xref: /llvm-project/flang/lib/Semantics/resolve-names.cpp (revision 9462ce885b2a067fdd20568ba9105489f3b34c53)
1 //===-- lib/Semantics/resolve-names.cpp -----------------------------------===//
2 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
3 // See https://llvm.org/LICENSE.txt for license information.
4 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
5 //
6 //===----------------------------------------------------------------------===//
7 
8 #include "resolve-names.h"
9 #include "assignment.h"
10 #include "definable.h"
11 #include "mod-file.h"
12 #include "pointer-assignment.h"
13 #include "resolve-directives.h"
14 #include "resolve-names-utils.h"
15 #include "rewrite-parse-tree.h"
16 #include "flang/Common/Fortran.h"
17 #include "flang/Common/default-kinds.h"
18 #include "flang/Common/indirection.h"
19 #include "flang/Common/restorer.h"
20 #include "flang/Common/visit.h"
21 #include "flang/Evaluate/characteristics.h"
22 #include "flang/Evaluate/check-expression.h"
23 #include "flang/Evaluate/common.h"
24 #include "flang/Evaluate/fold-designator.h"
25 #include "flang/Evaluate/fold.h"
26 #include "flang/Evaluate/intrinsics.h"
27 #include "flang/Evaluate/tools.h"
28 #include "flang/Evaluate/type.h"
29 #include "flang/Parser/parse-tree-visitor.h"
30 #include "flang/Parser/parse-tree.h"
31 #include "flang/Parser/tools.h"
32 #include "flang/Semantics/attr.h"
33 #include "flang/Semantics/expression.h"
34 #include "flang/Semantics/openmp-modifiers.h"
35 #include "flang/Semantics/program-tree.h"
36 #include "flang/Semantics/scope.h"
37 #include "flang/Semantics/semantics.h"
38 #include "flang/Semantics/symbol.h"
39 #include "flang/Semantics/tools.h"
40 #include "flang/Semantics/type.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <list>
43 #include <map>
44 #include <set>
45 #include <stack>
46 
47 namespace Fortran::semantics {
48 
49 using namespace parser::literals;
50 
51 template <typename T> using Indirection = common::Indirection<T>;
52 using Message = parser::Message;
53 using Messages = parser::Messages;
54 using MessageFixedText = parser::MessageFixedText;
55 using MessageFormattedText = parser::MessageFormattedText;
56 
57 class ResolveNamesVisitor;
58 class ScopeHandler;
59 
60 // ImplicitRules maps initial character of identifier to the DeclTypeSpec
61 // representing the implicit type; std::nullopt if none.
62 // It also records the presence of IMPLICIT NONE statements.
63 // When inheritFromParent is set, defaults come from the parent rules.
64 class ImplicitRules {
65 public:
66   ImplicitRules(SemanticsContext &context, const ImplicitRules *parent)
67       : parent_{parent}, context_{context},
68         inheritFromParent_{parent != nullptr} {}
69   bool isImplicitNoneType() const;
70   bool isImplicitNoneExternal() const;
71   void set_isImplicitNoneType(bool x) { isImplicitNoneType_ = x; }
72   void set_isImplicitNoneExternal(bool x) { isImplicitNoneExternal_ = x; }
73   void set_inheritFromParent(bool x) { inheritFromParent_ = x; }
74   // Get the implicit type for this name. May be null.
75   const DeclTypeSpec *GetType(
76       SourceName, bool respectImplicitNone = true) const;
77   // Record the implicit type for the range of characters [fromLetter,
78   // toLetter].
79   void SetTypeMapping(const DeclTypeSpec &type, parser::Location fromLetter,
80       parser::Location toLetter);
81 
82 private:
83   static char Incr(char ch);
84 
85   const ImplicitRules *parent_;
86   SemanticsContext &context_;
87   bool inheritFromParent_{false}; // look in parent if not specified here
88   bool isImplicitNoneType_{
89       context_.IsEnabled(common::LanguageFeature::ImplicitNoneTypeAlways)};
90   bool isImplicitNoneExternal_{false};
91   // map_ contains the mapping between letters and types that were defined
92   // by the IMPLICIT statements of the related scope. It does not contain
93   // the default Fortran mappings nor the mapping defined in parents.
94   std::map<char, common::Reference<const DeclTypeSpec>> map_;
95 
96   friend llvm::raw_ostream &operator<<(
97       llvm::raw_ostream &, const ImplicitRules &);
98   friend void ShowImplicitRule(
99       llvm::raw_ostream &, const ImplicitRules &, char);
100 };
101 
102 // scope -> implicit rules for that scope
103 using ImplicitRulesMap = std::map<const Scope *, ImplicitRules>;
104 
105 // Track statement source locations and save messages.
106 class MessageHandler {
107 public:
108   MessageHandler() { DIE("MessageHandler: default-constructed"); }
109   explicit MessageHandler(SemanticsContext &c) : context_{&c} {}
110   Messages &messages() { return context_->messages(); };
111   const std::optional<SourceName> &currStmtSource() {
112     return context_->location();
113   }
114   void set_currStmtSource(const std::optional<SourceName> &source) {
115     context_->set_location(source);
116   }
117 
118   // Emit a message associated with the current statement source.
119   Message &Say(MessageFixedText &&);
120   Message &Say(MessageFormattedText &&);
121   // Emit a message about a SourceName
122   Message &Say(const SourceName &, MessageFixedText &&);
123   // Emit a formatted message associated with a source location.
124   template <typename... A>
125   Message &Say(const SourceName &source, MessageFixedText &&msg, A &&...args) {
126     return context_->Say(source, std::move(msg), std::forward<A>(args)...);
127   }
128 
129 private:
130   SemanticsContext *context_;
131 };
132 
133 // Inheritance graph for the parse tree visitation classes that follow:
134 //   BaseVisitor
135 //   + AttrsVisitor
136 //   | + DeclTypeSpecVisitor
137 //   |   + ImplicitRulesVisitor
138 //   |     + ScopeHandler ------------------+
139 //   |       + ModuleVisitor -------------+ |
140 //   |       + GenericHandler -------+    | |
141 //   |       | + InterfaceVisitor    |    | |
142 //   |       +-+ SubprogramVisitor ==|==+ | |
143 //   + ArraySpecVisitor              |  | | |
144 //     + DeclarationVisitor <--------+  | | |
145 //       + ConstructVisitor             | | |
146 //         + ResolveNamesVisitor <------+-+-+
147 
148 class BaseVisitor {
149 public:
150   BaseVisitor() { DIE("BaseVisitor: default-constructed"); }
151   BaseVisitor(
152       SemanticsContext &c, ResolveNamesVisitor &v, ImplicitRulesMap &rules)
153       : implicitRulesMap_{&rules}, this_{&v}, context_{&c}, messageHandler_{c} {
154   }
155   template <typename T> void Walk(const T &);
156 
157   MessageHandler &messageHandler() { return messageHandler_; }
158   const std::optional<SourceName> &currStmtSource() {
159     return context_->location();
160   }
161   SemanticsContext &context() const { return *context_; }
162   evaluate::FoldingContext &GetFoldingContext() const {
163     return context_->foldingContext();
164   }
165   bool IsIntrinsic(
166       const SourceName &name, std::optional<Symbol::Flag> flag) const {
167     if (!flag) {
168       return context_->intrinsics().IsIntrinsic(name.ToString());
169     } else if (flag == Symbol::Flag::Function) {
170       return context_->intrinsics().IsIntrinsicFunction(name.ToString());
171     } else if (flag == Symbol::Flag::Subroutine) {
172       return context_->intrinsics().IsIntrinsicSubroutine(name.ToString());
173     } else {
174       DIE("expected Subroutine or Function flag");
175     }
176   }
177 
178   bool InModuleFile() const {
179     return GetFoldingContext().moduleFileName().has_value();
180   }
181 
182   // Make a placeholder symbol for a Name that otherwise wouldn't have one.
183   // It is not in any scope and always has MiscDetails.
184   void MakePlaceholder(const parser::Name &, MiscDetails::Kind);
185 
186   template <typename T> common::IfNoLvalue<T, T> FoldExpr(T &&expr) {
187     return evaluate::Fold(GetFoldingContext(), std::move(expr));
188   }
189 
190   template <typename T> MaybeExpr EvaluateExpr(const T &expr) {
191     return FoldExpr(AnalyzeExpr(*context_, expr));
192   }
193 
194   template <typename T>
195   MaybeExpr EvaluateNonPointerInitializer(
196       const Symbol &symbol, const T &expr, parser::CharBlock source) {
197     if (!context().HasError(symbol)) {
198       if (auto maybeExpr{AnalyzeExpr(*context_, expr)}) {
199         auto restorer{GetFoldingContext().messages().SetLocation(source)};
200         return evaluate::NonPointerInitializationExpr(
201             symbol, std::move(*maybeExpr), GetFoldingContext());
202       }
203     }
204     return std::nullopt;
205   }
206 
207   template <typename T> MaybeIntExpr EvaluateIntExpr(const T &expr) {
208     return semantics::EvaluateIntExpr(*context_, expr);
209   }
210 
211   template <typename T>
212   MaybeSubscriptIntExpr EvaluateSubscriptIntExpr(const T &expr) {
213     if (MaybeIntExpr maybeIntExpr{EvaluateIntExpr(expr)}) {
214       return FoldExpr(evaluate::ConvertToType<evaluate::SubscriptInteger>(
215           std::move(*maybeIntExpr)));
216     } else {
217       return std::nullopt;
218     }
219   }
220 
221   template <typename... A> Message &Say(A &&...args) {
222     return messageHandler_.Say(std::forward<A>(args)...);
223   }
224   template <typename... A>
225   Message &Say(
226       const parser::Name &name, MessageFixedText &&text, const A &...args) {
227     return messageHandler_.Say(name.source, std::move(text), args...);
228   }
229 
230 protected:
231   ImplicitRulesMap *implicitRulesMap_{nullptr};
232 
233 private:
234   ResolveNamesVisitor *this_;
235   SemanticsContext *context_;
236   MessageHandler messageHandler_;
237 };
238 
239 // Provide Post methods to collect attributes into a member variable.
240 class AttrsVisitor : public virtual BaseVisitor {
241 public:
242   bool BeginAttrs(); // always returns true
243   Attrs GetAttrs();
244   std::optional<common::CUDADataAttr> cudaDataAttr() { return cudaDataAttr_; }
245   Attrs EndAttrs();
246   bool SetPassNameOn(Symbol &);
247   void SetBindNameOn(Symbol &);
248   void Post(const parser::LanguageBindingSpec &);
249   bool Pre(const parser::IntentSpec &);
250   bool Pre(const parser::Pass &);
251 
252   bool CheckAndSet(Attr);
253 
254 // Simple case: encountering CLASSNAME causes ATTRNAME to be set.
255 #define HANDLE_ATTR_CLASS(CLASSNAME, ATTRNAME) \
256   bool Pre(const parser::CLASSNAME &) { \
257     CheckAndSet(Attr::ATTRNAME); \
258     return false; \
259   }
260   HANDLE_ATTR_CLASS(PrefixSpec::Elemental, ELEMENTAL)
261   HANDLE_ATTR_CLASS(PrefixSpec::Impure, IMPURE)
262   HANDLE_ATTR_CLASS(PrefixSpec::Module, MODULE)
263   HANDLE_ATTR_CLASS(PrefixSpec::Non_Recursive, NON_RECURSIVE)
264   HANDLE_ATTR_CLASS(PrefixSpec::Pure, PURE)
265   HANDLE_ATTR_CLASS(PrefixSpec::Recursive, RECURSIVE)
266   HANDLE_ATTR_CLASS(TypeAttrSpec::BindC, BIND_C)
267   HANDLE_ATTR_CLASS(BindAttr::Deferred, DEFERRED)
268   HANDLE_ATTR_CLASS(BindAttr::Non_Overridable, NON_OVERRIDABLE)
269   HANDLE_ATTR_CLASS(Abstract, ABSTRACT)
270   HANDLE_ATTR_CLASS(Allocatable, ALLOCATABLE)
271   HANDLE_ATTR_CLASS(Asynchronous, ASYNCHRONOUS)
272   HANDLE_ATTR_CLASS(Contiguous, CONTIGUOUS)
273   HANDLE_ATTR_CLASS(External, EXTERNAL)
274   HANDLE_ATTR_CLASS(Intrinsic, INTRINSIC)
275   HANDLE_ATTR_CLASS(NoPass, NOPASS)
276   HANDLE_ATTR_CLASS(Optional, OPTIONAL)
277   HANDLE_ATTR_CLASS(Parameter, PARAMETER)
278   HANDLE_ATTR_CLASS(Pointer, POINTER)
279   HANDLE_ATTR_CLASS(Protected, PROTECTED)
280   HANDLE_ATTR_CLASS(Save, SAVE)
281   HANDLE_ATTR_CLASS(Target, TARGET)
282   HANDLE_ATTR_CLASS(Value, VALUE)
283   HANDLE_ATTR_CLASS(Volatile, VOLATILE)
284 #undef HANDLE_ATTR_CLASS
285   bool Pre(const common::CUDADataAttr);
286 
287 protected:
288   std::optional<Attrs> attrs_;
289   std::optional<common::CUDADataAttr> cudaDataAttr_;
290 
291   Attr AccessSpecToAttr(const parser::AccessSpec &x) {
292     switch (x.v) {
293     case parser::AccessSpec::Kind::Public:
294       return Attr::PUBLIC;
295     case parser::AccessSpec::Kind::Private:
296       return Attr::PRIVATE;
297     }
298     llvm_unreachable("Switch covers all cases"); // suppress g++ warning
299   }
300   Attr IntentSpecToAttr(const parser::IntentSpec &x) {
301     switch (x.v) {
302     case parser::IntentSpec::Intent::In:
303       return Attr::INTENT_IN;
304     case parser::IntentSpec::Intent::Out:
305       return Attr::INTENT_OUT;
306     case parser::IntentSpec::Intent::InOut:
307       return Attr::INTENT_INOUT;
308     }
309     llvm_unreachable("Switch covers all cases"); // suppress g++ warning
310   }
311 
312 private:
313   bool IsDuplicateAttr(Attr);
314   bool HaveAttrConflict(Attr, Attr, Attr);
315   bool IsConflictingAttr(Attr);
316 
317   MaybeExpr bindName_; // from BIND(C, NAME="...")
318   bool isCDefined_{false}; // BIND(C, NAME="...", CDEFINED) extension
319   std::optional<SourceName> passName_; // from PASS(...)
320 };
321 
322 // Find and create types from declaration-type-spec nodes.
323 class DeclTypeSpecVisitor : public AttrsVisitor {
324 public:
325   using AttrsVisitor::Post;
326   using AttrsVisitor::Pre;
327   void Post(const parser::IntrinsicTypeSpec::DoublePrecision &);
328   void Post(const parser::IntrinsicTypeSpec::DoubleComplex &);
329   void Post(const parser::DeclarationTypeSpec::ClassStar &);
330   void Post(const parser::DeclarationTypeSpec::TypeStar &);
331   bool Pre(const parser::TypeGuardStmt &);
332   void Post(const parser::TypeGuardStmt &);
333   void Post(const parser::TypeSpec &);
334 
335   // Walk the parse tree of a type spec and return the DeclTypeSpec for it.
336   template <typename T>
337   const DeclTypeSpec *ProcessTypeSpec(const T &x, bool allowForward = false) {
338     auto restorer{common::ScopedSet(state_, State{})};
339     set_allowForwardReferenceToDerivedType(allowForward);
340     BeginDeclTypeSpec();
341     Walk(x);
342     const auto *type{GetDeclTypeSpec()};
343     EndDeclTypeSpec();
344     return type;
345   }
346 
347 protected:
348   struct State {
349     bool expectDeclTypeSpec{false}; // should see decl-type-spec only when true
350     const DeclTypeSpec *declTypeSpec{nullptr};
351     struct {
352       DerivedTypeSpec *type{nullptr};
353       DeclTypeSpec::Category category{DeclTypeSpec::TypeDerived};
354     } derived;
355     bool allowForwardReferenceToDerivedType{false};
356   };
357 
358   bool allowForwardReferenceToDerivedType() const {
359     return state_.allowForwardReferenceToDerivedType;
360   }
361   void set_allowForwardReferenceToDerivedType(bool yes) {
362     state_.allowForwardReferenceToDerivedType = yes;
363   }
364 
365   const DeclTypeSpec *GetDeclTypeSpec();
366   void BeginDeclTypeSpec();
367   void EndDeclTypeSpec();
368   void SetDeclTypeSpec(const DeclTypeSpec &);
369   void SetDeclTypeSpecCategory(DeclTypeSpec::Category);
370   DeclTypeSpec::Category GetDeclTypeSpecCategory() const {
371     return state_.derived.category;
372   }
373   KindExpr GetKindParamExpr(
374       TypeCategory, const std::optional<parser::KindSelector> &);
375   void CheckForAbstractType(const Symbol &typeSymbol);
376 
377 private:
378   State state_;
379 
380   void MakeNumericType(TypeCategory, int kind);
381 };
382 
383 // Visit ImplicitStmt and related parse tree nodes and updates implicit rules.
384 class ImplicitRulesVisitor : public DeclTypeSpecVisitor {
385 public:
386   using DeclTypeSpecVisitor::Post;
387   using DeclTypeSpecVisitor::Pre;
388   using ImplicitNoneNameSpec = parser::ImplicitStmt::ImplicitNoneNameSpec;
389 
390   void Post(const parser::ParameterStmt &);
391   bool Pre(const parser::ImplicitStmt &);
392   bool Pre(const parser::LetterSpec &);
393   bool Pre(const parser::ImplicitSpec &);
394   void Post(const parser::ImplicitSpec &);
395 
396   const DeclTypeSpec *GetType(
397       SourceName name, bool respectImplicitNoneType = true) {
398     return implicitRules_->GetType(name, respectImplicitNoneType);
399   }
400   bool isImplicitNoneType() const {
401     return implicitRules_->isImplicitNoneType();
402   }
403   bool isImplicitNoneType(const Scope &scope) const {
404     return implicitRulesMap_->at(&scope).isImplicitNoneType();
405   }
406   bool isImplicitNoneExternal() const {
407     return implicitRules_->isImplicitNoneExternal();
408   }
409   void set_inheritFromParent(bool x) {
410     implicitRules_->set_inheritFromParent(x);
411   }
412 
413 protected:
414   void BeginScope(const Scope &);
415   void SetScope(const Scope &);
416 
417 private:
418   // implicit rules in effect for current scope
419   ImplicitRules *implicitRules_{nullptr};
420   std::optional<SourceName> prevImplicit_;
421   std::optional<SourceName> prevImplicitNone_;
422   std::optional<SourceName> prevImplicitNoneType_;
423   std::optional<SourceName> prevParameterStmt_;
424 
425   bool HandleImplicitNone(const std::list<ImplicitNoneNameSpec> &nameSpecs);
426 };
427 
428 // Track array specifications. They can occur in AttrSpec, EntityDecl,
429 // ObjectDecl, DimensionStmt, CommonBlockObject, BasedPointer, and
430 // ComponentDecl.
431 // 1. INTEGER, DIMENSION(10) :: x
432 // 2. INTEGER :: x(10)
433 // 3. ALLOCATABLE :: x(:)
434 // 4. DIMENSION :: x(10)
435 // 5. COMMON x(10)
436 // 6. POINTER(p,x(10))
437 class ArraySpecVisitor : public virtual BaseVisitor {
438 public:
439   void Post(const parser::ArraySpec &);
440   void Post(const parser::ComponentArraySpec &);
441   void Post(const parser::CoarraySpec &);
442   void Post(const parser::AttrSpec &) { PostAttrSpec(); }
443   void Post(const parser::ComponentAttrSpec &) { PostAttrSpec(); }
444 
445 protected:
446   const ArraySpec &arraySpec();
447   void set_arraySpec(const ArraySpec arraySpec) { arraySpec_ = arraySpec; }
448   const ArraySpec &coarraySpec();
449   void BeginArraySpec();
450   void EndArraySpec();
451   void ClearArraySpec() { arraySpec_.clear(); }
452   void ClearCoarraySpec() { coarraySpec_.clear(); }
453 
454 private:
455   // arraySpec_/coarraySpec_ are populated from any ArraySpec/CoarraySpec
456   ArraySpec arraySpec_;
457   ArraySpec coarraySpec_;
458   // When an ArraySpec is under an AttrSpec or ComponentAttrSpec, it is moved
459   // into attrArraySpec_
460   ArraySpec attrArraySpec_;
461   ArraySpec attrCoarraySpec_;
462 
463   void PostAttrSpec();
464 };
465 
466 // Manages a stack of function result information.  We defer the processing
467 // of a type specification that appears in the prefix of a FUNCTION statement
468 // until the function result variable appears in the specification part
469 // or the end of the specification part.  This allows for forward references
470 // in the type specification to resolve to local names.
471 class FuncResultStack {
472 public:
473   explicit FuncResultStack(ScopeHandler &scopeHandler)
474       : scopeHandler_{scopeHandler} {}
475   ~FuncResultStack();
476 
477   struct FuncInfo {
478     FuncInfo(const Scope &s, SourceName at) : scope{s}, source{at} {}
479     const Scope &scope;
480     SourceName source;
481     // Parse tree of the type specification in the FUNCTION prefix
482     const parser::DeclarationTypeSpec *parsedType{nullptr};
483     // Name of the function RESULT in the FUNCTION suffix, if any
484     const parser::Name *resultName{nullptr};
485     // Result symbol
486     Symbol *resultSymbol{nullptr};
487     bool inFunctionStmt{false}; // true between Pre/Post of FunctionStmt
488   };
489 
490   // Completes the definition of the top function's result.
491   void CompleteFunctionResultType();
492   // Completes the definition of a symbol if it is the top function's result.
493   void CompleteTypeIfFunctionResult(Symbol &);
494 
495   FuncInfo *Top() { return stack_.empty() ? nullptr : &stack_.back(); }
496   FuncInfo &Push(const Scope &scope, SourceName at) {
497     return stack_.emplace_back(scope, at);
498   }
499   void Pop();
500 
501 private:
502   ScopeHandler &scopeHandler_;
503   std::vector<FuncInfo> stack_;
504 };
505 
506 // Manage a stack of Scopes
507 class ScopeHandler : public ImplicitRulesVisitor {
508 public:
509   using ImplicitRulesVisitor::Post;
510   using ImplicitRulesVisitor::Pre;
511 
512   Scope &currScope() { return DEREF(currScope_); }
513   // The enclosing host procedure if current scope is in an internal procedure
514   Scope *GetHostProcedure();
515   // The innermost enclosing program unit scope, ignoring BLOCK and other
516   // construct scopes.
517   Scope &InclusiveScope();
518   // The enclosing scope, skipping derived types.
519   Scope &NonDerivedTypeScope();
520 
521   // Create a new scope and push it on the scope stack.
522   void PushScope(Scope::Kind kind, Symbol *symbol);
523   void PushScope(Scope &scope);
524   void PopScope();
525   void SetScope(Scope &);
526 
527   template <typename T> bool Pre(const parser::Statement<T> &x) {
528     messageHandler().set_currStmtSource(x.source);
529     currScope_->AddSourceRange(x.source);
530     return true;
531   }
532   template <typename T> void Post(const parser::Statement<T> &) {
533     messageHandler().set_currStmtSource(std::nullopt);
534   }
535 
536   // Special messages: already declared; referencing symbol's declaration;
537   // about a type; two names & locations
538   void SayAlreadyDeclared(const parser::Name &, Symbol &);
539   void SayAlreadyDeclared(const SourceName &, Symbol &);
540   void SayAlreadyDeclared(const SourceName &, const SourceName &);
541   void SayWithReason(
542       const parser::Name &, Symbol &, MessageFixedText &&, Message &&);
543   template <typename... A>
544   Message &SayWithDecl(
545       const parser::Name &, Symbol &, MessageFixedText &&, A &&...args);
546   void SayLocalMustBeVariable(const parser::Name &, Symbol &);
547   Message &SayDerivedType(
548       const SourceName &, MessageFixedText &&, const Scope &);
549   Message &Say2(const SourceName &, MessageFixedText &&, const SourceName &,
550       MessageFixedText &&);
551   Message &Say2(
552       const SourceName &, MessageFixedText &&, Symbol &, MessageFixedText &&);
553   Message &Say2(
554       const parser::Name &, MessageFixedText &&, Symbol &, MessageFixedText &&);
555 
556   // Search for symbol by name in current, parent derived type, and
557   // containing scopes
558   Symbol *FindSymbol(const parser::Name &);
559   Symbol *FindSymbol(const Scope &, const parser::Name &);
560   // Search for name only in scope, not in enclosing scopes.
561   Symbol *FindInScope(const Scope &, const parser::Name &);
562   Symbol *FindInScope(const Scope &, const SourceName &);
563   template <typename T> Symbol *FindInScope(const T &name) {
564     return FindInScope(currScope(), name);
565   }
566   // Search for name in a derived type scope and its parents.
567   Symbol *FindInTypeOrParents(const Scope &, const parser::Name &);
568   Symbol *FindInTypeOrParents(const parser::Name &);
569   Symbol *FindInScopeOrBlockConstructs(const Scope &, SourceName);
570   Symbol *FindSeparateModuleProcedureInterface(const parser::Name &);
571   void EraseSymbol(const parser::Name &);
572   void EraseSymbol(const Symbol &symbol) { currScope().erase(symbol.name()); }
573   // Make a new symbol with the name and attrs of an existing one
574   Symbol &CopySymbol(const SourceName &, const Symbol &);
575 
576   // Make symbols in the current or named scope
577   Symbol &MakeSymbol(Scope &, const SourceName &, Attrs);
578   Symbol &MakeSymbol(const SourceName &, Attrs = Attrs{});
579   Symbol &MakeSymbol(const parser::Name &, Attrs = Attrs{});
580   Symbol &MakeHostAssocSymbol(const parser::Name &, const Symbol &);
581 
582   template <typename D>
583   common::IfNoLvalue<Symbol &, D> MakeSymbol(
584       const parser::Name &name, D &&details) {
585     return MakeSymbol(name, Attrs{}, std::move(details));
586   }
587 
588   template <typename D>
589   common::IfNoLvalue<Symbol &, D> MakeSymbol(
590       const parser::Name &name, const Attrs &attrs, D &&details) {
591     return Resolve(name, MakeSymbol(name.source, attrs, std::move(details)));
592   }
593 
594   template <typename D>
595   common::IfNoLvalue<Symbol &, D> MakeSymbol(
596       const SourceName &name, const Attrs &attrs, D &&details) {
597     // Note: don't use FindSymbol here. If this is a derived type scope,
598     // we want to detect whether the name is already declared as a component.
599     auto *symbol{FindInScope(name)};
600     if (!symbol) {
601       symbol = &MakeSymbol(name, attrs);
602       symbol->set_details(std::move(details));
603       return *symbol;
604     }
605     if constexpr (std::is_same_v<DerivedTypeDetails, D>) {
606       if (auto *d{symbol->detailsIf<GenericDetails>()}) {
607         if (!d->specific()) {
608           // derived type with same name as a generic
609           auto *derivedType{d->derivedType()};
610           if (!derivedType) {
611             derivedType =
612                 &currScope().MakeSymbol(name, attrs, std::move(details));
613             d->set_derivedType(*derivedType);
614           } else if (derivedType->CanReplaceDetails(details)) {
615             // was forward-referenced
616             CheckDuplicatedAttrs(name, *symbol, attrs);
617             SetExplicitAttrs(*derivedType, attrs);
618             derivedType->set_details(std::move(details));
619           } else {
620             SayAlreadyDeclared(name, *derivedType);
621           }
622           return *derivedType;
623         }
624       }
625     } else if constexpr (std::is_same_v<ProcEntityDetails, D>) {
626       if (auto *d{symbol->detailsIf<GenericDetails>()}) {
627         if (!d->derivedType()) {
628           // procedure pointer with same name as a generic
629           auto *specific{d->specific()};
630           if (!specific) {
631             specific = &currScope().MakeSymbol(name, attrs, std::move(details));
632             d->set_specific(*specific);
633           } else {
634             SayAlreadyDeclared(name, *specific);
635           }
636           return *specific;
637         }
638       }
639     }
640     if (symbol->CanReplaceDetails(details)) {
641       // update the existing symbol
642       CheckDuplicatedAttrs(name, *symbol, attrs);
643       SetExplicitAttrs(*symbol, attrs);
644       if constexpr (std::is_same_v<SubprogramDetails, D>) {
645         // Dummy argument defined by explicit interface?
646         details.set_isDummy(IsDummy(*symbol));
647       }
648       symbol->set_details(std::move(details));
649       return *symbol;
650     } else if constexpr (std::is_same_v<UnknownDetails, D>) {
651       CheckDuplicatedAttrs(name, *symbol, attrs);
652       SetExplicitAttrs(*symbol, attrs);
653       return *symbol;
654     } else {
655       if (!CheckPossibleBadForwardRef(*symbol)) {
656         if (name.empty() && symbol->name().empty()) {
657           // report the error elsewhere
658           return *symbol;
659         }
660         Symbol &errSym{*symbol};
661         if (auto *d{symbol->detailsIf<GenericDetails>()}) {
662           if (d->specific()) {
663             errSym = *d->specific();
664           } else if (d->derivedType()) {
665             errSym = *d->derivedType();
666           }
667         }
668         SayAlreadyDeclared(name, errSym);
669       }
670       // replace the old symbol with a new one with correct details
671       EraseSymbol(*symbol);
672       auto &result{MakeSymbol(name, attrs, std::move(details))};
673       context().SetError(result);
674       return result;
675     }
676   }
677 
678   void MakeExternal(Symbol &);
679 
680   // C815 duplicated attribute checking; returns false on error
681   bool CheckDuplicatedAttr(SourceName, Symbol &, Attr);
682   bool CheckDuplicatedAttrs(SourceName, Symbol &, Attrs);
683 
684   void SetExplicitAttr(Symbol &symbol, Attr attr) const {
685     symbol.attrs().set(attr);
686     symbol.implicitAttrs().reset(attr);
687   }
688   void SetExplicitAttrs(Symbol &symbol, Attrs attrs) const {
689     symbol.attrs() |= attrs;
690     symbol.implicitAttrs() &= ~attrs;
691   }
692   void SetImplicitAttr(Symbol &symbol, Attr attr) const {
693     symbol.attrs().set(attr);
694     symbol.implicitAttrs().set(attr);
695   }
696   void SetCUDADataAttr(
697       SourceName, Symbol &, std::optional<common::CUDADataAttr>);
698 
699 protected:
700   FuncResultStack &funcResultStack() { return funcResultStack_; }
701 
702   // Apply the implicit type rules to this symbol.
703   void ApplyImplicitRules(Symbol &, bool allowForwardReference = false);
704   bool ImplicitlyTypeForwardRef(Symbol &);
705   void AcquireIntrinsicProcedureFlags(Symbol &);
706   const DeclTypeSpec *GetImplicitType(
707       Symbol &, bool respectImplicitNoneType = true);
708   void CheckEntryDummyUse(SourceName, Symbol *);
709   bool ConvertToObjectEntity(Symbol &);
710   bool ConvertToProcEntity(Symbol &, std::optional<SourceName> = std::nullopt);
711 
712   const DeclTypeSpec &MakeNumericType(
713       TypeCategory, const std::optional<parser::KindSelector> &);
714   const DeclTypeSpec &MakeNumericType(TypeCategory, int);
715   const DeclTypeSpec &MakeLogicalType(
716       const std::optional<parser::KindSelector> &);
717   const DeclTypeSpec &MakeLogicalType(int);
718   void NotePossibleBadForwardRef(const parser::Name &);
719   std::optional<SourceName> HadForwardRef(const Symbol &) const;
720   bool CheckPossibleBadForwardRef(const Symbol &);
721 
722   bool inSpecificationPart_{false};
723   bool deferImplicitTyping_{false};
724   bool skipImplicitTyping_{false};
725   bool inEquivalenceStmt_{false};
726 
727   // Some information is collected from a specification part for deferred
728   // processing in DeclarationPartVisitor functions (e.g., CheckSaveStmts())
729   // that are called by ResolveNamesVisitor::FinishSpecificationPart().  Since
730   // specification parts can nest (e.g., INTERFACE bodies), the collected
731   // information that is not contained in the scope needs to be packaged
732   // and restorable.
733   struct SpecificationPartState {
734     std::set<SourceName> forwardRefs;
735     // Collect equivalence sets and process at end of specification part
736     std::vector<const std::list<parser::EquivalenceObject> *> equivalenceSets;
737     // Names of all common block objects in the scope
738     std::set<SourceName> commonBlockObjects;
739     // Info about SAVE statements and attributes in current scope
740     struct {
741       std::optional<SourceName> saveAll; // "SAVE" without entity list
742       std::set<SourceName> entities; // names of entities with save attr
743       std::set<SourceName> commons; // names of common blocks with save attr
744     } saveInfo;
745   } specPartState_;
746 
747   // Some declaration processing can and should be deferred to
748   // ResolveExecutionParts() to avoid prematurely creating implicitly-typed
749   // local symbols that should be host associations.
750   struct DeferredDeclarationState {
751     // The content of each namelist group
752     std::list<const parser::NamelistStmt::Group *> namelistGroups;
753   };
754   DeferredDeclarationState *GetDeferredDeclarationState(bool add = false) {
755     if (!add && deferred_.find(&currScope()) == deferred_.end()) {
756       return nullptr;
757     } else {
758       return &deferred_.emplace(&currScope(), DeferredDeclarationState{})
759                   .first->second;
760     }
761   }
762 
763   void SkipImplicitTyping(bool skip) {
764     deferImplicitTyping_ = skipImplicitTyping_ = skip;
765   }
766 
767 private:
768   Scope *currScope_{nullptr};
769   FuncResultStack funcResultStack_{*this};
770   std::map<Scope *, DeferredDeclarationState> deferred_;
771 };
772 
773 class ModuleVisitor : public virtual ScopeHandler {
774 public:
775   bool Pre(const parser::AccessStmt &);
776   bool Pre(const parser::Only &);
777   bool Pre(const parser::Rename::Names &);
778   bool Pre(const parser::Rename::Operators &);
779   bool Pre(const parser::UseStmt &);
780   void Post(const parser::UseStmt &);
781 
782   void BeginModule(const parser::Name &, bool isSubmodule);
783   bool BeginSubmodule(const parser::Name &, const parser::ParentIdentifier &);
784   void ApplyDefaultAccess();
785   Symbol &AddGenericUse(GenericDetails &, const SourceName &, const Symbol &);
786   void AddAndCheckModuleUse(SourceName, bool isIntrinsic);
787   void CollectUseRenames(const parser::UseStmt &);
788   void ClearUseRenames() { useRenames_.clear(); }
789   void ClearUseOnly() { useOnly_.clear(); }
790   void ClearModuleUses() {
791     intrinsicUses_.clear();
792     nonIntrinsicUses_.clear();
793   }
794 
795 private:
796   // The location of the last AccessStmt without access-ids, if any.
797   std::optional<SourceName> prevAccessStmt_;
798   // The scope of the module during a UseStmt
799   Scope *useModuleScope_{nullptr};
800   // Names that have appeared in a rename clause of USE statements
801   std::set<std::pair<SourceName, SourceName>> useRenames_;
802   // Names that have appeared in an ONLY clause of a USE statement
803   std::set<std::pair<SourceName, Scope *>> useOnly_;
804   // Intrinsic and non-intrinsic (explicit or not) module names that
805   // have appeared in USE statements; used for C1406 warnings.
806   std::set<SourceName> intrinsicUses_;
807   std::set<SourceName> nonIntrinsicUses_;
808 
809   Symbol &SetAccess(const SourceName &, Attr attr, Symbol * = nullptr);
810   // A rename in a USE statement: local => use
811   struct SymbolRename {
812     Symbol *local{nullptr};
813     Symbol *use{nullptr};
814   };
815   // Record a use from useModuleScope_ of use Name/Symbol as local Name/Symbol
816   SymbolRename AddUse(const SourceName &localName, const SourceName &useName);
817   SymbolRename AddUse(const SourceName &, const SourceName &, Symbol *);
818   void DoAddUse(
819       SourceName, SourceName, Symbol &localSymbol, const Symbol &useSymbol);
820   void AddUse(const GenericSpecInfo &);
821   // Record a name appearing as the target of a USE rename clause
822   void AddUseRename(SourceName name, SourceName moduleName) {
823     useRenames_.emplace(std::make_pair(name, moduleName));
824   }
825   bool IsUseRenamed(const SourceName &name) const {
826     return useModuleScope_ && useModuleScope_->symbol() &&
827         useRenames_.find({name, useModuleScope_->symbol()->name()}) !=
828         useRenames_.end();
829   }
830   // Record a name appearing in a USE ONLY clause
831   void AddUseOnly(const SourceName &name) {
832     useOnly_.emplace(std::make_pair(name, useModuleScope_));
833   }
834   bool IsUseOnly(const SourceName &name) const {
835     return useOnly_.find({name, useModuleScope_}) != useOnly_.end();
836   }
837   Scope *FindModule(const parser::Name &, std::optional<bool> isIntrinsic,
838       Scope *ancestor = nullptr);
839 };
840 
841 class GenericHandler : public virtual ScopeHandler {
842 protected:
843   using ProcedureKind = parser::ProcedureStmt::Kind;
844   void ResolveSpecificsInGeneric(Symbol &, bool isEndOfSpecificationPart);
845   void DeclaredPossibleSpecificProc(Symbol &);
846 
847   // Mappings of generics to their as-yet specific proc names and kinds
848   using SpecificProcMapType =
849       std::multimap<Symbol *, std::pair<const parser::Name *, ProcedureKind>>;
850   SpecificProcMapType specificsForGenericProcs_;
851   // inversion of SpecificProcMapType: maps pending proc names to generics
852   using GenericProcMapType = std::multimap<SourceName, Symbol *>;
853   GenericProcMapType genericsForSpecificProcs_;
854 };
855 
856 class InterfaceVisitor : public virtual ScopeHandler,
857                          public virtual GenericHandler {
858 public:
859   bool Pre(const parser::InterfaceStmt &);
860   void Post(const parser::InterfaceStmt &);
861   void Post(const parser::EndInterfaceStmt &);
862   bool Pre(const parser::GenericSpec &);
863   bool Pre(const parser::ProcedureStmt &);
864   bool Pre(const parser::GenericStmt &);
865   void Post(const parser::GenericStmt &);
866 
867   bool inInterfaceBlock() const;
868   bool isGeneric() const;
869   bool isAbstract() const;
870 
871 protected:
872   Symbol &GetGenericSymbol() { return DEREF(genericInfo_.top().symbol); }
873   // Add to generic the symbol for the subprogram with the same name
874   void CheckGenericProcedures(Symbol &);
875 
876 private:
877   // A new GenericInfo is pushed for each interface block and generic stmt
878   struct GenericInfo {
879     GenericInfo(bool isInterface, bool isAbstract = false)
880         : isInterface{isInterface}, isAbstract{isAbstract} {}
881     bool isInterface; // in interface block
882     bool isAbstract; // in abstract interface block
883     Symbol *symbol{nullptr}; // the generic symbol being defined
884   };
885   std::stack<GenericInfo> genericInfo_;
886   const GenericInfo &GetGenericInfo() const { return genericInfo_.top(); }
887   void SetGenericSymbol(Symbol &symbol) { genericInfo_.top().symbol = &symbol; }
888   void AddSpecificProcs(const std::list<parser::Name> &, ProcedureKind);
889   void ResolveNewSpecifics();
890 };
891 
892 class SubprogramVisitor : public virtual ScopeHandler, public InterfaceVisitor {
893 public:
894   bool HandleStmtFunction(const parser::StmtFunctionStmt &);
895   bool Pre(const parser::SubroutineStmt &);
896   bool Pre(const parser::FunctionStmt &);
897   void Post(const parser::FunctionStmt &);
898   bool Pre(const parser::EntryStmt &);
899   void Post(const parser::EntryStmt &);
900   bool Pre(const parser::InterfaceBody::Subroutine &);
901   void Post(const parser::InterfaceBody::Subroutine &);
902   bool Pre(const parser::InterfaceBody::Function &);
903   void Post(const parser::InterfaceBody::Function &);
904   bool Pre(const parser::Suffix &);
905   bool Pre(const parser::PrefixSpec &);
906   bool Pre(const parser::PrefixSpec::Attributes &);
907   void Post(const parser::PrefixSpec::Launch_Bounds &);
908   void Post(const parser::PrefixSpec::Cluster_Dims &);
909 
910   bool BeginSubprogram(const parser::Name &, Symbol::Flag,
911       bool hasModulePrefix = false,
912       const parser::LanguageBindingSpec * = nullptr,
913       const ProgramTree::EntryStmtList * = nullptr);
914   bool BeginMpSubprogram(const parser::Name &);
915   void PushBlockDataScope(const parser::Name &);
916   void EndSubprogram(std::optional<parser::CharBlock> stmtSource = std::nullopt,
917       const std::optional<parser::LanguageBindingSpec> * = nullptr,
918       const ProgramTree::EntryStmtList * = nullptr);
919 
920 protected:
921   // Set when we see a stmt function that is really an array element assignment
922   bool misparsedStmtFuncFound_{false};
923 
924 private:
925   // Edits an existing symbol created for earlier calls to a subprogram or ENTRY
926   // so that it can be replaced by a later definition.
927   bool HandlePreviousCalls(const parser::Name &, Symbol &, Symbol::Flag);
928   void CheckExtantProc(const parser::Name &, Symbol::Flag);
929   // Create a subprogram symbol in the current scope and push a new scope.
930   Symbol &PushSubprogramScope(const parser::Name &, Symbol::Flag,
931       const parser::LanguageBindingSpec * = nullptr,
932       bool hasModulePrefix = false);
933   Symbol *GetSpecificFromGeneric(const parser::Name &);
934   Symbol &PostSubprogramStmt();
935   void CreateDummyArgument(SubprogramDetails &, const parser::Name &);
936   void CreateEntry(const parser::EntryStmt &stmt, Symbol &subprogram);
937   void PostEntryStmt(const parser::EntryStmt &stmt);
938   void HandleLanguageBinding(Symbol *,
939       std::optional<parser::CharBlock> stmtSource,
940       const std::optional<parser::LanguageBindingSpec> *);
941 };
942 
943 class DeclarationVisitor : public ArraySpecVisitor,
944                            public virtual GenericHandler {
945 public:
946   using ArraySpecVisitor::Post;
947   using ScopeHandler::Post;
948   using ScopeHandler::Pre;
949 
950   bool Pre(const parser::Initialization &);
951   void Post(const parser::EntityDecl &);
952   void Post(const parser::ObjectDecl &);
953   void Post(const parser::PointerDecl &);
954   bool Pre(const parser::BindStmt &) { return BeginAttrs(); }
955   void Post(const parser::BindStmt &) { EndAttrs(); }
956   bool Pre(const parser::BindEntity &);
957   bool Pre(const parser::OldParameterStmt &);
958   bool Pre(const parser::NamedConstantDef &);
959   bool Pre(const parser::NamedConstant &);
960   void Post(const parser::EnumDef &);
961   bool Pre(const parser::Enumerator &);
962   bool Pre(const parser::AccessSpec &);
963   bool Pre(const parser::AsynchronousStmt &);
964   bool Pre(const parser::ContiguousStmt &);
965   bool Pre(const parser::ExternalStmt &);
966   bool Pre(const parser::IntentStmt &);
967   bool Pre(const parser::IntrinsicStmt &);
968   bool Pre(const parser::OptionalStmt &);
969   bool Pre(const parser::ProtectedStmt &);
970   bool Pre(const parser::ValueStmt &);
971   bool Pre(const parser::VolatileStmt &);
972   bool Pre(const parser::AllocatableStmt &) {
973     objectDeclAttr_ = Attr::ALLOCATABLE;
974     return true;
975   }
976   void Post(const parser::AllocatableStmt &) { objectDeclAttr_ = std::nullopt; }
977   bool Pre(const parser::TargetStmt &) {
978     objectDeclAttr_ = Attr::TARGET;
979     return true;
980   }
981   bool Pre(const parser::CUDAAttributesStmt &);
982   void Post(const parser::TargetStmt &) { objectDeclAttr_ = std::nullopt; }
983   void Post(const parser::DimensionStmt::Declaration &);
984   void Post(const parser::CodimensionDecl &);
985   bool Pre(const parser::TypeDeclarationStmt &);
986   void Post(const parser::TypeDeclarationStmt &);
987   void Post(const parser::IntegerTypeSpec &);
988   void Post(const parser::UnsignedTypeSpec &);
989   void Post(const parser::IntrinsicTypeSpec::Real &);
990   void Post(const parser::IntrinsicTypeSpec::Complex &);
991   void Post(const parser::IntrinsicTypeSpec::Logical &);
992   void Post(const parser::IntrinsicTypeSpec::Character &);
993   void Post(const parser::CharSelector::LengthAndKind &);
994   void Post(const parser::CharLength &);
995   void Post(const parser::LengthSelector &);
996   bool Pre(const parser::KindParam &);
997   bool Pre(const parser::VectorTypeSpec &);
998   void Post(const parser::VectorTypeSpec &);
999   bool Pre(const parser::DeclarationTypeSpec::Type &);
1000   void Post(const parser::DeclarationTypeSpec::Type &);
1001   bool Pre(const parser::DeclarationTypeSpec::Class &);
1002   void Post(const parser::DeclarationTypeSpec::Class &);
1003   void Post(const parser::DeclarationTypeSpec::Record &);
1004   void Post(const parser::DerivedTypeSpec &);
1005   bool Pre(const parser::DerivedTypeDef &);
1006   bool Pre(const parser::DerivedTypeStmt &);
1007   void Post(const parser::DerivedTypeStmt &);
1008   bool Pre(const parser::TypeParamDefStmt &) { return BeginDecl(); }
1009   void Post(const parser::TypeParamDefStmt &);
1010   bool Pre(const parser::TypeAttrSpec::Extends &);
1011   bool Pre(const parser::PrivateStmt &);
1012   bool Pre(const parser::SequenceStmt &);
1013   bool Pre(const parser::ComponentDefStmt &) { return BeginDecl(); }
1014   void Post(const parser::ComponentDefStmt &) { EndDecl(); }
1015   void Post(const parser::ComponentDecl &);
1016   void Post(const parser::FillDecl &);
1017   bool Pre(const parser::ProcedureDeclarationStmt &);
1018   void Post(const parser::ProcedureDeclarationStmt &);
1019   bool Pre(const parser::DataComponentDefStmt &); // returns false
1020   bool Pre(const parser::ProcComponentDefStmt &);
1021   void Post(const parser::ProcComponentDefStmt &);
1022   bool Pre(const parser::ProcPointerInit &);
1023   void Post(const parser::ProcInterface &);
1024   void Post(const parser::ProcDecl &);
1025   bool Pre(const parser::TypeBoundProcedurePart &);
1026   void Post(const parser::TypeBoundProcedurePart &);
1027   void Post(const parser::ContainsStmt &);
1028   bool Pre(const parser::TypeBoundProcBinding &) { return BeginAttrs(); }
1029   void Post(const parser::TypeBoundProcBinding &) { EndAttrs(); }
1030   void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &);
1031   void Post(const parser::TypeBoundProcedureStmt::WithInterface &);
1032   bool Pre(const parser::FinalProcedureStmt &);
1033   bool Pre(const parser::TypeBoundGenericStmt &);
1034   bool Pre(const parser::StructureDef &); // returns false
1035   bool Pre(const parser::Union::UnionStmt &);
1036   bool Pre(const parser::StructureField &);
1037   void Post(const parser::StructureField &);
1038   bool Pre(const parser::AllocateStmt &);
1039   void Post(const parser::AllocateStmt &);
1040   bool Pre(const parser::StructureConstructor &);
1041   bool Pre(const parser::NamelistStmt::Group &);
1042   bool Pre(const parser::IoControlSpec &);
1043   bool Pre(const parser::CommonStmt::Block &);
1044   bool Pre(const parser::CommonBlockObject &);
1045   void Post(const parser::CommonBlockObject &);
1046   bool Pre(const parser::EquivalenceStmt &);
1047   bool Pre(const parser::SaveStmt &);
1048   bool Pre(const parser::BasedPointer &);
1049   void Post(const parser::BasedPointer &);
1050 
1051   void PointerInitialization(
1052       const parser::Name &, const parser::InitialDataTarget &);
1053   void PointerInitialization(
1054       const parser::Name &, const parser::ProcPointerInit &);
1055   void NonPointerInitialization(
1056       const parser::Name &, const parser::ConstantExpr &);
1057   void CheckExplicitInterface(const parser::Name &);
1058   void CheckBindings(const parser::TypeBoundProcedureStmt::WithoutInterface &);
1059 
1060   const parser::Name *ResolveDesignator(const parser::Designator &);
1061   int GetVectorElementKind(
1062       TypeCategory category, const std::optional<parser::KindSelector> &kind);
1063 
1064 protected:
1065   bool BeginDecl();
1066   void EndDecl();
1067   Symbol &DeclareObjectEntity(const parser::Name &, Attrs = Attrs{});
1068   // Make sure that there's an entity in an enclosing scope called Name
1069   Symbol &FindOrDeclareEnclosingEntity(const parser::Name &);
1070   // Declare a LOCAL/LOCAL_INIT/REDUCE entity while setting a locality flag. If
1071   // there isn't a type specified it comes from the entity in the containing
1072   // scope, or implicit rules.
1073   void DeclareLocalEntity(const parser::Name &, Symbol::Flag);
1074   // Declare a statement entity (i.e., an implied DO loop index for
1075   // a DATA statement or an array constructor).  If there isn't an explict
1076   // type specified, implicit rules apply. Return pointer to the new symbol,
1077   // or nullptr on error.
1078   Symbol *DeclareStatementEntity(const parser::DoVariable &,
1079       const std::optional<parser::IntegerTypeSpec> &);
1080   Symbol &MakeCommonBlockSymbol(const parser::Name &);
1081   Symbol &MakeCommonBlockSymbol(const std::optional<parser::Name> &);
1082   bool CheckUseError(const parser::Name &);
1083   void CheckAccessibility(const SourceName &, bool, Symbol &);
1084   void CheckCommonBlocks();
1085   void CheckSaveStmts();
1086   void CheckEquivalenceSets();
1087   bool CheckNotInBlock(const char *);
1088   bool NameIsKnownOrIntrinsic(const parser::Name &);
1089   void FinishNamelists();
1090 
1091   // Each of these returns a pointer to a resolved Name (i.e. with symbol)
1092   // or nullptr in case of error.
1093   const parser::Name *ResolveStructureComponent(
1094       const parser::StructureComponent &);
1095   const parser::Name *ResolveDataRef(const parser::DataRef &);
1096   const parser::Name *ResolveName(const parser::Name &);
1097   bool PassesSharedLocalityChecks(const parser::Name &name, Symbol &symbol);
1098   Symbol *NoteInterfaceName(const parser::Name &);
1099   bool IsUplevelReference(const Symbol &);
1100 
1101   std::optional<SourceName> BeginCheckOnIndexUseInOwnBounds(
1102       const parser::DoVariable &name) {
1103     std::optional<SourceName> result{checkIndexUseInOwnBounds_};
1104     checkIndexUseInOwnBounds_ = name.thing.thing.source;
1105     return result;
1106   }
1107   void EndCheckOnIndexUseInOwnBounds(const std::optional<SourceName> &restore) {
1108     checkIndexUseInOwnBounds_ = restore;
1109   }
1110   void NoteScalarSpecificationArgument(const Symbol &symbol) {
1111     mustBeScalar_.emplace(symbol);
1112   }
1113   // Declare an object or procedure entity.
1114   // T is one of: EntityDetails, ObjectEntityDetails, ProcEntityDetails
1115   template <typename T>
1116   Symbol &DeclareEntity(const parser::Name &name, Attrs attrs) {
1117     Symbol &symbol{MakeSymbol(name, attrs)};
1118     if (context().HasError(symbol) || symbol.has<T>()) {
1119       return symbol; // OK or error already reported
1120     } else if (symbol.has<UnknownDetails>()) {
1121       symbol.set_details(T{});
1122       return symbol;
1123     } else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
1124       symbol.set_details(T{std::move(*details)});
1125       return symbol;
1126     } else if (std::is_same_v<EntityDetails, T> &&
1127         (symbol.has<ObjectEntityDetails>() ||
1128             symbol.has<ProcEntityDetails>())) {
1129       return symbol; // OK
1130     } else if (auto *details{symbol.detailsIf<UseDetails>()}) {
1131       Say(name.source,
1132           "'%s' is use-associated from module '%s' and cannot be re-declared"_err_en_US,
1133           name.source, GetUsedModule(*details).name());
1134     } else if (auto *details{symbol.detailsIf<SubprogramNameDetails>()}) {
1135       if (details->kind() == SubprogramKind::Module) {
1136         Say2(name,
1137             "Declaration of '%s' conflicts with its use as module procedure"_err_en_US,
1138             symbol, "Module procedure definition"_en_US);
1139       } else if (details->kind() == SubprogramKind::Internal) {
1140         Say2(name,
1141             "Declaration of '%s' conflicts with its use as internal procedure"_err_en_US,
1142             symbol, "Internal procedure definition"_en_US);
1143       } else {
1144         DIE("unexpected kind");
1145       }
1146     } else if (std::is_same_v<ObjectEntityDetails, T> &&
1147         symbol.has<ProcEntityDetails>()) {
1148       SayWithDecl(
1149           name, symbol, "'%s' is already declared as a procedure"_err_en_US);
1150     } else if (std::is_same_v<ProcEntityDetails, T> &&
1151         symbol.has<ObjectEntityDetails>()) {
1152       if (FindCommonBlockContaining(symbol)) {
1153         SayWithDecl(name, symbol,
1154             "'%s' may not be a procedure as it is in a COMMON block"_err_en_US);
1155       } else {
1156         SayWithDecl(
1157             name, symbol, "'%s' is already declared as an object"_err_en_US);
1158       }
1159     } else if (!CheckPossibleBadForwardRef(symbol)) {
1160       SayAlreadyDeclared(name, symbol);
1161     }
1162     context().SetError(symbol);
1163     return symbol;
1164   }
1165 
1166 private:
1167   // The attribute corresponding to the statement containing an ObjectDecl
1168   std::optional<Attr> objectDeclAttr_;
1169   // Info about current character type while walking DeclTypeSpec.
1170   // Also captures any "*length" specifier on an individual declaration.
1171   struct {
1172     std::optional<ParamValue> length;
1173     std::optional<KindExpr> kind;
1174   } charInfo_;
1175   // Info about current derived type or STRUCTURE while walking
1176   // DerivedTypeDef / StructureDef
1177   struct {
1178     const parser::Name *extends{nullptr}; // EXTENDS(name)
1179     bool privateComps{false}; // components are private by default
1180     bool privateBindings{false}; // bindings are private by default
1181     bool sawContains{false}; // currently processing bindings
1182     bool sequence{false}; // is a sequence type
1183     const Symbol *type{nullptr}; // derived type being defined
1184     bool isStructure{false}; // is a DEC STRUCTURE
1185   } derivedTypeInfo_;
1186   // In a ProcedureDeclarationStmt or ProcComponentDefStmt, this is
1187   // the interface name, if any.
