xref: /llvm-project/flang/lib/Semantics/resolve-names.cpp (revision 712359dae4c1ef18c69459e7bfc073369f29ff28)
1 //===-- lib/Semantics/resolve-names.cpp -----------------------------------===//
2 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
3 // See https://llvm.org/LICENSE.txt for license information.
4 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
5 //
6 //===----------------------------------------------------------------------===//
7 
8 #include "resolve-names.h"
9 #include "assignment.h"
10 #include "definable.h"
11 #include "mod-file.h"
12 #include "pointer-assignment.h"
13 #include "resolve-directives.h"
14 #include "resolve-names-utils.h"
15 #include "rewrite-parse-tree.h"
16 #include "flang/Common/Fortran.h"
17 #include "flang/Common/default-kinds.h"
18 #include "flang/Common/indirection.h"
19 #include "flang/Common/restorer.h"
20 #include "flang/Common/visit.h"
21 #include "flang/Evaluate/characteristics.h"
22 #include "flang/Evaluate/check-expression.h"
23 #include "flang/Evaluate/common.h"
24 #include "flang/Evaluate/fold-designator.h"
25 #include "flang/Evaluate/fold.h"
26 #include "flang/Evaluate/intrinsics.h"
27 #include "flang/Evaluate/tools.h"
28 #include "flang/Evaluate/type.h"
29 #include "flang/Parser/parse-tree-visitor.h"
30 #include "flang/Parser/parse-tree.h"
31 #include "flang/Parser/tools.h"
32 #include "flang/Semantics/attr.h"
33 #include "flang/Semantics/expression.h"
34 #include "flang/Semantics/openmp-modifiers.h"
35 #include "flang/Semantics/program-tree.h"
36 #include "flang/Semantics/scope.h"
37 #include "flang/Semantics/semantics.h"
38 #include "flang/Semantics/symbol.h"
39 #include "flang/Semantics/tools.h"
40 #include "flang/Semantics/type.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <list>
43 #include <map>
44 #include <set>
45 #include <stack>
46 
47 namespace Fortran::semantics {
48 
49 using namespace parser::literals;
50 
51 template <typename T> using Indirection = common::Indirection<T>;
52 using Message = parser::Message;
53 using Messages = parser::Messages;
54 using MessageFixedText = parser::MessageFixedText;
55 using MessageFormattedText = parser::MessageFormattedText;
56 
57 class ResolveNamesVisitor;
58 class ScopeHandler;
59 
60 // ImplicitRules maps initial character of identifier to the DeclTypeSpec
61 // representing the implicit type; std::nullopt if none.
62 // It also records the presence of IMPLICIT NONE statements.
63 // When inheritFromParent is set, defaults come from the parent rules.
64 class ImplicitRules {
65 public:
66   ImplicitRules(SemanticsContext &context, const ImplicitRules *parent)
67       : parent_{parent}, context_{context},
68         inheritFromParent_{parent != nullptr} {}
69   bool isImplicitNoneType() const;
70   bool isImplicitNoneExternal() const;
71   void set_isImplicitNoneType(bool x) { isImplicitNoneType_ = x; }
72   void set_isImplicitNoneExternal(bool x) { isImplicitNoneExternal_ = x; }
73   void set_inheritFromParent(bool x) { inheritFromParent_ = x; }
74   // Get the implicit type for this name. May be null.
75   const DeclTypeSpec *GetType(
76       SourceName, bool respectImplicitNone = true) const;
77   // Record the implicit type for the range of characters [fromLetter,
78   // toLetter].
79   void SetTypeMapping(const DeclTypeSpec &type, parser::Location fromLetter,
80       parser::Location toLetter);
81 
82 private:
83   static char Incr(char ch);
84 
85   const ImplicitRules *parent_;
86   SemanticsContext &context_;
87   bool inheritFromParent_{false}; // look in parent if not specified here
88   bool isImplicitNoneType_{
89       context_.IsEnabled(common::LanguageFeature::ImplicitNoneTypeAlways)};
90   bool isImplicitNoneExternal_{false};
91   // map_ contains the mapping between letters and types that were defined
92   // by the IMPLICIT statements of the related scope. It does not contain
93   // the default Fortran mappings nor the mapping defined in parents.
94   std::map<char, common::Reference<const DeclTypeSpec>> map_;
95 
96   friend llvm::raw_ostream &operator<<(
97       llvm::raw_ostream &, const ImplicitRules &);
98   friend void ShowImplicitRule(
99       llvm::raw_ostream &, const ImplicitRules &, char);
100 };
101 
102 // scope -> implicit rules for that scope
103 using ImplicitRulesMap = std::map<const Scope *, ImplicitRules>;
104 
105 // Track statement source locations and save messages.
