosition_); 1532 } 1533 } 1534 1535 parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() { 1536 return {"Enclosing %s statement"_en_US, construct_}; 1537 } 1538 1539 void LabelEnforce::SayWithConstruct(SemanticsContext &context, 1540 parser::CharBlock stmtLocation, parser::MessageFormattedText &&message, 1541 parser::CharBlock constructLocation) { 1542 context.Say(stmtLocation, message) 1543 .Attach(constructLocation, GetEnclosingConstructMsg()); 1544 } 1545 1546 bool HasAlternateReturns(const Symbol &subprogram) { 1547 for (const auto *dummyArg : subprogram.get<SubprogramDetails>().dummyArgs()) { 1548 if (!dummyArg) { 1549 return true; 1550 } 1551 } 1552 return false; 1553 } 1554 1555 bool IsAutomaticallyDestroyed(const Symbol &symbol) { 1556 return symbol.has<ObjectEntityDetails>() && 1557 (symbol.owner().kind() == Scope::Kind::Subprogram || 1558 symbol.owner().kind() == Scope::Kind::BlockConstruct) && 1559 (!IsDummy(symbol) || IsIntentOut(symbol)) && !IsPointer(symbol) && 1560 !IsSaved(symbol) && !FindCommonBlockContaining(symbol); 1561 } 1562 1563 const std::optional<parser::Name> &MaybeGetNodeName( 1564 const ConstructNode &construct) { 1565 return common::visit( 1566 common::visitors{ 1567 [&](const parser::BlockConstruct *blockConstruct) 1568 -> const std::optional<parser::Name> & { 1569 return std::get<0>(blockConstruct->t).statement.v; 1570 }, 1571 [&](const auto *a) -> const std::optional<parser::Name> & { 1572 return std::get<0>(std::get<0>(a->t).statement.t); 1573 }, 1574 }, 1575 construct); 1576 } 1577 1578 std::optional<ArraySpec> ToArraySpec( 1579 evaluate::FoldingContext &context, const evaluate::Shape &shape) { 1580 if (auto extents{evaluate::AsConstantExtents(context, shape)}) { 1581 ArraySpec result; 1582 for (const auto &extent : *extents) { 1583 result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent})); 1584 } 1585 return {std::move(result)}; 1586 } else { 1587 return std::nullopt; 1588 } 1589 } 1590 1591 std::optional<ArraySpec> ToArraySpec(evaluate::FoldingContext &context, 1592 const std::optional<evaluate::Shape> &shape) { 1593 return shape ? ToArraySpec(context, *shape) : std::nullopt; 1594 } 1595 1596 static const DeclTypeSpec *GetDtvArgTypeSpec(const Symbol &proc) { 1597 if (const auto *subp{proc.detailsIf<SubprogramDetails>()}; 1598 subp && !subp->dummyArgs().empty()) { 1599 if (const auto *arg{subp->dummyArgs()[0]}) { 1600 return arg->GetType(); 1601 } 1602 } 1603 return nullptr; 1604 } 1605 1606 const DerivedTypeSpec *GetDtvArgDerivedType(const Symbol &proc) { 1607 if (const auto *type{GetDtvArgTypeSpec(proc)}) { 1608 return type->AsDerived(); 1609 } else { 1610 return nullptr; 1611 } 1612 } 1613 1614 bool HasDefinedIo(common::DefinedIo which, const DerivedTypeSpec &derived, 1615 const Scope *scope) { 1616 if (const Scope * dtScope{derived.scope()}) { 1617 for (const auto &pair : *dtScope) { 1618 const Symbol &symbol{*pair.second}; 1619 if (const auto *generic{symbol.detailsIf<GenericDetails>()}) { 1620 GenericKind kind{generic->kind()}; 1621 if (const auto *io{std::get_if<common::DefinedIo>(&kind.u)}) { 1622 if (*io == which) { 1623 return true; // type-bound GENERIC exists 1624 } 1625 } 1626 } 1627 } 1628 } 1629 if (scope) { 1630 SourceName name{GenericKind::AsFortran(which)}; 1631 evaluate::DynamicType dyDerived{derived}; 1632 for (; scope && !scope->IsGlobal(); scope = &scope->parent()) { 1633 auto iter{scope->find(name)}; 1634 if (iter != scope->end()) { 1635 const auto &generic{iter->second->GetUltimate().get<GenericDetails>()}; 1636 for (auto ref : generic.specificProcs()) { 1637 const Symbol &procSym{ref->GetUltimate()}; 1638 if (const DeclTypeSpec * dtSpec{GetDtvArgTypeSpec(procSym)}) { 1639 if (auto dyDummy{evaluate::DynamicType::From(*dtSpec)}) { 1640 if (dyDummy->IsTkCompatibleWith(dyDerived)) { 1641 return true; // GENERIC or INTERFACE not in type 1642 } 1643 } 1644 } 1645 } 1646 } 1647 } 1648 } 1649 return false; 1650 } 1651 1652 void WarnOnDeferredLengthCharacterScalar(SemanticsContext &context, 1653 const SomeExpr *expr, parser::CharBlock at, const char *what) { 1654 if (context.languageFeatures().ShouldWarn( 1655 common::UsageWarning::F202XAllocatableBreakingChange)) { 1656 if (const Symbol * 1657 symbol{evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)}) { 1658 const Symbol &ultimate{ResolveAssociations(*symbol)}; 1659 if (const DeclTypeSpec * type{ultimate.GetType()}; type && 1660 type->category() == DeclTypeSpec::Category::Character && 1661 type->characterTypeSpec().length().isDeferred() && 1662 IsAllocatable(ultimate) && ultimate.Rank() == 0) { 1663 context.Say(at, 1664 "The deferred length allocatable character scalar variable '%s' may be reallocated to a different length under the new Fortran 202X standard semantics for %s"_port_en_US, 1665 symbol->name(), what); 1666 } 1667 } 1668 } 1669 } 1670 1671 bool CouldBeDataPointerValuedFunction(const Symbol *original) { 1672 if (original) { 1673 const Symbol &ultimate{original->GetUltimate()}; 1674 if (const Symbol * result{FindFunctionResult(ultimate)}) { 1675 return IsPointer(*result) && !IsProcedure(*result); 1676 } 1677 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) { 1678 for (const SymbolRef &ref : generic->specificProcs()) { 1679 if (CouldBeDataPointerValuedFunction(&*ref)) { 1680 return true; 1681 } 1682 } 1683 } 1684 } 1685 return false; 1686 } 1687 1688 std::string GetModuleOrSubmoduleName(const Symbol &symbol) { 1689 const auto &details{symbol.get<ModuleDetails>()}; 1690 std::string result{symbol.name().ToString()}; 1691 if (details.ancestor() && details.ancestor()->symbol()) { 1692 result = details.ancestor()->symbol()->name().ToString() + ':' + result; 1693 } 1694 return result; 1695 } 1696 1697 std::string GetCommonBlockObjectName(const Symbol &common, bool underscoring) { 1698 if (const std::string * bind{common.GetBindName()}) { 1699 return *bind; 1700 } 1701 if (common.name().empty()) { 1702 return Fortran::common::blankCommonObjectName; 1703 } 1704 return underscoring ? common.name().ToString() + "_"s 1705 : common.name().ToString(); 1706 } 1707 1708 bool HadUseError( 1709 SemanticsContext &context, SourceName at, const Symbol *symbol) { 1710 if (const auto *details{ 1711 symbol ? symbol->detailsIf<UseErrorDetails>() : nullptr}) { 1712 auto &msg{context.Say( 1713 at, "Reference to '%s' is ambiguous"_err_en_US, symbol->name())}; 1714 for (const auto &[location, module] : details->occurrences()) { 1715 msg.Attach(location, "'%s' was use-associated from module '%s'"_en_US, at, 1716 module->GetName().value()); 1717 } 1718 context.SetError(*symbol); 1719 return true; 1720 } else { 1721 return false; 1722 } 1723 } 1724 1725 } // namespace Fortran::semantics 1726