1188   const parser::Name *interfaceName_{nullptr};
1189   // Map type-bound generic to binding names of its specific bindings
1190   std::multimap<Symbol *, const parser::Name *> genericBindings_;
1191   // Info about current ENUM
1192   struct EnumeratorState {
1193     // Enum value must hold inside a C_INT (7.6.2).
1194     std::optional<int> value{0};
1195   } enumerationState_;
1196   // Set for OldParameterStmt processing
1197   bool inOldStyleParameterStmt_{false};
1198   // Set when walking DATA & array constructor implied DO loop bounds
1199   // to warn about use of the implied DO intex therein.
1200   std::optional<SourceName> checkIndexUseInOwnBounds_;
1201   bool isVectorType_{false};
1202   UnorderedSymbolSet mustBeScalar_;
1203 
1204   bool HandleAttributeStmt(Attr, const std::list<parser::Name> &);
1205   Symbol &HandleAttributeStmt(Attr, const parser::Name &);
1206   Symbol &DeclareUnknownEntity(const parser::Name &, Attrs);
1207   Symbol &DeclareProcEntity(
1208       const parser::Name &, Attrs, const Symbol *interface);
1209   void SetType(const parser::Name &, const DeclTypeSpec &);
1210   std::optional<DerivedTypeSpec> ResolveDerivedType(const parser::Name &);
1211   std::optional<DerivedTypeSpec> ResolveExtendsType(
1212       const parser::Name &, const parser::Name *);
1213   Symbol *MakeTypeSymbol(const SourceName &, Details &&);
1214   Symbol *MakeTypeSymbol(const parser::Name &, Details &&);
1215   bool OkToAddComponent(const parser::Name &, const Symbol *extends = nullptr);
1216   ParamValue GetParamValue(
1217       const parser::TypeParamValue &, common::TypeParamAttr attr);
1218   void CheckCommonBlockDerivedType(
1219       const SourceName &, const Symbol &, UnorderedSymbolSet &);
1220   Attrs HandleSaveName(const SourceName &, Attrs);
1221   void AddSaveName(std::set<SourceName> &, const SourceName &);
1222   bool HandleUnrestrictedSpecificIntrinsicFunction(const parser::Name &);
1223   const parser::Name *FindComponent(const parser::Name *, const parser::Name &);
1224   void Initialization(const parser::Name &, const parser::Initialization &,
1225       bool inComponentDecl);
1226   bool PassesLocalityChecks(
1227       const parser::Name &name, Symbol &symbol, Symbol::Flag flag);
1228   bool CheckForHostAssociatedImplicit(const parser::Name &);
1229   bool HasCycle(const Symbol &, const Symbol *interface);
1230   bool MustBeScalar(const Symbol &symbol) const {
1231     return mustBeScalar_.find(symbol) != mustBeScalar_.end();
1232   }
1233   void DeclareIntrinsic(const parser::Name &);
1234 };
1235 
1236 // Resolve construct entities and statement entities.
1237 // Check that construct names don't conflict with other names.
1238 class ConstructVisitor : public virtual DeclarationVisitor {
1239 public:
1240   bool Pre(const parser::ConcurrentHeader &);
1241   bool Pre(const parser::LocalitySpec::Local &);
1242   bool Pre(const parser::LocalitySpec::LocalInit &);
1243   bool Pre(const parser::LocalitySpec::Reduce &);
1244   bool Pre(const parser::LocalitySpec::Shared &);
1245   bool Pre(const parser::AcSpec &);
1246   bool Pre(const parser::AcImpliedDo &);
1247   bool Pre(const parser::DataImpliedDo &);
1248   bool Pre(const parser::DataIDoObject &);
1249   bool Pre(const parser::DataStmtObject &);
1250   bool Pre(const parser::DataStmtValue &);
1251   bool Pre(const parser::DoConstruct &);
1252   void Post(const parser::DoConstruct &);
1253   bool Pre(const parser::ForallConstruct &);
1254   void Post(const parser::ForallConstruct &);
1255   bool Pre(const parser::ForallStmt &);
1256   void Post(const parser::ForallStmt &);
1257   bool Pre(const parser::BlockConstruct &);
1258   void Post(const parser::Selector &);
1259   void Post(const parser::AssociateStmt &);
1260   void Post(const parser::EndAssociateStmt &);
1261   bool Pre(const parser::Association &);
1262   void Post(const parser::SelectTypeStmt &);
1263   void Post(const parser::SelectRankStmt &);
1264   bool Pre(const parser::SelectTypeConstruct &);
1265   void Post(const parser::SelectTypeConstruct &);
1266   bool Pre(const parser::SelectTypeConstruct::TypeCase &);
1267   void Post(const parser::SelectTypeConstruct::TypeCase &);
1268   // Creates Block scopes with neither symbol name nor symbol details.
1269   bool Pre(const parser::SelectRankConstruct::RankCase &);
1270   void Post(const parser::SelectRankConstruct::RankCase &);
1271   bool Pre(const parser::TypeGuardStmt::Guard &);
1272   void Post(const parser::TypeGuardStmt::Guard &);
1273   void Post(const parser::SelectRankCaseStmt::Rank &);
1274   bool Pre(const parser::ChangeTeamStmt &);
1275   void Post(const parser::EndChangeTeamStmt &);
1276   void Post(const parser::CoarrayAssociation &);
1277 
1278   // Definitions of construct names
1279   bool Pre(const parser::WhereConstructStmt &x) { return CheckDef(x.t); }
1280   bool Pre(const parser::ForallConstructStmt &x) { return CheckDef(x.t); }
1281   bool Pre(const parser::CriticalStmt &x) { return CheckDef(x.t); }
1282   bool Pre(const parser::LabelDoStmt &) {
1283     return false; // error recovery
1284   }
1285   bool Pre(const parser::NonLabelDoStmt &x) { return CheckDef(x.t); }
1286   bool Pre(const parser::IfThenStmt &x) { return CheckDef(x.t); }
1287   bool Pre(const parser::SelectCaseStmt &x) { return CheckDef(x.t); }
1288   bool Pre(const parser::SelectRankConstruct &);
1289   void Post(const parser::SelectRankConstruct &);
1290   bool Pre(const parser::SelectRankStmt &x) {
1291     return CheckDef(std::get<0>(x.t));
1292   }
1293   bool Pre(const parser::SelectTypeStmt &x) {
1294     return CheckDef(std::get<0>(x.t));
1295   }
1296 
1297   // References to construct names
1298   void Post(const parser::MaskedElsewhereStmt &x) { CheckRef(x.t); }
1299   void Post(const parser::ElsewhereStmt &x) { CheckRef(x.v); }
1300   void Post(const parser::EndWhereStmt &x) { CheckRef(x.v); }
1301   void Post(const parser::EndForallStmt &x) { CheckRef(x.v); }
1302   void Post(const parser::EndCriticalStmt &x) { CheckRef(x.v); }
1303   void Post(const parser::EndDoStmt &x) { CheckRef(x.v); }
1304   void Post(const parser::ElseIfStmt &x) { CheckRef(x.t); }
1305   void Post(const parser::ElseStmt &x) { CheckRef(x.v); }
1306   void Post(const parser::EndIfStmt &x) { CheckRef(x.v); }
1307   void Post(const parser::CaseStmt &x) { CheckRef(x.t); }
1308   void Post(const parser::EndSelectStmt &x) { CheckRef(x.v); }
1309   void Post(const parser::SelectRankCaseStmt &x) { CheckRef(x.t); }
1310   void Post(const parser::TypeGuardStmt &x) { CheckRef(x.t); }
1311   void Post(const parser::CycleStmt &x) { CheckRef(x.v); }
1312   void Post(const parser::ExitStmt &x) { CheckRef(x.v); }
1313 
1314   void HandleImpliedAsynchronousInScope(const parser::Block &);
1315 
1316 private:
1317   // R1105 selector -> expr | variable
1318   // expr is set in either case unless there were errors
1319   struct Selector {
1320     Selector() {}
1321     Selector(const SourceName &source, MaybeExpr &&expr)
1322         : source{source}, expr{std::move(expr)} {}
1323     operator bool() const { return expr.has_value(); }
1324     parser::CharBlock source;
1325     MaybeExpr expr;
1326   };
1327   // association -> [associate-name =>] selector
1328   struct Association {
1329     const parser::Name *name{nullptr};
1330     Selector selector;
1331   };
1332   std::vector<Association> associationStack_;
1333   Association *currentAssociation_{nullptr};
1334 
1335   template <typename T> bool CheckDef(const T &t) {
1336     return CheckDef(std::get<std::optional<parser::Name>>(t));
1337   }
1338   template <typename T> void CheckRef(const T &t) {
1339     CheckRef(std::get<std::optional<parser::Name>>(t));
1340   }
1341   bool CheckDef(const std::optional<parser::Name> &);
1342   void CheckRef(const std::optional<parser::Name> &);
1343   const DeclTypeSpec &ToDeclTypeSpec(evaluate::DynamicType &&);
1344   const DeclTypeSpec &ToDeclTypeSpec(
1345       evaluate::DynamicType &&, MaybeSubscriptIntExpr &&length);
1346   Symbol *MakeAssocEntity();
1347   void SetTypeFromAssociation(Symbol &);
1348   void SetAttrsFromAssociation(Symbol &);
1349   Selector ResolveSelector(const parser::Selector &);
1350   void ResolveIndexName(const parser::ConcurrentControl &control);
1351   void SetCurrentAssociation(std::size_t n);
1352   Association &GetCurrentAssociation();
1353   void PushAssociation();
1354   void PopAssociation(std::size_t count = 1);
1355 };
1356 
1357 // Create scopes for OpenACC constructs
1358 class AccVisitor : public virtual DeclarationVisitor {
1359 public:
1360   void AddAccSourceRange(const parser::CharBlock &);
1361 
1362   static bool NeedsScope(const parser::OpenACCBlockConstruct &);
1363 
1364   bool Pre(const parser::OpenACCBlockConstruct &);
1365   void Post(const parser::OpenACCBlockConstruct &);
1366   bool Pre(const parser::OpenACCCombinedConstruct &);
1367   void Post(const parser::OpenACCCombinedConstruct &);
1368   bool Pre(const parser::AccBeginBlockDirective &x) {
1369     AddAccSourceRange(x.source);
1370     return true;
1371   }
1372   void Post(const parser::AccBeginBlockDirective &) {
1373     messageHandler().set_currStmtSource(std::nullopt);
1374   }
1375   bool Pre(const parser::AccEndBlockDirective &x) {
1376     AddAccSourceRange(x.source);
1377     return true;
1378   }
1379   void Post(const parser::AccEndBlockDirective &) {
1380     messageHandler().set_currStmtSource(std::nullopt);
1381   }
1382   bool Pre(const parser::AccBeginLoopDirective &x) {
1383     AddAccSourceRange(x.source);
1384     return true;
1385   }
1386   void Post(const parser::AccBeginLoopDirective &x) {
1387     messageHandler().set_currStmtSource(std::nullopt);
1388   }
1389 };
1390 
1391 bool AccVisitor::NeedsScope(const parser::OpenACCBlockConstruct &x) {
1392   const auto &beginBlockDir{std::get<parser::AccBeginBlockDirective>(x.t)};
1393   const auto &beginDir{std::get<parser::AccBlockDirective>(beginBlockDir.t)};
1394   switch (beginDir.v) {
1395   case llvm::acc::Directive::ACCD_data:
1396   case llvm::acc::Directive::ACCD_host_data:
1397   case llvm::acc::Directive::ACCD_kernels:
1398   case llvm::acc::Directive::ACCD_parallel:
1399   case llvm::acc::Directive::ACCD_serial:
1400     return true;
1401   default:
1402     return false;
1403   }
1404 }
1405 
1406 void AccVisitor::AddAccSourceRange(const parser::CharBlock &source) {
1407   messageHandler().set_currStmtSource(source);
1408   currScope().AddSourceRange(source);
1409 }
1410 
1411 bool AccVisitor::Pre(const parser::OpenACCBlockConstruct &x) {
1412   if (NeedsScope(x)) {
1413     PushScope(Scope::Kind::OpenACCConstruct, nullptr);
1414   }
1415   return true;
1416 }
1417 
1418 void AccVisitor::Post(const parser::OpenACCBlockConstruct &x) {
1419   if (NeedsScope(x)) {
1420     PopScope();
1421   }
1422 }
1423 
1424 bool AccVisitor::Pre(const parser::OpenACCCombinedConstruct &x) {
1425   PushScope(Scope::Kind::OpenACCConstruct, nullptr);
1426   return true;
1427 }
1428 
1429 void AccVisitor::Post(const parser::OpenACCCombinedConstruct &x) { PopScope(); }
1430 
1431 // Create scopes for OpenMP constructs
1432 class OmpVisitor : public virtual DeclarationVisitor {
1433 public:
1434   void AddOmpSourceRange(const parser::CharBlock &);
1435 
1436   static bool NeedsScope(const parser::OpenMPBlockConstruct &);
1437   static bool NeedsScope(const parser::OmpClause &);
1438 
1439   bool Pre(const parser::OpenMPRequiresConstruct &x) {
1440     AddOmpSourceRange(x.source);
1441     return true;
1442   }
1443   bool Pre(const parser::OmpSimpleStandaloneDirective &x) {
1444     AddOmpSourceRange(x.source);
1445     return true;
1446   }
1447   bool Pre(const parser::OpenMPBlockConstruct &);
1448   void Post(const parser::OpenMPBlockConstruct &);
1449   bool Pre(const parser::OmpBeginBlockDirective &x) {
1450     AddOmpSourceRange(x.source);
1451     return true;
1452   }
1453   void Post(const parser::OmpBeginBlockDirective &) {
1454     messageHandler().set_currStmtSource(std::nullopt);
1455   }
1456   bool Pre(const parser::OmpEndBlockDirective &x) {
1457     AddOmpSourceRange(x.source);
1458     return true;
1459   }
1460   void Post(const parser::OmpEndBlockDirective &) {
1461     messageHandler().set_currStmtSource(std::nullopt);
1462   }
1463 
1464   bool Pre(const parser::OpenMPLoopConstruct &) {
1465     PushScope(Scope::Kind::OtherConstruct, nullptr);
1466     return true;
1467   }
1468   void Post(const parser::OpenMPLoopConstruct &) { PopScope(); }
1469   bool Pre(const parser::OmpBeginLoopDirective &x) {
1470     AddOmpSourceRange(x.source);
1471     return true;
1472   }
1473 
1474   bool Pre(const parser::OpenMPDeclareMapperConstruct &);
1475 
1476   bool Pre(const parser::OmpMapClause &);
1477 
1478   void Post(const parser::OmpBeginLoopDirective &) {
1479     messageHandler().set_currStmtSource(std::nullopt);
1480   }
1481   bool Pre(const parser::OmpEndLoopDirective &x) {
1482     AddOmpSourceRange(x.source);
1483     return true;
1484   }
1485   void Post(const parser::OmpEndLoopDirective &) {
1486     messageHandler().set_currStmtSource(std::nullopt);
1487   }
1488 
1489   bool Pre(const parser::OpenMPSectionsConstruct &) {
1490     PushScope(Scope::Kind::OtherConstruct, nullptr);
1491     return true;
1492   }
1493   void Post(const parser::OpenMPSectionsConstruct &) { PopScope(); }
1494   bool Pre(const parser::OmpBeginSectionsDirective &x) {
1495     AddOmpSourceRange(x.source);
1496     return true;
1497   }
1498   void Post(const parser::OmpBeginSectionsDirective &) {
1499     messageHandler().set_currStmtSource(std::nullopt);
1500   }
1501   bool Pre(const parser::OmpEndSectionsDirective &x) {
1502     AddOmpSourceRange(x.source);
1503     return true;
1504   }
1505   void Post(const parser::OmpEndSectionsDirective &) {
1506     messageHandler().set_currStmtSource(std::nullopt);
1507   }
1508   bool Pre(const parser::OmpCriticalDirective &x) {
1509     AddOmpSourceRange(x.source);
1510     return true;
1511   }
1512   void Post(const parser::OmpCriticalDirective &) {
1513     messageHandler().set_currStmtSource(std::nullopt);
1514   }
1515   bool Pre(const parser::OmpEndCriticalDirective &x) {
1516     AddOmpSourceRange(x.source);
1517     return true;
1518   }
1519   void Post(const parser::OmpEndCriticalDirective &) {
1520     messageHandler().set_currStmtSource(std::nullopt);
1521   }
1522   bool Pre(const parser::OpenMPThreadprivate &) {
1523     SkipImplicitTyping(true);
1524     return true;
1525   }
1526   void Post(const parser::OpenMPThreadprivate &) { SkipImplicitTyping(false); }
1527   bool Pre(const parser::OpenMPDeclareTargetConstruct &) {
1528     SkipImplicitTyping(true);
1529     return true;
1530   }
1531   void Post(const parser::OpenMPDeclareTargetConstruct &) {
1532     SkipImplicitTyping(false);
1533   }
1534   bool Pre(const parser::OpenMPDeclarativeAllocate &) {
1535     SkipImplicitTyping(true);
1536     return true;
1537   }
1538   void Post(const parser::OpenMPDeclarativeAllocate &) {
1539     SkipImplicitTyping(false);
1540   }
1541   bool Pre(const parser::OpenMPDeclarativeConstruct &x) {
1542     AddOmpSourceRange(x.source);
1543     return true;
1544   }
1545   void Post(const parser::OpenMPDeclarativeConstruct &) {
1546     messageHandler().set_currStmtSource(std::nullopt);
1547   }
1548   bool Pre(const parser::OpenMPDepobjConstruct &x) {
1549     AddOmpSourceRange(x.source);
1550     return true;
1551   }
1552   void Post(const parser::OpenMPDepobjConstruct &x) {
1553     messageHandler().set_currStmtSource(std::nullopt);
1554   }
1555   bool Pre(const parser::OpenMPAtomicConstruct &x) {
1556     return common::visit(common::visitors{[&](const auto &u) -> bool {
1557       AddOmpSourceRange(u.source);
1558       return true;
1559     }},
1560         x.u);
1561   }
1562   void Post(const parser::OpenMPAtomicConstruct &) {
1563     messageHandler().set_currStmtSource(std::nullopt);
1564   }
1565   bool Pre(const parser::OmpClause &x) {
1566     if (NeedsScope(x)) {
1567       PushScope(Scope::Kind::OtherClause, nullptr);
1568     }
1569     return true;
1570   }
1571   void Post(const parser::OmpClause &x) {
1572     if (NeedsScope(x)) {
1573       PopScope();
1574     }
1575   }
1576 };
1577 
1578 bool OmpVisitor::NeedsScope(const parser::OpenMPBlockConstruct &x) {
1579   const auto &beginBlockDir{std::get<parser::OmpBeginBlockDirective>(x.t)};
1580   const auto &beginDir{std::get<parser::OmpBlockDirective>(beginBlockDir.t)};
1581   switch (beginDir.v) {
1582   case llvm::omp::Directive::OMPD_master:
1583   case llvm::omp::Directive::OMPD_ordered:
1584   case llvm::omp::Directive::OMPD_taskgroup:
1585     return false;
1586   default:
1587     return true;
1588   }
1589 }
1590 
1591 bool OmpVisitor::NeedsScope(const parser::OmpClause &x) {
1592   // Iterators contain declarations, whose scope extends until the end
1593   // the clause.
1594   return llvm::omp::canHaveIterator(x.Id());
1595 }
1596 
1597 void OmpVisitor::AddOmpSourceRange(const parser::CharBlock &source) {
1598   messageHandler().set_currStmtSource(source);
1599   currScope().AddSourceRange(source);
1600 }
1601 
1602 bool OmpVisitor::Pre(const parser::OpenMPBlockConstruct &x) {
1603   if (NeedsScope(x)) {
1604     PushScope(Scope::Kind::OtherConstruct, nullptr);
1605   }
1606   return true;
1607 }
1608 
1609 void OmpVisitor::Post(const parser::OpenMPBlockConstruct &x) {
1610   if (NeedsScope(x)) {
1611     PopScope();
1612   }
1613 }
1614 
1615 // This "manually" walks the tree of the construct, because we need
1616 // to resolve the type before the map clauses are processed - when
1617 // just following the natural flow, the map clauses gets processed before
1618 // the type has been fully processed.
1619 bool OmpVisitor::Pre(const parser::OpenMPDeclareMapperConstruct &x) {
1620   AddOmpSourceRange(x.source);
1621   BeginDeclTypeSpec();
1622   const auto &spec{std::get<parser::OmpDeclareMapperSpecifier>(x.t)};
1623   Symbol *mapperSym{nullptr};
1624   if (const auto &mapperName{std::get<std::optional<parser::Name>>(spec.t)}) {
1625     mapperSym =
1626         &MakeSymbol(*mapperName, MiscDetails{MiscDetails::Kind::ConstructName});
1627     mapperName->symbol = mapperSym;
1628   } else {
1629     const parser::CharBlock defaultName{"default", 7};
1630     mapperSym = &MakeSymbol(
1631         defaultName, Attrs{}, MiscDetails{MiscDetails::Kind::ConstructName});
1632   }
1633 
1634   PushScope(Scope::Kind::OtherConstruct, nullptr);
1635   Walk(std::get<parser::TypeSpec>(spec.t));
1636   const auto &varName{std::get<parser::ObjectName>(spec.t)};
1637   DeclareObjectEntity(varName);
1638 
1639   Walk(std::get<parser::OmpClauseList>(x.t));
1640 
1641   EndDeclTypeSpec();
1642   PopScope();
1643   return false;
1644 }
1645 
1646 bool OmpVisitor::Pre(const parser::OmpMapClause &x) {
1647   auto &mods{OmpGetModifiers(x)};
1648   if (auto *mapper{OmpGetUniqueModifier<parser::OmpMapper>(mods)}) {
1649     if (auto *symbol{FindSymbol(currScope(), mapper->v)}) {
1650       // TODO: Do we need a specific flag or type here, to distinghuish against
1651       // other ConstructName things? Leaving this for the full implementation
1652       // of mapper lowering.
1653       auto *misc{symbol->detailsIf<MiscDetails>()};
1654       if (!misc || misc->kind() != MiscDetails::Kind::ConstructName)
1655         context().Say(mapper->v.source,
1656             "Name '%s' should be a mapper name"_err_en_US, mapper->v.source);
1657       else
1658         mapper->v.symbol = symbol;
1659     } else {
1660       mapper->v.symbol =
1661           &MakeSymbol(mapper->v, MiscDetails{MiscDetails::Kind::ConstructName});
1662       // TODO: When completing the implementation, we probably want to error if
1663       // the symbol is not declared, but right now, testing that the TODO for
1664       // OmpMapClause happens is obscured by the TODO for declare mapper, so
1665       // leaving this out. Remove the above line once the declare mapper is
1666       // implemented. context().Say(mapper->v.source, "'%s' not
1667       // declared"_err_en_US, mapper->v.source);
1668     }
1669   }
1670   return true;
1671 }
1672 
1673 // Walk the parse tree and resolve names to symbols.
1674 class ResolveNamesVisitor : public virtual ScopeHandler,
1675                             public ModuleVisitor,
1676                             public SubprogramVisitor,
1677                             public ConstructVisitor,
1678                             public OmpVisitor,
1679                             public AccVisitor {
1680 public:
1681   using AccVisitor::Post;
1682   using AccVisitor::Pre;
1683   using ArraySpecVisitor::Post;
1684   using ConstructVisitor::Post;
1685   using ConstructVisitor::Pre;
1686   using DeclarationVisitor::Post;
1687   using DeclarationVisitor::Pre;
1688   using ImplicitRulesVisitor::Post;
1689   using ImplicitRulesVisitor::Pre;
1690   using InterfaceVisitor::Post;
1691   using InterfaceVisitor::Pre;
1692   using ModuleVisitor::Post;
1693   using ModuleVisitor::Pre;
1694   using OmpVisitor::Post;
1695   using OmpVisitor::Pre;
1696   using ScopeHandler::Post;
1697   using ScopeHandler::Pre;
1698   using SubprogramVisitor::Post;
1699   using SubprogramVisitor::Pre;
1700 
1701   ResolveNamesVisitor(
1702       SemanticsContext &context, ImplicitRulesMap &rules, Scope &top)
1703       : BaseVisitor{context, *this, rules}, topScope_{top} {
1704     PushScope(top);
1705   }
1706 
1707   Scope &topScope() const { return topScope_; }
1708 
1709   // Default action for a parse tree node is to visit children.
1710   template <typename T> bool Pre(const T &) { return true; }
1711   template <typename T> void Post(const T &) {}
1712 
1713   bool Pre(const parser::SpecificationPart &);
1714   bool Pre(const parser::Program &);
1715   void Post(const parser::Program &);
1716   bool Pre(const parser::ImplicitStmt &);
1717   void Post(const parser::PointerObject &);
1718   void Post(const parser::AllocateObject &);
1719   bool Pre(const parser::PointerAssignmentStmt &);
1720   void Post(const parser::Designator &);
1721   void Post(const parser::SubstringInquiry &);
1722   template <typename A, typename B>
1723   void Post(const parser::LoopBounds<A, B> &x) {
1724     ResolveName(*parser::Unwrap<parser::Name>(x.name));
1725   }
1726   void Post(const parser::ProcComponentRef &);
1727   bool Pre(const parser::FunctionReference &);
1728   bool Pre(const parser::CallStmt &);
1729   bool Pre(const parser::ImportStmt &);
1730   void Post(const parser::TypeGuardStmt &);
1731   bool Pre(const parser::StmtFunctionStmt &);
1732   bool Pre(const parser::DefinedOpName &);
1733   bool Pre(const parser::ProgramUnit &);
1734   void Post(const parser::AssignStmt &);
1735   void Post(const parser::AssignedGotoStmt &);
1736   void Post(const parser::CompilerDirective &);
1737 
1738   // These nodes should never be reached: they are handled in ProgramUnit
1739   bool Pre(const parser::MainProgram &) {
1740     llvm_unreachable("This node is handled in ProgramUnit");
1741   }
1742   bool Pre(const parser::FunctionSubprogram &) {
1743     llvm_unreachable("This node is handled in ProgramUnit");
1744   }
1745   bool Pre(const parser::SubroutineSubprogram &) {
1746     llvm_unreachable("This node is handled in ProgramUnit");
1747   }
1748   bool Pre(const parser::SeparateModuleSubprogram &) {
1749     llvm_unreachable("This node is handled in ProgramUnit");
1750   }
1751   bool Pre(const parser::Module &) {
1752     llvm_unreachable("This node is handled in ProgramUnit");
1753   }
1754   bool Pre(const parser::Submodule &) {
1755     llvm_unreachable("This node is handled in ProgramUnit");
1756   }
1757   bool Pre(const parser::BlockData &) {
1758     llvm_unreachable("This node is handled in ProgramUnit");
1759   }
1760 
1761   void NoteExecutablePartCall(Symbol::Flag, SourceName, bool hasCUDAChevrons);
1762 
1763   friend void ResolveSpecificationParts(SemanticsContext &, const Symbol &);
1764 
1765 private:
1766   // Kind of procedure we are expecting to see in a ProcedureDesignator
1767   std::optional<Symbol::Flag> expectedProcFlag_;
1768   std::optional<SourceName> prevImportStmt_;
1769   Scope &topScope_;
1770 
1771   void PreSpecificationConstruct(const parser::SpecificationConstruct &);
1772   void CreateCommonBlockSymbols(const parser::CommonStmt &);
1773   void CreateObjectSymbols(const std::list<parser::ObjectDecl> &, Attr);
1774   void CreateGeneric(const parser::GenericSpec &);
1775   void FinishSpecificationPart(const std::list<parser::DeclarationConstruct> &);
1776   void AnalyzeStmtFunctionStmt(const parser::StmtFunctionStmt &);
1777   void CheckImports();
1778   void CheckImport(const SourceName &, const SourceName &);
1779   void HandleCall(Symbol::Flag, const parser::Call &);
1780   void HandleProcedureName(Symbol::Flag, const parser::Name &);
1781   bool CheckImplicitNoneExternal(const SourceName &, const Symbol &);
1782   bool SetProcFlag(const parser::Name &, Symbol &, Symbol::Flag);
1783   void ResolveSpecificationParts(ProgramTree &);
1784   void AddSubpNames(ProgramTree &);
1785   bool BeginScopeForNode(const ProgramTree &);
1786   void EndScopeForNode(const ProgramTree &);
1787   void FinishSpecificationParts(const ProgramTree &);
1788   void FinishExecutionParts(const ProgramTree &);
1789   void FinishDerivedTypeInstantiation(Scope &);
1790   void ResolveExecutionParts(const ProgramTree &);
1791   void UseCUDABuiltinNames();
1792   void HandleDerivedTypesInImplicitStmts(const parser::ImplicitPart &,
1793       const std::list<parser::DeclarationConstruct> &);
1794 };
1795 
1796 // ImplicitRules implementation
1797 
1798 bool ImplicitRules::isImplicitNoneType() const {
1799   if (isImplicitNoneType_) {
1800     return true;
1801   } else if (map_.empty() && inheritFromParent_) {
1802     return parent_->isImplicitNoneType();
1803   } else {
1804     return false; // default if not specified
1805   }
1806 }
1807 
1808 bool ImplicitRules::isImplicitNoneExternal() const {
1809   if (isImplicitNoneExternal_) {
1810     return true;
1811   } else if (inheritFromParent_) {
1812     return parent_->isImplicitNoneExternal();
1813   } else {
1814     return false; // default if not specified
1815   }
1816 }
1817 
1818 const DeclTypeSpec *ImplicitRules::GetType(
1819     SourceName name, bool respectImplicitNoneType) const {
1820   char ch{name.begin()[0]};
1821   if (isImplicitNoneType_ && respectImplicitNoneType) {
1822     return nullptr;
1823   } else if (auto it{map_.find(ch)}; it != map_.end()) {
1824     return &*it->second;
1825   } else if (inheritFromParent_) {
1826     return parent_->GetType(name, respectImplicitNoneType);
1827   } else if (ch >= 'i' && ch <= 'n') {
1828     return &context_.MakeNumericType(TypeCategory::Integer);
1829   } else if (ch >= 'a' && ch <= 'z') {
1830     return &context_.MakeNumericType(TypeCategory::Real);
1831   } else {
1832     return nullptr;
1833   }
1834 }
1835 
1836 void ImplicitRules::SetTypeMapping(const DeclTypeSpec &type,
1837     parser::Location fromLetter, parser::Location toLetter) {
1838   for (char ch = *fromLetter; ch; ch = ImplicitRules::Incr(ch)) {
1839     auto res{map_.emplace(ch, type)};
1840     if (!res.second) {
1841       context_.Say(parser::CharBlock{fromLetter},
1842           "More than one implicit type specified for '%c'"_err_en_US, ch);
1843     }
1844     if (ch == *toLetter) {
1845       break;
1846     }
1847   }
1848 }
1849 
1850 // Return the next char after ch in a way that works for ASCII or EBCDIC.
1851 // Return '\0' for the char after 'z'.
1852 char ImplicitRules::Incr(char ch) {
1853   switch (ch) {
1854   case 'i':
1855     return 'j';
1856   case 'r':
1857     return 's';
1858   case 'z':
1859     return '\0';
1860   default:
1861     return ch + 1;
1862   }
1863 }
1864 
1865 llvm::raw_ostream &operator<<(
1866     llvm::raw_ostream &o, const ImplicitRules &implicitRules) {
1867   o << "ImplicitRules:\n";
1868   for (char ch = 'a'; ch; ch = ImplicitRules::Incr(ch)) {
1869     ShowImplicitRule(o, implicitRules, ch);
1870   }
1871   ShowImplicitRule(o, implicitRules, '_');
1872   ShowImplicitRule(o, implicitRules, '$');
1873   ShowImplicitRule(o, implicitRules, '@');
1874   return o;
1875 }
1876 void ShowImplicitRule(
1877     llvm::raw_ostream &o, const ImplicitRules &implicitRules, char ch) {
1878   auto it{implicitRules.map_.find(ch)};
1879   if (it != implicitRules.map_.end()) {
1880     o << "  " << ch << ": " << *it->second << '\n';
1881   }
1882 }
1883 
1884 template <typename T> void BaseVisitor::Walk(const T &x) {
1885   parser::Walk(x, *this_);
1886 }
1887 
1888 void BaseVisitor::MakePlaceholder(
1889     const parser::Name &name, MiscDetails::Kind kind) {
1890   if (!name.symbol) {
1891     name.symbol = &context_->globalScope().MakeSymbol(
1892         name.source, Attrs{}, MiscDetails{kind});
1893   }
1894 }
1895 
1896 // AttrsVisitor implementation
1897 
1898 bool AttrsVisitor::BeginAttrs() {
1899   CHECK(!attrs_ && !cudaDataAttr_);
1900   attrs_ = Attrs{};
1901   return true;
1902 }
1903 Attrs AttrsVisitor::GetAttrs() {
1904   CHECK(attrs_);
1905   return *attrs_;
1906 }
1907 Attrs AttrsVisitor::EndAttrs() {
1908   Attrs result{GetAttrs()};
1909   attrs_.reset();
1910   cudaDataAttr_.reset();
1911   passName_ = std::nullopt;
1912   bindName_.reset();
1913   isCDefined_ = false;
1914   return result;
1915 }
1916 
1917 bool AttrsVisitor::SetPassNameOn(Symbol &symbol) {
1918   if (!passName_) {
1919     return false;
1920   }
1921   common::visit(common::visitors{
1922                     [&](ProcEntityDetails &x) { x.set_passName(*passName_); },
1923                     [&](ProcBindingDetails &x) { x.set_passName(*passName_); },
1924                     [](auto &) { common::die("unexpected pass name"); },
1925                 },
1926       symbol.details());
1927   return true;
1928 }
1929 
1930 void AttrsVisitor::SetBindNameOn(Symbol &symbol) {
1931   if ((!attrs_ || !attrs_->test(Attr::BIND_C)) &&
1932       !symbol.attrs().test(Attr::BIND_C)) {
1933     return;
1934   }
1935   symbol.SetIsCDefined(isCDefined_);
1936   std::optional<std::string> label{
1937       evaluate::GetScalarConstantValue<evaluate::Ascii>(bindName_)};
1938   // 18.9.2(2): discard leading and trailing blanks
1939   if (label) {
1940     symbol.SetIsExplicitBindName(true);
1941     auto first{label->find_first_not_of(" ")};
1942     if (first == std::string::npos) {
1943       // Empty NAME= means no binding at all (18.10.2p2)
1944       return;
1945     }
1946     auto last{label->find_last_not_of(" ")};
1947     label = label->substr(first, last - first + 1);
1948   } else if (symbol.GetIsExplicitBindName()) {
1949     // don't try to override explicit binding name with default
1950     return;
1951   } else if (ClassifyProcedure(symbol) == ProcedureDefinitionClass::Internal) {
1952     // BIND(C) does not give an implicit binding label to internal procedures.
1953     return;
1954   } else {
1955     label = symbol.name().ToString();
1956   }
1957   // Checks whether a symbol has two Bind names.
1958   std::string oldBindName;
1959   if (const auto *bindName{symbol.GetBindName()}) {
1960     oldBindName = *bindName;
1961   }
1962   symbol.SetBindName(std::move(*label));
1963   if (!oldBindName.empty()) {
1964     if (const std::string * newBindName{symbol.GetBindName()}) {
1965       if (oldBindName != *newBindName) {
1966         Say(symbol.name(),
1967             "The entity '%s' has multiple BIND names ('%s' and '%s')"_err_en_US,
1968             symbol.name(), oldBindName, *newBindName);
1969       }
1970     }
1971   }
1972 }
1973 
1974 void AttrsVisitor::Post(const parser::LanguageBindingSpec &x) {
1975   if (CheckAndSet(Attr::BIND_C)) {
1976     if (const auto &name{
1977             std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
1978                 x.t)}) {
1979       bindName_ = EvaluateExpr(*name);
1980     }
1981     isCDefined_ = std::get<bool>(x.t);
1982   }
1983 }
1984 bool AttrsVisitor::Pre(const parser::IntentSpec &x) {
1985   CheckAndSet(IntentSpecToAttr(x));
1986   return false;
1987 }
1988 bool AttrsVisitor::Pre(const parser::Pass &x) {
1989   if (CheckAndSet(Attr::PASS)) {
1990     if (x.v) {
1991       passName_ = x.v->source;
1992       MakePlaceholder(*x.v, MiscDetails::Kind::PassName);
1993     }
1994   }
1995   return false;
1996 }
1997 
1998 // C730, C743, C755, C778, C1543 say no attribute or prefix repetitions
1999 bool AttrsVisitor::IsDuplicateAttr(Attr attrName) {
2000   CHECK(attrs_);
2001   if (attrs_->test(attrName)) {
2002     context().Warn(common::LanguageFeature::RedundantAttribute,
2003         currStmtSource().value(),
2004         "Attribute '%s' cannot be used more than once"_warn_en_US,
2005         AttrToString(attrName));
2006     return true;
2007   }
2008   return false;
2009 }
2010 
2011 // See if attrName violates a constraint cause by a conflict.  attr1 and attr2
2012 // name attributes that cannot be used on the same declaration
2013 bool AttrsVisitor::HaveAttrConflict(Attr attrName, Attr attr1, Attr attr2) {
2014   CHECK(attrs_);
2015   if ((attrName == attr1 && attrs_->test(attr2)) ||
2016       (attrName == attr2 && attrs_->test(attr1))) {
2017     Say(currStmtSource().value(),
2018         "Attributes '%s' and '%s' conflict with each other"_err_en_US,
2019         AttrToString(attr1), AttrToString(attr2));
2020     return true;
2021   }
2022   return false;
2023 }
2024 // C759, C1543
2025 bool AttrsVisitor::IsConflictingAttr(Attr attrName) {
2026   return HaveAttrConflict(attrName, Attr::INTENT_IN, Attr::INTENT_INOUT) ||
2027       HaveAttrConflict(attrName, Attr::INTENT_IN, Attr::INTENT_OUT) ||
2028       HaveAttrConflict(attrName, Attr::INTENT_INOUT, Attr::INTENT_OUT) ||
2029       HaveAttrConflict(attrName, Attr::PASS, Attr::NOPASS) || // C781
2030       HaveAttrConflict(attrName, Attr::PURE, Attr::IMPURE) ||
2031       HaveAttrConflict(attrName, Attr::PUBLIC, Attr::PRIVATE) ||
2032       HaveAttrConflict(attrName, Attr::RECURSIVE, Attr::NON_RECURSIVE);
2033 }
2034 bool AttrsVisitor::CheckAndSet(Attr attrName) {
2035   if (IsConflictingAttr(attrName) || IsDuplicateAttr(attrName)) {
2036     return false;
2037   }
2038   attrs_->set(attrName);
2039   return true;
2040 }
2041 bool AttrsVisitor::Pre(const common::CUDADataAttr x) {
2042   if (cudaDataAttr_.value_or(x) != x) {
2043     Say(currStmtSource().value(),
2044         "CUDA data attributes '%s' and '%s' may not both be specified"_err_en_US,
2045         common::EnumToString(*cudaDataAttr_), common::EnumToString(x));
2046   }
2047   cudaDataAttr_ = x;
2048   return false;
2049 }
2050 
2051 // DeclTypeSpecVisitor implementation
2052 
2053 const DeclTypeSpec *DeclTypeSpecVisitor::GetDeclTypeSpec() {
2054   return state_.declTypeSpec;
2055 }
2056 
2057 void DeclTypeSpecVisitor::BeginDeclTypeSpec() {
2058   CHECK(!state_.expectDeclTypeSpec);
2059   CHECK(!state_.declTypeSpec);
2060   state_.expectDeclTypeSpec = true;
2061 }
2062 void DeclTypeSpecVisitor::EndDeclTypeSpec() {
2063   CHECK(state_.expectDeclTypeSpec);
2064   state_ = {};
2065 }
2066 
2067 void DeclTypeSpecVisitor::SetDeclTypeSpecCategory(
2068     DeclTypeSpec::Category category) {
2069   CHECK(state_.expectDeclTypeSpec);
2070   state_.derived.category = category;
2071 }
2072 
2073 bool DeclTypeSpecVisitor::Pre(const parser::TypeGuardStmt &) {
2074   BeginDeclTypeSpec();
2075   return true;
2076 }
2077 void DeclTypeSpecVisitor::Post(const parser::TypeGuardStmt &) {
2078   EndDeclTypeSpec();
2079 }
2080 
2081 void DeclTypeSpecVisitor::Post(const parser::TypeSpec &typeSpec) {
2082   // Record the resolved DeclTypeSpec in the parse tree for use by
2083   // expression semantics if the DeclTypeSpec is a valid TypeSpec.
2084   // The grammar ensures that it's an intrinsic or derived type spec,
2085   // not TYPE(*) or CLASS(*) or CLASS(T).
2086   if (const DeclTypeSpec * spec{state_.declTypeSpec}) {
2087     switch (spec->category()) {
2088     case DeclTypeSpec::Numeric:
2089     case DeclTypeSpec::Logical:
2090     case DeclTypeSpec::Character:
2091       typeSpec.declTypeSpec = spec;
2092       break;
2093     case DeclTypeSpec::TypeDerived:
2094       if (const DerivedTypeSpec * derived{spec->AsDerived()}) {
2095         CheckForAbstractType(derived->typeSymbol()); // C703
2096         typeSpec.declTypeSpec = spec;
2097       }
2098       break;
2099     default:
2100       CRASH_NO_CASE;
2101     }
2102   }
2103 }
2104 
2105 void DeclTypeSpecVisitor::Post(
2106     const parser::IntrinsicTypeSpec::DoublePrecision &) {
2107   MakeNumericType(TypeCategory::Real, context().doublePrecisionKind());
2108 }
2109 void DeclTypeSpecVisitor::Post(
2110     const parser::IntrinsicTypeSpec::DoubleComplex &) {
2111   MakeNumericType(TypeCategory::Complex, context().doublePrecisionKind());
2112 }
2113 void DeclTypeSpecVisitor::MakeNumericType(TypeCategory category, int kind) {
2114   SetDeclTypeSpec(context().MakeNumericType(category, kind));
2115 }
2116 
2117 void DeclTypeSpecVisitor::CheckForAbstractType(const Symbol &typeSymbol) {
2118   if (typeSymbol.attrs().test(Attr::ABSTRACT)) {
2119     Say("ABSTRACT derived type may not be used here"_err_en_US);
2120   }
2121 }
2122 
2123 void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::ClassStar &) {
2124   SetDeclTypeSpec(context().globalScope().MakeClassStarType());
2125 }
2126 void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::TypeStar &) {
2127   SetDeclTypeSpec(context().globalScope().MakeTypeStarType());
2128 }
2129 
2130 // Check that we're expecting to see a DeclTypeSpec (and haven't seen one yet)
2131 // and save it in state_.declTypeSpec.
2132 void DeclTypeSpecVisitor::SetDeclTypeSpec(const DeclTypeSpec &declTypeSpec) {
2133   CHECK(state_.expectDeclTypeSpec);
2134   CHECK(!state_.declTypeSpec);
2135   state_.declTypeSpec = &declTypeSpec;
2136 }
2137 
2138 KindExpr DeclTypeSpecVisitor::GetKindParamExpr(
2139     TypeCategory category, const std::optional<parser::KindSelector> &kind) {
2140   return AnalyzeKindSelector(context(), category, kind);
2141 }
2142 
2143 // MessageHandler implementation
2144 
2145 Message &MessageHandler::Say(MessageFixedText &&msg) {
2146   return context_->Say(currStmtSource().value(), std::move(msg));
2147 }
2148 Message &MessageHandler::Say(MessageFormattedText &&msg) {
2149   return context_->Say(currStmtSource().value(), std::move(msg));
2150 }
2151 Message &MessageHandler::Say(const SourceName &name, MessageFixedText &&msg) {
2152   return Say(name, std::move(msg), name);
2153 }
2154 
2155 // ImplicitRulesVisitor implementation
2156 
2157 void ImplicitRulesVisitor::Post(const parser::ParameterStmt &) {
2158   prevParameterStmt_ = currStmtSource();
2159 }
2160 
2161 bool ImplicitRulesVisitor::Pre(const parser::ImplicitStmt &x) {
2162   bool result{
2163       common::visit(common::visitors{
2164                         [&](const std::list<ImplicitNoneNameSpec> &y) {
2165                           return HandleImplicitNone(y);
2166                         },
2167                         [&](const std::list<parser::ImplicitSpec> &) {
2168                           if (prevImplicitNoneType_) {
2169                             Say("IMPLICIT statement after IMPLICIT NONE or "
2170                                 "IMPLICIT NONE(TYPE) statement"_err_en_US);
2171                             return false;
2172                           }
2173                           implicitRules_->set_isImplicitNoneType(false);
2174                           return true;
2175                         },
2176                     },
2177           x.u)};
2178   prevImplicit_ = currStmtSource();
2179   return result;
2180 }
2181 
2182 bool ImplicitRulesVisitor::Pre(const parser::LetterSpec &x) {
2183   auto loLoc{std::get<parser::Location>(x.t)};
2184   auto hiLoc{loLoc};
2185   if (auto hiLocOpt{std::get<std::optional<parser::Location>>(x.t)}) {
2186     hiLoc = *hiLocOpt;
2187     if (*hiLoc < *loLoc) {
2188       Say(hiLoc, "'%s' does not follow '%s' alphabetically"_err_en_US,
2189           std::string(hiLoc, 1), std::string(loLoc, 1));
2190       return false;
2191     }
2192   }
2193   implicitRules_->SetTypeMapping(*GetDeclTypeSpec(), loLoc, hiLoc);
2194   return false;
2195 }
2196 
2197 bool ImplicitRulesVisitor::Pre(const parser::ImplicitSpec &) {
2198   BeginDeclTypeSpec();
2199   set_allowForwardReferenceToDerivedType(true);
2200   return true;
2201 }
2202 
2203 void ImplicitRulesVisitor::Post(const parser::ImplicitSpec &) {
2204   set_allowForwardReferenceToDerivedType(false);
2205   EndDeclTypeSpec();
2206 }
2207 
2208 void ImplicitRulesVisitor::SetScope(const Scope &scope) {
2209   implicitRules_ = &DEREF(implicitRulesMap_).at(&scope);
2210   prevImplicit_ = std::nullopt;
2211   prevImplicitNone_ = std::nullopt;
2212   prevImplicitNoneType_ = std::nullopt;
2213   prevParameterStmt_ = std::nullopt;
2214 }
2215 void ImplicitRulesVisitor::BeginScope(const Scope &scope) {
2216   // find or create implicit rules for this scope
2217   DEREF(implicitRulesMap_).try_emplace(&scope, context(), implicitRules_);
2218   SetScope(scope);
2219 }
2220 
2221 // TODO: for all of these errors, reference previous statement too
2222 bool ImplicitRulesVisitor::HandleImplicitNone(
2223     const std::list<ImplicitNoneNameSpec> &nameSpecs) {
2224   if (prevImplicitNone_) {
2225     Say("More than one IMPLICIT NONE statement"_err_en_US);
2226     Say(*prevImplicitNone_, "Previous IMPLICIT NONE statement"_en_US);
2227     return false;
2228   }
2229   if (prevParameterStmt_) {
2230     Say("IMPLICIT NONE statement after PARAMETER statement"_err_en_US);
2231     return false;
2232   }
2233   prevImplicitNone_ = currStmtSource();
2234   bool implicitNoneTypeNever{
2235       context().IsEnabled(common::LanguageFeature::ImplicitNoneTypeNever)};
2236   if (nameSpecs.empty()) {
2237     if (!implicitNoneTypeNever) {
2238       prevImplicitNoneType_ = currStmtSource();
2239       implicitRules_->set_isImplicitNoneType(true);
2240       if (prevImplicit_) {
2241         Say("IMPLICIT NONE statement after IMPLICIT statement"_err_en_US);
2242         return false;
2243       }
2244     }
2245   } else {
2246     int sawType{0};
2247     int sawExternal{0};
2248     for (const auto noneSpec : nameSpecs) {
2249       switch (noneSpec) {
2250       case ImplicitNoneNameSpec::External:
2251         implicitRules_->set_isImplicitNoneExternal(true);
2252         ++sawExternal;
2253         break;
2254       case ImplicitNoneNameSpec::Type:
2255         if (!implicitNoneTypeNever) {
2256           prevImplicitNoneType_ = currStmtSource();
2257           implicitRules_->set_isImplicitNoneType(true);
2258           if (prevImplicit_) {
2259             Say("IMPLICIT NONE(TYPE) after IMPLICIT statement"_err_en_US);
2260             return false;
2261           }
2262           ++sawType;
2263         }
2264         break;
2265       }
2266     }
2267     if (sawType > 1) {
2268       Say("TYPE specified more than once in IMPLICIT NONE statement"_err_en_US);
2269       return false;
2270     }
2271     if (sawExternal > 1) {
2272       Say("EXTERNAL specified more than once in IMPLICIT NONE statement"_err_en_US);
2273       return false;
2274     }
2275   }
2276   return true;
2277 }
2278 
2279 // ArraySpecVisitor implementation
2280 
2281 void ArraySpecVisitor::Post(const parser::ArraySpec &x) {
2282   CHECK(arraySpec_.empty());
2283   arraySpec_ = AnalyzeArraySpec(context(), x);
2284 }
2285 void ArraySpecVisitor::Post(const parser::ComponentArraySpec &x) {
2286   CHECK(arraySpec_.empty());
2287   arraySpec_ = AnalyzeArraySpec(context(), x);
2288 }
2289 void ArraySpecVisitor::Post(const parser::CoarraySpec &x) {
2290   CHECK(coarraySpec_.empty());
2291   coarraySpec_ = AnalyzeCoarraySpec(context(), x);
2292 }
2293 
2294 const ArraySpec &ArraySpecVisitor::arraySpec() {
2295   return !arraySpec_.empty() ? arraySpec_ : attrArraySpec_;
2296 }
2297 const ArraySpec &ArraySpecVisitor::coarraySpec() {
2298   return !coarraySpec_.empty() ? coarraySpec_ : attrCoarraySpec_;
2299 }
2300 void ArraySpecVisitor::BeginArraySpec() {
2301   CHECK(arraySpec_.empty());
2302   CHECK(coarraySpec_.empty());
2303   CHECK(attrArraySpec_.empty());
2304   CHECK(attrCoarraySpec_.empty());
2305 }
2306 void ArraySpecVisitor::EndArraySpec() {
2307   CHECK(arraySpec_.empty());
2308   CHECK(coarraySpec_.empty());
2309   attrArraySpec_.clear();
2310   attrCoarraySpec_.clear();
2311 }
2312 void ArraySpecVisitor::PostAttrSpec() {
2313   // Save dimension/codimension from attrs so we can process array/coarray-spec
2314   // on the entity-decl
2315   if (!arraySpec_.empty()) {
2316     if (attrArraySpec_.empty()) {
2317       attrArraySpec_ = arraySpec_;
2318       arraySpec_.clear();
2319     } else {
2320       Say(currStmtSource().value(),
2321           "Attribute 'DIMENSION' cannot be used more than once"_err_en_US);
2322     }
2323   }
2324   if (!coarraySpec_.empty()) {
2325     if (attrCoarraySpec_.empty()) {
2326       attrCoarraySpec_ = coarraySpec_;
2327       coarraySpec_.clear();
2328     } else {
2329       Say(currStmtSource().value(),
2330           "Attribute 'CODIMENSION' cannot be used more than once"_err_en_US);
2331     }
2332   }
2333 }
2334 
2335 // FuncResultStack implementation
2336 
2337 FuncResultStack::~FuncResultStack() { CHECK(stack_.empty()); }
2338 
2339 void FuncResultStack::CompleteFunctionResultType() {
2340   // If the function has a type in the prefix, process it now.
2341   FuncInfo *info{Top()};
2342   if (info && &info->scope == &scopeHandler_.currScope()) {
2343     if (info->parsedType && info->resultSymbol) {
2344       scopeHandler_.messageHandler().set_currStmtSource(info->source);
2345       if (const auto *type{
2346               scopeHandler_.ProcessTypeSpec(*info->parsedType, true)}) {
2347         Symbol &symbol{*info->resultSymbol};
2348         if (!scopeHandler_.context().HasError(symbol)) {
2349           if (symbol.GetType()) {
2350             scopeHandler_.Say(symbol.name(),
2351                 "Function cannot have both an explicit type prefix and a RESULT suffix"_err_en_US);
2352             scopeHandler_.context().SetError(symbol);
2353           } else {
2354             symbol.SetType(*type);
2355           }
2356         }
2357       }
2358       info->parsedType = nullptr;
2359     }
2360   }
2361 }
2362 
2363 // Called from ConvertTo{Object/Proc}Entity to cope with any appearance
2364 // of the function result in a specification expression.
2365 void FuncResultStack::CompleteTypeIfFunctionResult(Symbol &symbol) {
2366   if (FuncInfo * info{Top()}) {
2367     if (info->resultSymbol == &symbol) {
2368       CompleteFunctionResultType();
2369     }
2370   }
2371 }
2372 
2373 void FuncResultStack::Pop() {
2374   if (!stack_.empty() && &stack_.back().scope == &scopeHandler_.currScope()) {
2375     stack_.pop_back();
2376   }
2377 }
2378 
2379 // ScopeHandler implementation
2380 
2381 void ScopeHandler::SayAlreadyDeclared(const parser::Name &name, Symbol &prev) {
2382   SayAlreadyDeclared(name.source, prev);
2383 }
2384 void ScopeHandler::SayAlreadyDeclared(const SourceName &name, Symbol &prev) {
2385   if (context().HasError(prev)) {
2386     // don't report another error about prev
2387   } else {
2388     if (const auto *details{prev.detailsIf<UseDetails>()}) {
2389       Say(name, "'%s' is already declared in this scoping unit"_err_en_US)
2390           .Attach(details->location(),
2391               "It is use-associated with '%s' in module '%s'"_en_US,
2392               details->symbol().name(), GetUsedModule(*details).name());
2393     } else {
2394       SayAlreadyDeclared(name, prev.name());
2395     }
2396     context().SetError(prev);
2397   }
2398 }
2399 void ScopeHandler::SayAlreadyDeclared(
2400     const SourceName &name1, const SourceName &name2) {
2401   if (name1.begin() < name2.begin()) {
2402     SayAlreadyDeclared(name2, name1);
2403   } else {
2404     Say(name1, "'%s' is already declared in this scoping unit"_err_en_US)
2405         .Attach(name2, "Previous declaration of '%s'"_en_US, name2);
2406   }
2407 }
2408 
2409 void ScopeHandler::SayWithReason(const parser::Name &name, Symbol &symbol,
2410     MessageFixedText &&msg1, Message &&msg2) {
2411   bool isFatal{msg1.IsFatal()};
2412   Say(name, std::move(msg1), symbol.name()).Attach(std::move(msg2));
2413   context().SetError(symbol, isFatal);
2414 }
2415 
2416 template <typename... A>
2417 Message &ScopeHandler::SayWithDecl(const parser::Name &name, Symbol &symbol,
2418     MessageFixedText &&msg, A &&...args) {
2419   auto &message{
2420       Say(name.source, std::move(msg), symbol.name(), std::forward<A>(args)...)
2421           .Attach(symbol.name(),
2422               symbol.test(Symbol::Flag::Implicit)
2423                   ? "Implicit declaration of '%s'"_en_US
2424                   : "Declaration of '%s'"_en_US,
2425               name.source)};
2426   if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
2427     if (auto usedAsProc{proc->usedAsProcedureHere()}) {
2428       if (usedAsProc->begin() != symbol.name().begin()) {
2429         message.Attach(*usedAsProc, "Referenced as a procedure"_en_US);
2430       }
2431     }
2432   }
2433   return message;
2434 }
2435 
2436 void ScopeHandler::SayLocalMustBeVariable(
2437     const parser::Name &name, Symbol &symbol) {
2438   SayWithDecl(name, symbol,
2439       "The name '%s' must be a variable to appear"
2440       " in a locality-spec"_err_en_US);
2441 }
2442 
2443 Message &ScopeHandler::SayDerivedType(
2444     const SourceName &name, MessageFixedText &&msg, const Scope &type) {
2445   const Symbol &typeSymbol{DEREF(type.GetSymbol())};
2446   return Say(name, std::move(msg), name, typeSymbol.name())
2447       .Attach(typeSymbol.name(), "Declaration of derived type '%s'"_en_US,
2448           typeSymbol.name());
2449 }
2450 Message &ScopeHandler::Say2(const SourceName &name1, MessageFixedText &&msg1,
2451     const SourceName &name2, MessageFixedText &&msg2) {
2452   return Say(name1, std::move(msg1)).Attach(name2, std::move(msg2), name2);
2453 }
2454 Message &ScopeHandler::Say2(const SourceName &name, MessageFixedText &&msg1,
2455     Symbol &symbol, MessageFixedText &&msg2) {
2456   bool isFatal{msg1.IsFatal()};
2457   Message &result{Say2(name, std::move(msg1), symbol.name(), std::move(msg2))};
2458   context().SetError(symbol, isFatal);
2459   return result;
2460 }
2461 Message &ScopeHandler::Say2(const parser::Name &name, MessageFixedText &&msg1,
2462     Symbol &symbol, MessageFixedText &&msg2) {
2463   bool isFatal{msg1.IsFatal()};
2464   Message &result{
2465       Say2(name.source, std::move(msg1), symbol.name(), std::move(msg2))};
2466   context().SetError(symbol, isFatal);
2467   return result;
2468 }
2469 
2470 // This is essentially GetProgramUnitContaining(), but it can return
2471 // a mutable Scope &, it ignores statement functions, and it fails
2472 // gracefully for error recovery (returning the original Scope).