106 class MessageHandler {
107 public:
108   MessageHandler() { DIE("MessageHandler: default-constructed"); }
109   explicit MessageHandler(SemanticsContext &c) : context_{&c} {}
110   Messages &messages() { return context_->messages(); };
111   const std::optional<SourceName> &currStmtSource() {
112     return context_->location();
113   }
114   void set_currStmtSource(const std::optional<SourceName> &source) {
115     context_->set_location(source);
116   }
117 
118   // Emit a message associated with the current statement source.
119   Message &Say(MessageFixedText &&);
120   Message &Say(MessageFormattedText &&);
121   // Emit a message about a SourceName
122   Message &Say(const SourceName &, MessageFixedText &&);
123   // Emit a formatted message associated with a source location.
124   template <typename... A>
125   Message &Say(const SourceName &source, MessageFixedText &&msg, A &&...args) {
126     return context_->Say(source, std::move(msg), std::forward<A>(args)...);
127   }
128 
129 private:
130   SemanticsContext *context_;
131 };
132 
133 // Inheritance graph for the parse tree visitation classes that follow:
134 //   BaseVisitor
135 //   + AttrsVisitor
136 //   | + DeclTypeSpecVisitor
137 //   |   + ImplicitRulesVisitor
138 //   |     + ScopeHandler ------------------+
139 //   |       + ModuleVisitor -------------+ |
140 //   |       + GenericHandler -------+    | |
141 //   |       | + InterfaceVisitor    |    | |
142 //   |       +-+ SubprogramVisitor ==|==+ | |
143 //   + ArraySpecVisitor              |  | | |
144 //     + DeclarationVisitor <--------+  | | |
145 //       + ConstructVisitor             | | |
146 //         + ResolveNamesVisitor <------+-+-+
147 
148 class BaseVisitor {
149 public:
150   BaseVisitor() { DIE("BaseVisitor: default-constructed"); }
151   BaseVisitor(
152       SemanticsContext &c, ResolveNamesVisitor &v, ImplicitRulesMap &rules)
153       : implicitRulesMap_{&rules}, this_{&v}, context_{&c}, messageHandler_{c} {
154   }
155   template <typename T> void Walk(const T &);
156 
157   MessageHandler &messageHandler() { return messageHandler_; }
158   const std::optional<SourceName> &currStmtSource() {
159     return context_->location();
160   }
161   SemanticsContext &context() const { return *context_; }
162   evaluate::FoldingContext &GetFoldingContext() const {
163     return context_->foldingContext();
164   }
165   bool IsIntrinsic(
166       const SourceName &name, std::optional<Symbol::Flag> flag) const {
167     if (!flag) {
168       return context_->intrinsics().IsIntrinsic(name.ToString());
169     } else if (flag == Symbol::Flag::Function) {
170       return context_->intrinsics().IsIntrinsicFunction(name.ToString());
171     } else if (flag == Symbol::Flag::Subroutine) {
172       return context_->intrinsics().IsIntrinsicSubroutine(name.ToString());
173     } else {
174       DIE("expected Subroutine or Function flag");
175     }
176   }
177 
178   bool InModuleFile() const {
179     return GetFoldingContext().moduleFileName().has_value();
180   }
181 
182   // Make a placeholder symbol for a Name that otherwise wouldn't have one.
183   // It is not in any scope and always has MiscDetails.
184   void MakePlaceholder(const parser::Name &, MiscDetails::Kind);
185 
186   template <typename T> common::IfNoLvalue<T, T> FoldExpr(T &&expr) {
187     return evaluate::Fold(GetFoldingContext(), std::move(expr));
188   }
189 
190   template <typename T> MaybeExpr EvaluateExpr(const T &expr) {
191     return FoldExpr(AnalyzeExpr(*context_, expr));
192   }
193 
194   template <typename T>
195   MaybeExpr EvaluateNonPointerInitializer(
196       const Symbol &symbol, const T &expr, parser::CharBlock source) {
197     if (!context().HasError(symbol)) {
198       if (auto maybeExpr{AnalyzeExpr(*context_, expr)}) {
199         auto restorer{GetFoldingContext().messages().SetLocation(source)};
200         return evaluate::NonPointerInitializationExpr(
201             symbol, std::move(*maybeExpr), GetFoldingContext());
202       }
203     }
204     return std::nullopt;
205   }
206 
207   template <typename T> MaybeIntExpr EvaluateIntExpr(const T &expr) {
208     return semantics::EvaluateIntExpr(*context_, expr);
209   }
210 
211   template <typename T>
212   MaybeSubscriptIntExpr EvaluateSubscriptIntExpr(const T &expr) {
213     if (MaybeIntExpr maybeIntExpr{EvaluateIntExpr(expr)}) {
214       return FoldExpr(evaluate::ConvertToType<evaluate::SubscriptInteger>(
215           std::move(*maybeIntExpr)));
216     } else {
217       return std::nullopt;
218     }
219   }
220 
221   template <typename... A> Message &Say(A &&...args) {
222     return messageHandler_.Say(std::forward<A>(args)...);
223   }
224   template <typename... A>
225   Message &Say(
226       const parser::Name &name, MessageFixedText &&text, const A &...args) {
227     return messageHandler_.Say(name.source, std::move(text), args...);
228   }
229 
230 protected:
231   ImplicitRulesMap *implicitRulesMap_{nullptr};
232 
233 private:
234   ResolveNamesVisitor *this_;
235   SemanticsContext *context_;
236   MessageHandler messageHandler_;
237 };
238 
239 // Provide Post methods to collect attributes into a member variable.