2473 template <typename T> static T &GetInclusiveScope(T &scope) {
2474   for (T *s{&scope}; !s->IsGlobal(); s = &s->parent()) {
2475     switch (s->kind()) {
2476     case Scope::Kind::Module:
2477     case Scope::Kind::MainProgram:
2478     case Scope::Kind::Subprogram:
2479     case Scope::Kind::BlockData:
2480       if (!s->IsStmtFunction()) {
2481         return *s;
2482       }
2483       break;
2484     default:;
2485     }
2486   }
2487   return scope;
2488 }
2489 
2490 Scope &ScopeHandler::InclusiveScope() { return GetInclusiveScope(currScope()); }
2491 
2492 Scope *ScopeHandler::GetHostProcedure() {
2493   Scope &parent{InclusiveScope().parent()};
2494   switch (parent.kind()) {
2495   case Scope::Kind::Subprogram:
2496     return &parent;
2497   case Scope::Kind::MainProgram:
2498     return &parent;
2499   default:
2500     return nullptr;
2501   }
2502 }
2503 
2504 Scope &ScopeHandler::NonDerivedTypeScope() {
2505   return currScope_->IsDerivedType() ? currScope_->parent() : *currScope_;
2506 }
2507 
2508 void ScopeHandler::PushScope(Scope::Kind kind, Symbol *symbol) {
2509   PushScope(currScope().MakeScope(kind, symbol));
2510 }
2511 void ScopeHandler::PushScope(Scope &scope) {
2512   currScope_ = &scope;
2513   auto kind{currScope_->kind()};
2514   if (kind != Scope::Kind::BlockConstruct &&
2515       kind != Scope::Kind::OtherConstruct && kind != Scope::Kind::OtherClause) {
2516     BeginScope(scope);
2517   }
2518   // The name of a module or submodule cannot be "used" in its scope,
2519   // as we read 19.3.1(2), so we allow the name to be used as a local
2520   // identifier in the module or submodule too.  Same with programs
2521   // (14.1(3)) and BLOCK DATA.
2522   if (!currScope_->IsDerivedType() && kind != Scope::Kind::Module &&
2523       kind != Scope::Kind::MainProgram && kind != Scope::Kind::BlockData) {
2524     if (auto *symbol{scope.symbol()}) {
2525       // Create a dummy symbol so we can't create another one with the same
2526       // name. It might already be there if we previously pushed the scope.
2527       SourceName name{symbol->name()};
2528       if (!FindInScope(scope, name)) {
2529         auto &newSymbol{MakeSymbol(name)};
2530         if (kind == Scope::Kind::Subprogram) {
2531           // Allow for recursive references.  If this symbol is a function
2532           // without an explicit RESULT(), this new symbol will be discarded
2533           // and replaced with an object of the same name.
2534           newSymbol.set_details(HostAssocDetails{*symbol});
2535         } else {
2536           newSymbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName});
2537         }
2538       }
2539     }
2540   }
2541 }
2542 void ScopeHandler::PopScope() {
2543   CHECK(currScope_ && !currScope_->IsGlobal());
2544   // Entities that are not yet classified as objects or procedures are now
2545   // assumed to be objects.
2546   // TODO: Statement functions
2547   for (auto &pair : currScope()) {
2548     ConvertToObjectEntity(*pair.second);
2549   }
2550   funcResultStack_.Pop();
2551   // If popping back into a global scope, pop back to the main global scope.
2552   SetScope(currScope_->parent().IsGlobal() ? context().globalScope()
2553                                            : currScope_->parent());
2554 }
2555 void ScopeHandler::SetScope(Scope &scope) {
2556   currScope_ = &scope;
2557   ImplicitRulesVisitor::SetScope(InclusiveScope());
2558 }
2559 
2560 Symbol *ScopeHandler::FindSymbol(const parser::Name &name) {
2561   return FindSymbol(currScope(), name);
2562 }
2563 Symbol *ScopeHandler::FindSymbol(const Scope &scope, const parser::Name &name) {
2564   if (scope.IsDerivedType()) {
2565     if (Symbol * symbol{scope.FindComponent(name.source)}) {
2566       if (symbol->has<TypeParamDetails>()) {
2567         return Resolve(name, symbol);
2568       }
2569     }
2570     return FindSymbol(scope.parent(), name);
2571   } else {
2572     // In EQUIVALENCE statements only resolve names in the local scope, see
2573     // 19.5.1.4, paragraph 2, item (10)
2574     return Resolve(name,
2575         inEquivalenceStmt_ ? FindInScope(scope, name)
2576                            : scope.FindSymbol(name.source));
2577   }
2578 }
2579 
2580 Symbol &ScopeHandler::MakeSymbol(
2581     Scope &scope, const SourceName &name, Attrs attrs) {
2582   if (Symbol * symbol{FindInScope(scope, name)}) {
2583     CheckDuplicatedAttrs(name, *symbol, attrs);
2584     SetExplicitAttrs(*symbol, attrs);
2585     return *symbol;
2586   } else {
2587     const auto pair{scope.try_emplace(name, attrs, UnknownDetails{})};
2588     CHECK(pair.second); // name was not found, so must be able to add
2589     return *pair.first->second;
2590   }
2591 }
2592 Symbol &ScopeHandler::MakeSymbol(const SourceName &name, Attrs attrs) {
2593   return MakeSymbol(currScope(), name, attrs);
2594 }
2595 Symbol &ScopeHandler::MakeSymbol(const parser::Name &name, Attrs attrs) {
2596   return Resolve(name, MakeSymbol(name.source, attrs));
2597 }
2598 Symbol &ScopeHandler::MakeHostAssocSymbol(
2599     const parser::Name &name, const Symbol &hostSymbol) {
2600   Symbol &symbol{*NonDerivedTypeScope()
2601                       .try_emplace(name.source, HostAssocDetails{hostSymbol})
2602                       .first->second};
2603   name.symbol = &symbol;
2604   symbol.attrs() = hostSymbol.attrs(); // TODO: except PRIVATE, PUBLIC?
2605   // These attributes can be redundantly reapplied without error
2606   // on the host-associated name, at most once (C815).
2607   symbol.implicitAttrs() =
2608       symbol.attrs() & Attrs{Attr::ASYNCHRONOUS, Attr::VOLATILE};
2609   // SAVE statement in the inner scope will create a new symbol.
2610   // If the host variable is used via host association,
2611   // we have to propagate whether SAVE is implicit in the host scope.
2612   // Otherwise, verifications that do not allow explicit SAVE
2613   // attribute would fail.
2614   symbol.implicitAttrs() |= hostSymbol.implicitAttrs() & Attrs{Attr::SAVE};
2615   symbol.flags() = hostSymbol.flags();
2616   return symbol;
2617 }
2618 Symbol &ScopeHandler::CopySymbol(const SourceName &name, const Symbol &symbol) {
2619   CHECK(!FindInScope(name));
2620   return MakeSymbol(currScope(), name, symbol.attrs());
2621 }
2622 
2623 // Look for name only in scope, not in enclosing scopes.
2624 
2625 Symbol *ScopeHandler::FindInScope(
2626     const Scope &scope, const parser::Name &name) {
2627   return Resolve(name, FindInScope(scope, name.source));
2628 }
2629 Symbol *ScopeHandler::FindInScope(const Scope &scope, const SourceName &name) {
2630   // all variants of names, e.g. "operator(.ne.)" for "operator(/=)"
2631   for (const std::string &n : GetAllNames(context(), name)) {
2632     auto it{scope.find(SourceName{n})};
2633     if (it != scope.end()) {
2634       return &*it->second;
2635     }
2636   }
2637   return nullptr;
2638 }
2639 
2640 // Find a component or type parameter by name in a derived type or its parents.
2641 Symbol *ScopeHandler::FindInTypeOrParents(
2642     const Scope &scope, const parser::Name &name) {
2643   return Resolve(name, scope.FindComponent(name.source));
2644 }
2645 Symbol *ScopeHandler::FindInTypeOrParents(const parser::Name &name) {
2646   return FindInTypeOrParents(currScope(), name);
2647 }
2648 Symbol *ScopeHandler::FindInScopeOrBlockConstructs(
2649     const Scope &scope, SourceName name) {
2650   if (Symbol * symbol{FindInScope(scope, name)}) {
2651     return symbol;
2652   }
2653   for (const Scope &child : scope.children()) {
2654     if (child.kind() == Scope::Kind::BlockConstruct) {
2655       if (Symbol * symbol{FindInScopeOrBlockConstructs(child, name)}) {
2656         return symbol;
2657       }
2658     }
2659   }
2660   return nullptr;
2661 }
2662 
2663 void ScopeHandler::EraseSymbol(const parser::Name &name) {
2664   currScope().erase(name.source);
2665   name.symbol = nullptr;
2666 }
2667 
2668 static bool NeedsType(const Symbol &symbol) {
2669   return !symbol.GetType() &&
2670       common::visit(common::visitors{
2671                         [](const EntityDetails &) { return true; },
2672                         [](const ObjectEntityDetails &) { return true; },
2673                         [](const AssocEntityDetails &) { return true; },
2674                         [&](const ProcEntityDetails &p) {
2675                           return symbol.test(Symbol::Flag::Function) &&
2676                               !symbol.attrs().test(Attr::INTRINSIC) &&
2677                               !p.type() && !p.procInterface();
2678                         },
2679                         [](const auto &) { return false; },
2680                     },
2681           symbol.details());
2682 }
2683 
2684 void ScopeHandler::ApplyImplicitRules(
2685     Symbol &symbol, bool allowForwardReference) {
2686   funcResultStack_.CompleteTypeIfFunctionResult(symbol);
2687   if (context().HasError(symbol) || !NeedsType(symbol)) {
2688     return;
2689   }
2690   if (const DeclTypeSpec * type{GetImplicitType(symbol)}) {
2691     if (!skipImplicitTyping_) {
2692       symbol.set(Symbol::Flag::Implicit);
2693       symbol.SetType(*type);
2694     }
2695     return;
2696   }
2697   if (symbol.has<ProcEntityDetails>() && !symbol.attrs().test(Attr::EXTERNAL)) {
2698     std::optional<Symbol::Flag> functionOrSubroutineFlag;
2699     if (symbol.test(Symbol::Flag::Function)) {
2700       functionOrSubroutineFlag = Symbol::Flag::Function;
2701     } else if (symbol.test(Symbol::Flag::Subroutine)) {
2702       functionOrSubroutineFlag = Symbol::Flag::Subroutine;
2703     }
2704     if (IsIntrinsic(symbol.name(), functionOrSubroutineFlag)) {
2705       // type will be determined in expression semantics
2706       AcquireIntrinsicProcedureFlags(symbol);
2707       return;
2708     }
2709   }
2710   if (allowForwardReference && ImplicitlyTypeForwardRef(symbol)) {
2711     return;
2712   }
2713   if (const auto *entity{symbol.detailsIf<EntityDetails>()};
2714       entity && entity->isDummy()) {
2715     // Dummy argument, no declaration or reference; if it turns
2716     // out to be a subroutine, it's fine, and if it is a function
2717     // or object, it'll be caught later.
2718     return;
2719   }
2720   if (deferImplicitTyping_) {
2721     return;
2722   }
2723   if (!context().HasError(symbol)) {
2724     Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US);
2725     context().SetError(symbol);
2726   }
2727 }
2728 
2729 // Extension: Allow forward references to scalar integer dummy arguments
2730 // or variables in COMMON to appear in specification expressions under
2731 // IMPLICIT NONE(TYPE) when what would otherwise have been their implicit
2732 // type is default INTEGER.
2733 bool ScopeHandler::ImplicitlyTypeForwardRef(Symbol &symbol) {
2734   if (!inSpecificationPart_ || context().HasError(symbol) ||
2735       !(IsDummy(symbol) || FindCommonBlockContaining(symbol)) ||
2736       symbol.Rank() != 0 ||
2737       !context().languageFeatures().IsEnabled(
2738           common::LanguageFeature::ForwardRefImplicitNone)) {
2739     return false;
2740   }
2741   const DeclTypeSpec *type{
2742       GetImplicitType(symbol, false /*ignore IMPLICIT NONE*/)};
2743   if (!type || !type->IsNumeric(TypeCategory::Integer)) {
2744     return false;
2745   }
2746   auto kind{evaluate::ToInt64(type->numericTypeSpec().kind())};
2747   if (!kind || *kind != context().GetDefaultKind(TypeCategory::Integer)) {
2748     return false;
2749   }
2750   if (!ConvertToObjectEntity(symbol)) {
2751     return false;
2752   }
2753   // TODO: check no INTENT(OUT) if dummy?
2754   context().Warn(common::LanguageFeature::ForwardRefImplicitNone, symbol.name(),
2755       "'%s' was used without (or before) being explicitly typed"_warn_en_US,
2756       symbol.name());
2757   symbol.set(Symbol::Flag::Implicit);
2758   symbol.SetType(*type);
2759   return true;
2760 }
2761 
2762 // Ensure that the symbol for an intrinsic procedure is marked with
2763 // the INTRINSIC attribute.  Also set PURE &/or ELEMENTAL as
2764 // appropriate.
2765 void ScopeHandler::AcquireIntrinsicProcedureFlags(Symbol &symbol) {
2766   SetImplicitAttr(symbol, Attr::INTRINSIC);
2767   switch (context().intrinsics().GetIntrinsicClass(symbol.name().ToString())) {
2768   case evaluate::IntrinsicClass::elementalFunction:
2769   case evaluate::IntrinsicClass::elementalSubroutine:
2770     SetExplicitAttr(symbol, Attr::ELEMENTAL);
2771     SetExplicitAttr(symbol, Attr::PURE);
2772     break;
2773   case evaluate::IntrinsicClass::impureSubroutine:
2774     break;
2775   default:
2776     SetExplicitAttr(symbol, Attr::PURE);
2777   }
2778 }
2779 
2780 const DeclTypeSpec *ScopeHandler::GetImplicitType(
2781     Symbol &symbol, bool respectImplicitNoneType) {
2782   const Scope *scope{&symbol.owner()};
2783   if (scope->IsGlobal()) {
2784     scope = &currScope();
2785   }
2786   scope = &GetInclusiveScope(*scope);
2787   const auto *type{implicitRulesMap_->at(scope).GetType(
2788       symbol.name(), respectImplicitNoneType)};
2789   if (type) {
2790     if (const DerivedTypeSpec * derived{type->AsDerived()}) {
2791       // Resolve any forward-referenced derived type; a quick no-op else.
2792       auto &instantiatable{*const_cast<DerivedTypeSpec *>(derived)};
2793       instantiatable.Instantiate(currScope());
2794     }
2795   }
2796   return type;
2797 }
2798 
2799 void ScopeHandler::CheckEntryDummyUse(SourceName source, Symbol *symbol) {
2800   if (!inSpecificationPart_ && symbol &&
2801       symbol->test(Symbol::Flag::EntryDummyArgument)) {
2802     Say(source,
2803         "Dummy argument '%s' may not be used before its ENTRY statement"_err_en_US,
2804         symbol->name());
2805     symbol->set(Symbol::Flag::EntryDummyArgument, false);
2806   }
2807 }
2808 
2809 // Convert symbol to be a ObjectEntity or return false if it can't be.
2810 bool ScopeHandler::ConvertToObjectEntity(Symbol &symbol) {
2811   if (symbol.has<ObjectEntityDetails>()) {
2812     // nothing to do
2813   } else if (symbol.has<UnknownDetails>()) {
2814     // These are attributes that a name could have picked up from
2815     // an attribute statement or type declaration statement.
2816     if (symbol.attrs().HasAny({Attr::EXTERNAL, Attr::INTRINSIC})) {
2817       return false;
2818     }
2819     symbol.set_details(ObjectEntityDetails{});
2820   } else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
2821     if (symbol.attrs().HasAny({Attr::EXTERNAL, Attr::INTRINSIC})) {
2822       return false;
2823     }
2824     funcResultStack_.CompleteTypeIfFunctionResult(symbol);
2825     symbol.set_details(ObjectEntityDetails{std::move(*details)});
2826   } else if (auto *useDetails{symbol.detailsIf<UseDetails>()}) {
2827     return useDetails->symbol().has<ObjectEntityDetails>();
2828   } else if (auto *hostDetails{symbol.detailsIf<HostAssocDetails>()}) {
2829     return hostDetails->symbol().has<ObjectEntityDetails>();
2830   } else {
2831     return false;
2832   }
2833   return true;
2834 }
2835 // Convert symbol to be a ProcEntity or return false if it can't be.
2836 bool ScopeHandler::ConvertToProcEntity(
2837     Symbol &symbol, std::optional<SourceName> usedHere) {
2838   if (symbol.has<ProcEntityDetails>()) {
2839   } else if (symbol.has<UnknownDetails>()) {
2840     symbol.set_details(ProcEntityDetails{});
2841   } else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
2842     if (IsFunctionResult(symbol) &&
2843         !(IsPointer(symbol) && symbol.attrs().test(Attr::EXTERNAL))) {
2844       // Don't turn function result into a procedure pointer unless both
2845       // POINTER and EXTERNAL
2846       return false;
2847     }
2848     funcResultStack_.CompleteTypeIfFunctionResult(symbol);
2849     symbol.set_details(ProcEntityDetails{std::move(*details)});
2850     if (symbol.GetType() && !symbol.test(Symbol::Flag::Implicit)) {
2851       CHECK(!symbol.test(Symbol::Flag::Subroutine));
2852       symbol.set(Symbol::Flag::Function);
2853     }
2854   } else if (auto *useDetails{symbol.detailsIf<UseDetails>()}) {
2855     return useDetails->symbol().has<ProcEntityDetails>();
2856   } else if (auto *hostDetails{symbol.detailsIf<HostAssocDetails>()}) {
2857     return hostDetails->symbol().has<ProcEntityDetails>();
2858   } else {
2859     return false;
2860   }
2861   auto &proc{symbol.get<ProcEntityDetails>()};
2862   if (usedHere && !proc.usedAsProcedureHere()) {
2863     proc.set_usedAsProcedureHere(*usedHere);
2864   }
2865   return true;
2866 }
2867 
2868 const DeclTypeSpec &ScopeHandler::MakeNumericType(
2869     TypeCategory category, const std::optional<parser::KindSelector> &kind) {
2870   KindExpr value{GetKindParamExpr(category, kind)};
2871   if (auto known{evaluate::ToInt64(value)}) {
2872     return MakeNumericType(category, static_cast<int>(*known));
2873   } else {
2874     return currScope_->MakeNumericType(category, std::move(value));
2875   }
2876 }
2877 
2878 const DeclTypeSpec &ScopeHandler::MakeNumericType(
2879     TypeCategory category, int kind) {
2880   return context().MakeNumericType(category, kind);
2881 }
2882 
2883 const DeclTypeSpec &ScopeHandler::MakeLogicalType(
2884     const std::optional<parser::KindSelector> &kind) {
2885   KindExpr value{GetKindParamExpr(TypeCategory::Logical, kind)};
2886   if (auto known{evaluate::ToInt64(value)}) {
2887     return MakeLogicalType(static_cast<int>(*known));
2888   } else {
2889     return currScope_->MakeLogicalType(std::move(value));
2890   }
2891 }
2892 
2893 const DeclTypeSpec &ScopeHandler::MakeLogicalType(int kind) {
2894   return context().MakeLogicalType(kind);
2895 }
2896 
2897 void ScopeHandler::NotePossibleBadForwardRef(const parser::Name &name) {
2898   if (inSpecificationPart_ && !deferImplicitTyping_ && name.symbol) {
2899     auto kind{currScope().kind()};
2900     if ((kind == Scope::Kind::Subprogram && !currScope().IsStmtFunction()) ||
2901         kind == Scope::Kind::BlockConstruct) {
2902       bool isHostAssociated{&name.symbol->owner() == &currScope()
2903               ? name.symbol->has<HostAssocDetails>()
2904               : name.symbol->owner().Contains(currScope())};
2905       if (isHostAssociated) {
2906         specPartState_.forwardRefs.insert(name.source);
2907       }
2908     }
2909   }
2910 }
2911 
2912 std::optional<SourceName> ScopeHandler::HadForwardRef(
2913     const Symbol &symbol) const {
2914   auto iter{specPartState_.forwardRefs.find(symbol.name())};
2915   if (iter != specPartState_.forwardRefs.end()) {
2916     return *iter;
2917   }
2918   return std::nullopt;
2919 }
2920 
2921 bool ScopeHandler::CheckPossibleBadForwardRef(const Symbol &symbol) {
2922   if (!context().HasError(symbol)) {
2923     if (auto fwdRef{HadForwardRef(symbol)}) {
2924       const Symbol *outer{symbol.owner().FindSymbol(symbol.name())};
2925       if (outer && symbol.has<UseDetails>() &&
2926           &symbol.GetUltimate() == &outer->GetUltimate()) {
2927         // e.g. IMPORT of host's USE association
2928         return false;
2929       }
2930       Say(*fwdRef,
2931           "Forward reference to '%s' is not allowed in the same specification part"_err_en_US,
2932           *fwdRef)
2933           .Attach(symbol.name(), "Later declaration of '%s'"_en_US, *fwdRef);
2934       context().SetError(symbol);
2935       return true;
2936     }
2937     if ((IsDummy(symbol) || FindCommonBlockContaining(symbol)) &&
2938         isImplicitNoneType() && symbol.test(Symbol::Flag::Implicit) &&
2939         !context().HasError(symbol)) {
2940       // Dummy or COMMON was implicitly typed despite IMPLICIT NONE(TYPE) in
2941       // ApplyImplicitRules() due to use in a specification expression,
2942       // and no explicit type declaration appeared later.
2943       Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US);
2944       context().SetError(symbol);
2945       return true;
2946     }
2947   }
2948   return false;
2949 }
2950 
2951 void ScopeHandler::MakeExternal(Symbol &symbol) {
2952   if (!symbol.attrs().test(Attr::EXTERNAL)) {
2953     SetImplicitAttr(symbol, Attr::EXTERNAL);
2954     if (symbol.attrs().test(Attr::INTRINSIC)) { // C840
2955       Say(symbol.name(),
2956           "Symbol '%s' cannot have both EXTERNAL and INTRINSIC attributes"_err_en_US,
2957           symbol.name());
2958     }
2959   }
2960 }
2961 
2962 bool ScopeHandler::CheckDuplicatedAttr(
2963     SourceName name, Symbol &symbol, Attr attr) {
2964   if (attr == Attr::SAVE) {
2965     // checked elsewhere
2966   } else if (symbol.attrs().test(attr)) { // C815
2967     if (symbol.implicitAttrs().test(attr)) {
2968       // Implied attribute is now confirmed explicitly
2969       symbol.implicitAttrs().reset(attr);
2970     } else {
2971       Say(name, "%s attribute was already specified on '%s'"_err_en_US,
2972           EnumToString(attr), name);
2973       return false;
2974     }
2975   }
2976   return true;
2977 }
2978 
2979 bool ScopeHandler::CheckDuplicatedAttrs(
2980     SourceName name, Symbol &symbol, Attrs attrs) {
2981   bool ok{true};
2982   attrs.IterateOverMembers(
2983       [&](Attr x) { ok &= CheckDuplicatedAttr(name, symbol, x); });
2984   return ok;
2985 }
2986 
2987 void ScopeHandler::SetCUDADataAttr(SourceName source, Symbol &symbol,
2988     std::optional<common::CUDADataAttr> attr) {
2989   if (attr) {
2990     ConvertToObjectEntity(symbol);
2991     if (auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
2992       if (*attr != object->cudaDataAttr().value_or(*attr)) {
2993         Say(source,
2994             "'%s' already has another CUDA data attribute ('%s')"_err_en_US,
2995             symbol.name(),
2996             std::string{common::EnumToString(*object->cudaDataAttr())}.c_str());
2997       } else {
2998         object->set_cudaDataAttr(attr);
2999       }
3000     } else {
3001       Say(source,
3002           "'%s' is not an object and may not have a CUDA data attribute"_err_en_US,
3003           symbol.name());
3004     }
3005   }
3006 }
3007 
3008 // ModuleVisitor implementation
3009 
3010 bool ModuleVisitor::Pre(const parser::Only &x) {
3011   common::visit(common::visitors{
3012                     [&](const Indirection<parser::GenericSpec> &generic) {
3013                       GenericSpecInfo genericSpecInfo{generic.value()};
3014                       AddUseOnly(genericSpecInfo.symbolName());
3015                       AddUse(genericSpecInfo);
3016                     },
3017                     [&](const parser::Name &name) {
3018                       AddUseOnly(name.source);
3019                       Resolve(name, AddUse(name.source, name.source).use);
3020                     },
3021                     [&](const parser::Rename &rename) { Walk(rename); },
3022                 },
3023       x.u);
3024   return false;
3025 }
3026 
3027 void ModuleVisitor::CollectUseRenames(const parser::UseStmt &useStmt) {
3028   auto doRename{[&](const parser::Rename &rename) {
3029     if (const auto *names{std::get_if<parser::Rename::Names>(&rename.u)}) {
3030       AddUseRename(std::get<1>(names->t).source, useStmt.moduleName.source);
3031     }
3032   }};
3033   common::visit(
3034       common::visitors{
3035           [&](const std::list<parser::Rename> &renames) {
3036             for (const auto &rename : renames) {
3037               doRename(rename);
3038             }
3039           },
3040           [&](const std::list<parser::Only> &onlys) {
3041             for (const auto &only : onlys) {
3042               if (const auto *rename{std::get_if<parser::Rename>(&only.u)}) {
3043                 doRename(*rename);
3044               }
3045             }
3046           },
3047       },
3048       useStmt.u);
3049 }
3050 
3051 bool ModuleVisitor::Pre(const parser::Rename::Names &x) {
3052   const auto &localName{std::get<0>(x.t)};
3053   const auto &useName{std::get<1>(x.t)};
3054   SymbolRename rename{AddUse(localName.source, useName.source)};
3055   Resolve(useName, rename.use);
3056   Resolve(localName, rename.local);
3057   return false;
3058 }
3059 bool ModuleVisitor::Pre(const parser::Rename::Operators &x) {
3060   const parser::DefinedOpName &local{std::get<0>(x.t)};
3061   const parser::DefinedOpName &use{std::get<1>(x.t)};
3062   GenericSpecInfo localInfo{local};
3063   GenericSpecInfo useInfo{use};
3064   if (IsIntrinsicOperator(context(), local.v.source)) {
3065     Say(local.v,
3066         "Intrinsic operator '%s' may not be used as a defined operator"_err_en_US);
3067   } else if (IsLogicalConstant(context(), local.v.source)) {
3068     Say(local.v,
3069         "Logical constant '%s' may not be used as a defined operator"_err_en_US);
3070   } else {
3071     SymbolRename rename{AddUse(localInfo.symbolName(), useInfo.symbolName())};
3072     useInfo.Resolve(rename.use);
3073     localInfo.Resolve(rename.local);
3074   }
3075   return false;
3076 }
3077 
3078 // Set useModuleScope_ to the Scope of the module being used.
3079 bool ModuleVisitor::Pre(const parser::UseStmt &x) {
3080   std::optional<bool> isIntrinsic;
3081   if (x.nature) {
3082     isIntrinsic = *x.nature == parser::UseStmt::ModuleNature::Intrinsic;
3083   } else if (currScope().IsModule() && currScope().symbol() &&
3084       currScope().symbol()->attrs().test(Attr::INTRINSIC)) {
3085     // Intrinsic modules USE only other intrinsic modules
3086     isIntrinsic = true;
3087   }
3088   useModuleScope_ = FindModule(x.moduleName, isIntrinsic);
3089   if (!useModuleScope_) {
3090     return false;
3091   }
3092   AddAndCheckModuleUse(x.moduleName.source,
3093       useModuleScope_->parent().kind() == Scope::Kind::IntrinsicModules);
3094   // use the name from this source file
3095   useModuleScope_->symbol()->ReplaceName(x.moduleName.source);
3096   return true;
3097 }
3098 
3099 void ModuleVisitor::Post(const parser::UseStmt &x) {
3100   if (const auto *list{std::get_if<std::list<parser::Rename>>(&x.u)}) {
3101     // Not a use-only: collect the names that were used in renames,
3102     // then add a use for each public name that was not renamed.
3103     std::set<SourceName> useNames;
3104     for (const auto &rename : *list) {
3105       common::visit(common::visitors{
3106                         [&](const parser::Rename::Names &names) {
3107                           useNames.insert(std::get<1>(names.t).source);
3108                         },
3109                         [&](const parser::Rename::Operators &ops) {
3110                           useNames.insert(std::get<1>(ops.t).v.source);
3111                         },
3112                     },
3113           rename.u);
3114     }
3115     for (const auto &[name, symbol] : *useModuleScope_) {
3116       if (symbol->attrs().test(Attr::PUBLIC) && !IsUseRenamed(symbol->name()) &&
3117           (!symbol->implicitAttrs().test(Attr::INTRINSIC) ||
3118               symbol->has<UseDetails>()) &&
3119           !symbol->has<MiscDetails>() && useNames.count(name) == 0) {
3120         SourceName location{x.moduleName.source};
3121         if (auto *localSymbol{FindInScope(name)}) {
3122           DoAddUse(location, localSymbol->name(), *localSymbol, *symbol);
3123         } else {
3124           DoAddUse(location, location, CopySymbol(name, *symbol), *symbol);
3125         }
3126       }
3127     }
3128   }
3129   useModuleScope_ = nullptr;
3130 }
3131 
3132 ModuleVisitor::SymbolRename ModuleVisitor::AddUse(
3133     const SourceName &localName, const SourceName &useName) {
3134   return AddUse(localName, useName, FindInScope(*useModuleScope_, useName));
3135 }
3136 
3137 ModuleVisitor::SymbolRename ModuleVisitor::AddUse(
3138     const SourceName &localName, const SourceName &useName, Symbol *useSymbol) {
3139   if (!useModuleScope_) {
3140     return {}; // error occurred finding module
3141   }
3142   if (!useSymbol) {
3143     Say(useName, "'%s' not found in module '%s'"_err_en_US, MakeOpName(useName),
3144         useModuleScope_->GetName().value());
3145     return {};
3146   }
3147   if (useSymbol->attrs().test(Attr::PRIVATE) &&
3148       !FindModuleFileContaining(currScope())) {
3149     // Privacy is not enforced in module files so that generic interfaces
3150     // can be resolved to private specific procedures in specification
3151     // expressions.
3152     Say(useName, "'%s' is PRIVATE in '%s'"_err_en_US, MakeOpName(useName),
3153         useModuleScope_->GetName().value());
3154     return {};
3155   }
3156   auto &localSymbol{MakeSymbol(localName)};
3157   DoAddUse(useName, localName, localSymbol, *useSymbol);
3158   return {&localSymbol, useSymbol};
3159 }
3160 
3161 // symbol must be either a Use or a Generic formed by merging two uses.
3162 // Convert it to a UseError with this additional location.
3163 static bool ConvertToUseError(
3164     Symbol &symbol, const SourceName &location, const Scope &module) {
3165   if (auto *ued{symbol.detailsIf<UseErrorDetails>()}) {
3166     ued->add_occurrence(location, module);
3167     return true;
3168   }
3169   const auto *useDetails{symbol.detailsIf<UseDetails>()};
3170   if (!useDetails) {
3171     if (auto *genericDetails{symbol.detailsIf<GenericDetails>()}) {
3172       if (!genericDetails->uses().empty()) {
3173         useDetails = &genericDetails->uses().at(0)->get<UseDetails>();
3174       }
3175     }
3176   }
3177   if (useDetails) {
3178     symbol.set_details(
3179         UseErrorDetails{*useDetails}.add_occurrence(location, module));
3180     return true;
3181   } else {
3182     return false;
3183   }
3184 }
3185 
3186 void ModuleVisitor::DoAddUse(SourceName location, SourceName localName,
3187     Symbol &originalLocal, const Symbol &useSymbol) {
3188   Symbol *localSymbol{&originalLocal};
3189   if (auto *details{localSymbol->detailsIf<UseErrorDetails>()}) {
3190     details->add_occurrence(location, *useModuleScope_);
3191     return;
3192   }
3193   const Symbol &useUltimate{useSymbol.GetUltimate()};
3194   const auto *useGeneric{useUltimate.detailsIf<GenericDetails>()};
3195   if (localSymbol->has<UnknownDetails>()) {
3196     if (useGeneric &&
3197         ((useGeneric->specific() &&
3198              IsProcedurePointer(*useGeneric->specific())) ||
3199             (useGeneric->derivedType() &&
3200                 useUltimate.name() != localSymbol->name()))) {
3201       // We are use-associating a generic that either shadows a procedure
3202       // pointer or shadows a derived type with a distinct name.
3203       // Local references that might be made to the procedure pointer should
3204       // use a UseDetails symbol for proper data addressing, and a derived
3205       // type needs to be in scope with its local name.  So create an
3206       // empty local generic now into which the use-associated generic may
3207       // be copied.
3208       localSymbol->set_details(GenericDetails{});
3209       localSymbol->get<GenericDetails>().set_kind(useGeneric->kind());
3210     } else { // just create UseDetails
3211       localSymbol->set_details(UseDetails{localName, useSymbol});
3212       localSymbol->attrs() =
3213           useSymbol.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE, Attr::SAVE};
3214       localSymbol->implicitAttrs() =
3215           localSymbol->attrs() & Attrs{Attr::ASYNCHRONOUS, Attr::VOLATILE};
3216       localSymbol->flags() = useSymbol.flags();
3217       return;
3218     }
3219   }
3220 
3221   Symbol &localUltimate{localSymbol->GetUltimate()};
3222   if (&localUltimate == &useUltimate) {
3223     // use-associating the same symbol again -- ok
3224     return;
3225   }
3226 
3227   // There are many possible combinations of symbol types that could arrive
3228   // with the same (local) name vie USE association from distinct modules.
3229   // Fortran allows a generic interface to share its name with a derived type,
3230   // or with the name of a non-generic procedure (which should be one of the
3231   // generic's specific procedures).  Implementing all these possibilities is
3232   // complicated.
3233   // Error cases are converted into UseErrorDetails symbols to trigger error
3234   // messages when/if bad combinations are actually used later in the program.
3235   // The error cases are:
3236   //   - two distinct derived types
3237   //   - two distinct non-generic procedures
3238   //   - a generic and a non-generic that is not already one of its specifics
3239   //   - anything other than a derived type, non-generic procedure, or
3240   //     generic procedure being combined with something other than an
3241   //     prior USE association of itself
3242   auto *localGeneric{localUltimate.detailsIf<GenericDetails>()};
3243   Symbol *localDerivedType{nullptr};
3244   if (localUltimate.has<DerivedTypeDetails>()) {
3245     localDerivedType = &localUltimate;
3246   } else if (localGeneric) {
3247     if (auto *dt{localGeneric->derivedType()};
3248         dt && !dt->attrs().test(Attr::PRIVATE)) {
3249       localDerivedType = dt;
3250     }
3251   }
3252   const Symbol *useDerivedType{nullptr};
3253   if (useUltimate.has<DerivedTypeDetails>()) {
3254     useDerivedType = &useUltimate;
3255   } else if (useGeneric) {
3256     if (const auto *dt{useGeneric->derivedType()};
3257         dt && !dt->attrs().test(Attr::PRIVATE)) {
3258       useDerivedType = dt;
3259     }
3260   }
3261 
3262   Symbol *localProcedure{nullptr};
3263   if (localGeneric) {
3264     if (localGeneric->specific() &&
3265         !localGeneric->specific()->attrs().test(Attr::PRIVATE)) {
3266       localProcedure = localGeneric->specific();
3267     }
3268   } else if (IsProcedure(localUltimate)) {
3269     localProcedure = &localUltimate;
3270   }
3271   const Symbol *useProcedure{nullptr};
3272   if (useGeneric) {
3273     if (useGeneric->specific() &&
3274         !useGeneric->specific()->attrs().test(Attr::PRIVATE)) {
3275       useProcedure = useGeneric->specific();
3276     }
3277   } else if (IsProcedure(useUltimate)) {
3278     useProcedure = &useUltimate;
3279   }
3280 
3281   // Creates a UseErrorDetails symbol in the current scope for a
3282   // current UseDetails symbol, but leaves the UseDetails in the
3283   // scope's name map.
3284   auto CreateLocalUseError{[&]() {
3285     EraseSymbol(*localSymbol);
3286     CHECK(localSymbol->has<UseDetails>());
3287     UseErrorDetails details{localSymbol->get<UseDetails>()};
3288     details.add_occurrence(location, *useModuleScope_);
3289     Symbol *newSymbol{&MakeSymbol(localName, Attrs{}, std::move(details))};
3290     // Restore *localSymbol in currScope
3291     auto iter{currScope().find(localName)};
3292     CHECK(iter != currScope().end() && &*iter->second == newSymbol);
3293     iter->second = MutableSymbolRef{*localSymbol};
3294     return newSymbol;
3295   }};
3296 
3297   // When two derived types arrived, try to combine them.
3298   const Symbol *combinedDerivedType{nullptr};
3299   if (!useDerivedType) {
3300     combinedDerivedType = localDerivedType;
3301   } else if (!localDerivedType) {
3302     if (useDerivedType->name() == localName) {
3303       combinedDerivedType = useDerivedType;
3304     } else {
3305       combinedDerivedType =
3306           &currScope().MakeSymbol(localSymbol->name(), useDerivedType->attrs(),
3307               UseDetails{localSymbol->name(), *useDerivedType});
3308     }
3309   } else if (&localDerivedType->GetUltimate() ==
3310       &useDerivedType->GetUltimate()) {
3311     combinedDerivedType = localDerivedType;
3312   } else {
3313     const Scope *localScope{localDerivedType->GetUltimate().scope()};
3314     const Scope *useScope{useDerivedType->GetUltimate().scope()};
3315     if (localScope && useScope && localScope->derivedTypeSpec() &&
3316         useScope->derivedTypeSpec() &&
3317         evaluate::AreSameDerivedType(
3318             *localScope->derivedTypeSpec(), *useScope->derivedTypeSpec())) {
3319       combinedDerivedType = localDerivedType;
3320     } else {
3321       // Create a local UseErrorDetails for the ambiguous derived type
3322       if (localGeneric) {
3323         combinedDerivedType = CreateLocalUseError();
3324       } else {
3325         ConvertToUseError(*localSymbol, location, *useModuleScope_);
3326         localDerivedType = nullptr;
3327         localGeneric = nullptr;
3328         combinedDerivedType = localSymbol;
3329       }
3330     }
3331     if (!localGeneric && !useGeneric) {
3332       return; // both symbols are derived types; done
3333     }
3334   }
3335 
3336   auto AreSameProcedure{[&](const Symbol &p1, const Symbol &p2) {
3337     if (&p1 == &p2) {
3338       return true;
3339     } else if (p1.name() != p2.name()) {
3340       return false;
3341     } else if (p1.attrs().test(Attr::INTRINSIC) ||
3342         p2.attrs().test(Attr::INTRINSIC)) {
3343       return p1.attrs().test(Attr::INTRINSIC) &&
3344           p2.attrs().test(Attr::INTRINSIC);
3345     } else if (!IsProcedure(p1) || !IsProcedure(p2)) {
3346       return false;
3347     } else if (IsPointer(p1) || IsPointer(p2)) {
3348       return false;
3349     } else if (const auto *subp{p1.detailsIf<SubprogramDetails>()};
3350                subp && !subp->isInterface()) {
3351       return false; // defined in module, not an external
3352     } else if (const auto *subp{p2.detailsIf<SubprogramDetails>()};
3353                subp && !subp->isInterface()) {
3354       return false; // defined in module, not an external
3355     } else {
3356       // Both are external interfaces, perhaps to the same procedure
3357       auto class1{ClassifyProcedure(p1)};
3358       auto class2{ClassifyProcedure(p2)};
3359       if (class1 == ProcedureDefinitionClass::External &&
3360           class2 == ProcedureDefinitionClass::External) {
3361         auto chars1{evaluate::characteristics::Procedure::Characterize(
3362             p1, GetFoldingContext())};
3363         auto chars2{evaluate::characteristics::Procedure::Characterize(
3364             p2, GetFoldingContext())};
3365         // same procedure interface defined identically in two modules?
3366         return chars1 && chars2 && *chars1 == *chars2;
3367       } else {
3368         return false;
3369       }
3370     }
3371   }};
3372 
3373   // When two non-generic procedures arrived, try to combine them.
3374   const Symbol *combinedProcedure{nullptr};
3375   if (!localProcedure) {
3376     combinedProcedure = useProcedure;
3377   } else if (!useProcedure) {
3378     combinedProcedure = localProcedure;
3379   } else {
3380     if (AreSameProcedure(
3381             localProcedure->GetUltimate(), useProcedure->GetUltimate())) {
3382       if (!localGeneric && !useGeneric) {
3383         return; // both symbols are non-generic procedures
3384       }
3385       combinedProcedure = localProcedure;
3386     }
3387   }
3388 
3389   // Prepare to merge generics
3390   bool cantCombine{false};
3391   if (localGeneric) {
3392     if (useGeneric || useDerivedType) {
3393     } else if (&useUltimate == &BypassGeneric(localUltimate).GetUltimate()) {
3394       return; // nothing to do; used subprogram is local's specific
3395     } else if (useUltimate.attrs().test(Attr::INTRINSIC) &&
3396         useUltimate.name() == localSymbol->name()) {
3397       return; // local generic can extend intrinsic
3398     } else {
3399       for (const auto &ref : localGeneric->specificProcs()) {
3400         if (&ref->GetUltimate() == &useUltimate) {
3401           return; // used non-generic is already a specific of local generic
3402         }
3403       }
3404       cantCombine = true;
3405     }
3406   } else if (useGeneric) {
3407     if (localDerivedType) {
3408     } else if (&localUltimate == &BypassGeneric(useUltimate).GetUltimate() ||
3409         (localSymbol->attrs().test(Attr::INTRINSIC) &&
3410             localUltimate.name() == useUltimate.name())) {
3411       // Local is the specific of the used generic or an intrinsic with the
3412       // same name; replace it.
3413       EraseSymbol(*localSymbol);
3414       Symbol &newSymbol{MakeSymbol(localName,
3415           useUltimate.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE},
3416           UseDetails{localName, useUltimate})};
3417       newSymbol.flags() = useSymbol.flags();
3418       return;
3419     } else {
3420       for (const auto &ref : useGeneric->specificProcs()) {
3421         if (&ref->GetUltimate() == &localUltimate) {
3422           return; // local non-generic is already a specific of used generic
3423         }
3424       }
3425       cantCombine = true;
3426     }
3427   } else {
3428     cantCombine = true;
3429   }
3430 
3431   // If symbols are not combinable, create a use error.
3432   if (cantCombine) {
3433     if (!ConvertToUseError(*localSymbol, location, *useModuleScope_)) {
3434       Say(location,
3435           "Cannot use-associate '%s'; it is already declared in this scope"_err_en_US,
3436           localName)
3437           .Attach(localSymbol->name(), "Previous declaration of '%s'"_en_US,
3438               localName);
3439     }
3440     return;
3441   }
3442 
3443   // At this point, there must be at least one generic interface.
3444   CHECK(localGeneric || (useGeneric && (localDerivedType || localProcedure)));
3445 
3446   // Ensure that a use-associated specific procedure that is a procedure
3447   // pointer is properly represented as a USE association of an entity.
3448   if (IsProcedurePointer(useProcedure)) {
3449     Symbol &combined{currScope().MakeSymbol(localSymbol->name(),
3450         useProcedure->attrs(), UseDetails{localName, *useProcedure})};
3451     combined.flags() |= useProcedure->flags();
3452     combinedProcedure = &combined;
3453   }
3454 
3455   if (localGeneric) {
3456     // Create a local copy of a previously use-associated generic so that
3457     // it can be locally extended without corrupting the original.
3458     if (localSymbol->has<UseDetails>()) {
3459       GenericDetails generic;
3460       generic.CopyFrom(DEREF(localGeneric));
3461       EraseSymbol(*localSymbol);
3462       Symbol &newSymbol{MakeSymbol(
3463           localSymbol->name(), localSymbol->attrs(), std::move(generic))};
3464       newSymbol.flags() = localSymbol->flags();
3465       localGeneric = &newSymbol.get<GenericDetails>();
3466       localGeneric->AddUse(*localSymbol);
3467       localSymbol = &newSymbol;
3468     }
3469     if (useGeneric) {
3470       // Combine two use-associated generics
3471       localSymbol->attrs() =
3472           useSymbol.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE};
3473       localSymbol->flags() = useSymbol.flags();
3474       AddGenericUse(*localGeneric, localName, useUltimate);
3475       localGeneric->clear_derivedType();
3476       localGeneric->CopyFrom(*useGeneric);
3477     }
3478     localGeneric->clear_derivedType();
3479     if (combinedDerivedType) {
3480       localGeneric->set_derivedType(*const_cast<Symbol *>(combinedDerivedType));
3481     }
3482     localGeneric->clear_specific();
3483     if (combinedProcedure) {
3484       localGeneric->set_specific(*const_cast<Symbol *>(combinedProcedure));
3485     }
3486   } else {
3487     CHECK(localSymbol->has<UseDetails>());
3488     // Create a local copy of the use-associated generic, then extend it
3489     // with the combined derived type &/or non-generic procedure.
3490     GenericDetails generic;
3491     generic.CopyFrom(*useGeneric);
3492     EraseSymbol(*localSymbol);
3493     Symbol &newSymbol{MakeSymbol(localName,
3494         useUltimate.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE},
3495         std::move(generic))};
3496     newSymbol.flags() = useUltimate.flags();
3497     auto &newUseGeneric{newSymbol.get<GenericDetails>()};
3498     AddGenericUse(newUseGeneric, localName, useUltimate);
3499     newUseGeneric.AddUse(*localSymbol);
3500     if (combinedDerivedType) {
3501       if (const auto *oldDT{newUseGeneric.derivedType()}) {
3502         CHECK(&oldDT->GetUltimate() == &combinedDerivedType->GetUltimate());
3503       } else {
3504         newUseGeneric.set_derivedType(
3505             *const_cast<Symbol *>(combinedDerivedType));
3506       }
3507     }
3508     if (combinedProcedure) {
3509       newUseGeneric.set_specific(*const_cast<Symbol *>(combinedProcedure));
3510     }
3511   }
3512 }
3513 
3514 void ModuleVisitor::AddUse(const GenericSpecInfo &info) {
3515   if (useModuleScope_) {
3516     const auto &name{info.symbolName()};
3517     auto rename{AddUse(name, name, FindInScope(*useModuleScope_, name))};
3518     info.Resolve(rename.use);
3519   }
3520 }
3521 
3522 // Create a UseDetails symbol for this USE and add it to generic
3523 Symbol &ModuleVisitor::AddGenericUse(
3524     GenericDetails &generic, const SourceName &name, const Symbol &useSymbol) {
3525   Symbol &newSymbol{
3526       currScope().MakeSymbol(name, {}, UseDetails{name, useSymbol})};
3527   generic.AddUse(newSymbol);
3528   return newSymbol;
3529 }
3530 
3531 // Enforce F'2023 C1406 as a warning
3532 void ModuleVisitor::AddAndCheckModuleUse(SourceName name, bool isIntrinsic) {
3533   if (isIntrinsic) {
3534     if (auto iter{nonIntrinsicUses_.find(name)};
3535         iter != nonIntrinsicUses_.end()) {
3536       if (auto *msg{context().Warn(common::LanguageFeature::MiscUseExtensions,
3537               name,
3538               "Should not USE the intrinsic module '%s' in the same scope as a USE of the non-intrinsic module"_port_en_US,
3539               name)}) {
3540         msg->Attach(*iter, "Previous USE of '%s'"_en_US, *iter);
3541       }
3542     }
3543     intrinsicUses_.insert(name);
3544   } else {
3545     if (auto iter{intrinsicUses_.find(name)}; iter != intrinsicUses_.end()) {
3546       if (auto *msg{context().Warn(common::LanguageFeature::MiscUseExtensions,
3547               name,
3548               "Should not USE the non-intrinsic module '%s' in the same scope as a USE of the intrinsic module"_port_en_US,
3549               name)}) {
3550         msg->Attach(*iter, "Previous USE of '%s'"_en_US, *iter);
3551       }
3552     }
3553     nonIntrinsicUses_.insert(name);
3554   }
3555 }
3556 
3557 bool ModuleVisitor::BeginSubmodule(
3558     const parser::Name &name, const parser::ParentIdentifier &parentId) {
3559   const auto &ancestorName{std::get<parser::Name>(parentId.t)};
3560   Scope *parentScope{nullptr};
3561   Scope *ancestor{FindModule(ancestorName, false /*not intrinsic*/)};
3562   if (ancestor) {
3563     if (const auto &parentName{
3564             std::get<std::optional<parser::Name>>(parentId.t)}) {
3565       parentScope = FindModule(*parentName, false /*not intrinsic*/, ancestor);
3566     } else {
3567       parentScope = ancestor;
3568     }
3569   }
3570   if (parentScope) {
3571     PushScope(*parentScope);
3572   } else {
3573     // Error recovery: there's no ancestor scope, so create a dummy one to
3574     // hold the submodule's scope.
3575     SourceName dummyName{context().GetTempName(currScope())};
3576     Symbol &dummySymbol{MakeSymbol(dummyName, Attrs{}, ModuleDetails{false})};
3577     PushScope(Scope::Kind::Module, &dummySymbol);
3578     parentScope = &currScope();
3579   }
3580   BeginModule(name, true);
3581   set_inheritFromParent(false); // submodules don't inherit parents' implicits
3582   if (ancestor && !ancestor->AddSubmodule(name.source, currScope())) {
3583     Say(name, "Module '%s' already has a submodule named '%s'"_err_en_US,
3584         ancestorName.source, name.source);
3585   }
3586   return true;
3587 }
3588 
3589 void ModuleVisitor::BeginModule(const parser::Name &name, bool isSubmodule) {
3590   // Submodule symbols are not visible in their parents' scopes.
3591   Symbol &symbol{isSubmodule ? Resolve(name,
3592                                    currScope().MakeSymbol(name.source, Attrs{},
3593                                        ModuleDetails{true}))
3594                              : MakeSymbol(name, ModuleDetails{false})};
3595   auto &details{symbol.get<ModuleDetails>()};
3596   PushScope(Scope::Kind::Module, &symbol);
3597   details.set_scope(&currScope());
3598   prevAccessStmt_ = std::nullopt;
3599 }
3600 
3601 // Find a module or submodule by name and return its scope.
3602 // If ancestor is present, look for a submodule of that ancestor module.
3603 // May have to read a .mod file to find it.
3604 // If an error occurs, report it and return nullptr.
3605 Scope *ModuleVisitor::FindModule(const parser::Name &name,
3606     std::optional<bool> isIntrinsic, Scope *ancestor) {
3607   ModFileReader reader{context()};
3608   Scope *scope{
3609       reader.Read(name.source, isIntrinsic, ancestor, /*silent=*/false)};
3610   if (!scope) {
3611     return nullptr;
3612   }
3613   if (DoesScopeContain(scope, currScope())) { // 14.2.2(1)
3614     Say(name, "Module '%s' cannot USE itself"_err_en_US);
3615   }
3616   Resolve(name, scope->symbol());
3617   return scope;
3618 }
3619 
3620 void ModuleVisitor::ApplyDefaultAccess() {
3621   const auto *moduleDetails{
3622       DEREF(currScope().symbol()).detailsIf<ModuleDetails>()};
3623   CHECK(moduleDetails);
3624   Attr defaultAttr{
3625       DEREF(moduleDetails).isDefaultPrivate() ? Attr::PRIVATE : Attr::PUBLIC};
3626   for (auto &pair : currScope()) {
3627     Symbol &symbol{*pair.second};
3628     if (!symbol.attrs().HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
3629       Attr attr{defaultAttr};
3630       if (auto *generic{symbol.detailsIf<GenericDetails>()}) {
3631         if (generic->derivedType()) {
3632           // If a generic interface has a derived type of the same
3633           // name that has an explicit accessibility attribute, then
3634           // the generic must have the same accessibility.
3635           if (generic->derivedType()->attrs().test(Attr::PUBLIC)) {
3636             attr = Attr::PUBLIC;
3637           } else if (generic->derivedType()->attrs().test(Attr::PRIVATE)) {
3638             attr = Attr::PRIVATE;
3639           }
3640         }
3641       }
3642       SetImplicitAttr(symbol, attr);
3643     }
3644   }
3645 }
3646 
3647 // InterfaceVistor implementation
3648 
3649 bool InterfaceVisitor::Pre(const parser::InterfaceStmt &x) {
3650   bool isAbstract{std::holds_alternative<parser::Abstract>(x.u)};
3651   genericInfo_.emplace(/*isInterface*/ true, isAbstract);
3652   return BeginAttrs();
3653 }
3654 
3655 void InterfaceVisitor::Post(const parser::InterfaceStmt &) { EndAttrs(); }
3656 
3657 void InterfaceVisitor::Post(const parser::EndInterfaceStmt &) {
3658   ResolveNewSpecifics();
3659   genericInfo_.pop();
3660 }
3661 
3662 // Create a symbol in genericSymbol_ for this GenericSpec.
3663 bool InterfaceVisitor::Pre(const parser::GenericSpec &x) {
3664   if (auto *symbol{FindInScope(GenericSpecInfo{x}.symbolName())}) {
3665     SetGenericSymbol(*symbol);
3666   }
3667   return false;
3668 }
3669 
3670 bool InterfaceVisitor::Pre(const parser::ProcedureStmt &x) {
3671   if (!isGeneric()) {
3672     Say("A PROCEDURE statement is only allowed in a generic interface block"_err_en_US);
3673   } else {
3674     auto kind{std::get<parser::ProcedureStmt::Kind>(x.t)};
3675     const auto &names{std::get<std::list<parser::Name>>(x.t)};
3676     AddSpecificProcs(names, kind);
3677   }
3678   return false;
3679 }
3680 
3681 bool InterfaceVisitor::Pre(const parser::GenericStmt &) {
3682   genericInfo_.emplace(/*isInterface*/ false);
3683   return BeginAttrs();
3684 }
3685 void InterfaceVisitor::Post(const parser::GenericStmt &x) {
3686   auto attrs{EndAttrs()};
3687   if (Symbol * symbol{GetGenericInfo().symbol}) {
3688     SetExplicitAttrs(*symbol, attrs);
3689   }
3690   const auto &names{std::get<std::list<parser::Name>>(x.t)};
3691   AddSpecificProcs(names, ProcedureKind::Procedure);
3692   ResolveNewSpecifics();
3693   genericInfo_.pop();
3694 }
3695 
3696 bool InterfaceVisitor::inInterfaceBlock() const {
3697   return !genericInfo_.empty() && GetGenericInfo().isInterface;
3698 }
3699 bool InterfaceVisitor::isGeneric() const {
3700   return !genericInfo_.empty() && GetGenericInfo().symbol;
3701 }
3702 bool InterfaceVisitor::isAbstract() const {
3703   return !genericInfo_.empty() && GetGenericInfo().isAbstract;
3704 }
3705 
3706 void InterfaceVisitor::AddSpecificProcs(
3707     const std::list<parser::Name> &names, ProcedureKind kind) {
3708   if (Symbol * symbol{GetGenericInfo().symbol};
3709       symbol && symbol->has<GenericDetails>()) {
3710     for (const auto &name : names) {
3711       specificsForGenericProcs_.emplace(symbol, std::make_pair(&name, kind));
3712       genericsForSpecificProcs_.emplace(name.source, symbol);
3713     }
3714   }
3715 }
3716 
3717 // By now we should have seen all specific procedures referenced by name in
3718 // this generic interface. Resolve those names to symbols.
3719 void GenericHandler::ResolveSpecificsInGeneric(
3720     Symbol &generic, bool isEndOfSpecificationPart) {
3721   auto &details{generic.get<GenericDetails>()};
3722   UnorderedSymbolSet symbolsSeen;
3723   for (const Symbol &symbol : details.specificProcs()) {
3724     symbolsSeen.insert(symbol.GetUltimate());
3725   }
3726   auto range{specificsForGenericProcs_.equal_range(&generic)};
3727   SpecificProcMapType retain;
3728   for (auto it{range.first}; it != range.second; ++it) {
3729     const parser::Name *name{it->second.first};
3730     auto kind{it->second.second};
3731     const Symbol *symbol{isEndOfSpecificationPart
3732             ? FindSymbol(*name)
3733             : FindInScope(generic.owner(), *name)};
3734     ProcedureDefinitionClass defClass{ProcedureDefinitionClass::None};
3735     const Symbol *specific{symbol};
3736     const Symbol *ultimate{nullptr};
3737     if (symbol) {
3738       // Subtlety: when *symbol is a use- or host-association, the specific
3739       // procedure that is recorded in the GenericDetails below must be *symbol,
3740       // not the specific procedure shadowed by a generic, because that specific
3741       // procedure may be a symbol from another module and its name unavailable
3742       // to emit to a module file.
3743       const Symbol &bypassed{BypassGeneric(*symbol)};
3744       if (symbol == &symbol->GetUltimate()) {
3745         specific = &bypassed;
3746       }
3747       ultimate = &bypassed.GetUltimate();
3748       defClass = ClassifyProcedure(*ultimate);
3749     }
3750     std::optional<MessageFixedText> error;
3751     if (defClass == ProcedureDefinitionClass::Module) {
3752       // ok
3753     } else if (kind == ProcedureKind::ModuleProcedure) {
3754       error = "'%s' is not a module procedure"_err_en_US;
3755     } else {
3756       switch (defClass) {
3757       case ProcedureDefinitionClass::Intrinsic:
3758       case ProcedureDefinitionClass::External:
3759       case ProcedureDefinitionClass::Internal:
3760       case ProcedureDefinitionClass::Dummy:
3761       case ProcedureDefinitionClass::Pointer:
3762         break;
3763       case ProcedureDefinitionClass::None:
3764         error = "'%s' is not a procedure"_err_en_US;
3765         break;
3766       default:
3767         error =
3768             "'%s' is not a procedure that can appear in a generic interface"_err_en_US;
3769         break;
3770       }
3771     }
3772     if (error) {
3773       if (isEndOfSpecificationPart) {
3774         Say(*name, std::move(*error));
3775       } else {
3776         // possible forward reference, catch it later
3777         retain.emplace(&generic, std::make_pair(name, kind));
3778       }
3779     } else if (!ultimate) {
3780     } else if (symbolsSeen.insert(*ultimate).second /*true if added*/) {
3781       // When a specific procedure is a USE association, that association
3782       // is saved in the generic's specifics, not its ultimate symbol,
3783       // so that module file output of interfaces can distinguish them.
3784       details.AddSpecificProc(*specific, name->source);
3785     } else if (specific == ultimate) {
3786       Say(name->source,
3787           "Procedure '%s' is already specified in generic '%s'"_err_en_US,
3788           name->source, MakeOpName(generic.name()));
3789     } else {
3790       Say(name->source,
3791           "Procedure '%s' from module '%s' is already specified in generic '%s'"_err_en_US,
3792           ultimate->name(), ultimate->owner().GetName().value(),
3793           MakeOpName(generic.name()));
3794     }
3795   }
3796   specificsForGenericProcs_.erase(range.first, range.second);
3797   specificsForGenericProcs_.merge(std::move(retain));
3798 }
3799 
3800 void GenericHandler::DeclaredPossibleSpecificProc(Symbol &proc) {
3801   auto range{genericsForSpecificProcs_.equal_range(proc.name())};
3802   for (auto iter{range.first}; iter != range.second; ++iter) {
3803     ResolveSpecificsInGeneric(*iter->second, false);
3804   }
3805 }
3806 
3807 void InterfaceVisitor::ResolveNewSpecifics() {
3808   if (Symbol * generic{genericInfo_.top().symbol};
3809       generic && generic->has<GenericDetails>()) {
3810     ResolveSpecificsInGeneric(*generic, false);
3811   }
3812 }
3813 
3814 // Mixed interfaces are allowed by the standard.
3815 // If there is a derived type with the same name, they must all be functions.
3816 void InterfaceVisitor::CheckGenericProcedures(Symbol &generic) {
3817   ResolveSpecificsInGeneric(generic, true);
3818   auto &details{generic.get<GenericDetails>()};
3819   if (auto *proc{details.CheckSpecific()}) {
3820     context().Warn(common::UsageWarning::HomonymousSpecific,
3821         proc->name().begin() > generic.name().begin() ? proc->name()
3822                                                       : generic.name(),
3823         "'%s' should not be the name of both a generic interface and a procedure unless it is a specific procedure of the generic"_warn_en_US,
3824         generic.name());
3825   }
3826   auto &specifics{details.specificProcs()};
3827   if (specifics.empty()) {
3828     if (details.derivedType()) {
3829       generic.set(Symbol::Flag::Function);
3830     }
3831     return;
3832   }
3833   const Symbol *function{nullptr};
3834   const Symbol *subroutine{nullptr};
3835   for (const Symbol &specific : specifics) {
3836     if (!function && specific.test(Symbol::Flag::Function)) {
3837       function = &specific;
3838     } else if (!subroutine && specific.test(Symbol::Flag::Subroutine)) {
3839       subroutine = &specific;
3840       if (details.derivedType() &&
3841           context().ShouldWarn(
3842               common::LanguageFeature::SubroutineAndFunctionSpecifics) &&
3843           !InModuleFile()) {
3844         SayDerivedType(generic.name(),
3845             "Generic interface '%s' should only contain functions due to derived type with same name"_warn_en_US,
3846             *details.derivedType()->GetUltimate().scope())
3847             .set_languageFeature(
3848                 common::LanguageFeature::SubroutineAndFunctionSpecifics);
3849       }
3850     }
3851     if (function && subroutine) { // F'2023 C1514
3852       if (auto *msg{context().Warn(
3853               common::LanguageFeature::SubroutineAndFunctionSpecifics,
3854               generic.name(),
3855               "Generic interface '%s' has both a function and a subroutine"_warn_en_US,
3856               generic.name())}) {
3857         msg->Attach(function->name(), "Function declaration"_en_US)
3858             .Attach(subroutine->name(), "Subroutine declaration"_en_US);
3859       }
3860       break;
3861     }
3862   }
3863   if (function && !subroutine) {
3864     generic.set(Symbol::Flag::Function);
3865   } else if (subroutine && !function) {
3866     generic.set(Symbol::Flag::Subroutine);
3867   }
3868 }
3869 
3870 // SubprogramVisitor implementation
3871 
3872 // Return false if it is actually an assignment statement.
3873 bool SubprogramVisitor::HandleStmtFunction(const parser::StmtFunctionStmt &x) {
3874   const auto &name{std::get<parser::Name>(x.t)};
3875   const DeclTypeSpec *resultType{nullptr};
3876   // Look up name: provides return type or tells us if it's an array
3877   if (auto *symbol{FindSymbol(name)}) {
3878     Symbol &ultimate{symbol->GetUltimate()};
3879     if (ultimate.has<ObjectEntityDetails>() ||
3880         ultimate.has<AssocEntityDetails>() ||
3881         CouldBeDataPointerValuedFunction(&ultimate) ||
3882         (&symbol->owner() == &currScope() && IsFunctionResult(*symbol))) {
3883       misparsedStmtFuncFound_ = true;
3884       return false;
3885     }
3886     if (IsHostAssociated(*symbol, currScope())) {
3887       context().Warn(common::LanguageFeature::StatementFunctionExtensions,
3888           name.source,
3889           "Name '%s' from host scope should have a type declaration before its local statement function definition"_port_en_US,
3890           name.source);
3891       MakeSymbol(name, Attrs{}, UnknownDetails{});
3892     } else if (auto *entity{ultimate.detailsIf<EntityDetails>()};
3893                entity && !ultimate.has<ProcEntityDetails>()) {
3894       resultType = entity->type();
3895       ultimate.details() = UnknownDetails{}; // will be replaced below
3896     } else {
3897       misparsedStmtFuncFound_ = true;
3898     }
3899   }
3900   if (misparsedStmtFuncFound_) {
3901     Say(name,
3902         "'%s' has not been declared as an array or pointer-valued function"_err_en_US);
3903     return false;
3904   }
3905   auto &symbol{PushSubprogramScope(name, Symbol::Flag::Function)};
3906   symbol.set(Symbol::Flag::StmtFunction);
3907   EraseSymbol(symbol); // removes symbol added by PushSubprogramScope
3908   auto &details{symbol.get<SubprogramDetails>()};
3909   for (const auto &dummyName : std::get<std::list<parser::Name>>(x.t)) {
3910     ObjectEntityDetails dummyDetails{true};
3911     if (auto *dummySymbol{FindInScope(currScope().parent(), dummyName)}) {
3912       if (auto *d{dummySymbol->GetType()}) {
3913         dummyDetails.set_type(*d);
3914       }
3915     }
3916     Symbol &dummy{MakeSymbol(dummyName, std::move(dummyDetails))};
3917     ApplyImplicitRules(dummy);
3918     details.add_dummyArg(dummy);
3919   }
3920   ObjectEntityDetails resultDetails;
3921   if (resultType) {
3922     resultDetails.set_type(*resultType);
3923   }
3924   resultDetails.set_funcResult(true);
3925   Symbol &result{MakeSymbol(name, std::move(resultDetails))};
3926   result.flags().set(Symbol::Flag::StmtFunction);
3927   ApplyImplicitRules(result);
3928   details.set_result(result);
3929   // The analysis of the expression that constitutes the body of the
3930   // statement function is deferred to FinishSpecificationPart() so that
3931   // all declarations and implicit typing are complete.
3932   PopScope();
3933   return true;
3934 }
3935 
3936 bool SubprogramVisitor::Pre(const parser::Suffix &suffix) {
3937   if (suffix.resultName) {
3938     if (IsFunction(currScope())) {
3939       if (FuncResultStack::FuncInfo * info{funcResultStack().Top()}) {
3940         if (info->inFunctionStmt) {
3941           info->resultName = &suffix.resultName.value();
3942         } else {
3943           // will check the result name in Post(EntryStmt)
3944         }
3945       }
3946     } else {
3947       Message &msg{Say(*suffix.resultName,
3948           "RESULT(%s) may appear only in a function"_err_en_US)};
3949       if (const Symbol * subprogram{InclusiveScope().symbol()}) {
3950         msg.Attach(subprogram->name(), "Containing subprogram"_en_US);
3951       }
3952     }
3953   }
3954   // LanguageBindingSpec deferred to Post(EntryStmt) or, for FunctionStmt,
3955   // all the way to EndSubprogram().
3956   return false;
3957 }
3958 
3959 bool SubprogramVisitor::Pre(const parser::PrefixSpec &x) {
3960   // Save this to process after UseStmt and ImplicitPart
3961   if (const auto *parsedType{std::get_if<parser::DeclarationTypeSpec>(&x.u)}) {
3962     if (FuncResultStack::FuncInfo * info{funcResultStack().Top()}) {
3963       if (info->parsedType) { // C1543
3964         Say(currStmtSource().value_or(info->source),
3965             "FUNCTION prefix cannot specify the type more than once"_err_en_US);
3966       } else {
3967         info->parsedType = parsedType;
3968         if (auto at{currStmtSource()}) {
3969           info->source = *at;
3970         }
3971       }
3972     } else {
3973       Say(currStmtSource().value(),
3974           "SUBROUTINE prefix cannot specify a type"_err_en_US);
3975     }
3976     return false;
3977   } else {
3978     return true;
3979   }
3980 }
3981 
3982 bool SubprogramVisitor::Pre(const parser::PrefixSpec::Attributes &attrs) {
3983   if (auto *subp{currScope().symbol()
3984               ? currScope().symbol()->detailsIf<SubprogramDetails>()
3985               : nullptr}) {
3986     for (auto attr : attrs.v) {
3987       if (auto current{subp->cudaSubprogramAttrs()}) {
3988         if (attr == *current ||
3989             (*current == common::CUDASubprogramAttrs::HostDevice &&
3990                 (attr == common::CUDASubprogramAttrs::Host ||
3991                     attr == common::CUDASubprogramAttrs::Device))) {
3992           context().Warn(common::LanguageFeature::RedundantAttribute,
3993               currStmtSource().value(),
3994               "ATTRIBUTES(%s) appears more than once"_warn_en_US,
3995               common::EnumToString(attr));
3996         } else if ((attr == common::CUDASubprogramAttrs::Host ||
3997                        attr == common::CUDASubprogramAttrs::Device) &&
3998             (*current == common::CUDASubprogramAttrs::Host ||
3999                 *current == common::CUDASubprogramAttrs::Device ||
4000                 *current == common::CUDASubprogramAttrs::HostDevice)) {
4001           // HOST,DEVICE or DEVICE,HOST -> HostDevice
4002           subp->set_cudaSubprogramAttrs(
4003               common::CUDASubprogramAttrs::HostDevice);
4004         } else {
4005           Say(currStmtSource().value(),
4006               "ATTRIBUTES(%s) conflicts with earlier ATTRIBUTES(%s)"_err_en_US,
4007               common::EnumToString(attr), common::EnumToString(*current));
4008         }
4009       } else {
4010         subp->set_cudaSubprogramAttrs(attr);
4011       }
4012     }
4013     if (auto attrs{subp->cudaSubprogramAttrs()}) {
4014       if (*attrs == common::CUDASubprogramAttrs::Global ||
4015           *attrs == common::CUDASubprogramAttrs::Device) {
4016         const Scope &scope{currScope()};
4017         const Scope *mod{FindModuleContaining(scope)};
4018         if (mod && mod->GetName().value() == "cudadevice") {
4019           return false;
4020         }
4021         // Implicitly USE the cudadevice module by copying its symbols in the
4022         // current scope.
4023         const Scope &cudaDeviceScope{context().GetCUDADeviceScope()};
4024         for (auto sym : cudaDeviceScope.GetSymbols()) {
4025           if (!currScope().FindSymbol(sym->name())) {
4026             auto &localSymbol{MakeSymbol(
4027                 sym->name(), Attrs{}, UseDetails{sym->name(), *sym})};
4028             localSymbol.flags() = sym->flags();
4029           }
4030         }
4031       }
4032     }
4033   }
4034   return false;
4035 }
4036 
4037 void SubprogramVisitor::Post(const parser::PrefixSpec::Launch_Bounds &x) {
4038   std::vector<std::int64_t> bounds;
4039   bool ok{true};
4040   for (const auto &sicx : x.v) {
4041     if (auto value{evaluate::ToInt64(EvaluateExpr(sicx))}) {
4042       bounds.push_back(*value);
4043     } else {
4044       ok = false;
4045     }
4046   }
4047   if (!ok || bounds.size() < 2 || bounds.size() > 3) {
4048     Say(currStmtSource().value(),
4049         "Operands of LAUNCH_BOUNDS() must be 2 or 3 integer constants"_err_en_US);
4050   } else if (auto *subp{currScope().symbol()
4051                      ? currScope().symbol()->detailsIf<SubprogramDetails>()
4052                      : nullptr}) {
4053     if (subp->cudaLaunchBounds().empty()) {
4054       subp->set_cudaLaunchBounds(std::move(bounds));
4055     } else {
4056       Say(currStmtSource().value(),
4057           "LAUNCH_BOUNDS() may only appear once"_err_en_US);
4058     }
4059   }
4060 }
4061 
4062 void SubprogramVisitor::Post(const parser::PrefixSpec::Cluster_Dims &x) {
4063   std::vector<std::int64_t> dims;
4064   bool ok{true};
4065   for (const auto &sicx : x.v) {
4066     if (auto value{evaluate::ToInt64(EvaluateExpr(sicx))}) {
4067       dims.push_back(*value);
4068     } else {
4069       ok = false;
4070     }
4071   }
4072   if (!ok || dims.size() != 3) {
4073     Say(currStmtSource().value(),
4074         "Operands of CLUSTER_DIMS() must be three integer constants"_err_en_US);
4075   } else if (auto *subp{currScope().symbol()
4076                      ? currScope().symbol()->detailsIf<SubprogramDetails>()
4077                      : nullptr}) {
4078     if (subp->cudaClusterDims().empty()) {
4079       subp->set_cudaClusterDims(std::move(dims));
4080     } else {
4081       Say(currStmtSource().value(),
4082           "CLUSTER_DIMS() may only appear once"_err_en_US);
4083     }
4084   }
4085 }
4086 
4087 static bool HasModulePrefix(const std::list<parser::PrefixSpec> &prefixes) {
4088   for (const auto &prefix : prefixes) {
4089     if (std::holds_alternative<parser::PrefixSpec::Module>(prefix.u)) {
4090       return true;
4091     }
4092   }
4093   return false;
4094 }
4095 
4096 bool SubprogramVisitor::Pre(const parser::InterfaceBody::Subroutine &x) {
4097   const auto &stmtTuple{
4098       std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t};
4099   return BeginSubprogram(std::get<parser::Name>(stmtTuple),
4100       Symbol::Flag::Subroutine,
4101       HasModulePrefix(std::get<std::list<parser::PrefixSpec>>(stmtTuple)));
4102 }
4103 void SubprogramVisitor::Post(const parser::InterfaceBody::Subroutine &x) {
4104   const auto &stmt{std::get<parser::Statement<parser::SubroutineStmt>>(x.t)};
4105   EndSubprogram(stmt.source,
4106       &std::get<std::optional<parser::LanguageBindingSpec>>(stmt.statement.t));
4107 }
4108 bool SubprogramVisitor::Pre(const parser::InterfaceBody::Function &x) {
4109   const auto &stmtTuple{
4110       std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t};
4111   return BeginSubprogram(std::get<parser::Name>(stmtTuple),
4112       Symbol::Flag::Function,
4113       HasModulePrefix(std::get<std::list<parser::PrefixSpec>>(stmtTuple)));
4114 }
4115 void SubprogramVisitor::Post(const parser::InterfaceBody::Function &x) {
4116   const auto &stmt{std::get<parser::Statement<parser::FunctionStmt>>(x.t)};
4117   const auto &maybeSuffix{
4118       std::get<std::optional<parser::Suffix>>(stmt.statement.t)};
4119   EndSubprogram(stmt.source, maybeSuffix ? &maybeSuffix->binding : nullptr);
4120 }
4121 
4122 bool SubprogramVisitor::Pre(const parser::SubroutineStmt &stmt) {
4123   BeginAttrs();
4124   Walk(std::get<std::list<parser::PrefixSpec>>(stmt.t));
4125   Walk(std::get<parser::Name>(stmt.t));
4126   Walk(std::get<std::list<parser::DummyArg>>(stmt.t));
4127   // Don't traverse the LanguageBindingSpec now; it's deferred to EndSubprogram.
4128   Symbol &symbol{PostSubprogramStmt()};
4129   SubprogramDetails &details{symbol.get<SubprogramDetails>()};
4130   for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
4131     if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) {
4132       CreateDummyArgument(details, *dummyName);
4133     } else {
4134       details.add_alternateReturn();
4135     }
4136   }
4137   return false;
4138 }
4139 bool SubprogramVisitor::Pre(const parser::FunctionStmt &) {
4140   FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())};
4141   CHECK(!info.inFunctionStmt);
4142   info.inFunctionStmt = true;
4143   if (auto at{currStmtSource()}) {
4144     info.source = *at;
4145   }
4146   return BeginAttrs();
4147 }
4148 bool SubprogramVisitor::Pre(const parser::EntryStmt &) { return BeginAttrs(); }
4149 
4150 void SubprogramVisitor::Post(const parser::FunctionStmt &stmt) {
4151   const auto &name{std::get<parser::Name>(stmt.t)};
4152   Symbol &symbol{PostSubprogramStmt()};
4153   SubprogramDetails &details{symbol.get<SubprogramDetails>()};
4154   for (const auto &dummyName : std::get<std::list<parser::Name>>(stmt.t)) {
4155     CreateDummyArgument(details, dummyName);
4156   }
4157   const parser::Name *funcResultName;
4158   FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())};
4159   CHECK(info.inFunctionStmt);
4160   info.inFunctionStmt = false;
4161   bool distinctResultName{
4162       info.resultName && info.resultName->source != name.source};
4163   if (distinctResultName) {
4164     // Note that RESULT is ignored if it has the same name as the function.
4165     // The symbol created by PushScope() is retained as a place-holder
4166     // for error detection.
4167     funcResultName = info.resultName;
4168   } else {
4169     EraseSymbol(name); // was added by PushScope()
4170     funcResultName = &name;
4171   }
4172   if (details.isFunction()) {
4173     CHECK(context().HasError(currScope().symbol()));
4174   } else {
4175     // RESULT(x) can be the same explicitly-named RESULT(x) as an ENTRY
4176     // statement.
4177     Symbol *result{nullptr};
4178     if (distinctResultName) {
4179       if (auto iter{currScope().find(funcResultName->source)};
4180           iter != currScope().end()) {
4181         Symbol &entryResult{*iter->second};
4182         if (IsFunctionResult(entryResult)) {
4183           result = &entryResult;
4184         }
4185       }
4186     }
4187     if (result) {
4188       Resolve(*funcResultName, *result);
4189     } else {
4190       // add function result to function scope
4191       EntityDetails funcResultDetails;
4192       funcResultDetails.set_funcResult(true);
4193       result = &MakeSymbol(*funcResultName, std::move(funcResultDetails));
4194     }
4195     info.resultSymbol = result;
4196     details.set_result(*result);
4197   }
4198   // C1560.
4199   if (info.resultName && !distinctResultName) {
4200     context().Warn(common::UsageWarning::HomonymousResult,
4201         info.resultName->source,
4202         "The function name should not appear in RESULT; references to '%s' "
4203         "inside the function will be considered as references to the "
4204         "result only"_warn_en_US,
4205         name.source);
4206     // RESULT name was ignored above, the only side effect from doing so will be
4207     // the inability to make recursive calls. The related parser::Name is still
4208     // resolved to the created function result symbol because every parser::Name
4209     // should be resolved to avoid internal errors.
4210     Resolve(*info.resultName, info.resultSymbol);
4211   }
4212   name.symbol = &symbol; // must not be function result symbol
4213   // Clear the RESULT() name now in case an ENTRY statement in the implicit-part
4214   // has a RESULT() suffix.
4215   info.resultName = nullptr;
4216 }
4217 
4218 Symbol &SubprogramVisitor::PostSubprogramStmt() {
4219   Symbol &symbol{*currScope().symbol()};
4220   SetExplicitAttrs(symbol, EndAttrs());
4221   if (symbol.attrs().test(Attr::MODULE)) {
4222     symbol.attrs().set(Attr::EXTERNAL, false);
4223     symbol.implicitAttrs().set(Attr::EXTERNAL, false);
4224   }
4225   return symbol;
4226 }
4227 
4228 void SubprogramVisitor::Post(const parser::EntryStmt &stmt) {
4229   if (const auto &suffix{std::get<std::optional<parser::Suffix>>(stmt.t)}) {
4230     Walk(suffix->binding);
4231   }
4232   PostEntryStmt(stmt);
4233   EndAttrs();
4234 }
4235 
4236 void SubprogramVisitor::CreateDummyArgument(
4237     SubprogramDetails &details, const parser::Name &name) {
4238   Symbol *dummy{FindInScope(name)};
4239   if (dummy) {
4240     if (IsDummy(*dummy)) {
4241       if (dummy->test(Symbol::Flag::EntryDummyArgument)) {
4242         dummy->set(Symbol::Flag::EntryDummyArgument, false);
4243       } else {
4244         Say(name,
4245             "'%s' appears more than once as a dummy argument name in this subprogram"_err_en_US,
4246             name.source);
4247         return;
4248       }
4249     } else {
4250       SayWithDecl(name, *dummy,
4251           "'%s' may not appear as a dummy argument name in this subprogram"_err_en_US);
4252       return;
4253     }
4254   } else {
4255     dummy = &MakeSymbol(name, EntityDetails{true});
4256   }
4257   details.add_dummyArg(DEREF(dummy));
4258 }
4259 
4260 void SubprogramVisitor::CreateEntry(
4261     const parser::EntryStmt &stmt, Symbol &subprogram) {
4262   const auto &entryName{std::get<parser::Name>(stmt.t)};
4263   Scope &outer{currScope().parent()};
4264   Symbol::Flag subpFlag{subprogram.test(Symbol::Flag::Function)
4265           ? Symbol::Flag::Function
4266           : Symbol::Flag::Subroutine};
4267   Attrs attrs;
4268   const auto &suffix{std::get<std::optional<parser::Suffix>>(stmt.t)};
4269   bool hasGlobalBindingName{outer.IsGlobal() && suffix && suffix->binding &&
4270       std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
4271           suffix->binding->t)
4272           .has_value()};
4273   if (!hasGlobalBindingName) {
4274     if (Symbol * extant{FindSymbol(outer, entryName)}) {
4275       if (!HandlePreviousCalls(entryName, *extant, subpFlag)) {
4276         if (outer.IsTopLevel()) {
4277           Say2(entryName,
4278               "'%s' is already defined as a global identifier"_err_en_US,
4279               *extant, "Previous definition of '%s'"_en_US);
4280         } else {
4281           SayAlreadyDeclared(entryName, *extant);
4282         }
4283         return;
4284       }
4285       attrs = extant->attrs();
4286     }
4287   }
4288   std::optional<SourceName> distinctResultName;
4289   if (suffix && suffix->resultName &&
4290       suffix->resultName->source != entryName.source) {
4291     distinctResultName = suffix->resultName->source;
4292   }
4293   if (outer.IsModule() && !attrs.test(Attr::PRIVATE)) {
4294     attrs.set(Attr::PUBLIC);
4295   }
4296   Symbol *entrySymbol{nullptr};
4297   if (hasGlobalBindingName) {
4298     // Hide the entry's symbol in a new anonymous global scope so
4299     // that its name doesn't clash with anything.
4300     Symbol &symbol{MakeSymbol(outer, context().GetTempName(outer), Attrs{})};
4301     symbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName});
4302     Scope &hidden{outer.MakeScope(Scope::Kind::Global, &symbol)};
4303     entrySymbol = &MakeSymbol(hidden, entryName.source, attrs);
4304   } else {
4305     entrySymbol = FindInScope(outer, entryName.source);
4306     if (entrySymbol) {
4307       if (auto *generic{entrySymbol->detailsIf<GenericDetails>()}) {
4308         if (auto *specific{generic->specific()}) {
4309           // Forward reference to ENTRY from a generic interface
4310           entrySymbol = specific;
4311           CheckDuplicatedAttrs(entryName.source, *entrySymbol, attrs);
4312           SetExplicitAttrs(*entrySymbol, attrs);
4313         }
4314       }
4315     } else {
4316       entrySymbol = &MakeSymbol(outer, entryName.source, attrs);
4317     }
4318   }
4319   SubprogramDetails entryDetails;
4320   entryDetails.set_entryScope(currScope());
4321   entrySymbol->set(subpFlag);
4322   if (subpFlag == Symbol::Flag::Function) {
4323     Symbol *result{nullptr};
4324     EntityDetails resultDetails;
4325     resultDetails.set_funcResult(true);
4326     if (distinctResultName) {
4327       // An explicit RESULT() can also be an explicit RESULT()
4328       // of the function or another ENTRY.
4329       if (auto iter{currScope().find(suffix->resultName->source)};
4330           iter != currScope().end()) {
4331         result = &*iter->second;
4332       }
4333       if (!result) {
4334         result =
4335             &MakeSymbol(*distinctResultName, Attrs{}, std::move(resultDetails));
4336       } else if (!result->has<EntityDetails>()) {
4337         Say(*distinctResultName,
4338             "ENTRY cannot have RESULT(%s) that is not a variable"_err_en_US,
4339             *distinctResultName)
4340             .Attach(result->name(), "Existing declaration of '%s'"_en_US,
4341                 result->name());
4342         result = nullptr;
4343       }
4344       if (result) {
4345         Resolve(*suffix->resultName, *result);
4346       }
4347     } else {
4348       result = &MakeSymbol(entryName.source, Attrs{}, std::move(resultDetails));
4349     }
4350     if (result) {
4351       entryDetails.set_result(*result);
4352     }
4353   }
4354   if (subpFlag == Symbol::Flag::Subroutine || distinctResultName) {
4355     Symbol &assoc{MakeSymbol(entryName.source)};
4356     assoc.set_details(HostAssocDetails{*entrySymbol});
4357     assoc.set(Symbol::Flag::Subroutine);
4358   }
4359   Resolve(entryName, *entrySymbol);
4360   std::set<SourceName> dummies;
4361   for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
4362     if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) {
4363       auto pair{dummies.insert(dummyName->source)};
4364       if (!pair.second) {
4365         Say(*dummyName,
4366             "'%s' appears more than once as a dummy argument name in this ENTRY statement"_err_en_US,
4367             dummyName->source);
4368         continue;
4369       }
4370       Symbol *dummy{FindInScope(*dummyName)};
4371       if (dummy) {
4372         if (!IsDummy(*dummy)) {
4373           evaluate::AttachDeclaration(
4374               Say(*dummyName,
4375                   "'%s' may not appear as a dummy argument name in this ENTRY statement"_err_en_US,
4376                   dummyName->source),
4377               *dummy);
4378           continue;
4379         }
4380       } else {
4381         dummy = &MakeSymbol(*dummyName, EntityDetails{true});
4382         dummy->set(Symbol::Flag::EntryDummyArgument);
4383       }
4384       entryDetails.add_dummyArg(DEREF(dummy));
4385     } else if (subpFlag == Symbol::Flag::Function) { // C1573
4386       Say(entryName,
4387           "ENTRY in a function may not have an alternate return dummy argument"_err_en_US);
4388       break;
4389     } else {
4390       entryDetails.add_alternateReturn();
4391     }
4392   }
4393   entrySymbol->set_details(std::move(entryDetails));
4394 }
4395 
4396 void SubprogramVisitor::PostEntryStmt(const parser::EntryStmt &stmt) {
4397   // The entry symbol should have already been created and resolved
4398   // in CreateEntry(), called by BeginSubprogram(), with one exception (below).
4399   const auto &name{std::get<parser::Name>(stmt.t)};
4400   Scope &inclusiveScope{InclusiveScope()};
4401   if (!name.symbol) {
4402     if (inclusiveScope.kind() != Scope::Kind::Subprogram) {
4403       Say(name.source,
4404           "ENTRY '%s' may appear only in a subroutine or function"_err_en_US,
4405           name.source);
4406     } else if (FindSeparateModuleSubprogramInterface(inclusiveScope.symbol())) {
4407       Say(name.source,
4408           "ENTRY '%s' may not appear in a separate module procedure"_err_en_US,
4409           name.source);
4410     } else {
4411       // C1571 - entry is nested, so was not put into the program tree; error
4412       // is emitted from MiscChecker in semantics.cpp.
4413     }
4414     return;
4415   }
4416   Symbol &entrySymbol{*name.symbol};
4417   if (context().HasError(entrySymbol)) {
4418     return;
4419   }
4420   if (!entrySymbol.has<SubprogramDetails>()) {
4421     SayAlreadyDeclared(name, entrySymbol);
4422     return;
4423   }
4424   SubprogramDetails &entryDetails{entrySymbol.get<SubprogramDetails>()};
4425   CHECK(entryDetails.entryScope() == &inclusiveScope);
4426   SetCUDADataAttr(name.source, entrySymbol, cudaDataAttr());
4427   entrySymbol.attrs() |= GetAttrs();
4428   SetBindNameOn(entrySymbol);
4429   for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
4430     if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) {
4431       if (Symbol * dummy{FindInScope(*dummyName)}) {
4432         if (dummy->test(Symbol::Flag::EntryDummyArgument)) {
4433           const auto *subp{dummy->detailsIf<SubprogramDetails>()};
4434           if (subp && subp->isInterface()) { // ok
4435           } else if (!dummy->has<EntityDetails>() &&
4436               !dummy->has<ObjectEntityDetails>() &&
4437               !dummy->has<ProcEntityDetails>()) {
4438             SayWithDecl(*dummyName, *dummy,
4439                 "ENTRY dummy argument '%s' was previously declared as an item that may not be used as a dummy argument"_err_en_US);
4440           }
4441           dummy->set(Symbol::Flag::EntryDummyArgument, false);
4442         }
4443       }
4444     }
4445   }
4446 }
4447 
4448 Symbol *ScopeHandler::FindSeparateModuleProcedureInterface(
4449     const parser::Name &name) {
4450   auto *symbol{FindSymbol(name)};
4451   if (symbol && symbol->has<SubprogramNameDetails>()) {
4452     const Scope *parent{nullptr};
4453     if (currScope().IsSubmodule()) {
4454       parent = currScope().symbol()->get<ModuleDetails>().parent();
4455     }
4456     symbol = parent ? FindSymbol(*parent, name) : nullptr;
4457   }
4458   if (symbol) {
4459     if (auto *generic{symbol->detailsIf<GenericDetails>()}) {
4460       symbol = generic->specific();
4461     }
4462   }
4463   if (const Symbol * defnIface{FindSeparateModuleSubprogramInterface(symbol)}) {
4464     // Error recovery in case of multiple definitions
4465     symbol = const_cast<Symbol *>(defnIface);
4466   }
4467   if (!IsSeparateModuleProcedureInterface(symbol)) {
4468     Say(name, "'%s' was not declared a separate module procedure"_err_en_US);
4469     symbol = nullptr;
4470   }
4471   return symbol;
4472 }
4473 
4474 // A subprogram declared with MODULE PROCEDURE
4475 bool SubprogramVisitor::BeginMpSubprogram(const parser::Name &name) {
4476   Symbol *symbol{FindSeparateModuleProcedureInterface(name)};
4477   if (!symbol) {
4478     return false;
4479   }
4480   if (symbol->owner() == currScope() && symbol->scope()) {
4481     // This is a MODULE PROCEDURE whose interface appears in its host.
4482     // Convert the module procedure's interface into a subprogram.
4483     SetScope(DEREF(symbol->scope()));
4484     symbol->get<SubprogramDetails>().set_isInterface(false);
4485     name.symbol = symbol;
4486   } else {
4487     // Copy the interface into a new subprogram scope.
4488     EraseSymbol(name);
4489     Symbol &newSymbol{MakeSymbol(name, SubprogramDetails{})};
4490     PushScope(Scope::Kind::Subprogram, &newSymbol);
4491     auto &newSubprogram{newSymbol.get<SubprogramDetails>()};
4492     newSubprogram.set_moduleInterface(*symbol);
4493     auto &subprogram{symbol->get<SubprogramDetails>()};
4494     if (const auto *name{subprogram.bindName()}) {
4495       newSubprogram.set_bindName(std::string{*name});
4496     }
4497     newSymbol.attrs() |= symbol->attrs();
4498     newSymbol.set(symbol->test(Symbol::Flag::Subroutine)
4499             ? Symbol::Flag::Subroutine
4500             : Symbol::Flag::Function);
4501     MapSubprogramToNewSymbols(*symbol, newSymbol, currScope());
4502   }
4503   return true;
4504 }
4505 
4506 // A subprogram or interface declared with SUBROUTINE or FUNCTION
4507 bool SubprogramVisitor::BeginSubprogram(const parser::Name &name,
4508     Symbol::Flag subpFlag, bool hasModulePrefix,
4509     const parser::LanguageBindingSpec *bindingSpec,
4510     const ProgramTree::EntryStmtList *entryStmts) {
4511   bool isValid{true};
4512   if (hasModulePrefix && !currScope().IsModule() &&
4513       !currScope().IsSubmodule()) { // C1547
4514     Say(name,
4515         "'%s' is a MODULE procedure which must be declared within a "
4516         "MODULE or SUBMODULE"_err_en_US);
4517     // Don't return here because it can be useful to have the scope set for
4518     // other semantic checks run before we print the errors
4519     isValid = false;
4520   }
4521   Symbol *moduleInterface{nullptr};
4522   if (isValid && hasModulePrefix && !inInterfaceBlock()) {
4523     moduleInterface = FindSeparateModuleProcedureInterface(name);
4524     if (moduleInterface && &moduleInterface->owner() == &currScope()) {
4525       // Subprogram is MODULE FUNCTION or MODULE SUBROUTINE with an interface
4526       // previously defined in the same scope.
4527       if (GenericDetails *
4528           generic{DEREF(FindSymbol(name)).detailsIf<GenericDetails>()}) {
4529         generic->clear_specific();
4530         name.symbol = nullptr;
4531       } else {
4532         EraseSymbol(name);
4533       }
4534     }
4535   }
4536   Symbol &newSymbol{
4537       PushSubprogramScope(name, subpFlag, bindingSpec, hasModulePrefix)};
4538   if (moduleInterface) {
4539     newSymbol.get<SubprogramDetails>().set_moduleInterface(*moduleInterface);
4540     if (moduleInterface->attrs().test(Attr::PRIVATE)) {
4541       SetImplicitAttr(newSymbol, Attr::PRIVATE);
4542     } else if (moduleInterface->attrs().test(Attr::PUBLIC)) {
4543       SetImplicitAttr(newSymbol, Attr::PUBLIC);
4544     }
4545   }
4546   if (entryStmts) {
4547     for (const auto &ref : *entryStmts) {
4548       CreateEntry(*ref, newSymbol);
4549     }
4550   }
4551   return true;
4552 }
4553 
4554 void SubprogramVisitor::HandleLanguageBinding(Symbol *symbol,
4555     std::optional<parser::CharBlock> stmtSource,
4556     const std::optional<parser::LanguageBindingSpec> *binding) {
4557   if (binding && *binding && symbol) {
4558     // Finally process the BIND(C,NAME=name) now that symbols in the name
4559     // expression will resolve to local names if needed.
4560     auto flagRestorer{common::ScopedSet(inSpecificationPart_, false)};
4561     auto originalStmtSource{messageHandler().currStmtSource()};
4562     messageHandler().set_currStmtSource(stmtSource);
4563     BeginAttrs();
4564     Walk(**binding);
4565     SetBindNameOn(*symbol);
4566     symbol->attrs() |= EndAttrs();
4567     messageHandler().set_currStmtSource(originalStmtSource);
4568   }
4569 }
4570 
4571 void SubprogramVisitor::EndSubprogram(
4572     std::optional<parser::CharBlock> stmtSource,
4573     const std::optional<parser::LanguageBindingSpec> *binding,
4574     const ProgramTree::EntryStmtList *entryStmts) {
4575   HandleLanguageBinding(currScope().symbol(), stmtSource, binding);
4576   if (entryStmts) {
4577     for (const auto &ref : *entryStmts) {
4578       const parser::EntryStmt &entryStmt{*ref};
4579       if (const auto &suffix{
4580               std::get<std::optional<parser::Suffix>>(entryStmt.t)}) {
4581         const auto &name{std::get<parser::Name>(entryStmt.t)};
4582         HandleLanguageBinding(name.symbol, name.source, &suffix->binding);
4583       }
4584     }
4585   }
4586   if (inInterfaceBlock() && currScope().symbol()) {
4587     DeclaredPossibleSpecificProc(*currScope().symbol());
4588   }
4589   PopScope();
4590 }
4591 
4592 bool SubprogramVisitor::HandlePreviousCalls(
4593     const parser::Name &name, Symbol &symbol, Symbol::Flag subpFlag) {
4594   // If the extant symbol is a generic, check its homonymous specific
4595   // procedure instead if it has one.
4596   if (auto *generic{symbol.detailsIf<GenericDetails>()}) {
4597     return generic->specific() &&
4598         HandlePreviousCalls(name, *generic->specific(), subpFlag);
4599   } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}; proc &&
4600              !proc->isDummy() &&
4601              !symbol.attrs().HasAny(Attrs{Attr::INTRINSIC, Attr::POINTER})) {
4602     // There's a symbol created for previous calls to this subprogram or
4603     // ENTRY's name.  We have to replace that symbol in situ to avoid the
4604     // obligation to rewrite symbol pointers in the parse tree.
4605     if (!symbol.test(subpFlag)) {
4606       auto other{subpFlag == Symbol::Flag::Subroutine
4607               ? Symbol::Flag::Function
4608               : Symbol::Flag::Subroutine};
4609       // External statements issue an explicit EXTERNAL attribute.
4610       if (symbol.attrs().test(Attr::EXTERNAL) &&
4611           !symbol.implicitAttrs().test(Attr::EXTERNAL)) {
4612         // Warn if external statement previously declared.
4613         context().Warn(common::LanguageFeature::RedundantAttribute, name.source,
4614             "EXTERNAL attribute was already specified on '%s'"_warn_en_US,
4615             name.source);
4616       } else if (symbol.test(other)) {
4617         Say2(name,
4618             subpFlag == Symbol::Flag::Function
4619                 ? "'%s' was previously called as a subroutine"_err_en_US
4620                 : "'%s' was previously called as a function"_err_en_US,
4621             symbol, "Previous call of '%s'"_en_US);
4622       } else {
4623         symbol.set(subpFlag);
4624       }
4625     }
4626     EntityDetails entity;
4627     if (proc->type()) {
4628       entity.set_type(*proc->type());
4629     }
4630     symbol.details() = std::move(entity);
4631     return true;
4632   } else {
4633     return symbol.has<UnknownDetails>() || symbol.has<SubprogramNameDetails>();
4634   }
4635 }
4636 
4637 void SubprogramVisitor::CheckExtantProc(
4638     const parser::Name &name, Symbol::Flag subpFlag) {
4639   if (auto *prev{FindSymbol(name)}) {
4640     if (IsDummy(*prev)) {
4641     } else if (auto *entity{prev->detailsIf<EntityDetails>()};
4642                IsPointer(*prev) && entity && !entity->type()) {
4643       // POINTER attribute set before interface
4644     } else if (inInterfaceBlock() && currScope() != prev->owner()) {
4645       // Procedures in an INTERFACE block do not resolve to symbols
4646       // in scopes between the global scope and the current scope.
4647     } else if (!HandlePreviousCalls(name, *prev, subpFlag)) {
4648       SayAlreadyDeclared(name, *prev);
4649     }
4650   }
4651 }
4652 
4653 Symbol &SubprogramVisitor::PushSubprogramScope(const parser::Name &name,
4654     Symbol::Flag subpFlag, const parser::LanguageBindingSpec *bindingSpec,
4655     bool hasModulePrefix) {
4656   Symbol *symbol{GetSpecificFromGeneric(name)};
4657   if (!symbol) {
4658     if (bindingSpec && currScope().IsGlobal() &&
4659         std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
4660             bindingSpec->t)
4661             .has_value()) {
4662       // Create this new top-level subprogram with a binding label
4663       // in a new global scope, so that its symbol's name won't clash
4664       // with another symbol that has a distinct binding label.
4665       PushScope(Scope::Kind::Global,
4666           &MakeSymbol(context().GetTempName(currScope()), Attrs{},
4667               MiscDetails{MiscDetails::Kind::ScopeName}));
4668     }
4669     CheckExtantProc(name, subpFlag);
4670     symbol = &MakeSymbol(name, SubprogramDetails{});
4671   }
4672   symbol->ReplaceName(name.source);
4673   symbol->set(subpFlag);
4674   PushScope(Scope::Kind::Subprogram, symbol);
4675   if (subpFlag == Symbol::Flag::Function) {
4676     funcResultStack().Push(currScope(), name.source);
4677   }
4678   if (inInterfaceBlock()) {
4679     auto &details{symbol->get<SubprogramDetails>()};
4680     details.set_isInterface();
4681     if (isAbstract()) {
4682       SetExplicitAttr(*symbol, Attr::ABSTRACT);
4683     } else if (hasModulePrefix) {
4684       SetExplicitAttr(*symbol, Attr::MODULE);
4685     } else {
4686       MakeExternal(*symbol);
4687     }
4688     if (isGeneric()) {
4689       Symbol &genericSymbol{GetGenericSymbol()};
4690       if (auto *details{genericSymbol.detailsIf<GenericDetails>()}) {
4691         details->AddSpecificProc(*symbol, name.source);
4692       } else {
4693         CHECK(context().HasError(genericSymbol));
4694       }
4695     }
4696     set_inheritFromParent(false); // interfaces don't inherit, even if MODULE
4697   }
4698   if (Symbol * found{FindSymbol(name)};
4699       found && found->has<HostAssocDetails>()) {
4700     found->set(subpFlag); // PushScope() created symbol
4701   }
4702   return *symbol;
4703 }
4704 
4705 void SubprogramVisitor::PushBlockDataScope(const parser::Name &name) {
4706   if (auto *prev{FindSymbol(name)}) {
4707     if (prev->attrs().test(Attr::EXTERNAL) && prev->has<ProcEntityDetails>()) {
4708       if (prev->test(Symbol::Flag::Subroutine) ||
4709           prev->test(Symbol::Flag::Function)) {
4710         Say2(name, "BLOCK DATA '%s' has been called"_err_en_US, *prev,
4711             "Previous call of '%s'"_en_US);
4712       }
4713       EraseSymbol(name);
4714     }
4715   }
4716   if (name.source.empty()) {
4717     // Don't let unnamed BLOCK DATA conflict with unnamed PROGRAM
4718     PushScope(Scope::Kind::BlockData, nullptr);
4719   } else {
4720     PushScope(Scope::Kind::BlockData, &MakeSymbol(name, SubprogramDetails{}));
4721   }
4722 }
4723 
4724 // If name is a generic, return specific subprogram with the same name.
4725 Symbol *SubprogramVisitor::GetSpecificFromGeneric(const parser::Name &name) {
4726   // Search for the name but don't resolve it
4727   if (auto *symbol{currScope().FindSymbol(name.source)}) {
4728     if (symbol->has<SubprogramNameDetails>()) {
4729       if (inInterfaceBlock()) {
4730         // Subtle: clear any MODULE flag so that the new interface
4731         // symbol doesn't inherit it and ruin the ability to check it.
4732         symbol->attrs().reset(Attr::MODULE);
4733       }
4734     } else if (auto *details{symbol->detailsIf<GenericDetails>()}) {
4735       // found generic, want specific procedure
4736       auto *specific{details->specific()};
4737       Attrs moduleAttr;
4738       if (inInterfaceBlock()) {
4739         if (specific) {
4740           // Defining an interface in a generic of the same name which is
4741           // already shadowing another procedure.  In some cases, the shadowed
4742           // procedure is about to be replaced.
4743           if (specific->has<SubprogramNameDetails>() &&
4744               specific->attrs().test(Attr::MODULE)) {
4745             // The shadowed procedure is a separate module procedure that is
4746             // actually defined later in this (sub)module.
4747             // Define its interface now as a new symbol.
4748             moduleAttr.set(Attr::MODULE);
4749             specific = nullptr;
4750           } else if (&specific->owner() != &symbol->owner()) {
4751             // The shadowed procedure was from an enclosing scope and will be
4752             // overridden by this interface definition.
4753             specific = nullptr;
4754           }
4755           if (!specific) {
4756             details->clear_specific();
4757           }
4758         } else if (const auto *dType{details->derivedType()}) {
4759           if (&dType->owner() != &symbol->owner()) {
4760             // The shadowed derived type was from an enclosing scope and
4761             // will be overridden by this interface definition.
4762             details->clear_derivedType();
4763           }
4764         }
4765       }
4766       if (!specific) {
4767         specific = &currScope().MakeSymbol(
4768             name.source, std::move(moduleAttr), SubprogramDetails{});
4769         if (details->derivedType()) {
4770           // A specific procedure with the same name as a derived type
4771           SayAlreadyDeclared(name, *details->derivedType());
4772         } else {
4773           details->set_specific(Resolve(name, *specific));
4774         }
4775       } else if (isGeneric()) {
4776         SayAlreadyDeclared(name, *specific);
4777       }
4778       if (specific->has<SubprogramNameDetails>()) {
4779         specific->set_details(Details{SubprogramDetails{}});
4780       }
4781       return specific;
4782     }
4783   }
4784   return nullptr;
4785 }
4786 
4787 // DeclarationVisitor implementation
4788 
4789 bool DeclarationVisitor::BeginDecl() {
4790   BeginDeclTypeSpec();
4791   BeginArraySpec();
4792   return BeginAttrs();
4793 }
4794 void DeclarationVisitor::EndDecl() {
4795   EndDeclTypeSpec();
4796   EndArraySpec();
4797   EndAttrs();
4798 }
4799 
4800 bool DeclarationVisitor::CheckUseError(const parser::Name &name) {
4801   return HadUseError(context(), name.source, name.symbol);
4802 }
4803 
4804 // Report error if accessibility of symbol doesn't match isPrivate.
4805 void DeclarationVisitor::CheckAccessibility(
4806     const SourceName &name, bool isPrivate, Symbol &symbol) {
4807   if (symbol.attrs().test(Attr::PRIVATE) != isPrivate) {
4808     Say2(name,
4809         "'%s' does not have the same accessibility as its previous declaration"_err_en_US,
4810         symbol, "Previous declaration of '%s'"_en_US);
4811   }
4812 }
4813 
4814 bool DeclarationVisitor::Pre(const parser::TypeDeclarationStmt &x) {
4815   BeginDecl();
4816   // If INTRINSIC appears as an attr-spec, handle it now as if the
4817   // names had appeared on an INTRINSIC attribute statement beforehand.
4818   for (const auto &attr : std::get<std::list<parser::AttrSpec>>(x.t)) {
4819     if (std::holds_alternative<parser::Intrinsic>(attr.u)) {
4820       for (const auto &decl : std::get<std::list<parser::EntityDecl>>(x.t)) {
4821         DeclareIntrinsic(parser::GetFirstName(decl));
4822       }
4823       break;
4824     }
4825   }
4826   return true;
4827 }
4828 void DeclarationVisitor::Post(const parser::TypeDeclarationStmt &) {
4829   EndDecl();
4830 }
4831 
4832 void DeclarationVisitor::Post(const parser::DimensionStmt::Declaration &x) {
4833   DeclareObjectEntity(std::get<parser::Name>(x.t));
4834 }
4835 void DeclarationVisitor::Post(const parser::CodimensionDecl &x) {
4836   DeclareObjectEntity(std::get<parser::Name>(x.t));
4837 }
4838 
4839 bool DeclarationVisitor::Pre(const parser::Initialization &) {
4840   // Defer inspection of initializers to Initialization() so that the
4841   // symbol being initialized will be available within the initialization
4842   // expression.
4843   return false;
4844 }
4845 
4846 void DeclarationVisitor::Post(const parser::EntityDecl &x) {
4847   const auto &name{std::get<parser::ObjectName>(x.t)};
4848   Attrs attrs{attrs_ ? HandleSaveName(name.source, *attrs_) : Attrs{}};
4849   attrs.set(Attr::INTRINSIC, false); // dealt with in Pre(TypeDeclarationStmt)
4850   Symbol &symbol{DeclareUnknownEntity(name, attrs)};
4851   symbol.ReplaceName(name.source);
4852   SetCUDADataAttr(name.source, symbol, cudaDataAttr());
4853   if (const auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) {
4854     ConvertToObjectEntity(symbol) || ConvertToProcEntity(symbol);
4855     symbol.set(
4856         Symbol::Flag::EntryDummyArgument, false); // forestall excessive errors
4857     Initialization(name, *init, false);
4858   } else if (attrs.test(Attr::PARAMETER)) { // C882, C883
4859     Say(name, "Missing initialization for parameter '%s'"_err_en_US);
4860   }
4861   if (auto *scopeSymbol{currScope().symbol()}) {
4862     if (auto *details{scopeSymbol->detailsIf<DerivedTypeDetails>()}) {
4863       if (details->isDECStructure()) {
4864         details->add_component(symbol);
4865       }
4866     }
4867   }
4868 }
4869 
4870 void DeclarationVisitor::Post(const parser::PointerDecl &x) {
4871   const auto &name{std::get<parser::Name>(x.t)};
4872   if (const auto &deferredShapeSpecs{
4873           std::get<std::optional<parser::DeferredShapeSpecList>>(x.t)}) {
4874     CHECK(arraySpec().empty());
4875     BeginArraySpec();
4876     set_arraySpec(AnalyzeDeferredShapeSpecList(context(), *deferredShapeSpecs));
4877     Symbol &symbol{DeclareObjectEntity(name, Attrs{Attr::POINTER})};
4878     symbol.ReplaceName(name.source);
4879     EndArraySpec();
4880   } else {
4881     if (const auto *symbol{FindInScope(name)}) {
4882       const auto *subp{symbol->detailsIf<SubprogramDetails>()};
4883       if (!symbol->has<UseDetails>() && // error caught elsewhere
4884           !symbol->has<ObjectEntityDetails>() &&
4885           !symbol->has<ProcEntityDetails>() &&
4886           !symbol->CanReplaceDetails(ObjectEntityDetails{}) &&
4887           !symbol->CanReplaceDetails(ProcEntityDetails{}) &&
4888           !(subp && subp->isInterface())) {
4889         Say(name, "'%s' cannot have the POINTER attribute"_err_en_US);
4890       }
4891     }
4892     HandleAttributeStmt(Attr::POINTER, std::get<parser::Name>(x.t));
4893   }
4894 }
4895 
4896 bool DeclarationVisitor::Pre(const parser::BindEntity &x) {
4897   auto kind{std::get<parser::BindEntity::Kind>(x.t)};
4898   auto &name{std::get<parser::Name>(x.t)};
4899   Symbol *symbol;
4900   if (kind == parser::BindEntity::Kind::Object) {
4901     symbol = &HandleAttributeStmt(Attr::BIND_C, name);
4902   } else {
4903     symbol = &MakeCommonBlockSymbol(name);
4904     SetExplicitAttr(*symbol, Attr::BIND_C);
4905   }
4906   // 8.6.4(1)
4907   // Some entities such as named constant or module name need to checked
4908   // elsewhere. This is to skip the ICE caused by setting Bind name for non-name
4909   // things such as data type and also checks for procedures.