240 class AttrsVisitor : public virtual BaseVisitor {
241 public:
242   bool BeginAttrs(); // always returns true
243   Attrs GetAttrs();
244   std::optional<common::CUDADataAttr> cudaDataAttr() { return cudaDataAttr_; }
245   Attrs EndAttrs();
246   bool SetPassNameOn(Symbol &);
247   void SetBindNameOn(Symbol &);
248   void Post(const parser::LanguageBindingSpec &);
249   bool Pre(const parser::IntentSpec &);
250   bool Pre(const parser::Pass &);
251 
252   bool CheckAndSet(Attr);
253 
254 // Simple case: encountering CLASSNAME causes ATTRNAME to be set.
255 #define HANDLE_ATTR_CLASS(CLASSNAME, ATTRNAME) \
256   bool Pre(const parser::CLASSNAME &) { \
257     CheckAndSet(Attr::ATTRNAME); \
258     return false; \
259   }
260   HANDLE_ATTR_CLASS(PrefixSpec::Elemental, ELEMENTAL)
261   HANDLE_ATTR_CLASS(PrefixSpec::Impure, IMPURE)
262   HANDLE_ATTR_CLASS(PrefixSpec::Module, MODULE)
263   HANDLE_ATTR_CLASS(PrefixSpec::Non_Recursive, NON_RECURSIVE)
264   HANDLE_ATTR_CLASS(PrefixSpec::Pure, PURE)
265   HANDLE_ATTR_CLASS(PrefixSpec::Recursive, RECURSIVE)
266   HANDLE_ATTR_CLASS(TypeAttrSpec::BindC, BIND_C)
267   HANDLE_ATTR_CLASS(BindAttr::Deferred, DEFERRED)
268   HANDLE_ATTR_CLASS(BindAttr::Non_Overridable, NON_OVERRIDABLE)
269   HANDLE_ATTR_CLASS(Abstract, ABSTRACT)
270   HANDLE_ATTR_CLASS(Allocatable, ALLOCATABLE)
271   HANDLE_ATTR_CLASS(Asynchronous, ASYNCHRONOUS)
272   HANDLE_ATTR_CLASS(Contiguous, CONTIGUOUS)
273   HANDLE_ATTR_CLASS(External, EXTERNAL)
274   HANDLE_ATTR_CLASS(Intrinsic, INTRINSIC)
275   HANDLE_ATTR_CLASS(NoPass, NOPASS)
276   HANDLE_ATTR_CLASS(Optional, OPTIONAL)
277   HANDLE_ATTR_CLASS(Parameter, PARAMETER)
278   HANDLE_ATTR_CLASS(Pointer, POINTER)
279   HANDLE_ATTR_CLASS(Protected, PROTECTED)
280   HANDLE_ATTR_CLASS(Save, SAVE)
281   HANDLE_ATTR_CLASS(Target, TARGET)
282   HANDLE_ATTR_CLASS(Value, VALUE)
283   HANDLE_ATTR_CLASS(Volatile, VOLATILE)
284 #undef HANDLE_ATTR_CLASS
285   bool Pre(const common::CUDADataAttr);
286 
287 protected:
288   std::optional<Attrs> attrs_;
289   std::optional<common::CUDADataAttr> cudaDataAttr_;
290 
291   Attr AccessSpecToAttr(const parser::AccessSpec &x) {
292     switch (x.v) {
293     case parser::AccessSpec::Kind::Public:
294       return Attr::PUBLIC;
295     case parser::AccessSpec::Kind::Private:
296       return Attr::PRIVATE;
297     }
298     llvm_unreachable("Switch covers all cases"); // suppress g++ warning
299   }
300   Attr IntentSpecToAttr(const parser::IntentSpec &x) {
301     switch (x.v) {
302     case parser::IntentSpec::Intent::In:
303       return Attr::INTENT_IN;
304     case parser::IntentSpec::Intent::Out:
305       return Attr::INTENT_OUT;
306     case parser::IntentSpec::Intent::InOut:
307       return Attr::INTENT_INOUT;
308     }
309     llvm_unreachable("Switch covers all cases"); // suppress g++ warning
310   }
311 
312 private:
313   bool IsDuplicateAttr(Attr);
314   bool HaveAttrConflict(Attr, Attr, Attr);
315   bool IsConflictingAttr(Attr);