4910   if (symbol->has<CommonBlockDetails>() || symbol->has<ObjectEntityDetails>() ||
4911       symbol->has<EntityDetails>()) {
4912     SetBindNameOn(*symbol);
4913   } else {
4914     Say(name,
4915         "Only variable and named common block can be in BIND statement"_err_en_US);
4916   }
4917   return false;
4918 }
4919 bool DeclarationVisitor::Pre(const parser::OldParameterStmt &x) {
4920   inOldStyleParameterStmt_ = true;
4921   Walk(x.v);
4922   inOldStyleParameterStmt_ = false;
4923   return false;
4924 }
4925 bool DeclarationVisitor::Pre(const parser::NamedConstantDef &x) {
4926   auto &name{std::get<parser::NamedConstant>(x.t).v};
4927   auto &symbol{HandleAttributeStmt(Attr::PARAMETER, name)};
4928   ConvertToObjectEntity(symbol);
4929   auto *details{symbol.detailsIf<ObjectEntityDetails>()};
4930   if (!details || symbol.test(Symbol::Flag::CrayPointer) ||
4931       symbol.test(Symbol::Flag::CrayPointee)) {
4932     SayWithDecl(
4933         name, symbol, "PARAMETER attribute not allowed on '%s'"_err_en_US);
4934     return false;
4935   }
4936   const auto &expr{std::get<parser::ConstantExpr>(x.t)};
4937   if (details->init() || symbol.test(Symbol::Flag::InDataStmt)) {
4938     Say(name, "Named constant '%s' already has a value"_err_en_US);
4939   }
4940   if (inOldStyleParameterStmt_) {
4941     // non-standard extension PARAMETER statement (no parentheses)
4942     Walk(expr);
4943     auto folded{EvaluateExpr(expr)};
4944     if (details->type()) {
4945       SayWithDecl(name, symbol,
4946           "Alternative style PARAMETER '%s' must not already have an explicit type"_err_en_US);
4947     } else if (folded) {
4948       auto at{expr.thing.value().source};
4949       if (evaluate::IsActuallyConstant(*folded)) {
4950         if (const auto *type{currScope().GetType(*folded)}) {
4951           if (type->IsPolymorphic()) {
4952             Say(at, "The expression must not be polymorphic"_err_en_US);
4953           } else if (auto shape{ToArraySpec(
4954                          GetFoldingContext(), evaluate::GetShape(*folded))}) {
4955             // The type of the named constant is assumed from the expression.
4956             details->set_type(*type);
4957             details->set_init(std::move(*folded));
4958             details->set_shape(std::move(*shape));
4959           } else {
4960             Say(at, "The expression must have constant shape"_err_en_US);
4961           }
4962         } else {
4963           Say(at, "The expression must have a known type"_err_en_US);
4964         }
4965       } else {
4966         Say(at, "The expression must be a constant of known type"_err_en_US);
4967       }
4968     }
4969   } else {
4970     // standard-conforming PARAMETER statement (with parentheses)
4971     ApplyImplicitRules(symbol);
4972     Walk(expr);
4973     if (auto converted{EvaluateNonPointerInitializer(
4974             symbol, expr, expr.thing.value().source)}) {
4975       details->set_init(std::move(*converted));
4976     }
4977   }
4978   return false;
4979 }
4980 bool DeclarationVisitor::Pre(const parser::NamedConstant &x) {
4981   const parser::Name &name{x.v};
4982   if (!FindSymbol(name)) {
4983     Say(name, "Named constant '%s' not found"_err_en_US);
4984   } else {
4985     CheckUseError(name);
4986   }
4987   return false;
4988 }
4989 
4990 bool DeclarationVisitor::Pre(const parser::Enumerator &enumerator) {
4991   const parser::Name &name{std::get<parser::NamedConstant>(enumerator.t).v};
4992   Symbol *symbol{FindInScope(name)};
4993   if (symbol && !symbol->has<UnknownDetails>()) {
4994     // Contrary to named constants appearing in a PARAMETER statement,
4995     // enumerator names should not have their type, dimension or any other
4996     // attributes defined before they are declared in the enumerator statement,
4997     // with the exception of accessibility.
4998     // This is not explicitly forbidden by the standard, but they are scalars
4999     // which type is left for the compiler to chose, so do not let users try to
5000     // tamper with that.
5001     SayAlreadyDeclared(name, *symbol);
5002     symbol = nullptr;
5003   } else {
5004     // Enumerators are treated as PARAMETER (section 7.6 paragraph (4))
5005     symbol = &MakeSymbol(name, Attrs{Attr::PARAMETER}, ObjectEntityDetails{});
5006     symbol->SetType(context().MakeNumericType(
5007         TypeCategory::Integer, evaluate::CInteger::kind));
5008   }
5009 
5010   if (auto &init{std::get<std::optional<parser::ScalarIntConstantExpr>>(
5011           enumerator.t)}) {
5012     Walk(*init); // Resolve names in expression before evaluation.
5013     if (auto value{EvaluateInt64(context(), *init)}) {
5014       // Cast all init expressions to C_INT so that they can then be
5015       // safely incremented (see 7.6 Note 2).
5016       enumerationState_.value = static_cast<int>(*value);
5017     } else {
5018       Say(name,
5019           "Enumerator value could not be computed "
5020           "from the given expression"_err_en_US);
5021       // Prevent resolution of next enumerators value
5022       enumerationState_.value = std::nullopt;
5023     }
5024   }
5025 
5026   if (symbol) {
5027     if (enumerationState_.value) {
5028       symbol->get<ObjectEntityDetails>().set_init(SomeExpr{
5029           evaluate::Expr<evaluate::CInteger>{*enumerationState_.value}});
5030     } else {
5031       context().SetError(*symbol);
5032     }
5033   }
5034 
5035   if (enumerationState_.value) {
5036     (*enumerationState_.value)++;
5037   }
5038   return false;
5039 }
5040 
5041 void DeclarationVisitor::Post(const parser::EnumDef &) {
5042   enumerationState_ = EnumeratorState{};
5043 }
5044 
5045 bool DeclarationVisitor::Pre(const parser::AccessSpec &x) {
5046   Attr attr{AccessSpecToAttr(x)};
5047   if (!NonDerivedTypeScope().IsModule()) { // C817
5048     Say(currStmtSource().value(),
5049         "%s attribute may only appear in the specification part of a module"_err_en_US,
5050         EnumToString(attr));
5051   }
5052   CheckAndSet(attr);
5053   return false;
5054 }
5055 
5056 bool DeclarationVisitor::Pre(const parser::AsynchronousStmt &x) {
5057   return HandleAttributeStmt(Attr::ASYNCHRONOUS, x.v);
5058 }
5059 bool DeclarationVisitor::Pre(const parser::ContiguousStmt &x) {
5060   return HandleAttributeStmt(Attr::CONTIGUOUS, x.v);
5061 }
5062 bool DeclarationVisitor::Pre(const parser::ExternalStmt &x) {
5063   HandleAttributeStmt(Attr::EXTERNAL, x.v);
5064   for (const auto &name : x.v) {
5065     auto *symbol{FindSymbol(name)};
5066     if (!ConvertToProcEntity(DEREF(symbol), name.source)) {
5067       // Check if previous symbol is an interface.
5068       if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
5069         if (details->isInterface()) {
5070           // Warn if interface previously declared.
5071           context().Warn(common::LanguageFeature::RedundantAttribute,
5072               name.source,
5073               "EXTERNAL attribute was already specified on '%s'"_warn_en_US,
5074               name.source);
5075         }
5076       } else {
5077         SayWithDecl(
5078             name, *symbol, "EXTERNAL attribute not allowed on '%s'"_err_en_US);
5079       }
5080     } else if (symbol->attrs().test(Attr::INTRINSIC)) { // C840
5081       Say(symbol->name(),
5082           "Symbol '%s' cannot have both INTRINSIC and EXTERNAL attributes"_err_en_US,
5083           symbol->name());
5084     }
5085   }
5086   return false;
5087 }
5088 bool DeclarationVisitor::Pre(const parser::IntentStmt &x) {
5089   auto &intentSpec{std::get<parser::IntentSpec>(x.t)};
5090   auto &names{std::get<std::list<parser::Name>>(x.t)};
5091   return CheckNotInBlock("INTENT") && // C1107
5092       HandleAttributeStmt(IntentSpecToAttr(intentSpec), names);
5093 }
5094 bool DeclarationVisitor::Pre(const parser::IntrinsicStmt &x) {
5095   for (const auto &name : x.v) {
5096     DeclareIntrinsic(name);
5097   }
5098   return false;
5099 }
5100 void DeclarationVisitor::DeclareIntrinsic(const parser::Name &name) {
5101   HandleAttributeStmt(Attr::INTRINSIC, name);
5102   if (!IsIntrinsic(name.source, std::nullopt)) {
5103     Say(name.source, "'%s' is not a known intrinsic procedure"_err_en_US);
5104   }
5105   auto &symbol{DEREF(FindSymbol(name))};
5106   if (symbol.has<GenericDetails>()) {
5107     // Generic interface is extending intrinsic; ok
5108   } else if (!ConvertToProcEntity(symbol, name.source)) {
5109     SayWithDecl(
5110         name, symbol, "INTRINSIC attribute not allowed on '%s'"_err_en_US);
5111   } else if (symbol.attrs().test(Attr::EXTERNAL)) { // C840
5112     Say(symbol.name(),
5113         "Symbol '%s' cannot have both EXTERNAL and INTRINSIC attributes"_err_en_US,
5114         symbol.name());
5115   } else {
5116     if (symbol.GetType()) {
5117       // These warnings are worded so that they should make sense in either
5118       // order.
5119       if (auto *msg{context().Warn(
5120               common::UsageWarning::IgnoredIntrinsicFunctionType, symbol.name(),
5121               "Explicit type declaration ignored for intrinsic function '%s'"_warn_en_US,
5122               symbol.name())}) {
5123         msg->Attach(name.source,
5124             "INTRINSIC statement for explicitly-typed '%s'"_en_US, name.source);
5125       }
5126     }
5127     if (!symbol.test(Symbol::Flag::Function) &&
5128         !symbol.test(Symbol::Flag::Subroutine)) {
5129       if (context().intrinsics().IsIntrinsicFunction(name.source.ToString())) {
5130         symbol.set(Symbol::Flag::Function);
5131       } else if (context().intrinsics().IsIntrinsicSubroutine(
5132                      name.source.ToString())) {
5133         symbol.set(Symbol::Flag::Subroutine);
5134       }
5135     }
5136   }
5137 }
5138 bool DeclarationVisitor::Pre(const parser::OptionalStmt &x) {
5139   return CheckNotInBlock("OPTIONAL") && // C1107
5140       HandleAttributeStmt(Attr::OPTIONAL, x.v);
5141 }
5142 bool DeclarationVisitor::Pre(const parser::ProtectedStmt &x) {
5143   return HandleAttributeStmt(Attr::PROTECTED, x.v);
5144 }
5145 bool DeclarationVisitor::Pre(const parser::ValueStmt &x) {
5146   return CheckNotInBlock("VALUE") && // C1107
5147       HandleAttributeStmt(Attr::VALUE, x.v);
5148 }
5149 bool DeclarationVisitor::Pre(const parser::VolatileStmt &x) {
5150   return HandleAttributeStmt(Attr::VOLATILE, x.v);
5151 }
5152 bool DeclarationVisitor::Pre(const parser::CUDAAttributesStmt &x) {
5153   auto attr{std::get<common::CUDADataAttr>(x.t)};
5154   for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
5155     auto *symbol{FindInScope(name)};
5156     if (symbol && symbol->has<UseDetails>()) {
5157       Say(currStmtSource().value(),
5158           "Cannot apply CUDA data attribute to use-associated '%s'"_err_en_US,
5159           name.source);
5160     } else {
5161       if (!symbol) {
5162         symbol = &MakeSymbol(name, ObjectEntityDetails{});
5163       }
5164       SetCUDADataAttr(name.source, *symbol, attr);
5165     }
5166   }
5167   return false;
5168 }
5169 // Handle a statement that sets an attribute on a list of names.
5170 bool DeclarationVisitor::HandleAttributeStmt(
5171     Attr attr, const std::list<parser::Name> &names) {
5172   for (const auto &name : names) {
5173     HandleAttributeStmt(attr, name);
5174   }
5175   return false;
5176 }
5177 Symbol &DeclarationVisitor::HandleAttributeStmt(
5178     Attr attr, const parser::Name &name) {
5179   auto *symbol{FindInScope(name)};
5180   if (attr == Attr::ASYNCHRONOUS || attr == Attr::VOLATILE) {
5181     // these can be set on a symbol that is host-assoc or use-assoc
5182     if (!symbol &&
5183         (currScope().kind() == Scope::Kind::Subprogram ||
5184             currScope().kind() == Scope::Kind::BlockConstruct)) {
5185       if (auto *hostSymbol{FindSymbol(name)}) {
5186         symbol = &MakeHostAssocSymbol(name, *hostSymbol);
5187       }
5188     }
5189   } else if (symbol && symbol->has<UseDetails>()) {
5190     if (symbol->GetUltimate().attrs().test(attr)) {
5191       context().Warn(common::LanguageFeature::RedundantAttribute,
5192           currStmtSource().value(),
5193           "Use-associated '%s' already has '%s' attribute"_warn_en_US,
5194           name.source, EnumToString(attr));
5195     } else {
5196       Say(currStmtSource().value(),
5197           "Cannot change %s attribute on use-associated '%s'"_err_en_US,
5198           EnumToString(attr), name.source);
5199     }
5200     return *symbol;
5201   }
5202   if (!symbol) {
5203     symbol = &MakeSymbol(name, EntityDetails{});
5204   }
5205   if (CheckDuplicatedAttr(name.source, *symbol, attr)) {
5206     HandleSaveName(name.source, Attrs{attr});
5207     SetExplicitAttr(*symbol, attr);
5208   }
5209   return *symbol;
5210 }
5211 // C1107
5212 bool DeclarationVisitor::CheckNotInBlock(const char *stmt) {
5213   if (currScope().kind() == Scope::Kind::BlockConstruct) {
5214     Say(MessageFormattedText{
5215         "%s statement is not allowed in a BLOCK construct"_err_en_US, stmt});
5216     return false;
5217   } else {
5218     return true;
5219   }
5220 }
5221 
5222 void DeclarationVisitor::Post(const parser::ObjectDecl &x) {
5223   CHECK(objectDeclAttr_);
5224   const auto &name{std::get<parser::ObjectName>(x.t)};
5225   DeclareObjectEntity(name, Attrs{*objectDeclAttr_});
5226 }
5227 
5228 // Declare an entity not yet known to be an object or proc.
5229 Symbol &DeclarationVisitor::DeclareUnknownEntity(
5230     const parser::Name &name, Attrs attrs) {
5231   if (!arraySpec().empty() || !coarraySpec().empty()) {
5232     return DeclareObjectEntity(name, attrs);
5233   } else {
5234     Symbol &symbol{DeclareEntity<EntityDetails>(name, attrs)};
5235     if (auto *type{GetDeclTypeSpec()}) {
5236       SetType(name, *type);
5237     }
5238     charInfo_.length.reset();
5239     if (symbol.attrs().test(Attr::EXTERNAL)) {
5240       ConvertToProcEntity(symbol);
5241     } else if (symbol.attrs().HasAny(Attrs{Attr::ALLOCATABLE,
5242                    Attr::ASYNCHRONOUS, Attr::CONTIGUOUS, Attr::PARAMETER,
5243                    Attr::SAVE, Attr::TARGET, Attr::VALUE, Attr::VOLATILE})) {
5244       ConvertToObjectEntity(symbol);
5245     }
5246     if (attrs.test(Attr::BIND_C)) {
5247       SetBindNameOn(symbol);
5248     }
5249     return symbol;
5250   }
5251 }
5252 
5253 bool DeclarationVisitor::HasCycle(
5254     const Symbol &procSymbol, const Symbol *interface) {
5255   SourceOrderedSymbolSet procsInCycle;
5256   procsInCycle.insert(procSymbol);
5257   while (interface) {
5258     if (procsInCycle.count(*interface) > 0) {
5259       for (const auto &procInCycle : procsInCycle) {
5260         Say(procInCycle->name(),
5261             "The interface for procedure '%s' is recursively defined"_err_en_US,
5262             procInCycle->name());
5263         context().SetError(*procInCycle);
5264       }
5265       return true;
5266     } else if (const auto *procDetails{
5267                    interface->detailsIf<ProcEntityDetails>()}) {
5268       procsInCycle.insert(*interface);
5269       interface = procDetails->procInterface();
5270     } else {
5271       break;
5272     }
5273   }
5274   return false;
5275 }
5276 
5277 Symbol &DeclarationVisitor::DeclareProcEntity(
5278     const parser::Name &name, Attrs attrs, const Symbol *interface) {
5279   Symbol *proc{nullptr};
5280   if (auto *extant{FindInScope(name)}) {
5281     if (auto *d{extant->detailsIf<GenericDetails>()}; d && !d->derivedType()) {
5282       // procedure pointer with same name as a generic
5283       if (auto *specific{d->specific()}) {
5284         SayAlreadyDeclared(name, *specific);
5285       } else {
5286         // Create the ProcEntityDetails symbol in the scope as the "specific()"
5287         // symbol behind an existing GenericDetails symbol of the same name.
5288         proc = &Resolve(name,
5289             currScope().MakeSymbol(name.source, attrs, ProcEntityDetails{}));
5290         d->set_specific(*proc);
5291       }
5292     }
5293   }
5294   Symbol &symbol{proc ? *proc : DeclareEntity<ProcEntityDetails>(name, attrs)};
5295   if (auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
5296     if (context().HasError(symbol)) {
5297     } else if (HasCycle(symbol, interface)) {
5298       return symbol;
5299     } else if (interface && (details->procInterface() || details->type())) {
5300       SayWithDecl(name, symbol,
5301           "The interface for procedure '%s' has already been declared"_err_en_US);
5302       context().SetError(symbol);
5303     } else if (interface) {
5304       details->set_procInterfaces(
5305           *interface, BypassGeneric(interface->GetUltimate()));
5306       if (interface->test(Symbol::Flag::Function)) {
5307         symbol.set(Symbol::Flag::Function);
5308       } else if (interface->test(Symbol::Flag::Subroutine)) {
5309         symbol.set(Symbol::Flag::Subroutine);
5310       }
5311     } else if (auto *type{GetDeclTypeSpec()}) {
5312       SetType(name, *type);
5313       symbol.set(Symbol::Flag::Function);
5314     }
5315     SetBindNameOn(symbol);
5316     SetPassNameOn(symbol);
5317   }
5318   return symbol;
5319 }
5320 
5321 Symbol &DeclarationVisitor::DeclareObjectEntity(
5322     const parser::Name &name, Attrs attrs) {
5323   Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, attrs)};
5324   if (auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
5325     if (auto *type{GetDeclTypeSpec()}) {
5326       SetType(name, *type);
5327     }
5328     if (!arraySpec().empty()) {
5329       if (details->IsArray()) {
5330         if (!context().HasError(symbol)) {
5331           Say(name,
5332               "The dimensions of '%s' have already been declared"_err_en_US);
5333           context().SetError(symbol);
5334         }
5335       } else if (MustBeScalar(symbol)) {
5336         context().Warn(common::UsageWarning::PreviousScalarUse, name.source,
5337             "'%s' appeared earlier as a scalar actual argument to a specification function"_warn_en_US,
5338             name.source);
5339       } else if (details->init() || symbol.test(Symbol::Flag::InDataStmt)) {
5340         Say(name, "'%s' was initialized earlier as a scalar"_err_en_US);
5341       } else {
5342         details->set_shape(arraySpec());
5343       }
5344     }
5345     if (!coarraySpec().empty()) {
5346       if (details->IsCoarray()) {
5347         if (!context().HasError(symbol)) {
5348           Say(name,
5349               "The codimensions of '%s' have already been declared"_err_en_US);
5350           context().SetError(symbol);
5351         }
5352       } else {
5353         details->set_coshape(coarraySpec());
5354       }
5355     }
5356     SetBindNameOn(symbol);
5357   }
5358   ClearArraySpec();
5359   ClearCoarraySpec();
5360   charInfo_.length.reset();
5361   return symbol;
5362 }
5363 
5364 void DeclarationVisitor::Post(const parser::IntegerTypeSpec &x) {
5365   if (!isVectorType_) {
5366     SetDeclTypeSpec(MakeNumericType(TypeCategory::Integer, x.v));
5367   }
5368 }
5369 void DeclarationVisitor::Post(const parser::UnsignedTypeSpec &x) {
5370   if (!isVectorType_) {
5371     if (!context().IsEnabled(common::LanguageFeature::Unsigned) &&
5372         !context().AnyFatalError()) {
5373       context().Say("-funsigned is required to enable UNSIGNED type"_err_en_US);
5374     }
5375     SetDeclTypeSpec(MakeNumericType(TypeCategory::Unsigned, x.v));
5376   }
5377 }
5378 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Real &x) {
5379   if (!isVectorType_) {
5380     SetDeclTypeSpec(MakeNumericType(TypeCategory::Real, x.kind));
5381   }
5382 }
5383 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Complex &x) {
5384   SetDeclTypeSpec(MakeNumericType(TypeCategory::Complex, x.kind));
5385 }
5386 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Logical &x) {
5387   SetDeclTypeSpec(MakeLogicalType(x.kind));
5388 }
5389 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Character &) {
5390   if (!charInfo_.length) {
5391     charInfo_.length = ParamValue{1, common::TypeParamAttr::Len};
5392   }
5393   if (!charInfo_.kind) {
5394     charInfo_.kind =
5395         KindExpr{context().GetDefaultKind(TypeCategory::Character)};
5396   }
5397   SetDeclTypeSpec(currScope().MakeCharacterType(
5398       std::move(*charInfo_.length), std::move(*charInfo_.kind)));
5399   charInfo_ = {};
5400 }
5401 void DeclarationVisitor::Post(const parser::CharSelector::LengthAndKind &x) {
5402   charInfo_.kind = EvaluateSubscriptIntExpr(x.kind);
5403   std::optional<std::int64_t> intKind{ToInt64(charInfo_.kind)};
5404   if (intKind &&
5405       !context().targetCharacteristics().IsTypeEnabled(
5406           TypeCategory::Character, *intKind)) { // C715, C719
5407     Say(currStmtSource().value(),
5408         "KIND value (%jd) not valid for CHARACTER"_err_en_US, *intKind);
5409     charInfo_.kind = std::nullopt; // prevent further errors
5410   }
5411   if (x.length) {
5412     charInfo_.length = GetParamValue(*x.length, common::TypeParamAttr::Len);
5413   }
5414 }
5415 void DeclarationVisitor::Post(const parser::CharLength &x) {
5416   if (const auto *length{std::get_if<std::uint64_t>(&x.u)}) {
5417     charInfo_.length = ParamValue{
5418         static_cast<ConstantSubscript>(*length), common::TypeParamAttr::Len};
5419   } else {
5420     charInfo_.length = GetParamValue(
5421         std::get<parser::TypeParamValue>(x.u), common::TypeParamAttr::Len);
5422   }
5423 }
5424 void DeclarationVisitor::Post(const parser::LengthSelector &x) {
5425   if (const auto *param{std::get_if<parser::TypeParamValue>(&x.u)}) {
5426     charInfo_.length = GetParamValue(*param, common::TypeParamAttr::Len);
5427   }
5428 }
5429 
5430 bool DeclarationVisitor::Pre(const parser::KindParam &x) {
5431   if (const auto *kind{std::get_if<
5432           parser::Scalar<parser::Integer<parser::Constant<parser::Name>>>>(
5433           &x.u)}) {
5434     const parser::Name &name{kind->thing.thing.thing};
5435     if (!FindSymbol(name)) {
5436       Say(name, "Parameter '%s' not found"_err_en_US);
5437     }
5438   }
5439   return false;
5440 }
5441 
5442 int DeclarationVisitor::GetVectorElementKind(
5443     TypeCategory category, const std::optional<parser::KindSelector> &kind) {
5444   KindExpr value{GetKindParamExpr(category, kind)};
5445   if (auto known{evaluate::ToInt64(value)}) {
5446     return static_cast<int>(*known);
5447   }
5448   common::die("Vector element kind must be known at compile-time");
5449 }
5450 
5451 bool DeclarationVisitor::Pre(const parser::VectorTypeSpec &) {
5452   // PowerPC vector types are allowed only on Power architectures.
5453   if (!currScope().context().targetCharacteristics().isPPC()) {
5454     Say(currStmtSource().value(),
5455         "Vector type is only supported for PowerPC"_err_en_US);
5456     isVectorType_ = false;
5457     return false;
5458   }
5459   isVectorType_ = true;
5460   return true;
5461 }
5462 // Create semantic::DerivedTypeSpec for Vector types here.
5463 void DeclarationVisitor::Post(const parser::VectorTypeSpec &x) {
5464   llvm::StringRef typeName;
5465   llvm::SmallVector<ParamValue> typeParams;
5466   DerivedTypeSpec::Category vectorCategory;
5467 
5468   isVectorType_ = false;
5469   common::visit(
5470       common::visitors{
5471           [&](const parser::IntrinsicVectorTypeSpec &y) {
5472             vectorCategory = DerivedTypeSpec::Category::IntrinsicVector;
5473             int vecElemKind = 0;
5474             typeName = "__builtin_ppc_intrinsic_vector";
5475             common::visit(
5476                 common::visitors{
5477                     [&](const parser::IntegerTypeSpec &z) {
5478                       vecElemKind = GetVectorElementKind(
5479                           TypeCategory::Integer, std::move(z.v));
5480                       typeParams.push_back(ParamValue(
5481                           static_cast<common::ConstantSubscript>(
5482                               common::VectorElementCategory::Integer),
5483                           common::TypeParamAttr::Kind));
5484                     },
5485                     [&](const parser::IntrinsicTypeSpec::Real &z) {
5486                       vecElemKind = GetVectorElementKind(
5487                           TypeCategory::Real, std::move(z.kind));
5488                       typeParams.push_back(
5489                           ParamValue(static_cast<common::ConstantSubscript>(
5490                                          common::VectorElementCategory::Real),
5491                               common::TypeParamAttr::Kind));
5492                     },
5493                     [&](const parser::UnsignedTypeSpec &z) {
5494                       vecElemKind = GetVectorElementKind(
5495                           TypeCategory::Integer, std::move(z.v));
5496                       typeParams.push_back(ParamValue(
5497                           static_cast<common::ConstantSubscript>(
5498                               common::VectorElementCategory::Unsigned),
5499                           common::TypeParamAttr::Kind));
5500                     },
5501                 },
5502                 y.v.u);
5503             typeParams.push_back(
5504                 ParamValue(static_cast<common::ConstantSubscript>(vecElemKind),
5505                     common::TypeParamAttr::Kind));
5506           },
5507           [&](const parser::VectorTypeSpec::PairVectorTypeSpec &y) {
5508             vectorCategory = DerivedTypeSpec::Category::PairVector;
5509             typeName = "__builtin_ppc_pair_vector";
5510           },
5511           [&](const parser::VectorTypeSpec::QuadVectorTypeSpec &y) {
5512             vectorCategory = DerivedTypeSpec::Category::QuadVector;
5513             typeName = "__builtin_ppc_quad_vector";
5514           },
5515       },
5516       x.u);
5517 
5518   auto ppcBuiltinTypesScope = currScope().context().GetPPCBuiltinTypesScope();
5519   if (!ppcBuiltinTypesScope) {
5520     common::die("INTERNAL: The __ppc_types module was not found ");
5521   }
5522 
5523   auto iter{ppcBuiltinTypesScope->find(
5524       semantics::SourceName{typeName.data(), typeName.size()})};
5525   if (iter == ppcBuiltinTypesScope->cend()) {
5526     common::die("INTERNAL: The __ppc_types module does not define "
5527                 "the type '%s'",
5528         typeName.data());
5529   }
5530 
5531   const semantics::Symbol &typeSymbol{*iter->second};
5532   DerivedTypeSpec vectorDerivedType{typeName.data(), typeSymbol};
5533   vectorDerivedType.set_category(vectorCategory);
5534   if (typeParams.size()) {
5535     vectorDerivedType.AddRawParamValue(nullptr, std::move(typeParams[0]));
5536     vectorDerivedType.AddRawParamValue(nullptr, std::move(typeParams[1]));
5537     vectorDerivedType.CookParameters(GetFoldingContext());
5538   }
5539 
5540   if (const DeclTypeSpec *
5541       extant{ppcBuiltinTypesScope->FindInstantiatedDerivedType(
5542           vectorDerivedType, DeclTypeSpec::Category::TypeDerived)}) {
5543     // This derived type and parameter expressions (if any) are already present
5544     // in the __ppc_intrinsics scope.
5545     SetDeclTypeSpec(*extant);
5546   } else {
5547     DeclTypeSpec &type{ppcBuiltinTypesScope->MakeDerivedType(
5548         DeclTypeSpec::Category::TypeDerived, std::move(vectorDerivedType))};
5549     DerivedTypeSpec &derived{type.derivedTypeSpec()};
5550     auto restorer{
5551         GetFoldingContext().messages().SetLocation(currStmtSource().value())};
5552     derived.Instantiate(*ppcBuiltinTypesScope);
5553     SetDeclTypeSpec(type);
5554   }
5555 }
5556 
5557 bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Type &) {
5558   CHECK(GetDeclTypeSpecCategory() == DeclTypeSpec::Category::TypeDerived);
5559   return true;
5560 }
5561 
5562 void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Type &type) {
5563   const parser::Name &derivedName{std::get<parser::Name>(type.derived.t)};
5564   if (const Symbol * derivedSymbol{derivedName.symbol}) {
5565     CheckForAbstractType(*derivedSymbol); // C706
5566   }
5567 }
5568 
5569 bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Class &) {
5570   SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived);
5571   return true;
5572 }
5573 
5574 void DeclarationVisitor::Post(
5575     const parser::DeclarationTypeSpec::Class &parsedClass) {
5576   const auto &typeName{std::get<parser::Name>(parsedClass.derived.t)};
5577   if (auto spec{ResolveDerivedType(typeName)};
5578       spec && !IsExtensibleType(&*spec)) { // C705
5579     SayWithDecl(typeName, *typeName.symbol,
5580         "Non-extensible derived type '%s' may not be used with CLASS"
5581         " keyword"_err_en_US);
5582   }
5583 }
5584 
5585 void DeclarationVisitor::Post(const parser::DerivedTypeSpec &x) {
5586   const auto &typeName{std::get<parser::Name>(x.t)};
5587   auto spec{ResolveDerivedType(typeName)};
5588   if (!spec) {
5589     return;
5590   }
5591   bool seenAnyName{false};
5592   for (const auto &typeParamSpec :
5593       std::get<std::list<parser::TypeParamSpec>>(x.t)) {
5594     const auto &optKeyword{
5595         std::get<std::optional<parser::Keyword>>(typeParamSpec.t)};
5596     std::optional<SourceName> name;
5597     if (optKeyword) {
5598       seenAnyName = true;
5599       name = optKeyword->v.source;
5600     } else if (seenAnyName) {
5601       Say(typeName.source, "Type parameter value must have a name"_err_en_US);
5602       continue;
5603     }
5604     const auto &value{std::get<parser::TypeParamValue>(typeParamSpec.t)};
5605     // The expressions in a derived type specifier whose values define
5606     // non-defaulted type parameters are evaluated (folded) in the enclosing
5607     // scope.  The KIND/LEN distinction is resolved later in
5608     // DerivedTypeSpec::CookParameters().
5609     ParamValue param{GetParamValue(value, common::TypeParamAttr::Kind)};
5610     if (!param.isExplicit() || param.GetExplicit()) {
5611       spec->AddRawParamValue(
5612           common::GetPtrFromOptional(optKeyword), std::move(param));
5613     }
5614   }
5615   // The DerivedTypeSpec *spec is used initially as a search key.
5616   // If it turns out to have the same name and actual parameter
5617   // value expressions as another DerivedTypeSpec in the current
5618   // scope does, then we'll use that extant spec; otherwise, when this
5619   // spec is distinct from all derived types previously instantiated
5620   // in the current scope, this spec will be moved into that collection.
5621   const auto &dtDetails{spec->typeSymbol().get<DerivedTypeDetails>()};
5622   auto category{GetDeclTypeSpecCategory()};
5623   if (dtDetails.isForwardReferenced()) {
5624     DeclTypeSpec &type{currScope().MakeDerivedType(category, std::move(*spec))};
5625     SetDeclTypeSpec(type);
5626     return;
5627   }
5628   // Normalize parameters to produce a better search key.
5629   spec->CookParameters(GetFoldingContext());
5630   if (!spec->MightBeParameterized()) {
5631     spec->EvaluateParameters(context());
5632   }
5633   if (const DeclTypeSpec *
5634       extant{currScope().FindInstantiatedDerivedType(*spec, category)}) {
5635     // This derived type and parameter expressions (if any) are already present
5636     // in this scope.
5637     SetDeclTypeSpec(*extant);
5638   } else {
5639     DeclTypeSpec &type{currScope().MakeDerivedType(category, std::move(*spec))};
5640     DerivedTypeSpec &derived{type.derivedTypeSpec()};
5641     if (derived.MightBeParameterized() &&
5642         currScope().IsParameterizedDerivedType()) {
5643       // Defer instantiation; use the derived type's definition's scope.
5644       derived.set_scope(DEREF(spec->typeSymbol().scope()));
5645     } else if (&currScope() == spec->typeSymbol().scope()) {
5646       // Direct recursive use of a type in the definition of one of its
5647       // components: defer instantiation
5648     } else {
5649       auto restorer{
5650           GetFoldingContext().messages().SetLocation(currStmtSource().value())};
5651       derived.Instantiate(currScope());
5652     }
5653     SetDeclTypeSpec(type);
5654   }
5655   // Capture the DerivedTypeSpec in the parse tree for use in building
5656   // structure constructor expressions.
5657   x.derivedTypeSpec = &GetDeclTypeSpec()->derivedTypeSpec();
5658 }
5659 
5660 void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Record &rec) {
5661   const auto &typeName{rec.v};
5662   if (auto spec{ResolveDerivedType(typeName)}) {
5663     spec->CookParameters(GetFoldingContext());
5664     spec->EvaluateParameters(context());
5665     if (const DeclTypeSpec *
5666         extant{currScope().FindInstantiatedDerivedType(
5667             *spec, DeclTypeSpec::TypeDerived)}) {
5668       SetDeclTypeSpec(*extant);
5669     } else {
5670       Say(typeName.source, "%s is not a known STRUCTURE"_err_en_US,
5671           typeName.source);
5672     }
5673   }
5674 }
5675 
5676 // The descendents of DerivedTypeDef in the parse tree are visited directly
5677 // in this Pre() routine so that recursive use of the derived type can be
5678 // supported in the components.
5679 bool DeclarationVisitor::Pre(const parser::DerivedTypeDef &x) {
5680   auto &stmt{std::get<parser::Statement<parser::DerivedTypeStmt>>(x.t)};
5681   Walk(stmt);
5682   Walk(std::get<std::list<parser::Statement<parser::TypeParamDefStmt>>>(x.t));
5683   auto &scope{currScope()};
5684   CHECK(scope.symbol());
5685   CHECK(scope.symbol()->scope() == &scope);
5686   auto &details{scope.symbol()->get<DerivedTypeDetails>()};
5687   for (auto &paramName : std::get<std::list<parser::Name>>(stmt.statement.t)) {
5688     if (auto *symbol{FindInScope(scope, paramName)}) {
5689       if (auto *details{symbol->detailsIf<TypeParamDetails>()}) {
5690         if (!details->attr()) {
5691           Say(paramName,
5692               "No definition found for type parameter '%s'"_err_en_US); // C742
5693         }
5694       }
5695     }
5696   }
5697   Walk(std::get<std::list<parser::Statement<parser::PrivateOrSequence>>>(x.t));
5698   const auto &componentDefs{
5699       std::get<std::list<parser::Statement<parser::ComponentDefStmt>>>(x.t)};
5700   Walk(componentDefs);
5701   if (derivedTypeInfo_.sequence) {
5702     details.set_sequence(true);
5703     if (componentDefs.empty()) {
5704       // F'2023 C745 - not enforced by any compiler
5705       context().Warn(common::LanguageFeature::EmptySequenceType, stmt.source,
5706           "A sequence type should have at least one component"_warn_en_US);
5707     }
5708     if (!details.paramDeclOrder().empty()) { // C740
5709       Say(stmt.source,
5710           "A sequence type may not have type parameters"_err_en_US);
5711     }
5712     if (derivedTypeInfo_.extends) { // C735
5713       Say(stmt.source,
5714           "A sequence type may not have the EXTENDS attribute"_err_en_US);
5715     }
5716   }
5717   Walk(std::get<std::optional<parser::TypeBoundProcedurePart>>(x.t));
5718   Walk(std::get<parser::Statement<parser::EndTypeStmt>>(x.t));
5719   details.set_isForwardReferenced(false);
5720   derivedTypeInfo_ = {};
5721   PopScope();
5722   return false;
5723 }
5724 
5725 bool DeclarationVisitor::Pre(const parser::DerivedTypeStmt &) {
5726   return BeginAttrs();
5727 }
5728 void DeclarationVisitor::Post(const parser::DerivedTypeStmt &x) {
5729   auto &name{std::get<parser::Name>(x.t)};
5730   // Resolve the EXTENDS() clause before creating the derived
5731   // type's symbol to foil attempts to recursively extend a type.
5732   auto *extendsName{derivedTypeInfo_.extends};
5733   std::optional<DerivedTypeSpec> extendsType{
5734       ResolveExtendsType(name, extendsName)};
5735   DerivedTypeDetails derivedTypeDetails;
5736   // Catch any premature structure constructors within the definition
5737   derivedTypeDetails.set_isForwardReferenced(true);
5738   auto &symbol{MakeSymbol(name, GetAttrs(), std::move(derivedTypeDetails))};
5739   symbol.ReplaceName(name.source);
5740   derivedTypeInfo_.type = &symbol;
5741   PushScope(Scope::Kind::DerivedType, &symbol);
5742   if (extendsType) {
5743     // Declare the "parent component"; private if the type is.
5744     // Any symbol stored in the EXTENDS() clause is temporarily
5745     // hidden so that a new symbol can be created for the parent
5746     // component without producing spurious errors about already
5747     // existing.
5748     const Symbol &extendsSymbol{extendsType->typeSymbol()};
5749     auto restorer{common::ScopedSet(extendsName->symbol, nullptr)};
5750     if (OkToAddComponent(*extendsName, &extendsSymbol)) {
5751       auto &comp{DeclareEntity<ObjectEntityDetails>(*extendsName, Attrs{})};
5752       comp.attrs().set(
5753           Attr::PRIVATE, extendsSymbol.attrs().test(Attr::PRIVATE));
5754       comp.implicitAttrs().set(
5755           Attr::PRIVATE, extendsSymbol.implicitAttrs().test(Attr::PRIVATE));
5756       comp.set(Symbol::Flag::ParentComp);
5757       DeclTypeSpec &type{currScope().MakeDerivedType(
5758           DeclTypeSpec::TypeDerived, std::move(*extendsType))};
5759       type.derivedTypeSpec().set_scope(DEREF(extendsSymbol.scope()));
5760       comp.SetType(type);
5761       DerivedTypeDetails &details{symbol.get<DerivedTypeDetails>()};
5762       details.add_component(comp);
5763     }
5764   }
5765   // Create symbols now for type parameters so that they shadow names
5766   // from the enclosing specification part.
5767   if (auto *details{symbol.detailsIf<DerivedTypeDetails>()}) {
5768     for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
5769       if (Symbol * symbol{MakeTypeSymbol(name, TypeParamDetails{})}) {
5770         details->add_paramNameOrder(*symbol);
5771       }
5772     }
5773   }
5774   EndAttrs();
5775 }
5776 
5777 void DeclarationVisitor::Post(const parser::TypeParamDefStmt &x) {
5778   auto *type{GetDeclTypeSpec()};
5779   DerivedTypeDetails *derivedDetails{nullptr};
5780   if (Symbol * dtSym{currScope().symbol()}) {
5781     derivedDetails = dtSym->detailsIf<DerivedTypeDetails>();
5782   }
5783   auto attr{std::get<common::TypeParamAttr>(x.t)};
5784   for (auto &decl : std::get<std::list<parser::TypeParamDecl>>(x.t)) {
5785     auto &name{std::get<parser::Name>(decl.t)};
5786     if (Symbol * symbol{FindInScope(currScope(), name)}) {
5787       if (auto *paramDetails{symbol->detailsIf<TypeParamDetails>()}) {
5788         if (!paramDetails->attr()) {
5789           paramDetails->set_attr(attr);
5790           SetType(name, *type);
5791           if (auto &init{std::get<std::optional<parser::ScalarIntConstantExpr>>(
5792                   decl.t)}) {
5793             if (auto maybeExpr{AnalyzeExpr(context(), *init)}) {
5794               if (auto *intExpr{std::get_if<SomeIntExpr>(&maybeExpr->u)}) {
5795                 paramDetails->set_init(std::move(*intExpr));
5796               }
5797             }
5798           }
5799           if (derivedDetails) {
5800             derivedDetails->add_paramDeclOrder(*symbol);
5801           }
5802         } else {
5803           Say(name,
5804               "Type parameter '%s' was already declared in this derived type"_err_en_US);
5805         }
5806       }
5807     } else {
5808       Say(name, "'%s' is not a parameter of this derived type"_err_en_US);
5809     }
5810   }
5811   EndDecl();
5812 }
5813 bool DeclarationVisitor::Pre(const parser::TypeAttrSpec::Extends &x) {
5814   if (derivedTypeInfo_.extends) {
5815     Say(currStmtSource().value(),
5816         "Attribute 'EXTENDS' cannot be used more than once"_err_en_US);
5817   } else {
5818     derivedTypeInfo_.extends = &x.v;
5819   }
5820   return false;
5821 }
5822 
5823 bool DeclarationVisitor::Pre(const parser::PrivateStmt &) {
5824   if (!currScope().parent().IsModule()) {
5825     Say("PRIVATE is only allowed in a derived type that is"
5826         " in a module"_err_en_US); // C766
5827   } else if (derivedTypeInfo_.sawContains) {
5828     derivedTypeInfo_.privateBindings = true;
5829   } else if (!derivedTypeInfo_.privateComps) {
5830     derivedTypeInfo_.privateComps = true;
5831   } else { // C738
5832     context().Warn(common::LanguageFeature::RedundantAttribute,
5833         "PRIVATE should not appear more than once in derived type components"_warn_en_US);
5834   }
5835   return false;
5836 }
5837 bool DeclarationVisitor::Pre(const parser::SequenceStmt &) {
5838   if (derivedTypeInfo_.sequence) { // C738
5839     context().Warn(common::LanguageFeature::RedundantAttribute,
5840         "SEQUENCE should not appear more than once in derived type components"_warn_en_US);
5841   }
5842   derivedTypeInfo_.sequence = true;
5843   return false;
5844 }
5845 void DeclarationVisitor::Post(const parser::ComponentDecl &x) {
5846   const auto &name{std::get<parser::Name>(x.t)};
5847   auto attrs{GetAttrs()};
5848   if (derivedTypeInfo_.privateComps &&
5849       !attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
5850     attrs.set(Attr::PRIVATE);
5851   }
5852   if (const auto *declType{GetDeclTypeSpec()}) {
5853     if (const auto *derived{declType->AsDerived()}) {
5854       if (!attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) {
5855         if (derivedTypeInfo_.type == &derived->typeSymbol()) { // C744
5856           Say("Recursive use of the derived type requires "
5857               "POINTER or ALLOCATABLE"_err_en_US);
5858         }
5859       }
5860       // TODO: This would be more appropriate in CheckDerivedType()
5861       if (auto it{FindCoarrayUltimateComponent(*derived)}) { // C748
5862         std::string ultimateName{it.BuildResultDesignatorName()};
5863         // Strip off the leading "%"
5864         if (ultimateName.length() > 1) {
5865           ultimateName.erase(0, 1);
5866           if (attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) {
5867             evaluate::AttachDeclaration(
5868                 Say(name.source,
5869                     "A component with a POINTER or ALLOCATABLE attribute may "
5870                     "not "
5871                     "be of a type with a coarray ultimate component (named "
5872                     "'%s')"_err_en_US,
5873                     ultimateName),
5874                 derived->typeSymbol());
5875           }
5876           if (!arraySpec().empty() || !coarraySpec().empty()) {
5877             evaluate::AttachDeclaration(
5878                 Say(name.source,
5879                     "An array or coarray component may not be of a type with a "
5880                     "coarray ultimate component (named '%s')"_err_en_US,
5881                     ultimateName),
5882                 derived->typeSymbol());
5883           }
5884         }
5885       }
5886     }
5887   }
5888   if (OkToAddComponent(name)) {
5889     auto &symbol{DeclareObjectEntity(name, attrs)};
5890     SetCUDADataAttr(name.source, symbol, cudaDataAttr());
5891     if (symbol.has<ObjectEntityDetails>()) {
5892       if (auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) {
5893         Initialization(name, *init, true);
5894       }
5895     }
5896     currScope().symbol()->get<DerivedTypeDetails>().add_component(symbol);
5897   }
5898   ClearArraySpec();
5899   ClearCoarraySpec();
5900 }
5901 void DeclarationVisitor::Post(const parser::FillDecl &x) {
5902   // Replace "%FILL" with a distinct generated name
5903   const auto &name{std::get<parser::Name>(x.t)};
5904   const_cast<SourceName &>(name.source) = context().GetTempName(currScope());
5905   if (OkToAddComponent(name)) {
5906     auto &symbol{DeclareObjectEntity(name, GetAttrs())};
5907     currScope().symbol()->get<DerivedTypeDetails>().add_component(symbol);
5908   }
5909   ClearArraySpec();
5910 }
5911 bool DeclarationVisitor::Pre(const parser::ProcedureDeclarationStmt &x) {
5912   CHECK(!interfaceName_);
5913   const auto &procAttrSpec{std::get<std::list<parser::ProcAttrSpec>>(x.t)};
5914   for (const parser::ProcAttrSpec &procAttr : procAttrSpec) {
5915     if (auto *bindC{std::get_if<parser::LanguageBindingSpec>(&procAttr.u)}) {
5916       if (std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
5917               bindC->t)
5918               .has_value()) {
5919         if (std::get<std::list<parser::ProcDecl>>(x.t).size() > 1) {
5920           Say(context().location().value(),
5921               "A procedure declaration statement with a binding name may not declare multiple procedures"_err_en_US);
5922         }
5923         break;
5924       }
5925     }
5926   }
5927   return BeginDecl();
5928 }
5929 void DeclarationVisitor::Post(const parser::ProcedureDeclarationStmt &) {
5930   interfaceName_ = nullptr;
5931   EndDecl();
5932 }
5933 bool DeclarationVisitor::Pre(const parser::DataComponentDefStmt &x) {
5934   // Overrides parse tree traversal so as to handle attributes first,
5935   // so POINTER & ALLOCATABLE enable forward references to derived types.
5936   Walk(std::get<std::list<parser::ComponentAttrSpec>>(x.t));
5937   set_allowForwardReferenceToDerivedType(
5938       GetAttrs().HasAny({Attr::POINTER, Attr::ALLOCATABLE}));
5939   Walk(std::get<parser::DeclarationTypeSpec>(x.t));
5940   set_allowForwardReferenceToDerivedType(false);
5941   if (derivedTypeInfo_.sequence) { // C740
5942     if (const auto *declType{GetDeclTypeSpec()}) {
5943       if (!declType->AsIntrinsic() && !declType->IsSequenceType() &&
5944           !InModuleFile()) {
5945         if (GetAttrs().test(Attr::POINTER) &&
5946             context().IsEnabled(common::LanguageFeature::PointerInSeqType)) {
5947           context().Warn(common::LanguageFeature::PointerInSeqType,
5948               "A sequence type data component that is a pointer to a non-sequence type is not standard"_port_en_US);
5949         } else {
5950           Say("A sequence type data component must either be of an intrinsic type or a derived sequence type"_err_en_US);
5951         }
5952       }
5953     }
5954   }
5955   Walk(std::get<std::list<parser::ComponentOrFill>>(x.t));
5956   return false;
5957 }
5958 bool DeclarationVisitor::Pre(const parser::ProcComponentDefStmt &) {
5959   CHECK(!interfaceName_);
5960   return true;
5961 }
5962 void DeclarationVisitor::Post(const parser::ProcComponentDefStmt &) {
5963   interfaceName_ = nullptr;
5964 }
5965 bool DeclarationVisitor::Pre(const parser::ProcPointerInit &x) {
5966   if (auto *name{std::get_if<parser::Name>(&x.u)}) {
5967     return !NameIsKnownOrIntrinsic(*name) && !CheckUseError(*name);
5968   } else {
5969     const auto &null{DEREF(std::get_if<parser::NullInit>(&x.u))};
5970     Walk(null);
5971     if (auto nullInit{EvaluateExpr(null)}) {
5972       if (!evaluate::IsNullPointer(*nullInit)) {
5973         Say(null.v.value().source,
5974             "Procedure pointer initializer must be a name or intrinsic NULL()"_err_en_US);
5975       }
5976     }
5977     return false;
5978   }
5979 }
5980 void DeclarationVisitor::Post(const parser::ProcInterface &x) {
5981   if (auto *name{std::get_if<parser::Name>(&x.u)}) {
5982     interfaceName_ = name;
5983     NoteInterfaceName(*name);
5984   }
5985 }
5986 void DeclarationVisitor::Post(const parser::ProcDecl &x) {
5987   const auto &name{std::get<parser::Name>(x.t)};
5988   // Don't use BypassGeneric or GetUltimate on this symbol, they can
5989   // lead to unusable names in module files.
5990   const Symbol *procInterface{
5991       interfaceName_ ? interfaceName_->symbol : nullptr};
5992   auto attrs{HandleSaveName(name.source, GetAttrs())};
5993   DerivedTypeDetails *dtDetails{nullptr};
5994   if (Symbol * symbol{currScope().symbol()}) {
5995     dtDetails = symbol->detailsIf<DerivedTypeDetails>();
5996   }
5997   if (!dtDetails) {
5998     attrs.set(Attr::EXTERNAL);
5999   }
6000   Symbol &symbol{DeclareProcEntity(name, attrs, procInterface)};
6001   SetCUDADataAttr(name.source, symbol, cudaDataAttr()); // for error
6002   symbol.ReplaceName(name.source);
6003   if (dtDetails) {
6004     dtDetails->add_component(symbol);
6005   }
6006   DeclaredPossibleSpecificProc(symbol);
6007 }
6008 
6009 bool DeclarationVisitor::Pre(const parser::TypeBoundProcedurePart &) {
6010   derivedTypeInfo_.sawContains = true;
6011   return true;
6012 }
6013 
6014 // Resolve binding names from type-bound generics, saved in genericBindings_.
6015 void DeclarationVisitor::Post(const parser::TypeBoundProcedurePart &) {
6016   // track specifics seen for the current generic to detect duplicates:
6017   const Symbol *currGeneric{nullptr};
6018   std::set<SourceName> specifics;
6019   for (const auto &[generic, bindingName] : genericBindings_) {
6020     if (generic != currGeneric) {
6021       currGeneric = generic;
6022       specifics.clear();
6023     }
6024     auto [it, inserted]{specifics.insert(bindingName->source)};
6025     if (!inserted) {
6026       Say(*bindingName, // C773
6027           "Binding name '%s' was already specified for generic '%s'"_err_en_US,
6028           bindingName->source, generic->name())
6029           .Attach(*it, "Previous specification of '%s'"_en_US, *it);
6030       continue;
6031     }
6032     auto *symbol{FindInTypeOrParents(*bindingName)};
6033     if (!symbol) {
6034       Say(*bindingName, // C772
6035           "Binding name '%s' not found in this derived type"_err_en_US);
6036     } else if (!symbol->has<ProcBindingDetails>()) {
6037       SayWithDecl(*bindingName, *symbol, // C772
6038           "'%s' is not the name of a specific binding of this type"_err_en_US);
6039     } else {
6040       generic->get<GenericDetails>().AddSpecificProc(
6041           *symbol, bindingName->source);
6042     }
6043   }
6044   genericBindings_.clear();
6045 }
6046 
6047 void DeclarationVisitor::Post(const parser::ContainsStmt &) {
6048   if (derivedTypeInfo_.sequence) {
6049     Say("A sequence type may not have a CONTAINS statement"_err_en_US); // C740
6050   }
6051 }
6052 
6053 void DeclarationVisitor::Post(
6054     const parser::TypeBoundProcedureStmt::WithoutInterface &x) {
6055   if (GetAttrs().test(Attr::DEFERRED)) { // C783
6056     Say("DEFERRED is only allowed when an interface-name is provided"_err_en_US);
6057   }
6058   for (auto &declaration : x.declarations) {
6059     auto &bindingName{std::get<parser::Name>(declaration.t)};
6060     auto &optName{std::get<std::optional<parser::Name>>(declaration.t)};
6061     const parser::Name &procedureName{optName ? *optName : bindingName};
6062     Symbol *procedure{FindSymbol(procedureName)};
6063     if (!procedure) {
6064       procedure = NoteInterfaceName(procedureName);
6065     }
6066     if (procedure) {
6067       const Symbol &bindTo{BypassGeneric(*procedure)};
6068       if (auto *s{MakeTypeSymbol(bindingName, ProcBindingDetails{bindTo})}) {
6069         SetPassNameOn(*s);
6070         if (GetAttrs().test(Attr::DEFERRED)) {
6071           context().SetError(*s);
6072         }
6073       }
6074     }
6075   }
6076 }
6077 
6078 void DeclarationVisitor::CheckBindings(
6079     const parser::TypeBoundProcedureStmt::WithoutInterface &tbps) {
6080   CHECK(currScope().IsDerivedType());
6081   for (auto &declaration : tbps.declarations) {
6082     auto &bindingName{std::get<parser::Name>(declaration.t)};
6083     if (Symbol * binding{FindInScope(bindingName)}) {
6084       if (auto *details{binding->detailsIf<ProcBindingDetails>()}) {
6085         const Symbol &ultimate{details->symbol().GetUltimate()};
6086         const Symbol &procedure{BypassGeneric(ultimate)};
6087         if (&procedure != &ultimate) {
6088           details->ReplaceSymbol(procedure);
6089         }
6090         if (!CanBeTypeBoundProc(procedure)) {
6091           if (details->symbol().name() != binding->name()) {
6092             Say(binding->name(),
6093                 "The binding of '%s' ('%s') must be either an accessible "
6094                 "module procedure or an external procedure with "
6095                 "an explicit interface"_err_en_US,
6096                 binding->name(), details->symbol().name());
6097           } else {
6098             Say(binding->name(),
6099                 "'%s' must be either an accessible module procedure "
6100                 "or an external procedure with an explicit interface"_err_en_US,
6101                 binding->name());
6102           }
6103           context().SetError(*binding);
6104         }
6105       }
6106     }
6107   }
6108 }
6109 
6110 void DeclarationVisitor::Post(
6111     const parser::TypeBoundProcedureStmt::WithInterface &x) {
6112   if (!GetAttrs().test(Attr::DEFERRED)) { // C783
6113     Say("DEFERRED is required when an interface-name is provided"_err_en_US);
6114   }
6115   if (Symbol * interface{NoteInterfaceName(x.interfaceName)}) {
6116     for (auto &bindingName : x.bindingNames) {
6117       if (auto *s{
6118               MakeTypeSymbol(bindingName, ProcBindingDetails{*interface})}) {
6119         SetPassNameOn(*s);
6120         if (!GetAttrs().test(Attr::DEFERRED)) {
6121           context().SetError(*s);
6122         }
6123       }
6124     }
6125   }
6126 }
6127 
6128 bool DeclarationVisitor::Pre(const parser::FinalProcedureStmt &x) {
6129   if (currScope().IsDerivedType() && currScope().symbol()) {
6130     if (auto *details{currScope().symbol()->detailsIf<DerivedTypeDetails>()}) {
6131       for (const auto &subrName : x.v) {
6132         Symbol *symbol{FindSymbol(subrName)};
6133         if (!symbol) {
6134           // FINAL procedures must be module subroutines
6135           symbol = &MakeSymbol(
6136               currScope().parent(), subrName.source, Attrs{Attr::MODULE});
6137           Resolve(subrName, symbol);
6138           symbol->set_details(ProcEntityDetails{});
6139           symbol->set(Symbol::Flag::Subroutine);
6140         }
6141         if (auto pair{details->finals().emplace(subrName.source, *symbol)};
6142             !pair.second) { // C787
6143           Say(subrName.source,
6144               "FINAL subroutine '%s' already appeared in this derived type"_err_en_US,
6145               subrName.source)
6146               .Attach(pair.first->first,
6147                   "earlier appearance of this FINAL subroutine"_en_US);
6148         }
6149       }
6150     }
6151   }
6152   return false;
6153 }
6154 
6155 bool DeclarationVisitor::Pre(const parser::TypeBoundGenericStmt &x) {
6156   const auto &accessSpec{std::get<std::optional<parser::AccessSpec>>(x.t)};
6157   const auto &genericSpec{std::get<Indirection<parser::GenericSpec>>(x.t)};
6158   const auto &bindingNames{std::get<std::list<parser::Name>>(x.t)};
6159   GenericSpecInfo info{genericSpec.value()};
6160   SourceName symbolName{info.symbolName()};
6161   bool isPrivate{accessSpec ? accessSpec->v == parser::AccessSpec::Kind::Private
6162                             : derivedTypeInfo_.privateBindings};
6163   auto *genericSymbol{FindInScope(symbolName)};
6164   if (genericSymbol) {
6165     if (!genericSymbol->has<GenericDetails>()) {
6166       genericSymbol = nullptr; // MakeTypeSymbol will report the error below
6167     }
6168   } else {
6169     // look in ancestor types for a generic of the same name
6170     for (const auto &name : GetAllNames(context(), symbolName)) {
6171       if (Symbol * inherited{currScope().FindComponent(SourceName{name})}) {
6172         if (inherited->has<GenericDetails>()) {
6173           CheckAccessibility(symbolName, isPrivate, *inherited); // C771
6174         } else {
6175           Say(symbolName,
6176               "Type bound generic procedure '%s' may not have the same name as a non-generic symbol inherited from an ancestor type"_err_en_US)
6177               .Attach(inherited->name(), "Inherited symbol"_en_US);
6178         }
6179         break;
6180       }
6181     }
6182   }
6183   if (genericSymbol) {
6184     CheckAccessibility(symbolName, isPrivate, *genericSymbol); // C771
6185   } else {
6186     genericSymbol = MakeTypeSymbol(symbolName, GenericDetails{});
6187     if (!genericSymbol) {
6188       return false;
6189     }
6190     if (isPrivate) {
6191       SetExplicitAttr(*genericSymbol, Attr::PRIVATE);
6192     }
6193   }
6194   for (const parser::Name &bindingName : bindingNames) {
6195     genericBindings_.emplace(genericSymbol, &bindingName);
6196   }
6197   info.Resolve(genericSymbol);
6198   return false;
6199 }
6200 
6201 // DEC STRUCTUREs are handled thus to allow for nested definitions.
6202 bool DeclarationVisitor::Pre(const parser::StructureDef &def) {
6203   const auto &structureStatement{
6204       std::get<parser::Statement<parser::StructureStmt>>(def.t)};
6205   auto saveDerivedTypeInfo{derivedTypeInfo_};
6206   derivedTypeInfo_ = {};
6207   derivedTypeInfo_.isStructure = true;
6208   derivedTypeInfo_.sequence = true;
6209   Scope *previousStructure{nullptr};
6210   if (saveDerivedTypeInfo.isStructure) {
6211     previousStructure = &currScope();
6212     PopScope();
6213   }
6214   const parser::StructureStmt &structStmt{structureStatement.statement};
6215   const auto &name{std::get<std::optional<parser::Name>>(structStmt.t)};
6216   if (!name) {
6217     // Construct a distinct generated name for an anonymous structure
6218     auto &mutableName{const_cast<std::optional<parser::Name> &>(name)};
6219     mutableName.emplace(
6220         parser::Name{context().GetTempName(currScope()), nullptr});
6221   }
6222   auto &symbol{MakeSymbol(*name, DerivedTypeDetails{})};
6223   symbol.ReplaceName(name->source);
6224   symbol.get<DerivedTypeDetails>().set_sequence(true);
6225   symbol.get<DerivedTypeDetails>().set_isDECStructure(true);
6226   derivedTypeInfo_.type = &symbol;
6227   PushScope(Scope::Kind::DerivedType, &symbol);
6228   const auto &fields{std::get<std::list<parser::StructureField>>(def.t)};
6229   Walk(fields);
6230   PopScope();
6231   // Complete the definition
6232   DerivedTypeSpec derivedTypeSpec{symbol.name(), symbol};
6233   derivedTypeSpec.set_scope(DEREF(symbol.scope()));
6234   derivedTypeSpec.CookParameters(GetFoldingContext());
6235   derivedTypeSpec.EvaluateParameters(context());
6236   DeclTypeSpec &type{currScope().MakeDerivedType(
6237       DeclTypeSpec::TypeDerived, std::move(derivedTypeSpec))};
6238   type.derivedTypeSpec().Instantiate(currScope());
6239   // Restore previous structure definition context, if any
6240   derivedTypeInfo_ = saveDerivedTypeInfo;
6241   if (previousStructure) {
6242     PushScope(*previousStructure);
6243   }
6244   // Handle any entity declarations on the STRUCTURE statement
6245   const auto &decls{std::get<std::list<parser::EntityDecl>>(structStmt.t)};
6246   if (!decls.empty()) {
6247     BeginDecl();
6248     SetDeclTypeSpec(type);
6249     Walk(decls);
6250     EndDecl();
6251   }
6252   return false;
6253 }
6254 
6255 bool DeclarationVisitor::Pre(const parser::Union::UnionStmt &) {
6256   Say("support for UNION"_todo_en_US); // TODO
6257   return true;
6258 }
6259 
6260 bool DeclarationVisitor::Pre(const parser::StructureField &x) {
6261   if (std::holds_alternative<parser::Statement<parser::DataComponentDefStmt>>(
6262           x.u)) {
6263     BeginDecl();
6264   }
6265   return true;
6266 }
6267 
6268 void DeclarationVisitor::Post(const parser::StructureField &x) {
6269   if (std::holds_alternative<parser::Statement<parser::DataComponentDefStmt>>(
6270           x.u)) {
6271     EndDecl();
6272   }
6273 }
6274 
6275 bool DeclarationVisitor::Pre(const parser::AllocateStmt &) {
6276   BeginDeclTypeSpec();
6277   return true;
6278 }
6279 void DeclarationVisitor::Post(const parser::AllocateStmt &) {
6280   EndDeclTypeSpec();
6281 }
6282 
6283 bool DeclarationVisitor::Pre(const parser::StructureConstructor &x) {
6284   auto &parsedType{std::get<parser::DerivedTypeSpec>(x.t)};
6285   const DeclTypeSpec *type{ProcessTypeSpec(parsedType)};
6286   if (!type) {
6287     return false;
6288   }
6289   const DerivedTypeSpec *spec{type->AsDerived()};
6290   const Scope *typeScope{spec ? spec->scope() : nullptr};
6291   if (!typeScope) {
6292     return false;
6293   }
6294 
6295   // N.B C7102 is implicitly enforced by having inaccessible types not
6296   // being found in resolution.
6297   // More constraints are enforced in expression.cpp so that they
6298   // can apply to structure constructors that have been converted
6299   // from misparsed function references.
6300   for (const auto &component :
6301       std::get<std::list<parser::ComponentSpec>>(x.t)) {
6302     // Visit the component spec expression, but not the keyword, since
6303     // we need to resolve its symbol in the scope of the derived type.
6304     Walk(std::get<parser::ComponentDataSource>(component.t));
6305     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
6306       FindInTypeOrParents(*typeScope, kw->v);
6307     }
6308   }
6309   return false;
6310 }
6311 
6312 bool DeclarationVisitor::Pre(const parser::BasedPointer &) {
6313   BeginArraySpec();
6314   return true;
6315 }
6316 
6317 void DeclarationVisitor::Post(const parser::BasedPointer &bp) {
6318   const parser::ObjectName &pointerName{std::get<0>(bp.t)};
6319   auto *pointer{FindSymbol(pointerName)};
6320   if (!pointer) {
6321     pointer = &MakeSymbol(pointerName, ObjectEntityDetails{});
6322   } else if (!ConvertToObjectEntity(*pointer)) {
6323     SayWithDecl(pointerName, *pointer, "'%s' is not a variable"_err_en_US);
6324   } else if (IsNamedConstant(*pointer)) {
6325     SayWithDecl(pointerName, *pointer,
6326         "'%s' is a named constant and may not be a Cray pointer"_err_en_US);
6327   } else if (pointer->Rank() > 0) {
6328     SayWithDecl(
6329         pointerName, *pointer, "Cray pointer '%s' must be a scalar"_err_en_US);
6330   } else if (pointer->test(Symbol::Flag::CrayPointee)) {
6331     Say(pointerName,
6332         "'%s' cannot be a Cray pointer as it is already a Cray pointee"_err_en_US);
6333   }
6334   pointer->set(Symbol::Flag::CrayPointer);
6335   const DeclTypeSpec &pointerType{MakeNumericType(
6336       TypeCategory::Integer, context().defaultKinds().subscriptIntegerKind())};
6337   const auto *type{pointer->GetType()};
6338   if (!type) {
6339     pointer->SetType(pointerType);
6340   } else if (*type != pointerType) {
6341     Say(pointerName.source, "Cray pointer '%s' must have type %s"_err_en_US,
6342         pointerName.source, pointerType.AsFortran());
6343   }
6344   const parser::ObjectName &pointeeName{std::get<1>(bp.t)};
6345   DeclareObjectEntity(pointeeName);
6346   if (Symbol * pointee{pointeeName.symbol}) {
6347     if (!ConvertToObjectEntity(*pointee)) {
6348       return;
6349     }
6350     if (IsNamedConstant(*pointee)) {
6351       Say(pointeeName,
6352           "'%s' is a named constant and may not be a Cray pointee"_err_en_US);
6353       return;
6354     }
6355     if (pointee->test(Symbol::Flag::CrayPointer)) {
6356       Say(pointeeName,
6357           "'%s' cannot be a Cray pointee as it is already a Cray pointer"_err_en_US);
6358     } else if (pointee->test(Symbol::Flag::CrayPointee)) {
6359       Say(pointeeName, "'%s' was already declared as a Cray pointee"_err_en_US);
6360     } else {
6361       pointee->set(Symbol::Flag::CrayPointee);
6362     }
6363     if (const auto *pointeeType{pointee->GetType()}) {
6364       if (const auto *derived{pointeeType->AsDerived()}) {
6365         if (!IsSequenceOrBindCType(derived)) {
6366           context().Warn(common::LanguageFeature::NonSequenceCrayPointee,
6367               pointeeName.source,
6368               "Type of Cray pointee '%s' is a derived type that is neither SEQUENCE nor BIND(C)"_warn_en_US,
6369               pointeeName.source);
6370         }
6371       }
6372     }
6373     currScope().add_crayPointer(pointeeName.source, *pointer);
6374   }
6375 }
6376 
6377 bool DeclarationVisitor::Pre(const parser::NamelistStmt::Group &x) {
6378   if (!CheckNotInBlock("NAMELIST")) { // C1107
6379     return false;
6380   }
6381   const auto &groupName{std::get<parser::Name>(x.t)};
6382   auto *groupSymbol{FindInScope(groupName)};
6383   if (!groupSymbol || !groupSymbol->has<NamelistDetails>()) {
6384     groupSymbol = &MakeSymbol(groupName, NamelistDetails{});
6385     groupSymbol->ReplaceName(groupName.source);
6386   }
6387   // Name resolution of group items is deferred to FinishNamelists()
6388   // so that host association is handled correctly.
6389   GetDeferredDeclarationState(true)->namelistGroups.emplace_back(&x);
6390   return false;
6391 }
6392 
6393 void DeclarationVisitor::FinishNamelists() {
6394   if (auto *deferred{GetDeferredDeclarationState()}) {
6395     for (const parser::NamelistStmt::Group *group : deferred->namelistGroups) {
6396       if (auto *groupSymbol{FindInScope(std::get<parser::Name>(group->t))}) {
6397         if (auto *details{groupSymbol->detailsIf<NamelistDetails>()}) {
6398           for (const auto &name : std::get<std::list<parser::Name>>(group->t)) {
6399             auto *symbol{FindSymbol(name)};
6400             if (!symbol) {
6401               symbol = &MakeSymbol(name, ObjectEntityDetails{});
6402               ApplyImplicitRules(*symbol);
6403             } else if (!ConvertToObjectEntity(symbol->GetUltimate())) {
6404               SayWithDecl(name, *symbol, "'%s' is not a variable"_err_en_US);
6405               context().SetError(*groupSymbol);
6406             }
6407             symbol->GetUltimate().set(Symbol::Flag::InNamelist);
6408             details->add_object(*symbol);
6409           }
6410         }
6411       }
6412     }
6413     deferred->namelistGroups.clear();
6414   }
6415 }
6416 
6417 bool DeclarationVisitor::Pre(const parser::IoControlSpec &x) {
6418   if (const auto *name{std::get_if<parser::Name>(&x.u)}) {
6419     auto *symbol{FindSymbol(*name)};
6420     if (!symbol) {
6421       Say(*name, "Namelist group '%s' not found"_err_en_US);
6422     } else if (!symbol->GetUltimate().has<NamelistDetails>()) {
6423       SayWithDecl(
6424           *name, *symbol, "'%s' is not the name of a namelist group"_err_en_US);
6425     }
6426   }
6427   return true;
6428 }
6429 
6430 bool DeclarationVisitor::Pre(const parser::CommonStmt::Block &x) {
6431   CheckNotInBlock("COMMON"); // C1107
6432   return true;
6433 }
6434 
6435 bool DeclarationVisitor::Pre(const parser::CommonBlockObject &) {
6436   BeginArraySpec();
6437   return true;
6438 }
6439 
6440 void DeclarationVisitor::Post(const parser::CommonBlockObject &x) {
6441   const auto &name{std::get<parser::Name>(x.t)};
6442   DeclareObjectEntity(name);
6443   auto pair{specPartState_.commonBlockObjects.insert(name.source)};
6444   if (!pair.second) {
6445     const SourceName &prev{*pair.first};
6446     Say2(name.source, "'%s' is already in a COMMON block"_err_en_US, prev,
6447         "Previous occurrence of '%s' in a COMMON block"_en_US);
6448   }
6449 }
6450 
6451 bool DeclarationVisitor::Pre(const parser::EquivalenceStmt &x) {
6452   // save equivalence sets to be processed after specification part
6453   if (CheckNotInBlock("EQUIVALENCE")) { // C1107
6454     for (const std::list<parser::EquivalenceObject> &set : x.v) {
6455       specPartState_.equivalenceSets.push_back(&set);
6456     }
6457   }
6458   return false; // don't implicitly declare names yet
6459 }
6460 
6461 void DeclarationVisitor::CheckEquivalenceSets() {
6462   EquivalenceSets equivSets{context()};
6463   inEquivalenceStmt_ = true;
6464   for (const auto *set : specPartState_.equivalenceSets) {
6465     const auto &source{set->front().v.value().source};
6466     if (set->size() <= 1) { // R871
6467       Say(source, "Equivalence set must have more than one object"_err_en_US);
6468     }
6469     for (const parser::EquivalenceObject &object : *set) {
6470       const auto &designator{object.v.value()};
6471       // The designator was not resolved when it was encountered, so do it now.
6472       // AnalyzeExpr causes array sections to be changed to substrings as needed
6473       Walk(designator);
6474       if (AnalyzeExpr(context(), designator)) {
6475         equivSets.AddToSet(designator);
6476       }
6477     }
6478     equivSets.FinishSet(source);
6479   }
6480   inEquivalenceStmt_ = false;
6481   for (auto &set : equivSets.sets()) {
6482     if (!set.empty()) {
6483       currScope().add_equivalenceSet(std::move(set));
6484     }
6485   }
6486   specPartState_.equivalenceSets.clear();
6487 }
6488 
6489 bool DeclarationVisitor::Pre(const parser::SaveStmt &x) {
6490   if (x.v.empty()) {
6491     specPartState_.saveInfo.saveAll = currStmtSource();
6492     currScope().set_hasSAVE();
6493   } else {
6494     for (const parser::SavedEntity &y : x.v) {
6495       auto kind{std::get<parser::SavedEntity::Kind>(y.t)};
6496       const auto &name{std::get<parser::Name>(y.t)};
6497       if (kind == parser::SavedEntity::Kind::Common) {
6498         MakeCommonBlockSymbol(name);
6499         AddSaveName(specPartState_.saveInfo.commons, name.source);
6500       } else {
6501         HandleAttributeStmt(Attr::SAVE, name);
6502       }
6503     }
6504   }
6505   return false;
6506 }
6507 
6508 void DeclarationVisitor::CheckSaveStmts() {
6509   for (const SourceName &name : specPartState_.saveInfo.entities) {
6510     auto *symbol{FindInScope(name)};
6511     if (!symbol) {
6512       // error was reported
6513     } else if (specPartState_.saveInfo.saveAll) {
6514       // C889 - note that pgi, ifort, xlf do not enforce this constraint
6515       if (context().ShouldWarn(common::LanguageFeature::RedundantAttribute)) {
6516         Say2(name,
6517             "Explicit SAVE of '%s' is redundant due to global SAVE statement"_warn_en_US,
6518             *specPartState_.saveInfo.saveAll, "Global SAVE statement"_en_US)
6519             .set_languageFeature(common::LanguageFeature::RedundantAttribute);
6520       }
6521     } else if (!IsSaved(*symbol)) {
6522       SetExplicitAttr(*symbol, Attr::SAVE);
6523     }
6524   }
6525   for (const SourceName &name : specPartState_.saveInfo.commons) {
6526     if (auto *symbol{currScope().FindCommonBlock(name)}) {
6527       auto &objects{symbol->get<CommonBlockDetails>().objects()};
6528       if (objects.empty()) {
6529         if (currScope().kind() != Scope::Kind::BlockConstruct) {
6530           Say(name,
6531               "'%s' appears as a COMMON block in a SAVE statement but not in"
6532               " a COMMON statement"_err_en_US);
6533         } else { // C1108
6534           Say(name,
6535               "SAVE statement in BLOCK construct may not contain a"
6536               " common block name '%s'"_err_en_US);
6537         }
6538       } else {
6539         for (auto &object : symbol->get<CommonBlockDetails>().objects()) {
6540           if (!IsSaved(*object)) {
6541             SetImplicitAttr(*object, Attr::SAVE);
6542           }
6543         }
6544       }
6545     }
6546   }
6547   specPartState_.saveInfo = {};
6548 }
6549 
6550 // Record SAVEd names in specPartState_.saveInfo.entities.
6551 Attrs DeclarationVisitor::HandleSaveName(const SourceName &name, Attrs attrs) {
6552   if (attrs.test(Attr::SAVE)) {
6553     AddSaveName(specPartState_.saveInfo.entities, name);
6554   }
6555   return attrs;
6556 }
6557 
6558 // Record a name in a set of those to be saved.
6559 void DeclarationVisitor::AddSaveName(
6560     std::set<SourceName> &set, const SourceName &name) {
6561   auto pair{set.insert(name)};
6562   if (!pair.second &&
6563       context().ShouldWarn(common::LanguageFeature::RedundantAttribute)) {
6564     Say2(name, "SAVE attribute was already specified on '%s'"_warn_en_US,
6565         *pair.first, "Previous specification of SAVE attribute"_en_US)
6566         .set_languageFeature(common::LanguageFeature::RedundantAttribute);
6567   }
6568 }
6569 
6570 // Check types of common block objects, now that they are known.
6571 void DeclarationVisitor::CheckCommonBlocks() {
6572   // check for empty common blocks
6573   for (const auto &pair : currScope().commonBlocks()) {
6574     const auto &symbol{*pair.second};
6575     if (symbol.get<CommonBlockDetails>().objects().empty() &&
6576         symbol.attrs().test(Attr::BIND_C)) {
6577       Say(symbol.name(),
6578           "'%s' appears as a COMMON block in a BIND statement but not in"
6579           " a COMMON statement"_err_en_US);
6580     }
6581   }
6582   // check objects in common blocks
6583   for (const auto &name : specPartState_.commonBlockObjects) {
6584     const auto *symbol{currScope().FindSymbol(name)};
6585     if (!symbol) {
6586       continue;
6587     }
6588     const auto &attrs{symbol->attrs()};
6589     if (attrs.test(Attr::ALLOCATABLE)) {
6590       Say(name,
6591           "ALLOCATABLE object '%s' may not appear in a COMMON block"_err_en_US);
6592     } else if (attrs.test(Attr::BIND_C)) {
6593       Say(name,
6594           "Variable '%s' with BIND attribute may not appear in a COMMON block"_err_en_US);
6595     } else if (IsNamedConstant(*symbol)) {
6596       Say(name,
6597           "A named constant '%s' may not appear in a COMMON block"_err_en_US);
6598     } else if (IsDummy(*symbol)) {
6599       Say(name,
6600           "Dummy argument '%s' may not appear in a COMMON block"_err_en_US);
6601     } else if (symbol->IsFuncResult()) {
6602       Say(name,
6603           "Function result '%s' may not appear in a COMMON block"_err_en_US);
6604     } else if (const DeclTypeSpec * type{symbol->GetType()}) {
6605       if (type->category() == DeclTypeSpec::ClassStar) {
6606         Say(name,
6607             "Unlimited polymorphic pointer '%s' may not appear in a COMMON block"_err_en_US);
6608       } else if (const auto *derived{type->AsDerived()}) {
6609         if (!IsSequenceOrBindCType(derived)) {
6610           Say(name,
6611               "Derived type '%s' in COMMON block must have the BIND or"
6612               " SEQUENCE attribute"_err_en_US);
6613         }
6614         UnorderedSymbolSet typeSet;
6615         CheckCommonBlockDerivedType(name, derived->typeSymbol(), typeSet);
6616       }
6617     }
6618   }
6619   specPartState_.commonBlockObjects = {};
6620 }
6621 
6622 Symbol &DeclarationVisitor::MakeCommonBlockSymbol(const parser::Name &name) {
6623   return Resolve(name, currScope().MakeCommonBlock(name.source));
6624 }
6625 Symbol &DeclarationVisitor::MakeCommonBlockSymbol(
6626     const std::optional<parser::Name> &name) {
6627   if (name) {
6628     return MakeCommonBlockSymbol(*name);
6629   } else {
6630     return MakeCommonBlockSymbol(parser::Name{});
6631   }
6632 }
6633 
6634 bool DeclarationVisitor::NameIsKnownOrIntrinsic(const parser::Name &name) {
6635   return FindSymbol(name) || HandleUnrestrictedSpecificIntrinsicFunction(name);
6636 }
6637 
6638 // Check if this derived type can be in a COMMON block.
6639 void DeclarationVisitor::CheckCommonBlockDerivedType(const SourceName &name,
6640     const Symbol &typeSymbol, UnorderedSymbolSet &typeSet) {
6641   if (auto iter{typeSet.find(SymbolRef{typeSymbol})}; iter != typeSet.end()) {
6642     return;
6643   }
6644   typeSet.emplace(typeSymbol);
6645   if (const auto *scope{typeSymbol.scope()}) {
6646     for (const auto &pair : *scope) {
6647       const Symbol &component{*pair.second};
6648       if (component.attrs().test(Attr::ALLOCATABLE)) {
6649         Say2(name,
6650             "Derived type variable '%s' may not appear in a COMMON block"
6651             " due to ALLOCATABLE component"_err_en_US,
6652             component.name(), "Component with ALLOCATABLE attribute"_en_US);
6653         return;
6654       }
6655       const auto *details{component.detailsIf<ObjectEntityDetails>()};
6656       if (component.test(Symbol::Flag::InDataStmt) ||
6657           (details && details->init())) {
6658         Say2(name,
6659             "Derived type variable '%s' may not appear in a COMMON block due to component with default initialization"_err_en_US,
6660             component.name(), "Component with default initialization"_en_US);
6661         return;
6662       }
6663       if (details) {
6664         if (const auto *type{details->type()}) {
6665           if (const auto *derived{type->AsDerived()}) {
6666             const Symbol &derivedTypeSymbol{derived->typeSymbol()};
6667             CheckCommonBlockDerivedType(name, derivedTypeSymbol, typeSet);
6668           }
6669         }
6670       }
6671     }
6672   }
6673 }
6674 
6675 bool DeclarationVisitor::HandleUnrestrictedSpecificIntrinsicFunction(
6676     const parser::Name &name) {
6677   if (auto interface{context().intrinsics().IsSpecificIntrinsicFunction(
6678           name.source.ToString())}) {
6679     // Unrestricted specific intrinsic function names (e.g., "cos")
6680     // are acceptable as procedure interfaces.  The presence of the
6681     // INTRINSIC flag will cause this symbol to have a complete interface
6682     // recreated for it later on demand, but capturing its result type here
6683     // will make GetType() return a correct result without having to
6684     // probe the intrinsics table again.
6685     Symbol &symbol{MakeSymbol(InclusiveScope(), name.source, Attrs{})};
6686     SetImplicitAttr(symbol, Attr::INTRINSIC);
6687     CHECK(interface->functionResult.has_value());
6688     evaluate::DynamicType dyType{
6689         DEREF(interface->functionResult->GetTypeAndShape()).type()};
6690     CHECK(common::IsNumericTypeCategory(dyType.category()));
6691     const DeclTypeSpec &typeSpec{
6692         MakeNumericType(dyType.category(), dyType.kind())};
6693     ProcEntityDetails details;
6694     details.set_type(typeSpec);
6695     symbol.set_details(std::move(details));
6696     symbol.set(Symbol::Flag::Function);
6697     if (interface->IsElemental()) {
6698       SetExplicitAttr(symbol, Attr::ELEMENTAL);
6699     }
6700     if (interface->IsPure()) {
6701       SetExplicitAttr(symbol, Attr::PURE);
6702     }
6703     Resolve(name, symbol);
6704     return true;
6705   } else {
6706     return false;
6707   }
6708 }
6709 
6710 // Checks for all locality-specs: LOCAL, LOCAL_INIT, and SHARED
6711 bool DeclarationVisitor::PassesSharedLocalityChecks(
6712     const parser::Name &name, Symbol &symbol) {
6713   if (!IsVariableName(symbol)) {
6714     SayLocalMustBeVariable(name, symbol); // C1124
6715     return false;
6716   }
6717   if (symbol.owner() == currScope()) { // C1125 and C1126
6718     SayAlreadyDeclared(name, symbol);
6719     return false;
6720   }
6721   return true;
6722 }
6723 
6724 // Checks for locality-specs LOCAL, LOCAL_INIT, and REDUCE
6725 bool DeclarationVisitor::PassesLocalityChecks(
6726     const parser::Name &name, Symbol &symbol, Symbol::Flag flag) {
6727   bool isReduce{flag == Symbol::Flag::LocalityReduce};
6728   const char *specName{
6729       flag == Symbol::Flag::LocalityLocalInit ? "LOCAL_INIT" : "LOCAL"};
6730   if (IsAllocatable(symbol) && !isReduce) { // F'2023 C1130
6731     SayWithDecl(name, symbol,
6732         "ALLOCATABLE variable '%s' not allowed in a %s locality-spec"_err_en_US,
6733         specName);
6734     return false;
6735   }
6736   if (IsOptional(symbol)) { // F'2023 C1130-C1131
6737     SayWithDecl(name, symbol,
6738         "OPTIONAL argument '%s' not allowed in a locality-spec"_err_en_US);
6739     return false;
6740   }
6741   if (IsIntentIn(symbol)) { // F'2023 C1130-C1131
6742     SayWithDecl(name, symbol,
6743         "INTENT IN argument '%s' not allowed in a locality-spec"_err_en_US);
6744     return false;
6745   }
6746   if (IsFinalizable(symbol) && !isReduce) { // F'2023 C1130
6747     SayWithDecl(name, symbol,
6748         "Finalizable variable '%s' not allowed in a %s locality-spec"_err_en_US,
6749         specName);
6750     return false;
6751   }
6752   if (evaluate::IsCoarray(symbol) && !isReduce) { // F'2023 C1130
6753     SayWithDecl(name, symbol,
6754         "Coarray '%s' not allowed in a %s locality-spec"_err_en_US, specName);
6755     return false;
6756   }
6757   if (const DeclTypeSpec * type{symbol.GetType()}) {
6758     if (type->IsPolymorphic() && IsDummy(symbol) && !IsPointer(symbol) &&
6759         !isReduce) { // F'2023 C1130
6760       SayWithDecl(name, symbol,
6761           "Nonpointer polymorphic argument '%s' not allowed in a %s locality-spec"_err_en_US,
6762           specName);
6763       return false;
6764     }
6765   }
6766   if (symbol.attrs().test(Attr::ASYNCHRONOUS) && isReduce) { // F'2023 C1131
6767     SayWithDecl(name, symbol,
6768         "ASYNCHRONOUS variable '%s' not allowed in a REDUCE locality-spec"_err_en_US);
6769     return false;
6770   }
6771   if (symbol.attrs().test(Attr::VOLATILE) && isReduce) { // F'2023 C1131
6772     SayWithDecl(name, symbol,
6773         "VOLATILE variable '%s' not allowed in a REDUCE locality-spec"_err_en_US);
6774     return false;
6775   }
6776   if (IsAssumedSizeArray(symbol)) { // F'2023 C1130-C1131
6777     SayWithDecl(name, symbol,
6778         "Assumed size array '%s' not allowed in a locality-spec"_err_en_US);
6779     return false;
6780   }
6781   if (std::optional<Message> whyNot{WhyNotDefinable(
6782           name.source, currScope(), DefinabilityFlags{}, symbol)}) {
6783     SayWithReason(name, symbol,
6784         "'%s' may not appear in a locality-spec because it is not definable"_err_en_US,
6785         std::move(whyNot->set_severity(parser::Severity::Because)));
6786     return false;
6787   }
6788   return PassesSharedLocalityChecks(name, symbol);
6789 }
6790 
6791 Symbol &DeclarationVisitor::FindOrDeclareEnclosingEntity(
6792     const parser::Name &name) {
6793   Symbol *prev{FindSymbol(name)};
6794   if (!prev) {
6795     // Declare the name as an object in the enclosing scope so that
6796     // the name can't be repurposed there later as something else.
6797     prev = &MakeSymbol(InclusiveScope(), name.source, Attrs{});
6798     ConvertToObjectEntity(*prev);
6799     ApplyImplicitRules(*prev);
6800   }
6801   return *prev;
6802 }
6803 
6804 void DeclarationVisitor::DeclareLocalEntity(
6805     const parser::Name &name, Symbol::Flag flag) {
6806   Symbol &prev{FindOrDeclareEnclosingEntity(name)};
6807   if (PassesLocalityChecks(name, prev, flag)) {
6808     if (auto *symbol{&MakeHostAssocSymbol(name, prev)}) {
6809       symbol->set(flag);
6810     }
6811   }
6812 }
6813 
6814 Symbol *DeclarationVisitor::DeclareStatementEntity(
6815     const parser::DoVariable &doVar,
6816     const std::optional<parser::IntegerTypeSpec> &type) {
6817   const parser::Name &name{doVar.thing.thing};
6818   const DeclTypeSpec *declTypeSpec{nullptr};
6819   if (auto *prev{FindSymbol(name)}) {
6820     if (prev->owner() == currScope()) {
6821       SayAlreadyDeclared(name, *prev);
6822       return nullptr;
6823     }
6824     name.symbol = nullptr;
6825     // F'2023 19.4 p5 ambiguous rule about outer declarations
6826     declTypeSpec = prev->GetType();
6827   }
6828   Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, {})};
6829   if (!symbol.has<ObjectEntityDetails>()) {
6830     return nullptr; // error was reported in DeclareEntity
6831   }
6832   if (type) {
6833     declTypeSpec = ProcessTypeSpec(*type);
6834   }
6835   if (declTypeSpec) {
6836     // Subtlety: Don't let a "*length" specifier (if any is pending) affect the
6837     // declaration of this implied DO loop control variable.
6838     auto restorer{
6839         common::ScopedSet(charInfo_.length, std::optional<ParamValue>{})};
6840     SetType(name, *declTypeSpec);
6841   } else {
6842     ApplyImplicitRules(symbol);
6843   }
6844   return Resolve(name, &symbol);
6845 }
6846 
6847 // Set the type of an entity or report an error.
6848 void DeclarationVisitor::SetType(
6849     const parser::Name &name, const DeclTypeSpec &type) {
6850   CHECK(name.symbol);
6851   auto &symbol{*name.symbol};
6852   if (charInfo_.length) { // Declaration has "*length" (R723)
6853     auto length{std::move(*charInfo_.length)};
6854     charInfo_.length.reset();
6855     if (type.category() == DeclTypeSpec::Character) {
6856       auto kind{type.characterTypeSpec().kind()};
6857       // Recurse with correct type.
6858       SetType(name,
6859           currScope().MakeCharacterType(std::move(length), std::move(kind)));
6860       return;
6861     } else { // C753
6862       Say(name,
6863           "A length specifier cannot be used to declare the non-character entity '%s'"_err_en_US);
6864     }
6865   }
6866   if (auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
6867     if (proc->procInterface()) {
6868       Say(name,
6869           "'%s' has an explicit interface and may not also have a type"_err_en_US);
6870       context().SetError(symbol);
6871       return;
6872     }
6873   }
6874   auto *prevType{symbol.GetType()};
6875   if (!prevType) {
6876     if (symbol.test(Symbol::Flag::InDataStmt) && isImplicitNoneType()) {
6877       context().Warn(common::LanguageFeature::ForwardRefImplicitNoneData,
6878           name.source,
6879           "'%s' appeared in a DATA statement before its type was declared under IMPLICIT NONE(TYPE)"_port_en_US,
6880           name.source);
6881     }
6882     symbol.SetType(type);
6883   } else if (symbol.has<UseDetails>()) {
6884     // error recovery case, redeclaration of use-associated name
6885   } else if (HadForwardRef(symbol)) {
6886     // error recovery after use of host-associated name
6887   } else if (!symbol.test(Symbol::Flag::Implicit)) {
6888     SayWithDecl(
6889         name, symbol, "The type of '%s' has already been declared"_err_en_US);
6890     context().SetError(symbol);
6891   } else if (type != *prevType) {
6892     SayWithDecl(name, symbol,
6893         "The type of '%s' has already been implicitly declared"_err_en_US);
6894     context().SetError(symbol);
6895   } else {
6896     symbol.set(Symbol::Flag::Implicit, false);
6897   }
6898 }
6899 
6900 std::optional<DerivedTypeSpec> DeclarationVisitor::ResolveDerivedType(
6901     const parser::Name &name) {
6902   Scope &outer{NonDerivedTypeScope()};
6903   Symbol *symbol{FindSymbol(outer, name)};
6904   Symbol *ultimate{symbol ? &symbol->GetUltimate() : nullptr};
6905   auto *generic{ultimate ? ultimate->detailsIf<GenericDetails>() : nullptr};
6906   if (generic) {
6907     if (Symbol * genDT{generic->derivedType()}) {
6908       symbol = genDT;
6909       generic = nullptr;
6910     }
6911   }
6912   if (!symbol || symbol->has<UnknownDetails>() ||
6913       (generic && &ultimate->owner() == &outer)) {
6914     if (allowForwardReferenceToDerivedType()) {
6915       if (!symbol) {
6916         symbol = &MakeSymbol(outer, name.source, Attrs{});
6917         Resolve(name, *symbol);
6918       } else if (generic) {
6919         // forward ref to type with later homonymous generic
6920         symbol = &outer.MakeSymbol(name.source, Attrs{}, UnknownDetails{});
6921         generic->set_derivedType(*symbol);
6922         name.symbol = symbol;
6923       }
6924       DerivedTypeDetails details;
6925       details.set_isForwardReferenced(true);
6926       symbol->set_details(std::move(details));
6927     } else { // C732
6928       Say(name, "Derived type '%s' not found"_err_en_US);
6929       return std::nullopt;
6930     }
6931   } else if (&DEREF(symbol).owner() != &outer &&
6932       !ultimate->has<GenericDetails>()) {
6933     // Prevent a later declaration in this scope of a host-associated
6934     // type name.
6935     outer.add_importName(name.source);
6936   }
6937   if (CheckUseError(name)) {
6938     return std::nullopt;
6939   } else if (symbol->GetUltimate().has<DerivedTypeDetails>()) {
6940     return DerivedTypeSpec{name.source, *symbol};
6941   } else {
6942     Say(name, "'%s' is not a derived type"_err_en_US);
6943     return std::nullopt;
6944   }
6945 }
6946 
6947 std::optional<DerivedTypeSpec> DeclarationVisitor::ResolveExtendsType(
6948     const parser::Name &typeName, const parser::Name *extendsName) {
6949   if (extendsName) {
6950     if (typeName.source == extendsName->source) {
6951       Say(extendsName->source,
6952           "Derived type '%s' cannot extend itself"_err_en_US);
6953     } else if (auto dtSpec{ResolveDerivedType(*extendsName)}) {
6954       if (!dtSpec->IsForwardReferenced()) {
6955         return dtSpec;
6956       }
6957       Say(typeName.source,
6958           "Derived type '%s' cannot extend type '%s' that has not yet been defined"_err_en_US,
6959           typeName.source, extendsName->source);
6960     }
6961   }
6962   return std::nullopt;
6963 }
6964 
6965 Symbol *DeclarationVisitor::NoteInterfaceName(const parser::Name &name) {
6966   // The symbol is checked later by CheckExplicitInterface() and
6967   // CheckBindings().  It can be a forward reference.
6968   if (!NameIsKnownOrIntrinsic(name)) {
6969     Symbol &symbol{MakeSymbol(InclusiveScope(), name.source, Attrs{})};
6970     Resolve(name, symbol);
6971   }
6972   return name.symbol;
6973 }
6974 
6975 void DeclarationVisitor::CheckExplicitInterface(const parser::Name &name) {
6976   if (const Symbol * symbol{name.symbol}) {
6977     const Symbol &ultimate{symbol->GetUltimate()};
6978     if (!context().HasError(*symbol) && !context().HasError(ultimate) &&
6979         !BypassGeneric(ultimate).HasExplicitInterface()) {
6980       Say(name,
6981           "'%s' must be an abstract interface or a procedure with an explicit interface"_err_en_US,
6982           symbol->name());
6983     }
6984   }
6985 }
6986 
6987 // Create a symbol for a type parameter, component, or procedure binding in
6988 // the current derived type scope. Return false on error.
6989 Symbol *DeclarationVisitor::MakeTypeSymbol(
6990     const parser::Name &name, Details &&details) {
6991   return Resolve(name, MakeTypeSymbol(name.source, std::move(details)));
6992 }
6993 Symbol *DeclarationVisitor::MakeTypeSymbol(
6994     const SourceName &name, Details &&details) {
6995   Scope &derivedType{currScope()};
6996   CHECK(derivedType.IsDerivedType());
6997   if (auto *symbol{FindInScope(derivedType, name)}) { // C742
6998     Say2(name,
6999         "Type parameter, component, or procedure binding '%s'"
7000         " already defined in this type"_err_en_US,
7001         *symbol, "Previous definition of '%s'"_en_US);
7002     return nullptr;
7003   } else {
7004     auto attrs{GetAttrs()};
7005     // Apply binding-private-stmt if present and this is a procedure binding
7006     if (derivedTypeInfo_.privateBindings &&
7007         !attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE}) &&
7008         std::holds_alternative<ProcBindingDetails>(details)) {
7009       attrs.set(Attr::PRIVATE);
7010     }
7011     Symbol &result{MakeSymbol(name, attrs, std::move(details))};
7012     SetCUDADataAttr(name, result, cudaDataAttr());
7013     return &result;
7014   }
7015 }
7016 
7017 // Return true if it is ok to declare this component in the current scope.
7018 // Otherwise, emit an error and return false.
7019 bool DeclarationVisitor::OkToAddComponent(
7020     const parser::Name &name, const Symbol *extends) {
7021   for (const Scope *scope{&currScope()}; scope;) {
7022     CHECK(scope->IsDerivedType());
7023     if (auto *prev{FindInScope(*scope, name.source)}) {
7024       std::optional<parser::MessageFixedText> msg;
7025       std::optional<common::UsageWarning> warning;
7026       if (context().HasError(*prev)) { // don't pile on
7027       } else if (extends) {
7028         msg = "Type cannot be extended as it has a component named"
7029               " '%s'"_err_en_US;
7030       } else if (CheckAccessibleSymbol(currScope(), *prev)) {
7031         // inaccessible component -- redeclaration is ok
7032         if (context().ShouldWarn(
7033                 common::UsageWarning::RedeclaredInaccessibleComponent)) {
7034           msg =
7035               "Component '%s' is inaccessibly declared in or as a parent of this derived type"_warn_en_US;
7036           warning = common::UsageWarning::RedeclaredInaccessibleComponent;
7037         }
7038       } else if (prev->test(Symbol::Flag::ParentComp)) {
7039         msg =
7040             "'%s' is a parent type of this type and so cannot be a component"_err_en_US;
7041       } else if (scope == &currScope()) {
7042         msg =
7043             "Component '%s' is already declared in this derived type"_err_en_US;
7044       } else {
7045         msg =
7046             "Component '%s' is already declared in a parent of this derived type"_err_en_US;
7047       }
7048       if (msg) {
7049         auto &said{Say2(name, std::move(*msg), *prev,
7050             "Previous declaration of '%s'"_en_US)};
7051         if (msg->severity() == parser::Severity::Error) {
7052           Resolve(name, *prev);
7053           return false;
7054         }
7055         if (warning) {
7056           said.set_usageWarning(*warning);
7057         }
7058       }
7059     }
7060     if (scope == &currScope() && extends) {
7061       // The parent component has not yet been added to the scope.
7062       scope = extends->scope();
7063     } else {
7064       scope = scope->GetDerivedTypeParent();
7065     }
7066   }
7067   return true;
7068 }
7069 
7070 ParamValue DeclarationVisitor::GetParamValue(
7071     const parser::TypeParamValue &x, common::TypeParamAttr attr) {
7072   return common::visit(
7073       common::visitors{
7074           [=](const parser::ScalarIntExpr &x) { // C704
7075             return ParamValue{EvaluateIntExpr(x), attr};
7076           },
7077           [=](const parser::Star &) { return ParamValue::Assumed(attr); },
7078           [=](const parser::TypeParamValue::Deferred &) {
7079             return ParamValue::Deferred(attr);
7080           },
7081       },
7082       x.u);
7083 }
7084 
7085 // ConstructVisitor implementation
7086 
7087 void ConstructVisitor::ResolveIndexName(
7088     const parser::ConcurrentControl &control) {
7089   const parser::Name &name{std::get<parser::Name>(control.t)};
7090   auto *prev{FindSymbol(name)};
7091   if (prev) {
7092     if (prev->owner() == currScope()) {
7093       SayAlreadyDeclared(name, *prev);
7094       return;
7095     } else if (prev->owner().kind() == Scope::Kind::Forall &&
7096         context().ShouldWarn(
7097             common::LanguageFeature::OddIndexVariableRestrictions)) {
7098       SayWithDecl(name, *prev,
7099           "Index variable '%s' should not also be an index in an enclosing FORALL or DO CONCURRENT"_port_en_US)
7100           .set_languageFeature(
7101               common::LanguageFeature::OddIndexVariableRestrictions);
7102     }
7103     name.symbol = nullptr;
7104   }
7105   auto &symbol{DeclareObjectEntity(name)};
7106   if (symbol.GetType()) {
7107     // type came from explicit type-spec
7108   } else if (!prev) {
7109     ApplyImplicitRules(symbol);
7110   } else {
7111     // Odd rules in F'2023 19.4 paras 6 & 8.
7112     Symbol &prevRoot{prev->GetUltimate()};
7113     if (const auto *type{prevRoot.GetType()}) {
7114       symbol.SetType(*type);
7115     } else {
7116       ApplyImplicitRules(symbol);
7117     }
7118     if (prevRoot.has<ObjectEntityDetails>() ||
7119         ConvertToObjectEntity(prevRoot)) {
7120       if (prevRoot.IsObjectArray() &&
7121           context().ShouldWarn(
7122               common::LanguageFeature::OddIndexVariableRestrictions)) {
7123         SayWithDecl(name, *prev,
7124             "Index variable '%s' should be scalar in the enclosing scope"_port_en_US)
7125             .set_languageFeature(
7126                 common::LanguageFeature::OddIndexVariableRestrictions);
7127       }
7128     } else if (!prevRoot.has<CommonBlockDetails>() &&
7129         context().ShouldWarn(
7130             common::LanguageFeature::OddIndexVariableRestrictions)) {
7131       SayWithDecl(name, *prev,
7132           "Index variable '%s' should be a scalar object or common block if it is present in the enclosing scope"_port_en_US)
7133           .set_languageFeature(
7134               common::LanguageFeature::OddIndexVariableRestrictions);
7135     }
7136   }
7137   EvaluateExpr(parser::Scalar{parser::Integer{common::Clone(name)}});
7138 }
7139 
7140 // We need to make sure that all of the index-names get declared before the
7141 // expressions in the loop control are evaluated so that references to the
7142 // index-names in the expressions are correctly detected.
7143 bool ConstructVisitor::Pre(const parser::ConcurrentHeader &header) {
7144   BeginDeclTypeSpec();
7145   Walk(std::get<std::optional<parser::IntegerTypeSpec>>(header.t));
7146   const auto &controls{
7147       std::get<std::list<parser::ConcurrentControl>>(header.t)};
7148   for (const auto &control : controls) {
7149     ResolveIndexName(control);
7150   }
7151   Walk(controls);
7152   Walk(std::get<std::optional<parser::ScalarLogicalExpr>>(header.t));
7153   EndDeclTypeSpec();
7154   return false;
7155 }
7156 
7157 bool ConstructVisitor::Pre(const parser::LocalitySpec::Local &x) {
7158   for (auto &name : x.v) {
7159     DeclareLocalEntity(name, Symbol::Flag::LocalityLocal);
7160   }
7161   return false;
7162 }
7163 
7164 bool ConstructVisitor::Pre(const parser::LocalitySpec::LocalInit &x) {
7165   for (auto &name : x.v) {
7166     DeclareLocalEntity(name, Symbol::Flag::LocalityLocalInit);
7167   }
7168   return false;
7169 }
7170 
7171 bool ConstructVisitor::Pre(const parser::LocalitySpec::Reduce &x) {
7172   for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
7173     DeclareLocalEntity(name, Symbol::Flag::LocalityReduce);
7174   }
7175   return false;
7176 }
7177 
7178 bool ConstructVisitor::Pre(const parser::LocalitySpec::Shared &x) {
7179   for (const auto &name : x.v) {
7180     if (!FindSymbol(name)) {
7181       context().Warn(common::UsageWarning::ImplicitShared, name.source,
7182           "Variable '%s' with SHARED locality implicitly declared"_warn_en_US,
7183           name.source);
7184     }
7185     Symbol &prev{FindOrDeclareEnclosingEntity(name)};
7186     if (PassesSharedLocalityChecks(name, prev)) {
7187       MakeHostAssocSymbol(name, prev).set(Symbol::Flag::LocalityShared);
7188     }
7189   }
7190   return false;
7191 }
7192 
7193 bool ConstructVisitor::Pre(const parser::AcSpec &x) {
7194   ProcessTypeSpec(x.type);
7195   Walk(x.values);
7196   return false;
7197 }
7198 
7199 // Section 19.4, paragraph 5 says that each ac-do-variable has the scope of the
7200 // enclosing ac-implied-do
7201 bool ConstructVisitor::Pre(const parser::AcImpliedDo &x) {
7202   auto &values{std::get<std::list<parser::AcValue>>(x.t)};
7203   auto &control{std::get<parser::AcImpliedDoControl>(x.t)};
7204   auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(control.t)};
7205   auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
7206   // F'2018 has the scope of the implied DO variable covering the entire
7207   // implied DO production (19.4(5)), which seems wrong in cases where the name
7208   // of the implied DO variable appears in one of the bound expressions. Thus
7209   // this extension, which shrinks the scope of the variable to exclude the
7210   // expressions in the bounds.
7211   auto restore{BeginCheckOnIndexUseInOwnBounds(bounds.name)};
7212   Walk(bounds.lower);
7213   Walk(bounds.upper);
7214   Walk(bounds.step);
7215   EndCheckOnIndexUseInOwnBounds(restore);
7216   PushScope(Scope::Kind::ImpliedDos, nullptr);
7217   DeclareStatementEntity(bounds.name, type);
7218   Walk(values);
7219   PopScope();
7220   return false;
7221 }
7222 
7223 bool ConstructVisitor::Pre(const parser::DataImpliedDo &x) {
7224   auto &objects{std::get<std::list<parser::DataIDoObject>>(x.t)};
7225   auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(x.t)};
7226   auto &bounds{std::get<parser::DataImpliedDo::Bounds>(x.t)};
7227   // See comment in Pre(AcImpliedDo) above.
7228   auto restore{BeginCheckOnIndexUseInOwnBounds(bounds.name)};
7229   Walk(bounds.lower);
7230   Walk(bounds.upper);
7231   Walk(bounds.step);
7232   EndCheckOnIndexUseInOwnBounds(restore);
7233   bool pushScope{currScope().kind() != Scope::Kind::ImpliedDos};
7234   if (pushScope) {
7235     PushScope(Scope::Kind::ImpliedDos, nullptr);
7236   }
7237   DeclareStatementEntity(bounds.name, type);
7238   Walk(objects);
7239   if (pushScope) {
7240     PopScope();
7241   }
7242   return false;
7243 }
7244 
7245 // Sets InDataStmt flag on a variable (or misidentified function) in a DATA
7246 // statement so that the predicate IsInitialized() will be true
7247 // during semantic analysis before the symbol's initializer is constructed.
7248 bool ConstructVisitor::Pre(const parser::DataIDoObject &x) {
7249   common::visit(
7250       common::visitors{
7251           [&](const parser::Scalar<Indirection<parser::Designator>> &y) {
7252             Walk(y.thing.value());
7253             const parser::Name &first{parser::GetFirstName(y.thing.value())};
7254             if (first.symbol) {
7255               first.symbol->set(Symbol::Flag::InDataStmt);
7256             }
7257           },
7258           [&](const Indirection<parser::DataImpliedDo> &y) { Walk(y.value()); },
7259       },
7260       x.u);
7261   return false;
7262 }
7263 
7264 bool ConstructVisitor::Pre(const parser::DataStmtObject &x) {
7265   // Subtle: DATA statements may appear in both the specification and
7266   // execution parts, but should be treated as if in the execution part
7267   // for purposes of implicit variable declaration vs. host association.
7268   // When a name first appears as an object in a DATA statement, it should
7269   // be implicitly declared locally as if it had been assigned.
7270   auto flagRestorer{common::ScopedSet(inSpecificationPart_, false)};
7271   common::visit(
7272       common::visitors{
7273           [&](const Indirection<parser::Variable> &y) {
7274             auto restorer{common::ScopedSet(deferImplicitTyping_, true)};
7275             Walk(y.value());
7276             const parser::Name &first{parser::GetFirstName(y.value())};
7277             if (first.symbol) {
7278               first.symbol->set(Symbol::Flag::InDataStmt);
7279             }
7280           },
7281           [&](const parser::DataImpliedDo &y) {
7282             PushScope(Scope::Kind::ImpliedDos, nullptr);
7283             Walk(y);
7284             PopScope();
7285           },
7286       },
7287       x.u);
7288   return false;
7289 }
7290 
7291 bool ConstructVisitor::Pre(const parser::DataStmtValue &x) {
7292   const auto &data{std::get<parser::DataStmtConstant>(x.t)};
7293   auto &mutableData{const_cast<parser::DataStmtConstant &>(data)};
7294   if (auto *elem{parser::Unwrap<parser::ArrayElement>(mutableData)}) {
7295     if (const auto *name{std::get_if<parser::Name>(&elem->base.u)}) {
7296       if (const Symbol * symbol{FindSymbol(*name)};
7297           symbol && symbol->GetUltimate().has<DerivedTypeDetails>()) {
7298         mutableData.u = elem->ConvertToStructureConstructor(
7299             DerivedTypeSpec{name->source, *symbol});
7300       }
7301     }
7302   }
7303   return true;
7304 }
7305 
7306 bool ConstructVisitor::Pre(const parser::DoConstruct &x) {
7307   if (x.IsDoConcurrent()) {
7308     // The new scope has Kind::Forall for index variable name conflict
7309     // detection with nested FORALL/DO CONCURRENT constructs in
7310     // ResolveIndexName().
7311     PushScope(Scope::Kind::Forall, nullptr);
7312   }
7313   return true;
7314 }
7315 void ConstructVisitor::Post(const parser::DoConstruct &x) {
7316   if (x.IsDoConcurrent()) {
7317     PopScope();
7318   }
7319 }
7320 
7321 bool ConstructVisitor::Pre(const parser::ForallConstruct &) {
7322   PushScope(Scope::Kind::Forall, nullptr);
7323   return true;
7324 }
7325 void ConstructVisitor::Post(const parser::ForallConstruct &) { PopScope(); }
7326 bool ConstructVisitor::Pre(const parser::ForallStmt &) {
7327   PushScope(Scope::Kind::Forall, nullptr);
7328   return true;
7329 }
7330 void ConstructVisitor::Post(const parser::ForallStmt &) { PopScope(); }
7331 
7332 bool ConstructVisitor::Pre(const parser::BlockConstruct &x) {
7333   const auto &[blockStmt, specPart, execPart, endBlockStmt] = x.t;
7334   Walk(blockStmt);
7335   CheckDef(blockStmt.statement.v);
7336   PushScope(Scope::Kind::BlockConstruct, nullptr);
7337   Walk(specPart);
7338   HandleImpliedAsynchronousInScope(execPart);
7339   Walk(execPart);
7340   Walk(endBlockStmt);
7341   PopScope();
7342   CheckRef(endBlockStmt.statement.v);
7343   return false;
7344 }
7345 
7346 void ConstructVisitor::Post(const parser::Selector &x) {
7347   GetCurrentAssociation().selector = ResolveSelector(x);
7348 }
7349 
7350 void ConstructVisitor::Post(const parser::AssociateStmt &x) {
7351   CheckDef(x.t);
7352   PushScope(Scope::Kind::OtherConstruct, nullptr);
7353   const auto assocCount{std::get<std::list<parser::Association>>(x.t).size()};
7354   for (auto nthLastAssoc{assocCount}; nthLastAssoc > 0; --nthLastAssoc) {
7355     SetCurrentAssociation(nthLastAssoc);
7356     if (auto *symbol{MakeAssocEntity()}) {
7357       const MaybeExpr &expr{GetCurrentAssociation().selector.expr};
7358       if (ExtractCoarrayRef(expr)) { // C1103
7359         Say("Selector must not be a coindexed object"_err_en_US);
7360       }
7361       if (evaluate::IsAssumedRank(expr)) {
7362         Say("Selector must not be assumed-rank"_err_en_US);
7363       }
7364       SetTypeFromAssociation(*symbol);
7365       SetAttrsFromAssociation(*symbol);
7366     }
7367   }
7368   PopAssociation(assocCount);
7369 }
7370 
7371 void ConstructVisitor::Post(const parser::EndAssociateStmt &x) {
7372   PopScope();
7373   CheckRef(x.v);
7374 }
7375 
7376 bool ConstructVisitor::Pre(const parser::Association &x) {
7377   PushAssociation();
7378   const auto &name{std::get<parser::Name>(x.t)};
7379   GetCurrentAssociation().name = &name;
7380   return true;
7381 }
7382 
7383 bool ConstructVisitor::Pre(const parser::ChangeTeamStmt &x) {
7384   CheckDef(x.t);
7385   PushScope(Scope::Kind::OtherConstruct, nullptr);
7386   PushAssociation();
7387   return true;
7388 }
7389 
7390 void ConstructVisitor::Post(const parser::CoarrayAssociation &x) {
7391   const auto &decl{std::get<parser::CodimensionDecl>(x.t)};
7392   const auto &name{std::get<parser::Name>(decl.t)};
7393   if (auto *symbol{FindInScope(name)}) {
7394     const auto &selector{std::get<parser::Selector>(x.t)};
7395     if (auto sel{ResolveSelector(selector)}) {
7396       const Symbol *whole{UnwrapWholeSymbolDataRef(sel.expr)};
7397       if (!whole || whole->Corank() == 0) {
7398         Say(sel.source, // C1116
7399             "Selector in coarray association must name a coarray"_err_en_US);
7400       } else if (auto dynType{sel.expr->GetType()}) {
7401         if (!symbol->GetType()) {
7402           symbol->SetType(ToDeclTypeSpec(std::move(*dynType)));
7403         }
7404       }
7405     }
7406   }
7407 }
7408 
7409 void ConstructVisitor::Post(const parser::EndChangeTeamStmt &x) {
7410   PopAssociation();
7411   PopScope();
7412   CheckRef(x.t);
7413 }
7414 
7415 bool ConstructVisitor::Pre(const parser::SelectTypeConstruct &) {
7416   PushAssociation();
7417   return true;
7418 }
7419 
7420 void ConstructVisitor::Post(const parser::SelectTypeConstruct &) {
7421   PopAssociation();
7422 }
7423 
7424 void ConstructVisitor::Post(const parser::SelectTypeStmt &x) {
7425   auto &association{GetCurrentAssociation()};
7426   if (const std::optional<parser::Name> &name{std::get<1>(x.t)}) {
7427     // This isn't a name in the current scope, it is in each TypeGuardStmt
7428     MakePlaceholder(*name, MiscDetails::Kind::SelectTypeAssociateName);
7429     association.name = &*name;
7430     if (ExtractCoarrayRef(association.selector.expr)) { // C1103
7431       Say("Selector must not be a coindexed object"_err_en_US);
7432     }
7433     if (association.selector.expr) {
7434       auto exprType{association.selector.expr->GetType()};
7435       if (exprType && !exprType->IsPolymorphic()) { // C1159
7436         Say(association.selector.source,
7437             "Selector '%s' in SELECT TYPE statement must be "
7438             "polymorphic"_err_en_US);
7439       }
7440     }
7441   } else {
7442     if (const Symbol *
7443         whole{UnwrapWholeSymbolDataRef(association.selector.expr)}) {
7444       ConvertToObjectEntity(const_cast<Symbol &>(*whole));
7445       if (!IsVariableName(*whole)) {
7446         Say(association.selector.source, // C901
7447             "Selector is not a variable"_err_en_US);
7448         association = {};
7449       }
7450       if (const DeclTypeSpec * type{whole->GetType()}) {
7451         if (!type->IsPolymorphic()) { // C1159
7452           Say(association.selector.source,
7453               "Selector '%s' in SELECT TYPE statement must be "
7454               "polymorphic"_err_en_US);
7455         }
7456       }
7457     } else {
7458       Say(association.selector.source, // C1157
7459           "Selector is not a named variable: 'associate-name =>' is required"_err_en_US);
7460       association = {};
7461     }
7462   }
7463 }
7464 
7465 void ConstructVisitor::Post(const parser::SelectRankStmt &x) {
7466   auto &association{GetCurrentAssociation()};
7467   if (const std::optional<parser::Name> &name{std::get<1>(x.t)}) {
7468     // This isn't a name in the current scope, it is in each SelectRankCaseStmt
7469     MakePlaceholder(*name, MiscDetails::Kind::SelectRankAssociateName);
7470     association.name = &*name;
7471   }
7472 }
7473 
7474 bool ConstructVisitor::Pre(const parser::SelectTypeConstruct::TypeCase &) {
7475   PushScope(Scope::Kind::OtherConstruct, nullptr);
7476   return true;
7477 }
7478 void ConstructVisitor::Post(const parser::SelectTypeConstruct::TypeCase &) {
7479   PopScope();
7480 }
7481 
7482 bool ConstructVisitor::Pre(const parser::SelectRankConstruct::RankCase &) {
7483   PushScope(Scope::Kind::OtherConstruct, nullptr);
7484   return true;
7485 }
7486 void ConstructVisitor::Post(const parser::SelectRankConstruct::RankCase &) {
7487   PopScope();
7488 }
7489 
7490 bool ConstructVisitor::Pre(const parser::TypeGuardStmt::Guard &x) {
7491   if (std::holds_alternative<parser::DerivedTypeSpec>(x.u)) {
7492     // CLASS IS (t)
7493     SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived);
7494   }
7495   return true;
7496 }
7497 
7498 void ConstructVisitor::Post(const parser::TypeGuardStmt::Guard &x) {
7499   if (auto *symbol{MakeAssocEntity()}) {
7500     if (std::holds_alternative<parser::Default>(x.u)) {
7501       SetTypeFromAssociation(*symbol);
7502     } else if (const auto *type{GetDeclTypeSpec()}) {
7503       symbol->SetType(*type);
7504     }
7505     SetAttrsFromAssociation(*symbol);
7506   }
7507 }
7508 
7509 void ConstructVisitor::Post(const parser::SelectRankCaseStmt::Rank &x) {
7510   if (auto *symbol{MakeAssocEntity()}) {
7511     SetTypeFromAssociation(*symbol);
7512     auto &details{symbol->get<AssocEntityDetails>()};
7513     // Don't call SetAttrsFromAssociation() for SELECT RANK.
7514     Attrs selectorAttrs{
7515         evaluate::GetAttrs(GetCurrentAssociation().selector.expr)};
7516     Attrs attrsToKeep{Attr::ASYNCHRONOUS, Attr::TARGET, Attr::VOLATILE};
7517     if (const auto *rankValue{
7518             std::get_if<parser::ScalarIntConstantExpr>(&x.u)}) {
7519       // RANK(n)
7520       if (auto expr{EvaluateIntExpr(*rankValue)}) {
7521         if (auto val{evaluate::ToInt64(*expr)}) {
7522           details.set_rank(*val);
7523           attrsToKeep |= Attrs{Attr::ALLOCATABLE, Attr::POINTER};
7524         } else {
7525           Say("RANK() expression must be constant"_err_en_US);
7526         }
7527       }
7528     } else if (std::holds_alternative<parser::Star>(x.u)) {
7529       // RANK(*): assumed-size
7530       details.set_IsAssumedSize();
7531     } else {
7532       CHECK(std::holds_alternative<parser::Default>(x.u));
7533       // RANK DEFAULT: assumed-rank
7534       details.set_IsAssumedRank();
7535       attrsToKeep |= Attrs{Attr::ALLOCATABLE, Attr::POINTER};
7536     }
7537     symbol->attrs() |= selectorAttrs & attrsToKeep;
7538   }
7539 }
7540 
7541 bool ConstructVisitor::Pre(const parser::SelectRankConstruct &) {
7542   PushAssociation();
7543   return true;
7544 }
7545 
7546 void ConstructVisitor::Post(const parser::SelectRankConstruct &) {
7547   PopAssociation();
7548 }
7549 
7550 bool ConstructVisitor::CheckDef(const std::optional<parser::Name> &x) {
7551   if (x && !x->symbol) {
7552     // Construct names are not scoped by BLOCK in the standard, but many,
7553     // but not all, compilers do treat them as if they were so scoped.
7554     if (Symbol * inner{FindInScope(currScope(), *x)}) {
7555       SayAlreadyDeclared(*x, *inner);
7556     } else {
7557       if (context().ShouldWarn(common::LanguageFeature::BenignNameClash)) {
7558         if (Symbol *
7559             other{FindInScopeOrBlockConstructs(InclusiveScope(), x->source)}) {
7560           SayWithDecl(*x, *other,
7561               "The construct name '%s' should be distinct at the subprogram level"_port_en_US)
7562               .set_languageFeature(common::LanguageFeature::BenignNameClash);
7563         }
7564       }
7565       MakeSymbol(*x, MiscDetails{MiscDetails::Kind::ConstructName});
7566     }
7567   }
7568   return true;
7569 }
7570 
7571 void ConstructVisitor::CheckRef(const std::optional<parser::Name> &x) {
7572   if (x) {
7573     // Just add an occurrence of this name; checking is done in ValidateLabels
7574     FindSymbol(*x);
7575   }
7576 }
7577 
7578 // Make a symbol for the associating entity of the current association.
7579 Symbol *ConstructVisitor::MakeAssocEntity() {
7580   Symbol *symbol{nullptr};
7581   auto &association{GetCurrentAssociation()};
7582   if (association.name) {
7583     symbol = &MakeSymbol(*association.name, UnknownDetails{});
7584     if (symbol->has<AssocEntityDetails>() && symbol->owner() == currScope()) {
7585       Say(*association.name, // C1102
7586           "The associate name '%s' is already used in this associate statement"_err_en_US);
7587       return nullptr;
7588     }
7589   } else if (const Symbol *
7590       whole{UnwrapWholeSymbolDataRef(association.selector.expr)}) {
7591     symbol = &MakeSymbol(whole->name());
7592   } else {
7593     return nullptr;
7594   }
7595   if (auto &expr{association.selector.expr}) {
7596     symbol->set_details(AssocEntityDetails{common::Clone(*expr)});
7597   } else {
7598     symbol->set_details(AssocEntityDetails{});
7599   }
7600   return symbol;
7601 }
7602 
7603 // Set the type of symbol based on the current association selector.
7604 void ConstructVisitor::SetTypeFromAssociation(Symbol &symbol) {
7605   auto &details{symbol.get<AssocEntityDetails>()};
7606   const MaybeExpr *pexpr{&details.expr()};
7607   if (!*pexpr) {
7608     pexpr = &GetCurrentAssociation().selector.expr;
7609   }
7610   if (*pexpr) {
7611     const SomeExpr &expr{**pexpr};
7612     if (std::optional<evaluate::DynamicType> type{expr.GetType()}) {
7613       if (const auto *charExpr{
7614               evaluate::UnwrapExpr<evaluate::Expr<evaluate::SomeCharacter>>(
7615                   expr)}) {
7616         symbol.SetType(ToDeclTypeSpec(std::move(*type),
7617             FoldExpr(common::visit(
7618                 [](const auto &kindChar) { return kindChar.LEN(); },
7619                 charExpr->u))));
7620       } else {
7621         symbol.SetType(ToDeclTypeSpec(std::move(*type)));
7622       }
7623     } else {
7624       // BOZ literals, procedure designators, &c. are not acceptable
7625       Say(symbol.name(), "Associate name '%s' must have a type"_err_en_US);
7626     }
7627   }
7628 }
7629 
7630 // If current selector is a variable, set some of its attributes on symbol.
7631 // For ASSOCIATE, CHANGE TEAM, and SELECT TYPE only; not SELECT RANK.
7632 void ConstructVisitor::SetAttrsFromAssociation(Symbol &symbol) {
7633   Attrs attrs{evaluate::GetAttrs(GetCurrentAssociation().selector.expr)};
7634   symbol.attrs() |=
7635       attrs & Attrs{Attr::TARGET, Attr::ASYNCHRONOUS, Attr::VOLATILE};
7636   if (attrs.test(Attr::POINTER)) {
7637     SetImplicitAttr(symbol, Attr::TARGET);
7638   }
7639 }
7640 
7641 ConstructVisitor::Selector ConstructVisitor::ResolveSelector(
7642     const parser::Selector &x) {
7643   return common::visit(common::visitors{
7644                            [&](const parser::Expr &expr) {
7645                              return Selector{expr.source, EvaluateExpr(x)};
7646                            },
7647                            [&](const parser::Variable &var) {
7648                              return Selector{var.GetSource(), EvaluateExpr(x)};
7649                            },
7650                        },
7651       x.u);
7652 }
7653 
7654 // Set the current association to the nth to the last association on the
7655 // association stack.  The top of the stack is at n = 1.  This allows access
7656 // to the interior of a list of associations at the top of the stack.
7657 void ConstructVisitor::SetCurrentAssociation(std::size_t n) {
7658   CHECK(n > 0 && n <= associationStack_.size());
7659   currentAssociation_ = &associationStack_[associationStack_.size() - n];
7660 }
7661 
7662 ConstructVisitor::Association &ConstructVisitor::GetCurrentAssociation() {
7663   CHECK(currentAssociation_);
7664   return *currentAssociation_;
7665 }
7666 
7667 void ConstructVisitor::PushAssociation() {
7668   associationStack_.emplace_back(Association{});
7669   currentAssociation_ = &associationStack_.back();
7670 }
7671 
7672 void ConstructVisitor::PopAssociation(std::size_t count) {
7673   CHECK(count > 0 && count <= associationStack_.size());
7674   associationStack_.resize(associationStack_.size() - count);
7675   currentAssociation_ =
7676       associationStack_.empty() ? nullptr : &associationStack_.back();
7677 }
7678 
7679 const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec(
7680     evaluate::DynamicType &&type) {
7681   switch (type.category()) {
7682     SWITCH_COVERS_ALL_CASES
7683   case common::TypeCategory::Integer:
7684   case common::TypeCategory::Unsigned:
7685   case common::TypeCategory::Real:
7686   case common::TypeCategory::Complex:
7687     return context().MakeNumericType(type.category(), type.kind());
7688   case common::TypeCategory::Logical:
7689     return context().MakeLogicalType(type.kind());
7690   case common::TypeCategory::Derived:
7691     if (type.IsAssumedType()) {
7692       return currScope().MakeTypeStarType();
7693     } else if (type.IsUnlimitedPolymorphic()) {
7694       return currScope().MakeClassStarType();
7695     } else {
7696       return currScope().MakeDerivedType(
7697           type.IsPolymorphic() ? DeclTypeSpec::ClassDerived
7698                                : DeclTypeSpec::TypeDerived,
7699           common::Clone(type.GetDerivedTypeSpec())
7700 
7701       );
7702     }
7703   case common::TypeCategory::Character:
7704     CRASH_NO_CASE;
7705   }
7706 }
7707 
7708 const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec(
7709     evaluate::DynamicType &&type, MaybeSubscriptIntExpr &&length) {
7710   CHECK(type.category() == common::TypeCategory::Character);
7711   if (length) {
7712     return currScope().MakeCharacterType(
7713         ParamValue{SomeIntExpr{*std::move(length)}, common::TypeParamAttr::Len},
7714         KindExpr{type.kind()});
7715   } else {
7716     return currScope().MakeCharacterType(
7717         ParamValue::Deferred(common::TypeParamAttr::Len),
7718         KindExpr{type.kind()});
7719   }
7720 }
7721 
7722 class ExecutionPartSkimmerBase {
7723 public:
7724   template <typename A> bool Pre(const A &) { return true; }
7725   template <typename A> void Post(const A &) {}
7726 
7727   bool InNestedBlockConstruct() const { return blockDepth_ > 0; }
7728 
7729   bool Pre(const parser::AssociateConstruct &) {
7730     PushScope();
7731     return true;
7732   }
7733   void Post(const parser::AssociateConstruct &) { PopScope(); }
7734   bool Pre(const parser::Association &x) {
7735     Hide(std::get<parser::Name>(x.t));
7736     return true;
7737   }
7738   bool Pre(const parser::BlockConstruct &) {
7739     PushScope();
7740     ++blockDepth_;
7741     return true;
7742   }
7743   void Post(const parser::BlockConstruct &) {
7744     --blockDepth_;
7745     PopScope();
7746   }
7747   // Note declarations of local names in BLOCK constructs.
7748   // Don't have to worry about INTENT(), VALUE, or OPTIONAL
7749   // (pertinent only to dummy arguments), ASYNCHRONOUS/VOLATILE,
7750   // or accessibility attributes,
7751   bool Pre(const parser::EntityDecl &x) {
7752     Hide(std::get<parser::ObjectName>(x.t));
7753     return true;
7754   }
7755   bool Pre(const parser::ObjectDecl &x) {
7756     Hide(std::get<parser::ObjectName>(x.t));
7757     return true;
7758   }
7759   bool Pre(const parser::PointerDecl &x) {
7760     Hide(std::get<parser::Name>(x.t));
7761     return true;
7762   }
7763   bool Pre(const parser::BindEntity &x) {
7764     Hide(std::get<parser::Name>(x.t));
7765     return true;
7766   }
7767   bool Pre(const parser::ContiguousStmt &x) {
7768     for (const parser::Name &name : x.v) {
7769       Hide(name);
7770     }
7771     return true;
7772   }
7773   bool Pre(const parser::DimensionStmt::Declaration &x) {
7774     Hide(std::get<parser::Name>(x.t));
7775     return true;
7776   }
7777   bool Pre(const parser::ExternalStmt &x) {
7778     for (const parser::Name &name : x.v) {
7779       Hide(name);
7780     }
7781     return true;
7782   }
7783   bool Pre(const parser::IntrinsicStmt &x) {
7784     for (const parser::Name &name : x.v) {
7785       Hide(name);
7786     }
7787     return true;
7788   }
7789   bool Pre(const parser::CodimensionStmt &x) {
7790     for (const parser::CodimensionDecl &decl : x.v) {
7791       Hide(std::get<parser::Name>(decl.t));
7792     }
7793     return true;
7794   }
7795   void Post(const parser::ImportStmt &x) {
7796     if (x.kind == common::ImportKind::None ||
7797         x.kind == common::ImportKind::Only) {
7798       if (!nestedScopes_.front().importOnly.has_value()) {
7799         nestedScopes_.front().importOnly.emplace();
7800       }
7801       for (const auto &name : x.names) {
7802         nestedScopes_.front().importOnly->emplace(name.source);
7803       }
7804     } else {
7805       // no special handling needed for explicit names or IMPORT, ALL
7806     }
7807   }
7808   void Post(const parser::UseStmt &x) {
7809     if (const auto *onlyList{std::get_if<std::list<parser::Only>>(&x.u)}) {
7810       for (const auto &only : *onlyList) {
7811         if (const auto *name{std::get_if<parser::Name>(&only.u)}) {
7812           Hide(*name);
7813         } else if (const auto *rename{std::get_if<parser::Rename>(&only.u)}) {
7814           if (const auto *names{
7815                   std::get_if<parser::Rename::Names>(&rename->u)}) {
7816             Hide(std::get<0>(names->t));
7817           }
7818         }
7819       }
7820     } else {
7821       // USE may or may not shadow symbols in host scopes
7822       nestedScopes_.front().hasUseWithoutOnly = true;
7823     }
7824   }
7825   bool Pre(const parser::DerivedTypeStmt &x) {
7826     Hide(std::get<parser::Name>(x.t));
7827     PushScope();
7828     return true;
7829   }
7830   void Post(const parser::DerivedTypeDef &) { PopScope(); }
7831   bool Pre(const parser::SelectTypeConstruct &) {
7832     PushScope();
7833     return true;
7834   }
7835   void Post(const parser::SelectTypeConstruct &) { PopScope(); }
7836   bool Pre(const parser::SelectTypeStmt &x) {
7837     if (const auto &maybeName{std::get<1>(x.t)}) {
7838       Hide(*maybeName);
7839     }
7840     return true;
7841   }
7842   bool Pre(const parser::SelectRankConstruct &) {
7843     PushScope();
7844     return true;
7845   }
7846   void Post(const parser::SelectRankConstruct &) { PopScope(); }
7847   bool Pre(const parser::SelectRankStmt &x) {
7848     if (const auto &maybeName{std::get<1>(x.t)}) {
7849       Hide(*maybeName);
7850     }
7851     return true;
7852   }
7853 
7854   // Iterator-modifiers contain variable declarations, and do introduce
7855   // a new scope. These variables can only have integer types, and their
7856   // scope only extends until the end of the clause. A potential alternative
7857   // to the code below may be to ignore OpenMP clauses, but it's not clear
7858   // if OMP-specific checks can be avoided altogether.
7859   bool Pre(const parser::OmpClause &x) {
7860     if (OmpVisitor::NeedsScope(x)) {
7861       PushScope();
7862     }
7863     return true;
7864   }
7865   void Post(const parser::OmpClause &x) {
7866     if (OmpVisitor::NeedsScope(x)) {
7867       PopScope();
7868     }
7869   }
7870 
7871 protected:
7872   bool IsHidden(SourceName name) {
7873     for (const auto &scope : nestedScopes_) {
7874       if (scope.locals.find(name) != scope.locals.end()) {
7875         return true; // shadowed by nested declaration
7876       }
7877       if (scope.hasUseWithoutOnly) {
7878         break;
7879       }
7880       if (scope.importOnly &&
7881           scope.importOnly->find(name) == scope.importOnly->end()) {
7882         return true; // not imported
7883       }
7884     }
7885     return false;
7886   }
7887 
7888   void EndWalk() { CHECK(nestedScopes_.empty()); }
7889 
7890 private:
7891   void PushScope() { nestedScopes_.emplace_front(); }
7892   void PopScope() { nestedScopes_.pop_front(); }
7893   void Hide(const parser::Name &name) {
7894     nestedScopes_.front().locals.emplace(name.source);
7895   }
7896 
7897   int blockDepth_{0};
7898   struct NestedScopeInfo {
7899     bool hasUseWithoutOnly{false};
7900     std::set<SourceName> locals;
7901     std::optional<std::set<SourceName>> importOnly;
7902   };
7903   std::list<NestedScopeInfo> nestedScopes_;
7904 };
7905 
7906 class ExecutionPartAsyncIOSkimmer : public ExecutionPartSkimmerBase {
7907 public:
7908   explicit ExecutionPartAsyncIOSkimmer(SemanticsContext &context)
7909       : context_{context} {}
7910 
7911   void Walk(const parser::Block &block) {
7912     parser::Walk(block, *this);
7913     EndWalk();
7914   }
7915 
7916   const std::set<SourceName> asyncIONames() const { return asyncIONames_; }
7917 
7918   using ExecutionPartSkimmerBase::Post;
7919   using ExecutionPartSkimmerBase::Pre;
7920 
7921   bool Pre(const parser::IoControlSpec::Asynchronous &async) {
7922     if (auto folded{evaluate::Fold(
7923             context_.foldingContext(), AnalyzeExpr(context_, async.v))}) {
7924       if (auto str{
7925               evaluate::GetScalarConstantValue<evaluate::Ascii>(*folded)}) {
7926         for (char ch : *str) {
7927           if (ch != ' ') {
7928             inAsyncIO_ = ch == 'y' || ch == 'Y';
7929             break;
7930           }
7931         }
7932       }
7933     }
7934     return true;
7935   }
7936   void Post(const parser::ReadStmt &) { inAsyncIO_ = false; }
7937   void Post(const parser::WriteStmt &) { inAsyncIO_ = false; }
7938   void Post(const parser::IoControlSpec::Size &size) {
7939     if (const auto *designator{
7940             std::get_if<common::Indirection<parser::Designator>>(
7941                 &size.v.thing.thing.u)}) {
7942       NoteAsyncIODesignator(designator->value());
7943     }
7944   }
7945   void Post(const parser::InputItem &x) {
7946     if (const auto *var{std::get_if<parser::Variable>(&x.u)}) {
7947       if (const auto *designator{
7948               std::get_if<common::Indirection<parser::Designator>>(&var->u)}) {
7949         NoteAsyncIODesignator(designator->value());
7950       }
7951     }
7952   }
7953   void Post(const parser::OutputItem &x) {
7954     if (const auto *expr{std::get_if<parser::Expr>(&x.u)}) {
7955       if (const auto *designator{
7956               std::get_if<common::Indirection<parser::Designator>>(&expr->u)}) {
7957         NoteAsyncIODesignator(designator->value());
7958       }
7959     }
7960   }
7961 
7962 private:
7963   void NoteAsyncIODesignator(const parser::Designator &designator) {
7964     if (inAsyncIO_ && !InNestedBlockConstruct()) {
7965       const parser::Name &name{parser::GetFirstName(designator)};
7966       if (!IsHidden(name.source)) {
7967         asyncIONames_.insert(name.source);
7968       }
7969     }
7970   }
7971 
7972   SemanticsContext &context_;
7973   bool inAsyncIO_{false};
7974   std::set<SourceName> asyncIONames_;
7975 };
7976 
7977 // Any data list item or SIZE= specifier of an I/O data transfer statement
7978 // with ASYNCHRONOUS="YES" implicitly has the ASYNCHRONOUS attribute in the
7979 // local scope.
7980 void ConstructVisitor::HandleImpliedAsynchronousInScope(
7981     const parser::Block &block) {
7982   ExecutionPartAsyncIOSkimmer skimmer{context()};
7983   skimmer.Walk(block);
7984   for (auto name : skimmer.asyncIONames()) {
7985     if (Symbol * symbol{currScope().FindSymbol(name)}) {
7986       if (!symbol->attrs().test(Attr::ASYNCHRONOUS)) {
7987         if (&symbol->owner() != &currScope()) {
7988           symbol = &*currScope()
7989                          .try_emplace(name, HostAssocDetails{*symbol})
7990                          .first->second;
7991         }
7992         if (symbol->has<AssocEntityDetails>()) {
7993           symbol = const_cast<Symbol *>(&GetAssociationRoot(*symbol));
7994         }
7995         SetImplicitAttr(*symbol, Attr::ASYNCHRONOUS);
7996       }
7997     }
7998   }
7999 }
8000 
8001 // ResolveNamesVisitor implementation
8002 
8003 bool ResolveNamesVisitor::Pre(const parser::FunctionReference &x) {
8004   HandleCall(Symbol::Flag::Function, x.v);
8005   return false;
8006 }
8007 bool ResolveNamesVisitor::Pre(const parser::CallStmt &x) {
8008   HandleCall(Symbol::Flag::Subroutine, x.call);
8009   Walk(x.chevrons);
8010   return false;
8011 }
8012 
8013 bool ResolveNamesVisitor::Pre(const parser::ImportStmt &x) {
8014   auto &scope{currScope()};
8015   // Check C896 and C899: where IMPORT statements are allowed
8016   switch (scope.kind()) {
8017   case Scope::Kind::Module:
8018     if (scope.IsModule()) {
8019       Say("IMPORT is not allowed in a module scoping unit"_err_en_US);
8020       return false;
8021     } else if (x.kind == common::ImportKind::None) {
8022       Say("IMPORT,NONE is not allowed in a submodule scoping unit"_err_en_US);
8023       return false;
8024     }
8025     break;
8026   case Scope::Kind::MainProgram:
8027     Say("IMPORT is not allowed in a main program scoping unit"_err_en_US);
8028     return false;
8029   case Scope::Kind::Subprogram:
8030     if (scope.parent().IsGlobal()) {
8031       Say("IMPORT is not allowed in an external subprogram scoping unit"_err_en_US);
8032       return false;
8033     }
8034     break;
8035   case Scope::Kind::BlockData: // C1415 (in part)
8036     Say("IMPORT is not allowed in a BLOCK DATA subprogram"_err_en_US);
8037     return false;
8038   default:;
8039   }
8040   if (auto error{scope.SetImportKind(x.kind)}) {
8041     Say(std::move(*error));
8042   }
8043   for (auto &name : x.names) {
8044     if (Symbol * outer{FindSymbol(scope.parent(), name)}) {
8045       scope.add_importName(name.source);
8046       if (Symbol * symbol{FindInScope(name)}) {
8047         if (outer->GetUltimate() == symbol->GetUltimate()) {
8048           context().Warn(common::LanguageFeature::BenignNameClash, name.source,
8049               "The same '%s' is already present in this scope"_port_en_US,
8050               name.source);
8051         } else {
8052           Say(name,
8053               "A distinct '%s' is already present in this scope"_err_en_US)
8054               .Attach(symbol->name(), "Previous declaration of '%s'"_en_US)
8055               .Attach(outer->name(), "Declaration of '%s' in host scope"_en_US);
8056         }
8057       }
8058     } else {
8059       Say(name, "'%s' not found in host scope"_err_en_US);
8060     }
8061   }
8062   prevImportStmt_ = currStmtSource();
8063   return false;
8064 }
8065 
8066 const parser::Name *DeclarationVisitor::ResolveStructureComponent(
8067     const parser::StructureComponent &x) {
8068   return FindComponent(ResolveDataRef(x.base), x.component);
8069 }
8070 
8071 const parser::Name *DeclarationVisitor::ResolveDesignator(
8072     const parser::Designator &x) {
8073   return common::visit(
8074       common::visitors{
8075           [&](const parser::DataRef &x) { return ResolveDataRef(x); },
8076           [&](const parser::Substring &x) {
8077             Walk(std::get<parser::SubstringRange>(x.t).t);
8078             return ResolveDataRef(std::get<parser::DataRef>(x.t));
8079           },
8080       },
8081       x.u);
8082 }
8083 
8084 const parser::Name *DeclarationVisitor::ResolveDataRef(
8085     const parser::DataRef &x) {
8086   return common::visit(
8087       common::visitors{
8088           [=](const parser::Name &y) { return ResolveName(y); },
8089           [=](const Indirection<parser::StructureComponent> &y) {
8090             return ResolveStructureComponent(y.value());
8091           },
8092           [&](const Indirection<parser::ArrayElement> &y) {
8093             Walk(y.value().subscripts);
8094             const parser::Name *name{ResolveDataRef(y.value().base)};
8095             if (name && name->symbol) {
8096               if (!IsProcedure(*name->symbol)) {
8097                 ConvertToObjectEntity(*name->symbol);
8098               } else if (!context().HasError(*name->symbol)) {
8099                 SayWithDecl(*name, *name->symbol,
8100                     "Cannot reference function '%s' as data"_err_en_US);
8101                 context().SetError(*name->symbol);
8102               }
8103             }
8104             return name;
8105           },
8106           [&](const Indirection<parser::CoindexedNamedObject> &y) {
8107             Walk(y.value().imageSelector);
8108             return ResolveDataRef(y.value().base);
8109           },
8110       },
8111       x.u);
8112 }
8113 
8114 // If implicit types are allowed, ensure name is in the symbol table.
8115 // Otherwise, report an error if it hasn't been declared.
8116 const parser::Name *DeclarationVisitor::ResolveName(const parser::Name &name) {
8117   FindSymbol(name);
8118   if (CheckForHostAssociatedImplicit(name)) {
8119     NotePossibleBadForwardRef(name);
8120     return &name;
8121   }
8122   if (Symbol * symbol{name.symbol}) {
8123     if (CheckUseError(name)) {
8124       return nullptr; // reported an error
8125     }
8126     NotePossibleBadForwardRef(name);
8127     symbol->set(Symbol::Flag::ImplicitOrError, false);
8128     if (IsUplevelReference(*symbol)) {
8129       MakeHostAssocSymbol(name, *symbol);
8130     } else if (IsDummy(*symbol) ||
8131         (!symbol->GetType() && FindCommonBlockContaining(*symbol))) {
8132       CheckEntryDummyUse(name.source, symbol);
8133       ConvertToObjectEntity(*symbol);
8134       ApplyImplicitRules(*symbol);
8135     } else if (const auto *tpd{symbol->detailsIf<TypeParamDetails>()};
8136                tpd && !tpd->attr()) {
8137       Say(name,
8138           "Type parameter '%s' was referenced before being declared"_err_en_US,
8139           name.source);
8140       context().SetError(*symbol);
8141     }
8142     if (checkIndexUseInOwnBounds_ &&
8143         *checkIndexUseInOwnBounds_ == name.source && !InModuleFile()) {
8144       context().Warn(common::LanguageFeature::ImpliedDoIndexScope, name.source,
8145           "Implied DO index '%s' uses an object of the same name in its bounds expressions"_port_en_US,
8146           name.source);
8147     }
8148     return &name;
8149   }
8150   if (isImplicitNoneType() && !deferImplicitTyping_) {
8151     Say(name, "No explicit type declared for '%s'"_err_en_US);
8152     return nullptr;
8153   }
8154   // Create the symbol, then ensure that it is accessible
8155   if (checkIndexUseInOwnBounds_ && *checkIndexUseInOwnBounds_ == name.source) {
8156     Say(name,
8157         "Implied DO index '%s' uses itself in its own bounds expressions"_err_en_US,
8158         name.source);
8159   }
8160   MakeSymbol(InclusiveScope(), name.source, Attrs{});
8161   auto *symbol{FindSymbol(name)};
8162   if (!symbol) {
8163     Say(name,
8164         "'%s' from host scoping unit is not accessible due to IMPORT"_err_en_US);
8165     return nullptr;
8166   }
8167   ConvertToObjectEntity(*symbol);
8168   ApplyImplicitRules(*symbol);
8169   NotePossibleBadForwardRef(name);
8170   return &name;
8171 }
8172 
8173 // A specification expression may refer to a symbol in the host procedure that
8174 // is implicitly typed. Because specification parts are processed before
8175 // execution parts, this may be the first time we see the symbol. It can't be a
8176 // local in the current scope (because it's in a specification expression) so
8177 // either it is implicitly declared in the host procedure or it is an error.
8178 // We create a symbol in the host assuming it is the former; if that proves to
8179 // be wrong we report an error later in CheckDeclarations().
8180 bool DeclarationVisitor::CheckForHostAssociatedImplicit(
8181     const parser::Name &name) {
8182   if (!inSpecificationPart_ || inEquivalenceStmt_) {
8183     return false;
8184   }
8185   if (name.symbol) {
8186     ApplyImplicitRules(*name.symbol, true);
8187   }
8188   if (Scope * host{GetHostProcedure()}; host && !isImplicitNoneType(*host)) {
8189     Symbol *hostSymbol{nullptr};
8190     if (!name.symbol) {
8191       if (currScope().CanImport(name.source)) {
8192         hostSymbol = &MakeSymbol(*host, name.source, Attrs{});
8193         ConvertToObjectEntity(*hostSymbol);
8194         ApplyImplicitRules(*hostSymbol);
8195         hostSymbol->set(Symbol::Flag::ImplicitOrError);
8196       }
8197     } else if (name.symbol->test(Symbol::Flag::ImplicitOrError)) {
8198       hostSymbol = name.symbol;
8199     }
8200     if (hostSymbol) {
8201       Symbol &symbol{MakeHostAssocSymbol(name, *hostSymbol)};
8202       if (auto *assoc{symbol.detailsIf<HostAssocDetails>()}) {
8203         if (isImplicitNoneType()) {
8204           assoc->implicitOrExplicitTypeError = true;
8205         } else {
8206           assoc->implicitOrSpecExprError = true;
8207         }
8208         return true;
8209       }
8210     }
8211   }
8212   return false;
8213 }
8214 
8215 bool DeclarationVisitor::IsUplevelReference(const Symbol &symbol) {
8216   const Scope &symbolUnit{GetProgramUnitContaining(symbol)};
8217   if (symbolUnit == GetProgramUnitContaining(currScope())) {
8218     return false;
8219   } else {
8220     Scope::Kind kind{symbolUnit.kind()};
8221     return kind == Scope::Kind::Subprogram || kind == Scope::Kind::MainProgram;
8222   }
8223 }
8224 
8225 // base is a part-ref of a derived type; find the named component in its type.
8226 // Also handles intrinsic type parameter inquiries (%kind, %len) and
8227 // COMPLEX component references (%re, %im).
8228 const parser::Name *DeclarationVisitor::FindComponent(
8229     const parser::Name *base, const parser::Name &component) {
8230   if (!base || !base->symbol) {
8231     return nullptr;
8232   }
8233   if (auto *misc{base->symbol->detailsIf<MiscDetails>()}) {
8234     if (component.source == "kind") {
8235       if (misc->kind() == MiscDetails::Kind::ComplexPartRe ||
8236           misc->kind() == MiscDetails::Kind::ComplexPartIm ||
8237           misc->kind() == MiscDetails::Kind::KindParamInquiry ||
8238           misc->kind() == MiscDetails::Kind::LenParamInquiry) {
8239         // x%{re,im,kind,len}%kind
8240         MakePlaceholder(component, MiscDetails::Kind::KindParamInquiry);
8241         return &component;
8242       }
8243     }
8244   }
8245   CheckEntryDummyUse(base->source, base->symbol);
8246   auto &symbol{base->symbol->GetUltimate()};
8247   if (!symbol.has<AssocEntityDetails>() && !ConvertToObjectEntity(symbol)) {
8248     SayWithDecl(*base, symbol,
8249         "'%s' is not an object and may not be used as the base of a component reference or type parameter inquiry"_err_en_US);
8250     return nullptr;
8251   }
8252   auto *type{symbol.GetType()};
8253   if (!type) {
8254     return nullptr; // should have already reported error
8255   }
8256   if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) {
8257     auto category{intrinsic->category()};
8258     MiscDetails::Kind miscKind{MiscDetails::Kind::None};
8259     if (component.source == "kind") {
8260       miscKind = MiscDetails::Kind::KindParamInquiry;
8261     } else if (category == TypeCategory::Character) {
8262       if (component.source == "len") {
8263         miscKind = MiscDetails::Kind::LenParamInquiry;
8264       }
8265     } else if (category == TypeCategory::Complex) {
8266       if (component.source == "re") {
8267         miscKind = MiscDetails::Kind::ComplexPartRe;
8268       } else if (component.source == "im") {
8269         miscKind = MiscDetails::Kind::ComplexPartIm;
8270       }
8271     }
8272     if (miscKind != MiscDetails::Kind::None) {
8273       MakePlaceholder(component, miscKind);
8274       return &component;
8275     }
8276   } else if (DerivedTypeSpec * derived{type->AsDerived()}) {
8277     derived->Instantiate(currScope()); // in case of forward referenced type
8278     if (const Scope * scope{derived->scope()}) {
8279       if (Resolve(component, scope->FindComponent(component.source))) {
8280         if (auto msg{CheckAccessibleSymbol(currScope(), *component.symbol)}) {
8281           context().Say(component.source, *msg);
8282         }
8283         return &component;
8284       } else {
8285         SayDerivedType(component.source,
8286             "Component '%s' not found in derived type '%s'"_err_en_US, *scope);
8287       }
8288     }
8289     return nullptr;
8290   }
8291   if (symbol.test(Symbol::Flag::Implicit)) {
8292     Say(*base,
8293         "'%s' is not an object of derived type; it is implicitly typed"_err_en_US);
8294   } else {
8295     SayWithDecl(
8296         *base, symbol, "'%s' is not an object of derived type"_err_en_US);
8297   }
8298   return nullptr;
8299 }
8300 
8301 void DeclarationVisitor::Initialization(const parser::Name &name,
8302     const parser::Initialization &init, bool inComponentDecl) {
8303   // Traversal of the initializer was deferred to here so that the
8304   // symbol being declared can be available for use in the expression, e.g.:
8305   //   real, parameter :: x = tiny(x)
8306   if (!name.symbol) {
8307     return;
8308   }
8309   Symbol &ultimate{name.symbol->GetUltimate()};
8310   // TODO: check C762 - all bounds and type parameters of component
8311   // are colons or constant expressions if component is initialized
8312   common::visit(
8313       common::visitors{
8314           [&](const parser::ConstantExpr &expr) {
8315             Walk(expr);
8316             if (IsNamedConstant(ultimate) || inComponentDecl) {
8317               NonPointerInitialization(name, expr);
8318             } else {
8319               // Defer analysis so forward references to nested subprograms
8320               // can be properly resolved when they appear in structure
8321               // constructors.
8322               ultimate.set(Symbol::Flag::InDataStmt);
8323             }
8324           },
8325           [&](const parser::NullInit &null) { // => NULL()
8326             Walk(null);
8327             if (auto nullInit{EvaluateExpr(null)}) {
8328               if (!evaluate::IsNullPointer(*nullInit)) { // C813
8329                 Say(null.v.value().source,
8330                     "Pointer initializer must be intrinsic NULL()"_err_en_US);
8331               } else if (IsPointer(ultimate)) {
8332                 if (auto *object{ultimate.detailsIf<ObjectEntityDetails>()}) {
8333                   CHECK(!object->init());
8334                   object->set_init(std::move(*nullInit));
8335                 } else if (auto *procPtr{
8336                                ultimate.detailsIf<ProcEntityDetails>()}) {
8337                   CHECK(!procPtr->init());
8338                   procPtr->set_init(nullptr);
8339                 }
8340               } else {
8341                 Say(name,
8342                     "Non-pointer component '%s' initialized with null pointer"_err_en_US);
8343               }
8344             }
8345           },
8346           [&](const parser::InitialDataTarget &target) {
8347             // Defer analysis to the end of the specification part
8348             // so that forward references and attribute checks like SAVE
8349             // work better.
8350             auto restorer{common::ScopedSet(deferImplicitTyping_, true)};
8351             Walk(target);
8352             ultimate.set(Symbol::Flag::InDataStmt);
8353           },
8354           [&](const std::list<Indirection<parser::DataStmtValue>> &values) {
8355             // Handled later in data-to-inits conversion
8356             ultimate.set(Symbol::Flag::InDataStmt);
8357             Walk(values);
8358           },
8359       },
8360       init.u);
8361 }
8362 
8363 void DeclarationVisitor::PointerInitialization(
8364     const parser::Name &name, const parser::InitialDataTarget &target) {
8365   if (name.symbol) {
8366     Symbol &ultimate{name.symbol->GetUltimate()};
8367     if (!context().HasError(ultimate)) {
8368       if (IsPointer(ultimate)) {
8369         Walk(target);
8370         if (MaybeExpr expr{EvaluateExpr(target)}) {
8371           // Validation is done in declaration checking.
8372           if (auto *details{ultimate.detailsIf<ObjectEntityDetails>()}) {
8373             CHECK(!details->init());
8374             details->set_init(std::move(*expr));
8375             ultimate.set(Symbol::Flag::InDataStmt, false);
8376           } else if (auto *details{ultimate.detailsIf<ProcEntityDetails>()}) {
8377             // something like "REAL, EXTERNAL, POINTER :: p => t"
8378             if (evaluate::IsNullProcedurePointer(*expr)) {
8379               CHECK(!details->init());
8380               details->set_init(nullptr);
8381             } else if (const Symbol *
8382                 targetSymbol{evaluate::UnwrapWholeSymbolDataRef(*expr)}) {
8383               CHECK(!details->init());
8384               details->set_init(*targetSymbol);
8385             } else {
8386               Say(name,
8387                   "Procedure pointer '%s' must be initialized with a procedure name or NULL()"_err_en_US);
8388               context().SetError(ultimate);
8389             }
8390           }
8391         }
8392       } else {
8393         Say(name,
8394             "'%s' is not a pointer but is initialized like one"_err_en_US);
8395         context().SetError(ultimate);
8396       }
8397     }
8398   }
8399 }
8400 void DeclarationVisitor::PointerInitialization(
8401     const parser::Name &name, const parser::ProcPointerInit &target) {
8402   if (name.symbol) {
8403     Symbol &ultimate{name.symbol->GetUltimate()};
8404     if (!context().HasError(ultimate)) {
8405       if (IsProcedurePointer(ultimate)) {
8406         auto &details{ultimate.get<ProcEntityDetails>()};
8407         CHECK(!details.init());
8408         if (const auto *targetName{std::get_if<parser::Name>(&target.u)}) {
8409           Walk(target);
8410           if (!CheckUseError(*targetName) && targetName->symbol) {
8411             // Validation is done in declaration checking.
8412             details.set_init(*targetName->symbol);
8413           }
8414         } else { // explicit NULL
8415           details.set_init(nullptr);
8416         }
8417       } else {
8418         Say(name,
8419             "'%s' is not a procedure pointer but is initialized "
8420             "like one"_err_en_US);
8421         context().SetError(ultimate);
8422       }
8423     }
8424   }
8425 }
8426 
8427 void DeclarationVisitor::NonPointerInitialization(
8428     const parser::Name &name, const parser::ConstantExpr &expr) {
8429   if (!context().HasError(name.symbol)) {
8430     Symbol &ultimate{name.symbol->GetUltimate()};
8431     if (!context().HasError(ultimate)) {
8432       if (IsPointer(ultimate)) {
8433         Say(name,
8434             "'%s' is a pointer but is not initialized like one"_err_en_US);
8435       } else if (auto *details{ultimate.detailsIf<ObjectEntityDetails>()}) {
8436         if (details->init()) {
8437           SayWithDecl(name, *name.symbol,
8438               "'%s' has already been initialized"_err_en_US);
8439         } else if (IsAllocatable(ultimate)) {
8440           Say(name, "Allocatable object '%s' cannot be initialized"_err_en_US);
8441         } else if (ultimate.owner().IsParameterizedDerivedType()) {
8442           // Save the expression for per-instantiation analysis.
8443           details->set_unanalyzedPDTComponentInit(&expr.thing.value());
8444         } else if (MaybeExpr folded{EvaluateNonPointerInitializer(
8445                        ultimate, expr, expr.thing.value().source)}) {
8446           details->set_init(std::move(*folded));
8447           ultimate.set(Symbol::Flag::InDataStmt, false);
8448         }
8449       } else {
8450         Say(name, "'%s' is not an object that can be initialized"_err_en_US);
8451       }
8452     }
8453   }
8454 }
8455 
8456 void ResolveNamesVisitor::HandleCall(
8457     Symbol::Flag procFlag, const parser::Call &call) {
8458   common::visit(
8459       common::visitors{
8460           [&](const parser::Name &x) { HandleProcedureName(procFlag, x); },
8461           [&](const parser::ProcComponentRef &x) {
8462             Walk(x);
8463             const parser::Name &name{x.v.thing.component};
8464             if (Symbol * symbol{name.symbol}) {
8465               if (IsProcedure(*symbol)) {
8466                 SetProcFlag(name, *symbol, procFlag);
8467               }
8468             }
8469           },
8470       },
8471       std::get<parser::ProcedureDesignator>(call.t).u);
8472   const auto &arguments{std::get<std::list<parser::ActualArgSpec>>(call.t)};
8473   Walk(arguments);
8474   // Once an object has appeared in a specification function reference as
8475   // a whole scalar actual argument, it cannot be (re)dimensioned later.
8476   // The fact that it appeared to be a scalar may determine the resolution
8477   // or the result of an inquiry intrinsic function or generic procedure.
8478   if (inSpecificationPart_) {
8479     for (const auto &argSpec : arguments) {
8480       const auto &actual{std::get<parser::ActualArg>(argSpec.t)};
8481       if (const auto *expr{
8482               std::get_if<common::Indirection<parser::Expr>>(&actual.u)}) {
8483         if (const auto *designator{
8484                 std::get_if<common::Indirection<parser::Designator>>(
8485                     &expr->value().u)}) {
8486           if (const auto *dataRef{
8487                   std::get_if<parser::DataRef>(&designator->value().u)}) {
8488             if (const auto *name{std::get_if<parser::Name>(&dataRef->u)};
8489                 name && name->symbol) {
8490               const Symbol &symbol{*name->symbol};
8491               const auto *object{symbol.detailsIf<ObjectEntityDetails>()};
8492               if (symbol.has<EntityDetails>() ||
8493                   (object && !object->IsArray())) {
8494                 NoteScalarSpecificationArgument(symbol);
8495               }
8496             }
8497           }
8498         }
8499       }
8500     }
8501   }
8502 }
8503 
8504 void ResolveNamesVisitor::HandleProcedureName(
8505     Symbol::Flag flag, const parser::Name &name) {
8506   CHECK(flag == Symbol::Flag::Function || flag == Symbol::Flag::Subroutine);
8507   auto *symbol{FindSymbol(NonDerivedTypeScope(), name)};
8508   if (!symbol) {
8509     if (IsIntrinsic(name.source, flag)) {
8510       symbol = &MakeSymbol(InclusiveScope(), name.source, Attrs{});
8511       SetImplicitAttr(*symbol, Attr::INTRINSIC);
8512     } else if (const auto ppcBuiltinScope =
8513                    currScope().context().GetPPCBuiltinsScope()) {
8514       // Check if it is a builtin from the predefined module
8515       symbol = FindSymbol(*ppcBuiltinScope, name);
8516       if (!symbol) {
8517         symbol = &MakeSymbol(context().globalScope(), name.source, Attrs{});
8518       }
8519     } else {
8520       symbol = &MakeSymbol(context().globalScope(), name.source, Attrs{});
8521     }
8522     Resolve(name, *symbol);
8523     ConvertToProcEntity(*symbol, name.source);
8524     if (!symbol->attrs().test(Attr::INTRINSIC)) {
8525       if (CheckImplicitNoneExternal(name.source, *symbol)) {
8526         MakeExternal(*symbol);
8527         // Create a place-holder HostAssocDetails symbol to preclude later
8528         // use of this name as a local symbol; but don't actually use this new
8529         // HostAssocDetails symbol in expressions.
8530         MakeHostAssocSymbol(name, *symbol);
8531         name.symbol = symbol;
8532       }
8533     }
8534     CheckEntryDummyUse(name.source, symbol);
8535     SetProcFlag(name, *symbol, flag);
8536   } else if (CheckUseError(name)) {
8537     // error was reported
8538   } else {
8539     symbol = &symbol->GetUltimate();
8540     if (!name.symbol ||
8541         (name.symbol->has<HostAssocDetails>() && symbol->owner().IsGlobal() &&
8542             (symbol->has<ProcEntityDetails>() ||
8543                 (symbol->has<SubprogramDetails>() &&
8544                     symbol->scope() /*not ENTRY*/)))) {
8545       name.symbol = symbol;
8546     }
8547     CheckEntryDummyUse(name.source, symbol);
8548     bool convertedToProcEntity{ConvertToProcEntity(*symbol, name.source)};
8549     if (convertedToProcEntity && !symbol->attrs().test(Attr::EXTERNAL) &&
8550         IsIntrinsic(symbol->name(), flag) && !IsDummy(*symbol)) {
8551       AcquireIntrinsicProcedureFlags(*symbol);
8552     }
8553     if (!SetProcFlag(name, *symbol, flag)) {
8554       return; // reported error
8555     }
8556     CheckImplicitNoneExternal(name.source, *symbol);
8557     if (IsProcedure(*symbol) || symbol->has<DerivedTypeDetails>() ||
8558         symbol->has<AssocEntityDetails>()) {
8559       // Symbols with DerivedTypeDetails and AssocEntityDetails are accepted
8560       // here as procedure-designators because this means the related
8561       // FunctionReference are mis-parsed structure constructors or array
8562       // references that will be fixed later when analyzing expressions.
8563     } else if (symbol->has<ObjectEntityDetails>()) {
8564       // Symbols with ObjectEntityDetails are also accepted because this can be
8565       // a mis-parsed array reference that will be fixed later. Ensure that if
8566       // this is a symbol from a host procedure, a symbol with HostAssocDetails
8567       // is created for the current scope.
8568       // Operate on non ultimate symbol so that HostAssocDetails are also
8569       // created for symbols used associated in the host procedure.
8570       ResolveName(name);
8571     } else if (symbol->test(Symbol::Flag::Implicit)) {
8572       Say(name,
8573           "Use of '%s' as a procedure conflicts with its implicit definition"_err_en_US);
8574     } else {
8575       SayWithDecl(name, *symbol,
8576           "Use of '%s' as a procedure conflicts with its declaration"_err_en_US);
8577     }
8578   }
8579 }
8580 
8581 bool ResolveNamesVisitor::CheckImplicitNoneExternal(
8582     const SourceName &name, const Symbol &symbol) {
8583   if (symbol.has<ProcEntityDetails>() && isImplicitNoneExternal() &&
8584       !symbol.attrs().test(Attr::EXTERNAL) &&
8585       !symbol.attrs().test(Attr::INTRINSIC) && !symbol.HasExplicitInterface()) {
8586     Say(name,
8587         "'%s' is an external procedure without the EXTERNAL attribute in a scope with IMPLICIT NONE(EXTERNAL)"_err_en_US);
8588     return false;
8589   }
8590   return true;
8591 }
8592 
8593 // Variant of HandleProcedureName() for use while skimming the executable
8594 // part of a subprogram to catch calls to dummy procedures that are part
8595 // of the subprogram's interface, and to mark as procedures any symbols
8596 // that might otherwise have been miscategorized as objects.
8597 void ResolveNamesVisitor::NoteExecutablePartCall(
8598     Symbol::Flag flag, SourceName name, bool hasCUDAChevrons) {
8599   // Subtlety: The symbol pointers in the parse tree are not set, because
8600   // they might end up resolving elsewhere (e.g., construct entities in
8601   // SELECT TYPE).
8602   if (Symbol * symbol{currScope().FindSymbol(name)}) {
8603     Symbol::Flag other{flag == Symbol::Flag::Subroutine
8604             ? Symbol::Flag::Function
8605             : Symbol::Flag::Subroutine};
8606     if (!symbol->test(other)) {
8607       ConvertToProcEntity(*symbol, name);
8608       if (auto *details{symbol->detailsIf<ProcEntityDetails>()}) {
8609         symbol->set(flag);
8610         if (IsDummy(*symbol)) {
8611           SetImplicitAttr(*symbol, Attr::EXTERNAL);
8612         }
8613         ApplyImplicitRules(*symbol);
8614         if (hasCUDAChevrons) {
8615           details->set_isCUDAKernel();
8616         }
8617       }
8618     }
8619   }
8620 }
8621 
8622 static bool IsLocallyImplicitGlobalSymbol(
8623     const Symbol &symbol, const parser::Name &localName) {
8624   if (symbol.owner().IsGlobal()) {
8625     const auto *subp{symbol.detailsIf<SubprogramDetails>()};
8626     const Scope *scope{
8627         subp && subp->entryScope() ? subp->entryScope() : symbol.scope()};
8628     return !(scope && scope->sourceRange().Contains(localName.source));
8629   }
8630   return false;
8631 }
8632 
8633 static bool TypesMismatchIfNonNull(
8634     const DeclTypeSpec *type1, const DeclTypeSpec *type2) {
8635   return type1 && type2 && *type1 != *type2;
8636 }
8637 
8638 // Check and set the Function or Subroutine flag on symbol; false on error.
8639 bool ResolveNamesVisitor::SetProcFlag(
8640     const parser::Name &name, Symbol &symbol, Symbol::Flag flag) {
8641   if (symbol.test(Symbol::Flag::Function) && flag == Symbol::Flag::Subroutine) {
8642     SayWithDecl(
8643         name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US);
8644     context().SetError(symbol);
8645     return false;
8646   } else if (symbol.test(Symbol::Flag::Subroutine) &&
8647       flag == Symbol::Flag::Function) {
8648     SayWithDecl(
8649         name, symbol, "Cannot call subroutine '%s' like a function"_err_en_US);
8650     context().SetError(symbol);
8651     return false;
8652   } else if (flag == Symbol::Flag::Function &&
8653       IsLocallyImplicitGlobalSymbol(symbol, name) &&
8654       TypesMismatchIfNonNull(symbol.GetType(), GetImplicitType(symbol))) {
8655     SayWithDecl(name, symbol,
8656         "Implicit declaration of function '%s' has a different result type than in previous declaration"_err_en_US);
8657     return false;
8658   } else if (symbol.has<ProcEntityDetails>()) {
8659     symbol.set(flag); // in case it hasn't been set yet
8660     if (flag == Symbol::Flag::Function) {
8661       ApplyImplicitRules(symbol);
8662     }
8663     if (symbol.attrs().test(Attr::INTRINSIC)) {
8664       AcquireIntrinsicProcedureFlags(symbol);
8665     }
8666   } else if (symbol.GetType() && flag == Symbol::Flag::Subroutine) {
8667     SayWithDecl(
8668         name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US);
8669     context().SetError(symbol);
8670   } else if (symbol.attrs().test(Attr::INTRINSIC)) {
8671     AcquireIntrinsicProcedureFlags(symbol);
8672   }
8673   return true;
8674 }
8675 
8676 bool ModuleVisitor::Pre(const parser::AccessStmt &x) {
8677   Attr accessAttr{AccessSpecToAttr(std::get<parser::AccessSpec>(x.t))};
8678   if (!currScope().IsModule()) { // C869
8679     Say(currStmtSource().value(),
8680         "%s statement may only appear in the specification part of a module"_err_en_US,
8681         EnumToString(accessAttr));
8682     return false;
8683   }
8684   const auto &accessIds{std::get<std::list<parser::AccessId>>(x.t)};
8685   if (accessIds.empty()) {
8686     if (prevAccessStmt_) { // C869
8687       Say("The default accessibility of this module has already been declared"_err_en_US)
8688           .Attach(*prevAccessStmt_, "Previous declaration"_en_US);
8689     }
8690     prevAccessStmt_ = currStmtSource();
8691     auto *moduleDetails{DEREF(currScope().symbol()).detailsIf<ModuleDetails>()};
8692     DEREF(moduleDetails).set_isDefaultPrivate(accessAttr == Attr::PRIVATE);
8693   } else {
8694     for (const auto &accessId : accessIds) {
8695       GenericSpecInfo info{accessId.v.value()};
8696       auto *symbol{FindInScope(info.symbolName())};
8697       if (!symbol && !info.kind().IsName()) {
8698         symbol = &MakeSymbol(info.symbolName(), Attrs{}, GenericDetails{});
8699       }
8700       info.Resolve(&SetAccess(info.symbolName(), accessAttr, symbol));
8701     }
8702   }
8703   return false;
8704 }
8705 
8706 // Set the access specification for this symbol.
8707 Symbol &ModuleVisitor::SetAccess(
8708     const SourceName &name, Attr attr, Symbol *symbol) {
8709   if (!symbol) {
8710     symbol = &MakeSymbol(name);
8711   }
8712   Attrs &attrs{symbol->attrs()};
8713   if (attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
8714     // PUBLIC/PRIVATE already set: make it a fatal error if it changed
8715     Attr prev{attrs.test(Attr::PUBLIC) ? Attr::PUBLIC : Attr::PRIVATE};
8716     if (attr != prev) {
8717       Say(name,
8718           "The accessibility of '%s' has already been specified as %s"_err_en_US,
8719           MakeOpName(name), EnumToString(prev));
8720     } else {
8721       context().Warn(common::LanguageFeature::RedundantAttribute, name,
8722           "The accessibility of '%s' has already been specified as %s"_warn_en_US,
8723           MakeOpName(name), EnumToString(prev));
8724     }
8725   } else {
8726     attrs.set(attr);
8727   }
8728   return *symbol;
8729 }
8730 
8731 static bool NeedsExplicitType(const Symbol &symbol) {
8732   if (symbol.has<UnknownDetails>()) {
8733     return true;
8734   } else if (const auto *details{symbol.detailsIf<EntityDetails>()}) {
8735     return !details->type();
8736   } else if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
8737     return !details->type();
8738   } else if (const auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
8739     return !details->procInterface() && !details->type();
8740   } else {
8741     return false;
8742   }
8743 }
8744 
8745 void ResolveNamesVisitor::HandleDerivedTypesInImplicitStmts(
8746     const parser::ImplicitPart &implicitPart,
8747     const std::list<parser::DeclarationConstruct> &decls) {
8748   // Detect derived type definitions and create symbols for them now if
8749   // they appear in IMPLICIT statements so that these forward-looking
8750   // references will not be ambiguous with host associations.
8751   std::set<SourceName> implicitDerivedTypes;
8752   for (const auto &ipStmt : implicitPart.v) {
8753     if (const auto *impl{std::get_if<
8754             parser::Statement<common::Indirection<parser::ImplicitStmt>>>(
8755             &ipStmt.u)}) {
8756       if (const auto *specs{std::get_if<std::list<parser::ImplicitSpec>>(
8757               &impl->statement.value().u)}) {
8758         for (const auto &spec : *specs) {
8759           const auto &declTypeSpec{
8760               std::get<parser::DeclarationTypeSpec>(spec.t)};
8761           if (const auto *dtSpec{common::visit(
8762                   common::visitors{
8763                       [](const parser::DeclarationTypeSpec::Type &x) {
8764                         return &x.derived;
8765                       },
8766                       [](const parser::DeclarationTypeSpec::Class &x) {
8767                         return &x.derived;
8768                       },
8769                       [](const auto &) -> const parser::DerivedTypeSpec * {
8770                         return nullptr;
8771                       }},
8772                   declTypeSpec.u)}) {
8773             implicitDerivedTypes.emplace(
8774                 std::get<parser::Name>(dtSpec->t).source);
8775           }
8776         }
8777       }
8778     }
8779   }
8780   if (!implicitDerivedTypes.empty()) {
8781     for (const auto &decl : decls) {
8782       if (const auto *spec{
8783               std::get_if<parser::SpecificationConstruct>(&decl.u)}) {
8784         if (const auto *dtDef{
8785                 std::get_if<common::Indirection<parser::DerivedTypeDef>>(
8786                     &spec->u)}) {
8787           const parser::DerivedTypeStmt &dtStmt{
8788               std::get<parser::Statement<parser::DerivedTypeStmt>>(
8789                   dtDef->value().t)
8790                   .statement};
8791           const parser::Name &name{std::get<parser::Name>(dtStmt.t)};
8792           if (implicitDerivedTypes.find(name.source) !=
8793                   implicitDerivedTypes.end() &&
8794               !FindInScope(name)) {
8795             DerivedTypeDetails details;
8796             details.set_isForwardReferenced(true);
8797             Resolve(name, MakeSymbol(name, std::move(details)));
8798             implicitDerivedTypes.erase(name.source);
8799           }
8800         }
8801       }
8802     }
8803   }
8804 }
8805 
8806 bool ResolveNamesVisitor::Pre(const parser::SpecificationPart &x) {
8807   const auto &[accDecls, ompDecls, compilerDirectives, useStmts, importStmts,
8808       implicitPart, decls] = x.t;
8809   auto flagRestorer{common::ScopedSet(inSpecificationPart_, true)};
8810   auto stateRestorer{
8811       common::ScopedSet(specPartState_, SpecificationPartState{})};
8812   Walk(accDecls);
8813   Walk(ompDecls);
8814   Walk(compilerDirectives);
8815   for (const auto &useStmt : useStmts) {
8816     CollectUseRenames(useStmt.statement.value());
8817   }
8818   Walk(useStmts);
8819   UseCUDABuiltinNames();
8820   ClearUseRenames();
8821   ClearUseOnly();
8822   ClearModuleUses();
8823   Walk(importStmts);
8824   HandleDerivedTypesInImplicitStmts(implicitPart, decls);
8825   Walk(implicitPart);
8826   for (const auto &decl : decls) {
8827     if (const auto *spec{
8828             std::get_if<parser::SpecificationConstruct>(&decl.u)}) {
8829       PreSpecificationConstruct(*spec);
8830     }
8831   }
8832   Walk(decls);
8833   FinishSpecificationPart(decls);
8834   return false;
8835 }
8836 
8837 void ResolveNamesVisitor::UseCUDABuiltinNames() {
8838   if (FindCUDADeviceContext(&currScope())) {
8839     for (const auto &[name, symbol] : context().GetCUDABuiltinsScope()) {
8840       if (!FindInScope(name)) {
8841         auto &localSymbol{MakeSymbol(name)};
8842         localSymbol.set_details(UseDetails{name, *symbol});
8843         localSymbol.flags() = symbol->flags();
8844       }
8845     }
8846   }
8847 }
8848 
8849 // Initial processing on specification constructs, before visiting them.
8850 void ResolveNamesVisitor::PreSpecificationConstruct(
8851     const parser::SpecificationConstruct &spec) {
8852   common::visit(
8853       common::visitors{
8854           [&](const parser::Statement<Indirection<parser::GenericStmt>> &y) {
8855             CreateGeneric(std::get<parser::GenericSpec>(y.statement.value().t));
8856           },
8857           [&](const Indirection<parser::InterfaceBlock> &y) {
8858             const auto &stmt{std::get<parser::Statement<parser::InterfaceStmt>>(
8859                 y.value().t)};
8860             if (const auto *spec{parser::Unwrap<parser::GenericSpec>(stmt)}) {
8861               CreateGeneric(*spec);
8862             }
8863           },
8864           [&](const parser::Statement<parser::OtherSpecificationStmt> &y) {
8865             common::visit(
8866                 common::visitors{
8867                     [&](const common::Indirection<parser::CommonStmt> &z) {
8868                       CreateCommonBlockSymbols(z.value());
8869                     },
8870                     [&](const common::Indirection<parser::TargetStmt> &z) {
8871                       CreateObjectSymbols(z.value().v, Attr::TARGET);
8872                     },
8873                     [](const auto &) {},
8874                 },
8875                 y.statement.u);
8876           },
8877           [](const auto &) {},
8878       },
8879       spec.u);
8880 }
8881 
8882 void ResolveNamesVisitor::CreateCommonBlockSymbols(
8883     const parser::CommonStmt &commonStmt) {
8884   for (const parser::CommonStmt::Block &block : commonStmt.blocks) {
8885     const auto &[name, objects] = block.t;
8886     Symbol &commonBlock{MakeCommonBlockSymbol(name)};
8887     for (const auto &object : objects) {
8888       Symbol &obj{DeclareObjectEntity(std::get<parser::Name>(object.t))};
8889       if (auto *details{obj.detailsIf<ObjectEntityDetails>()}) {
8890         details->set_commonBlock(commonBlock);
8891         commonBlock.get<CommonBlockDetails>().add_object(obj);
8892       }
8893     }
8894   }
8895 }
8896 
8897 void ResolveNamesVisitor::CreateObjectSymbols(
8898     const std::list<parser::ObjectDecl> &decls, Attr attr) {
8899   for (const parser::ObjectDecl &decl : decls) {
8900     SetImplicitAttr(DeclareEntity<ObjectEntityDetails>(
8901                         std::get<parser::ObjectName>(decl.t), Attrs{}),
8902         attr);
8903   }
8904 }
8905 
8906 void ResolveNamesVisitor::CreateGeneric(const parser::GenericSpec &x) {
8907   auto info{GenericSpecInfo{x}};
8908   SourceName symbolName{info.symbolName()};
8909   if (IsLogicalConstant(context(), symbolName)) {
8910     Say(symbolName,
8911         "Logical constant '%s' may not be used as a defined operator"_err_en_US);
8912     return;
8913   }
8914   GenericDetails genericDetails;
8915   Symbol *existing{nullptr};
8916   // Check all variants of names, e.g. "operator(.ne.)" for "operator(/=)"
8917   for (const std::string &n : GetAllNames(context(), symbolName)) {
8918     existing = currScope().FindSymbol(SourceName{n});
8919     if (existing) {
8920       break;
8921     }
8922   }
8923   if (existing) {
8924     Symbol &ultimate{existing->GetUltimate()};
8925     if (auto *existingGeneric{ultimate.detailsIf<GenericDetails>()}) {
8926       if (&existing->owner() == &currScope()) {
8927         if (const auto *existingUse{existing->detailsIf<UseDetails>()}) {
8928           // Create a local copy of a use associated generic so that
8929           // it can be locally extended without corrupting the original.
8930           genericDetails.CopyFrom(*existingGeneric);
8931           if (existingGeneric->specific()) {
8932             genericDetails.set_specific(*existingGeneric->specific());
8933           }
8934           AddGenericUse(
8935               genericDetails, existing->name(), existingUse->symbol());
8936         } else if (existing == &ultimate) {
8937           // Extending an extant generic in the same scope
8938           info.Resolve(existing);
8939           return;
8940         } else {
8941           // Host association of a generic is handled elsewhere
8942           CHECK(existing->has<HostAssocDetails>());
8943         }
8944       } else {
8945         // Create a new generic for this scope.
8946       }
8947     } else if (ultimate.has<SubprogramDetails>() ||
8948         ultimate.has<SubprogramNameDetails>()) {
8949       genericDetails.set_specific(*existing);
8950     } else if (ultimate.has<ProcEntityDetails>()) {
8951       if (existing->name() != symbolName ||
8952           !ultimate.attrs().test(Attr::INTRINSIC)) {
8953         genericDetails.set_specific(*existing);
8954       }
8955     } else if (ultimate.has<DerivedTypeDetails>()) {
8956       genericDetails.set_derivedType(*existing);
8957     } else if (&existing->owner() == &currScope()) {
8958       SayAlreadyDeclared(symbolName, *existing);
8959       return;
8960     }
8961     if (&existing->owner() == &currScope()) {
8962       EraseSymbol(*existing);
8963     }
8964   }
8965   info.Resolve(&MakeSymbol(symbolName, Attrs{}, std::move(genericDetails)));
8966 }
8967 
8968 void ResolveNamesVisitor::FinishSpecificationPart(
8969     const std::list<parser::DeclarationConstruct> &decls) {
8970   misparsedStmtFuncFound_ = false;
8971   funcResultStack().CompleteFunctionResultType();
8972   CheckImports();
8973   bool inDeviceSubprogram = false;
8974   if (auto *subp{currScope().symbol()
8975               ? currScope().symbol()->detailsIf<SubprogramDetails>()
8976               : nullptr}) {
8977     if (auto attrs{subp->cudaSubprogramAttrs()}) {
8978       if (*attrs == common::CUDASubprogramAttrs::Device ||
8979           *attrs == common::CUDASubprogramAttrs::Global ||
8980           *attrs == common::CUDASubprogramAttrs::Grid_Global) {
8981         inDeviceSubprogram = true;
8982       }
8983     }
8984   }
8985   for (auto &pair : currScope()) {
8986     auto &symbol{*pair.second};
8987     if (inInterfaceBlock()) {
8988       ConvertToObjectEntity(symbol);
8989     }
8990     if (NeedsExplicitType(symbol)) {
8991       ApplyImplicitRules(symbol);
8992     }
8993     if (inDeviceSubprogram && symbol.has<ObjectEntityDetails>()) {
8994       auto *object{symbol.detailsIf<ObjectEntityDetails>()};
8995       if (!object->cudaDataAttr() && !IsValue(symbol) &&
8996           (IsDummy(symbol) || object->IsArray())) {
8997         // Implicitly set device attribute if none is set in device context.
8998         object->set_cudaDataAttr(common::CUDADataAttr::Device);
8999       }
9000     }
9001     if (IsDummy(symbol) && isImplicitNoneType() &&
9002         symbol.test(Symbol::Flag::Implicit) && !context().HasError(symbol)) {
9003       Say(symbol.name(),
9004           "No explicit type declared for dummy argument '%s'"_err_en_US);
9005       context().SetError(symbol);
9006     }
9007     if (symbol.has<GenericDetails>()) {
9008       CheckGenericProcedures(symbol);
9009     }
9010     if (!symbol.has<HostAssocDetails>()) {
9011       CheckPossibleBadForwardRef(symbol);
9012     }
9013     // Propagate BIND(C) attribute to procedure entities from their interfaces,
9014     // but not the NAME=, even if it is empty (which would be a reasonable
9015     // and useful behavior, actually).  This interpretation is not at all
9016     // clearly described in the standard, but matches the behavior of several
9017     // other compilers.
9018     if (auto *proc{symbol.detailsIf<ProcEntityDetails>()}; proc &&
9019         !proc->isDummy() && !IsPointer(symbol) &&
9020         !symbol.attrs().test(Attr::BIND_C)) {
9021       if (const Symbol * iface{proc->procInterface()};
9022           iface && IsBindCProcedure(*iface)) {
9023         SetImplicitAttr(symbol, Attr::BIND_C);
9024         SetBindNameOn(symbol);
9025       }
9026     }
9027   }
9028   currScope().InstantiateDerivedTypes();
9029   for (const auto &decl : decls) {
9030     if (const auto *statement{std::get_if<
9031             parser::Statement<common::Indirection<parser::StmtFunctionStmt>>>(
9032             &decl.u)}) {
9033       messageHandler().set_currStmtSource(statement->source);
9034       AnalyzeStmtFunctionStmt(statement->statement.value());
9035     }
9036   }
9037   // TODO: what about instantiations in BLOCK?
9038   CheckSaveStmts();
9039   CheckCommonBlocks();
9040   if (!inInterfaceBlock()) {
9041     // TODO: warn for the case where the EQUIVALENCE statement is in a
9042     // procedure declaration in an interface block
9043     CheckEquivalenceSets();
9044   }
9045 }
9046 
9047 // Analyze the bodies of statement functions now that the symbols in this
9048 // specification part have been fully declared and implicitly typed.
9049 // (Statement function references are not allowed in specification
9050 // expressions, so it's safe to defer processing their definitions.)
9051 void ResolveNamesVisitor::AnalyzeStmtFunctionStmt(
9052     const parser::StmtFunctionStmt &stmtFunc) {
9053   const auto &name{std::get<parser::Name>(stmtFunc.t)};
9054   Symbol *symbol{name.symbol};
9055   auto *details{symbol ? symbol->detailsIf<SubprogramDetails>() : nullptr};
9056   if (!details || !symbol->scope() ||
9057       &symbol->scope()->parent() != &currScope() || details->isInterface() ||
9058       details->isDummy() || details->entryScope() ||
9059       details->moduleInterface() || symbol->test(Symbol::Flag::Subroutine)) {
9060     return; // error recovery
9061   }
9062   // Resolve the symbols on the RHS of the statement function.
9063   PushScope(*symbol->scope());
9064   const auto &parsedExpr{std::get<parser::Scalar<parser::Expr>>(stmtFunc.t)};
9065   Walk(parsedExpr);
9066   PopScope();
9067   if (auto expr{AnalyzeExpr(context(), stmtFunc)}) {
9068     if (auto type{evaluate::DynamicType::From(*symbol)}) {
9069       if (auto converted{evaluate::ConvertToType(*type, std::move(*expr))}) {
9070         details->set_stmtFunction(std::move(*converted));
9071       } else {
9072         Say(name.source,
9073             "Defining expression of statement function '%s' cannot be converted to its result type %s"_err_en_US,
9074             name.source, type->AsFortran());
9075       }
9076     } else {
9077       details->set_stmtFunction(std::move(*expr));
9078     }
9079   }
9080   if (!details->stmtFunction()) {
9081     context().SetError(*symbol);
9082   }
9083 }
9084 
9085 void ResolveNamesVisitor::CheckImports() {
9086   auto &scope{currScope()};
9087   switch (scope.GetImportKind()) {
9088   case common::ImportKind::None:
9089     break;
9090   case common::ImportKind::All:
9091     // C8102: all entities in host must not be hidden
9092     for (const auto &pair : scope.parent()) {
9093       auto &name{pair.first};
9094       std::optional<SourceName> scopeName{scope.GetName()};
9095       if (!scopeName || name != *scopeName) {
9096         CheckImport(prevImportStmt_.value(), name);
9097       }
9098     }
9099     break;
9100   case common::ImportKind::Default:
9101   case common::ImportKind::Only:
9102     // C8102: entities named in IMPORT must not be hidden
9103     for (auto &name : scope.importNames()) {
9104       CheckImport(name, name);
9105     }
9106     break;
9107   }
9108 }
9109 
9110 void ResolveNamesVisitor::CheckImport(
9111     const SourceName &location, const SourceName &name) {
9112   if (auto *symbol{FindInScope(name)}) {
9113     const Symbol &ultimate{symbol->GetUltimate()};
9114     if (&ultimate.owner() == &currScope()) {
9115       Say(location, "'%s' from host is not accessible"_err_en_US, name)
9116           .Attach(symbol->name(), "'%s' is hidden by this entity"_because_en_US,
9117               symbol->name());
9118     }
9119   }
9120 }
9121 
9122 bool ResolveNamesVisitor::Pre(const parser::ImplicitStmt &x) {
9123   return CheckNotInBlock("IMPLICIT") && // C1107
9124       ImplicitRulesVisitor::Pre(x);
9125 }
9126 
9127 void ResolveNamesVisitor::Post(const parser::PointerObject &x) {
9128   common::visit(common::visitors{
9129                     [&](const parser::Name &x) { ResolveName(x); },
9130                     [&](const parser::StructureComponent &x) {
9131                       ResolveStructureComponent(x);
9132                     },
9133                 },
9134       x.u);
9135 }
9136 void ResolveNamesVisitor::Post(const parser::AllocateObject &x) {
9137   common::visit(common::visitors{
9138                     [&](const parser::Name &x) { ResolveName(x); },
9139                     [&](const parser::StructureComponent &x) {
9140                       ResolveStructureComponent(x);
9141                     },
9142                 },
9143       x.u);
9144 }
9145 
9146 bool ResolveNamesVisitor::Pre(const parser::PointerAssignmentStmt &x) {
9147   const auto &dataRef{std::get<parser::DataRef>(x.t)};
9148   const auto &bounds{std::get<parser::PointerAssignmentStmt::Bounds>(x.t)};
9149   const auto &expr{std::get<parser::Expr>(x.t)};
9150   ResolveDataRef(dataRef);
9151   Symbol *ptrSymbol{parser::GetLastName(dataRef).symbol};
9152   Walk(bounds);
9153   // Resolve unrestricted specific intrinsic procedures as in "p => cos".
9154   if (const parser::Name * name{parser::Unwrap<parser::Name>(expr)}) {
9155     if (NameIsKnownOrIntrinsic(*name)) {
9156       if (Symbol * symbol{name->symbol}) {
9157         if (IsProcedurePointer(ptrSymbol) &&
9158             !ptrSymbol->test(Symbol::Flag::Function) &&
9159             !ptrSymbol->test(Symbol::Flag::Subroutine)) {
9160           if (symbol->test(Symbol::Flag::Function)) {
9161             ApplyImplicitRules(*ptrSymbol);
9162           }
9163         }
9164         // If the name is known because it is an object entity from a host
9165         // procedure, create a host associated symbol.
9166         if (symbol->GetUltimate().has<ObjectEntityDetails>() &&
9167             IsUplevelReference(*symbol)) {
9168           MakeHostAssocSymbol(*name, *symbol);
9169         }
9170       }
9171       return false;
9172     }
9173     // Can also reference a global external procedure here
9174     if (auto it{context().globalScope().find(name->source)};
9175         it != context().globalScope().end()) {
9176       Symbol &global{*it->second};
9177       if (IsProcedure(global)) {
9178         Resolve(*name, global);
9179         return false;
9180       }
9181     }
9182     if (IsProcedurePointer(parser::GetLastName(dataRef).symbol) &&
9183         !FindSymbol(*name)) {
9184       // Unknown target of procedure pointer must be an external procedure
9185       Symbol &symbol{MakeSymbol(
9186           context().globalScope(), name->source, Attrs{Attr::EXTERNAL})};
9187       symbol.implicitAttrs().set(Attr::EXTERNAL);
9188       Resolve(*name, symbol);
9189       ConvertToProcEntity(symbol, name->source);
9190       return false;
9191     }
9192   }
9193   Walk(expr);
9194   return false;
9195 }
9196 void ResolveNamesVisitor::Post(const parser::Designator &x) {
9197   ResolveDesignator(x);
9198 }
9199 void ResolveNamesVisitor::Post(const parser::SubstringInquiry &x) {
9200   Walk(std::get<parser::SubstringRange>(x.v.t).t);
9201   ResolveDataRef(std::get<parser::DataRef>(x.v.t));
9202 }
9203 
9204 void ResolveNamesVisitor::Post(const parser::ProcComponentRef &x) {
9205   ResolveStructureComponent(x.v.thing);
9206 }
9207 void ResolveNamesVisitor::Post(const parser::TypeGuardStmt &x) {
9208   DeclTypeSpecVisitor::Post(x);
9209   ConstructVisitor::Post(x);
9210 }
9211 bool ResolveNamesVisitor::Pre(const parser::StmtFunctionStmt &x) {
9212   if (HandleStmtFunction(x)) {
9213     return false;
9214   } else {
9215     // This is an array element or pointer-valued function assignment:
9216     // resolve the names of indices/arguments
9217     const auto &names{std::get<std::list<parser::Name>>(x.t)};
9218     for (auto &name : names) {
9219       ResolveName(name);
9220     }
9221     return true;
9222   }
9223 }
9224 
9225 bool ResolveNamesVisitor::Pre(const parser::DefinedOpName &x) {
9226   const parser::Name &name{x.v};
9227   if (FindSymbol(name)) {
9228     // OK
9229   } else if (IsLogicalConstant(context(), name.source)) {
9230     Say(name,
9231         "Logical constant '%s' may not be used as a defined operator"_err_en_US);
9232   } else {
9233     // Resolved later in expression semantics
9234     MakePlaceholder(name, MiscDetails::Kind::TypeBoundDefinedOp);
9235   }
9236   return false;
9237 }
9238 
9239 void ResolveNamesVisitor::Post(const parser::AssignStmt &x) {
9240   if (auto *name{ResolveName(std::get<parser::Name>(x.t))}) {
9241     CheckEntryDummyUse(name->source, name->symbol);
9242     ConvertToObjectEntity(DEREF(name->symbol));
9243   }
9244 }
9245 void ResolveNamesVisitor::Post(const parser::AssignedGotoStmt &x) {
9246   if (auto *name{ResolveName(std::get<parser::Name>(x.t))}) {
9247     CheckEntryDummyUse(name->source, name->symbol);
9248     ConvertToObjectEntity(DEREF(name->symbol));
9249   }
9250 }
9251 
9252 void ResolveNamesVisitor::Post(const parser::CompilerDirective &x) {
9253   if (std::holds_alternative<parser::CompilerDirective::VectorAlways>(x.u)) {
9254     return;
9255   }
9256   if (const auto *tkr{
9257           std::get_if<std::list<parser::CompilerDirective::IgnoreTKR>>(&x.u)}) {
9258     if (currScope().IsTopLevel() ||
9259         GetProgramUnitContaining(currScope()).kind() !=
9260             Scope::Kind::Subprogram) {
9261       Say(x.source,
9262           "!DIR$ IGNORE_TKR directive must appear in a subroutine or function"_err_en_US);
9263       return;
9264     }
9265     if (!inSpecificationPart_) {
9266       Say(x.source,
9267           "!DIR$ IGNORE_TKR directive must appear in the specification part"_err_en_US);
9268       return;
9269     }
9270     if (tkr->empty()) {
9271       Symbol *symbol{currScope().symbol()};
9272       if (SubprogramDetails *
9273           subp{symbol ? symbol->detailsIf<SubprogramDetails>() : nullptr}) {
9274         subp->set_defaultIgnoreTKR(true);
9275       }
9276     } else {
9277       for (const parser::CompilerDirective::IgnoreTKR &item : *tkr) {
9278         common::IgnoreTKRSet set;
9279         if (const auto &maybeList{
9280                 std::get<std::optional<std::list<const char *>>>(item.t)}) {
9281           for (const char *p : *maybeList) {
9282             if (p) {
9283               switch (*p) {
9284               case 't':
9285                 set.set(common::IgnoreTKR::Type);
9286                 break;
9287               case 'k':
9288                 set.set(common::IgnoreTKR::Kind);
9289                 break;
9290               case 'r':
9291                 set.set(common::IgnoreTKR::Rank);
9292                 break;
9293               case 'd':
9294                 set.set(common::IgnoreTKR::Device);
9295                 break;
9296               case 'm':
9297                 set.set(common::IgnoreTKR::Managed);
9298                 break;
9299               case 'c':
9300                 set.set(common::IgnoreTKR::Contiguous);
9301                 break;
9302               case 'a':
9303                 set = common::ignoreTKRAll;
9304                 break;
9305               default:
9306                 Say(x.source,
9307                     "'%c' is not a valid letter for !DIR$ IGNORE_TKR directive"_err_en_US,
9308                     *p);
9309                 set = common::ignoreTKRAll;
9310                 break;
9311               }
9312             }
9313           }
9314           if (set.empty()) {
9315             Say(x.source,
9316                 "!DIR$ IGNORE_TKR directive may not have an empty parenthesized list of letters"_err_en_US);
9317           }
9318         } else { // no (list)
9319           set = common::ignoreTKRAll;
9320           ;
9321         }
9322         const auto &name{std::get<parser::Name>(item.t)};
9323         Symbol *symbol{FindSymbol(name)};
9324         if (!symbol) {
9325           symbol = &MakeSymbol(name, Attrs{}, ObjectEntityDetails{});
9326         }
9327         if (symbol->owner() != currScope()) {
9328           SayWithDecl(
9329               name, *symbol, "'%s' must be local to this subprogram"_err_en_US);
9330         } else {
9331           ConvertToObjectEntity(*symbol);
9332           if (auto *object{symbol->detailsIf<ObjectEntityDetails>()}) {
9333             object->set_ignoreTKR(set);
9334           } else {
9335             SayWithDecl(name, *symbol, "'%s' must be an object"_err_en_US);
9336           }
9337         }
9338       }
9339     }
9340   } else if (context().ShouldWarn(common::UsageWarning::IgnoredDirective)) {
9341     Say(x.source, "Unrecognized compiler directive was ignored"_warn_en_US)
9342         .set_usageWarning(common::UsageWarning::IgnoredDirective);
9343   }
9344 }
9345 
9346 bool ResolveNamesVisitor::Pre(const parser::ProgramUnit &x) {
9347   if (std::holds_alternative<common::Indirection<parser::CompilerDirective>>(
9348           x.u)) {
9349     // TODO: global directives
9350     return true;
9351   }
9352   if (std::holds_alternative<
9353           common::Indirection<parser::OpenACCRoutineConstruct>>(x.u)) {
9354     ResolveAccParts(context(), x, &topScope_);
9355     return false;
9356   }
9357   ProgramTree &root{ProgramTree::Build(x, context())};
9358   SetScope(topScope_);
9359   ResolveSpecificationParts(root);
9360   FinishSpecificationParts(root);
9361   ResolveExecutionParts(root);
9362   FinishExecutionParts(root);
9363   ResolveAccParts(context(), x, /*topScope=*/nullptr);
9364   ResolveOmpParts(context(), x);
9365   return false;
9366 }
9367 
9368 template <typename A> std::set<SourceName> GetUses(const A &x) {
9369   std::set<SourceName> uses;
9370   if constexpr (!std::is_same_v<A, parser::CompilerDirective> &&
9371       !std::is_same_v<A, parser::OpenACCRoutineConstruct>) {
9372     const auto &spec{std::get<parser::SpecificationPart>(x.t)};
9373     const auto &unitUses{std::get<
9374         std::list<parser::Statement<common::Indirection<parser::UseStmt>>>>(
9375         spec.t)};
9376     for (const auto &u : unitUses) {
9377       uses.insert(u.statement.value().moduleName.source);
9378     }
9379   }
9380   return uses;
9381 }
9382 
9383 bool ResolveNamesVisitor::Pre(const parser::Program &x) {
9384   std::map<SourceName, const parser::ProgramUnit *> modules;
9385   std::set<SourceName> uses;
9386   bool disordered{false};
9387   for (const auto &progUnit : x.v) {
9388     if (const auto *indMod{
9389             std::get_if<common::Indirection<parser::Module>>(&progUnit.u)}) {
9390       const parser::Module &mod{indMod->value()};
9391       const auto &moduleStmt{
9392           std::get<parser::Statement<parser::ModuleStmt>>(mod.t)};
9393       const SourceName &name{moduleStmt.statement.v.source};
9394       if (auto iter{modules.find(name)}; iter != modules.end()) {
9395         Say(name,
9396             "Module '%s' appears multiple times in a compilation unit"_err_en_US)
9397             .Attach(iter->first, "First definition of module"_en_US);
9398         return true;
9399       }
9400       modules.emplace(name, &progUnit);
9401       if (auto iter{uses.find(name)}; iter != uses.end()) {
9402         if (context().ShouldWarn(common::LanguageFeature::MiscUseExtensions)) {
9403           Say(name,
9404               "A USE statement referencing module '%s' appears earlier in this compilation unit"_port_en_US,
9405               name)
9406               .Attach(*iter, "First USE of module"_en_US);
9407         }
9408         disordered = true;
9409       }
9410     }
9411     for (SourceName used : common::visit(
9412              [](const auto &indUnit) { return GetUses(indUnit.value()); },
9413              progUnit.u)) {
9414       uses.insert(used);
9415     }
9416   }
9417   if (!disordered) {
9418     return true;
9419   }
9420   // Process modules in topological order
9421   std::vector<const parser::ProgramUnit *> moduleOrder;
9422   while (!modules.empty()) {
9423     bool ok;
9424     for (const auto &pair : modules) {
9425       const SourceName &name{pair.first};
9426       const parser::ProgramUnit &progUnit{*pair.second};
9427       const parser::Module &m{
9428           std::get<common::Indirection<parser::Module>>(progUnit.u).value()};
9429       ok = true;
9430       for (const SourceName &use : GetUses(m)) {
9431         if (modules.find(use) != modules.end()) {
9432           ok = false;
9433           break;
9434         }
9435       }
9436       if (ok) {
9437         moduleOrder.push_back(&progUnit);
9438         modules.erase(name);
9439         break;
9440       }
9441     }
9442     if (!ok) {
9443       Message *msg{nullptr};
9444       for (const auto &pair : modules) {
9445         if (msg) {
9446           msg->Attach(pair.first, "Module in a cycle"_en_US);
9447         } else {
9448           msg = &Say(pair.first,
9449               "Some modules in this compilation unit form one or more cycles of dependence"_err_en_US);
9450         }
9451       }
9452       return false;
9453     }
9454   }
9455   // Modules can be ordered.  Process them first, and then all of the other
9456   // program units.
9457   for (const parser::ProgramUnit *progUnit : moduleOrder) {
9458     Walk(*progUnit);
9459   }
9460   for (const auto &progUnit : x.v) {
9461     if (!std::get_if<common::Indirection<parser::Module>>(&progUnit.u)) {
9462       Walk(progUnit);
9463     }
9464   }
9465   return false;
9466 }
9467 
9468 // References to procedures need to record that their symbols are known
9469 // to be procedures, so that they don't get converted to objects by default.
9470 class ExecutionPartCallSkimmer : public ExecutionPartSkimmerBase {
9471 public:
9472   explicit ExecutionPartCallSkimmer(ResolveNamesVisitor &resolver)
9473       : resolver_{resolver} {}
9474 
9475   void Walk(const parser::ExecutionPart &exec) {
9476     parser::Walk(exec, *this);
9477     EndWalk();
9478   }
9479 
9480   using ExecutionPartSkimmerBase::Post;
9481   using ExecutionPartSkimmerBase::Pre;
9482 
9483   void Post(const parser::FunctionReference &fr) {
9484     NoteCall(Symbol::Flag::Function, fr.v, false);
9485   }
9486   void Post(const parser::CallStmt &cs) {
9487     NoteCall(Symbol::Flag::Subroutine, cs.call, cs.chevrons.has_value());
9488   }
9489 
9490 private:
9491   void NoteCall(
9492       Symbol::Flag flag, const parser::Call &call, bool hasCUDAChevrons) {
9493     auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
9494     if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
9495       if (!IsHidden(name->source)) {
9496         resolver_.NoteExecutablePartCall(flag, name->source, hasCUDAChevrons);
9497       }
9498     }
9499   }
9500 
9501   ResolveNamesVisitor &resolver_;
9502 };
9503 
9504 // Build the scope tree and resolve names in the specification parts of this
9505 // node and its children
9506 void ResolveNamesVisitor::ResolveSpecificationParts(ProgramTree &node) {
9507   if (node.isSpecificationPartResolved()) {
9508     return; // been here already
9509   }
9510   node.set_isSpecificationPartResolved();
9511   if (!BeginScopeForNode(node)) {
9512     return; // an error prevented scope from being created
9513   }
9514   Scope &scope{currScope()};
9515   node.set_scope(scope);
9516   AddSubpNames(node);
9517   common::visit(
9518       [&](const auto *x) {
9519         if (x) {
9520           Walk(*x);
9521         }
9522       },
9523       node.stmt());
9524   Walk(node.spec());
9525   // If this is a function, convert result to an object. This is to prevent the
9526   // result from being converted later to a function symbol if it is called
9527   // inside the function.
9528   // If the result is function pointer, then ConvertToObjectEntity will not
9529   // convert the result to an object, and calling the symbol inside the function
9530   // will result in calls to the result pointer.
9531   // A function cannot be called recursively if RESULT was not used to define a
9532   // distinct result name (15.6.2.2 point 4.).
9533   if (Symbol * symbol{scope.symbol()}) {
9534     if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
9535       if (details->isFunction()) {
9536         ConvertToObjectEntity(const_cast<Symbol &>(details->result()));
9537       }
9538     }
9539   }
9540   if (node.IsModule()) {
9541     ApplyDefaultAccess();
9542   }
9543   for (auto &child : node.children()) {
9544     ResolveSpecificationParts(child);
9545   }
9546   if (node.exec()) {
9547     ExecutionPartCallSkimmer{*this}.Walk(*node.exec());
9548     HandleImpliedAsynchronousInScope(node.exec()->v);
9549   }
9550   EndScopeForNode(node);
9551   // Ensure that every object entity has a type.
9552   bool inModule{node.GetKind() == ProgramTree::Kind::Module ||
9553       node.GetKind() == ProgramTree::Kind::Submodule};
9554   for (auto &pair : *node.scope()) {
9555     Symbol &symbol{*pair.second};
9556     if (inModule && symbol.attrs().test(Attr::EXTERNAL) && !IsPointer(symbol) &&
9557         !symbol.test(Symbol::Flag::Function) &&
9558         !symbol.test(Symbol::Flag::Subroutine)) {
9559       // in a module, external proc without return type is subroutine
9560       symbol.set(
9561           symbol.GetType() ? Symbol::Flag::Function : Symbol::Flag::Subroutine);
9562     }
9563     ApplyImplicitRules(symbol);
9564   }
9565 }
9566 
9567 // Add SubprogramNameDetails symbols for module and internal subprograms and
9568 // their ENTRY statements.
9569 void ResolveNamesVisitor::AddSubpNames(ProgramTree &node) {
9570   auto kind{
9571       node.IsModule() ? SubprogramKind::Module : SubprogramKind::Internal};
9572   for (auto &child : node.children()) {
9573     auto &symbol{MakeSymbol(child.name(), SubprogramNameDetails{kind, child})};
9574     if (child.HasModulePrefix()) {
9575       SetExplicitAttr(symbol, Attr::MODULE);
9576     }
9577     if (child.bindingSpec()) {
9578       SetExplicitAttr(symbol, Attr::BIND_C);
9579     }
9580     auto childKind{child.GetKind()};
9581     if (childKind == ProgramTree::Kind::Function) {
9582       symbol.set(Symbol::Flag::Function);
9583     } else if (childKind == ProgramTree::Kind::Subroutine) {
9584       symbol.set(Symbol::Flag::Subroutine);
9585     } else {
9586       continue; // make ENTRY symbols only where valid
9587     }
9588     for (const auto &entryStmt : child.entryStmts()) {
9589       SubprogramNameDetails details{kind, child};
9590       auto &symbol{
9591           MakeSymbol(std::get<parser::Name>(entryStmt->t), std::move(details))};
9592       symbol.set(child.GetSubpFlag());
9593       if (child.HasModulePrefix()) {
9594         SetExplicitAttr(symbol, Attr::MODULE);
9595       }
9596       if (child.bindingSpec()) {
9597         SetExplicitAttr(symbol, Attr::BIND_C);
9598       }
9599     }
9600   }
9601   for (const auto &generic : node.genericSpecs()) {
9602     if (const auto *name{std::get_if<parser::Name>(&generic->u)}) {
9603       if (currScope().find(name->source) != currScope().end()) {
9604         // If this scope has both a generic interface and a contained
9605         // subprogram with the same name, create the generic's symbol
9606         // now so that any other generics of the same name that are pulled
9607         // into scope later via USE association will properly merge instead
9608         // of raising a bogus error due a conflict with the subprogram.
9609         CreateGeneric(*generic);
9610       }
9611     }
9612   }
9613 }
9614 
9615 // Push a new scope for this node or return false on error.
9616 bool ResolveNamesVisitor::BeginScopeForNode(const ProgramTree &node) {
9617   switch (node.GetKind()) {
9618     SWITCH_COVERS_ALL_CASES
9619   case ProgramTree::Kind::Program:
9620     PushScope(Scope::Kind::MainProgram,
9621         &MakeSymbol(node.name(), MainProgramDetails{}));
9622     return true;
9623   case ProgramTree::Kind::Function:
9624   case ProgramTree::Kind::Subroutine:
9625     return BeginSubprogram(node.name(), node.GetSubpFlag(),
9626         node.HasModulePrefix(), node.bindingSpec(), &node.entryStmts());
9627   case ProgramTree::Kind::MpSubprogram:
9628     return BeginMpSubprogram(node.name());
9629   case ProgramTree::Kind::Module:
9630     BeginModule(node.name(), false);
9631     return true;
9632   case ProgramTree::Kind::Submodule:
9633     return BeginSubmodule(node.name(), node.GetParentId());
9634   case ProgramTree::Kind::BlockData:
9635     PushBlockDataScope(node.name());
9636     return true;
9637   }
9638 }
9639 
9640 void ResolveNamesVisitor::EndScopeForNode(const ProgramTree &node) {
9641   std::optional<parser::CharBlock> stmtSource;
9642   const std::optional<parser::LanguageBindingSpec> *binding{nullptr};
9643   common::visit(
9644       common::visitors{
9645           [&](const parser::Statement<parser::FunctionStmt> *stmt) {
9646             if (stmt) {
9647               stmtSource = stmt->source;
9648               if (const auto &maybeSuffix{
9649                       std::get<std::optional<parser::Suffix>>(
9650                           stmt->statement.t)}) {
9651                 binding = &maybeSuffix->binding;
9652               }
9653             }
9654           },
9655           [&](const parser::Statement<parser::SubroutineStmt> *stmt) {
9656             if (stmt) {
9657               stmtSource = stmt->source;
9658               binding = &std::get<std::optional<parser::LanguageBindingSpec>>(
9659                   stmt->statement.t);
9660             }
9661           },
9662           [](const auto *) {},
9663       },
9664       node.stmt());
9665   EndSubprogram(stmtSource, binding, &node.entryStmts());
9666 }
9667 
9668 // Some analyses and checks, such as the processing of initializers of
9669 // pointers, are deferred until all of the pertinent specification parts
9670 // have been visited.  This deferred processing enables the use of forward
9671 // references in these circumstances.
9672 // Data statement objects with implicit derived types are finally
9673 // resolved here.
9674 class DeferredCheckVisitor {
9675 public:
9676   explicit DeferredCheckVisitor(ResolveNamesVisitor &resolver)
9677       : resolver_{resolver} {}
9678 
9679   template <typename A> void Walk(const A &x) { parser::Walk(x, *this); }
9680 
9681   template <typename A> bool Pre(const A &) { return true; }
9682   template <typename A> void Post(const A &) {}
9683 
9684   void Post(const parser::DerivedTypeStmt &x) {
9685     const auto &name{std::get<parser::Name>(x.t)};
9686     if (Symbol * symbol{name.symbol}) {
9687       if (Scope * scope{symbol->scope()}) {
9688         if (scope->IsDerivedType()) {
9689           CHECK(outerScope_ == nullptr);
9690           outerScope_ = &resolver_.currScope();
9691           resolver_.SetScope(*scope);
9692         }
9693       }
9694     }
9695   }
9696   void Post(const parser::EndTypeStmt &) {
9697     if (outerScope_) {
9698       resolver_.SetScope(*outerScope_);
9699       outerScope_ = nullptr;
9700     }
9701   }
9702 
9703   void Post(const parser::ProcInterface &pi) {
9704     if (const auto *name{std::get_if<parser::Name>(&pi.u)}) {
9705       resolver_.CheckExplicitInterface(*name);
9706     }
9707   }
9708   bool Pre(const parser::EntityDecl &decl) {
9709     Init(std::get<parser::Name>(decl.t),
9710         std::get<std::optional<parser::Initialization>>(decl.t));
9711     return false;
9712   }
9713   bool Pre(const parser::ComponentDecl &decl) {
9714     Init(std::get<parser::Name>(decl.t),
9715         std::get<std::optional<parser::Initialization>>(decl.t));
9716     return false;
9717   }
9718   bool Pre(const parser::ProcDecl &decl) {
9719     if (const auto &init{
9720             std::get<std::optional<parser::ProcPointerInit>>(decl.t)}) {
9721       resolver_.PointerInitialization(std::get<parser::Name>(decl.t), *init);
9722     }
9723     return false;
9724   }
9725   void Post(const parser::TypeBoundProcedureStmt::WithInterface &tbps) {
9726     resolver_.CheckExplicitInterface(tbps.interfaceName);
9727   }
9728   void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &tbps) {
9729     if (outerScope_) {
9730       resolver_.CheckBindings(tbps);
9731     }
9732   }
9733   bool Pre(const parser::DataStmtObject &) {
9734     ++dataStmtObjectNesting_;
9735     return true;
9736   }
9737   void Post(const parser::DataStmtObject &) { --dataStmtObjectNesting_; }
9738   void Post(const parser::Designator &x) {
9739     if (dataStmtObjectNesting_ > 0) {
9740       resolver_.ResolveDesignator(x);
9741     }
9742   }
9743 
9744 private:
9745   void Init(const parser::Name &name,
9746       const std::optional<parser::Initialization> &init) {
9747     if (init) {
9748       if (const auto *target{
9749               std::get_if<parser::InitialDataTarget>(&init->u)}) {
9750         resolver_.PointerInitialization(name, *target);
9751       } else if (const auto *expr{
9752                      std::get_if<parser::ConstantExpr>(&init->u)}) {
9753         if (name.symbol) {
9754           if (const auto *object{name.symbol->detailsIf<ObjectEntityDetails>()};
9755               !object || !object->init()) {
9756             resolver_.NonPointerInitialization(name, *expr);
9757           }
9758         }
9759       }
9760     }
9761   }
9762 
9763   ResolveNamesVisitor &resolver_;
9764   Scope *outerScope_{nullptr};
9765   int dataStmtObjectNesting_{0};
9766 };
9767 
9768 // Perform checks and completions that need to happen after all of
9769 // the specification parts but before any of the execution parts.
9770 void ResolveNamesVisitor::FinishSpecificationParts(const ProgramTree &node) {
9771   if (!node.scope()) {
9772     return; // error occurred creating scope
9773   }
9774   auto flagRestorer{common::ScopedSet(inSpecificationPart_, true)};
9775   SetScope(*node.scope());
9776   // The initializers of pointers and non-PARAMETER objects, the default
9777   // initializers of components, and non-deferred type-bound procedure
9778   // bindings have not yet been traversed.
9779   // We do that now, when any forward references that appeared
9780   // in those initializers will resolve to the right symbols without
9781   // incurring spurious errors with IMPLICIT NONE or forward references
9782   // to nested subprograms.
9783   DeferredCheckVisitor{*this}.Walk(node.spec());
9784   for (Scope &childScope : currScope().children()) {
9785     if (childScope.IsParameterizedDerivedTypeInstantiation()) {
9786       FinishDerivedTypeInstantiation(childScope);
9787     }
9788   }
9789   for (const auto &child : node.children()) {
9790     FinishSpecificationParts(child);
9791   }
9792 }
9793 
9794 void ResolveNamesVisitor::FinishExecutionParts(const ProgramTree &node) {
9795   if (node.scope()) {
9796     SetScope(*node.scope());
9797     if (node.exec()) {
9798       DeferredCheckVisitor{*this}.Walk(*node.exec());
9799     }
9800     for (const auto &child : node.children()) {
9801       FinishExecutionParts(child);
9802     }
9803   }
9804 }
9805 
9806 // Duplicate and fold component object pointer default initializer designators
9807 // using the actual type parameter values of each particular instantiation.
9808 // Validation is done later in declaration checking.
9809 void ResolveNamesVisitor::FinishDerivedTypeInstantiation(Scope &scope) {
9810   CHECK(scope.IsDerivedType() && !scope.symbol());
9811   if (DerivedTypeSpec * spec{scope.derivedTypeSpec()}) {
9812     spec->Instantiate(currScope());
9813     const Symbol &origTypeSymbol{spec->typeSymbol()};
9814     if (const Scope * origTypeScope{origTypeSymbol.scope()}) {
9815       CHECK(origTypeScope->IsDerivedType() &&
9816           origTypeScope->symbol() == &origTypeSymbol);
9817       auto &foldingContext{GetFoldingContext()};
9818       auto restorer{foldingContext.WithPDTInstance(*spec)};
9819       for (auto &pair : scope) {
9820         Symbol &comp{*pair.second};
9821         const Symbol &origComp{DEREF(FindInScope(*origTypeScope, comp.name()))};
9822         if (IsPointer(comp)) {
9823           if (auto *details{comp.detailsIf<ObjectEntityDetails>()}) {
9824             auto origDetails{origComp.get<ObjectEntityDetails>()};
9825             if (const MaybeExpr & init{origDetails.init()}) {
9826               SomeExpr newInit{*init};
9827               MaybeExpr folded{FoldExpr(std::move(newInit))};
9828               details->set_init(std::move(folded));
9829             }
9830           }
9831         }
9832       }
9833     }
9834   }
9835 }
9836 
9837 // Resolve names in the execution part of this node and its children
9838 void ResolveNamesVisitor::ResolveExecutionParts(const ProgramTree &node) {
9839   if (!node.scope()) {
9840     return; // error occurred creating scope
9841   }
9842   SetScope(*node.scope());
9843   if (const auto *exec{node.exec()}) {
9844     Walk(*exec);
9845   }
9846   FinishNamelists();
9847   if (node.IsModule()) {
9848     // A second final pass to catch new symbols added from implicitly
9849     // typed names in NAMELIST groups or the specification parts of
9850     // module subprograms.
9851     ApplyDefaultAccess();
9852   }
9853   PopScope(); // converts unclassified entities into objects
9854   for (const auto &child : node.children()) {
9855     ResolveExecutionParts(child);
9856   }
9857 }
9858 
9859 void ResolveNamesVisitor::Post(const parser::Program &x) {
9860   // ensure that all temps were deallocated
9861   CHECK(!attrs_);
9862   CHECK(!cudaDataAttr_);
9863   CHECK(!GetDeclTypeSpec());
9864   // Top-level resolution to propagate information across program units after
9865   // each of them has been resolved separately.
9866   ResolveOmpTopLevelParts(context(), x);
9867 }
9868 
9869 // A singleton instance of the scope -> IMPLICIT rules mapping is
9870 // shared by all instances of ResolveNamesVisitor and accessed by this
9871 // pointer when the visitors (other than the top-level original) are
9872 // constructed.
9873 static ImplicitRulesMap *sharedImplicitRulesMap{nullptr};
9874 
9875 bool ResolveNames(
9876     SemanticsContext &context, const parser::Program &program, Scope &top) {
9877   ImplicitRulesMap implicitRulesMap;
9878   auto restorer{common::ScopedSet(sharedImplicitRulesMap, &implicitRulesMap)};
9879   ResolveNamesVisitor{context, implicitRulesMap, top}.Walk(program);
9880   return !context.AnyFatalError();
9881 }
9882 
9883 // Processes a module (but not internal) function when it is referenced
9884 // in a specification expression in a sibling procedure.
9885 void ResolveSpecificationParts(
9886     SemanticsContext &context, const Symbol &subprogram) {
9887   auto originalLocation{context.location()};
9888   ImplicitRulesMap implicitRulesMap;
9889   bool localImplicitRulesMap{false};
9890   if (!sharedImplicitRulesMap) {
9891     sharedImplicitRulesMap = &implicitRulesMap;
9892     localImplicitRulesMap = true;
9893   }
9894   ResolveNamesVisitor visitor{
9895       context, *sharedImplicitRulesMap, context.globalScope()};
9896   const auto &details{subprogram.get<SubprogramNameDetails>()};
9897   ProgramTree &node{details.node()};
9898   const Scope &moduleScope{subprogram.owner()};
9899   if (localImplicitRulesMap) {
9900     visitor.BeginScope(const_cast<Scope &>(moduleScope));
9901   } else {
9902     visitor.SetScope(const_cast<Scope &>(moduleScope));
9903   }
9904   visitor.ResolveSpecificationParts(node);
9905   context.set_location(std::move(originalLocation));
9906   if (localImplicitRulesMap) {
9907     sharedImplicitRulesMap = nullptr;
9908   }
9909 }
9910 
9911 } // namespace Fortran::semantics
9912