316 
317   MaybeExpr bindName_; // from BIND(C, NAME="...")
318   bool isCDefined_{false}; // BIND(C, NAME="...", CDEFINED) extension
319   std::optional<SourceName> passName_; // from PASS(...)
320 };
321 
322 // Find and create types from declaration-type-spec nodes.
323 class DeclTypeSpecVisitor : public AttrsVisitor {
324 public:
325   using AttrsVisitor::Post;
326   using AttrsVisitor::Pre;
327   void Post(const parser::IntrinsicTypeSpec::DoublePrecision &);
328   void Post(const parser::IntrinsicTypeSpec::DoubleComplex &);
329   void Post(const parser::DeclarationTypeSpec::ClassStar &);
330   void Post(const parser::DeclarationTypeSpec::TypeStar &);
331   bool Pre(const parser::TypeGuardStmt &);
332   void Post(const parser::TypeGuardStmt &);
333   void Post(const parser::TypeSpec &);
334 
335   // Walk the parse tree of a type spec and return the DeclTypeSpec for it.
336   template <typename T>
337   const DeclTypeSpec *ProcessTypeSpec(const T &x, bool allowForward = false) {
338     auto restorer{common::ScopedSet(state_, State{})};
339     set_allowForwardReferenceToDerivedType(allowForward);
340     BeginDeclTypeSpec();
341     Walk(x);
342     const auto *type{GetDeclTypeSpec()};
343     EndDeclTypeSpec();
344     return type;
345   }
346 
347 protected:
348   struct State {
349     bool expectDeclTypeSpec{false}; // should see decl-type-spec only when true
350     const DeclTypeSpec *declTypeSpec{nullptr};
351     struct {
352       DerivedTypeSpec *type{nullptr};
353       DeclTypeSpec::Category category{DeclTypeSpec::TypeDerived};
354     } derived;
355     bool allowForwardReferenceToDerivedType{false};
356   };
357 
358   bool allowForwardReferenceToDerivedType() const {
359     return state_.allowForwardReferenceToDerivedType;
360   }
361   void set_allowForwardReferenceToDerivedType(bool yes) {
362     state_.allowForwardReferenceToDerivedType = yes;
363   }
364 
365   const DeclTypeSpec *GetDeclTypeSpec();
366   void BeginDeclTypeSpec();
367   void EndDeclTypeSpec();
368   void SetDeclTypeSpec(const DeclTypeSpec &);
369   void SetDeclTypeSpecCategory(DeclTypeSpec::Category);
370   DeclTypeSpec::Category GetDeclTypeSpecCategory() const {
371     return state_.derived.category;
372   }
373   KindExpr GetKindParamExpr(
374       TypeCategory, const std::optional<parser::KindSelector> &);
375   void CheckForAbstractType(const Symbol &typeSymbol);
376 
377 private:
378   State state_;
379 
380   void MakeNumericType(TypeCategory, int kind);
381 };
382 
383 // Visit ImplicitStmt and related parse tree nodes and updates implicit rules.
384 class ImplicitRulesVisitor : public DeclTypeSpecVisitor {
385 public:
386   using DeclTypeSpecVisitor::Post;
387   using DeclTypeSpecVisitor::Pre;
388   using ImplicitNoneNameSpec = parser::ImplicitStmt::ImplicitNoneNameSpec;
389 
390   void Post(const parser::ParameterStmt &);
391   bool Pre(const parser::ImplicitStmt &);
392   bool Pre(const parser::LetterSpec &);
393   bool Pre(const parser::ImplicitSpec &);
394   void Post(const parser::ImplicitSpec &);
395 
396   const DeclTypeSpec *GetType(
397       SourceName name, bool respectImplicitNoneType = true) {
398     return implicitRules_->GetType(name, respectImplicitNoneType);
399   }
400   bool isImplicitNoneType() const {
401     return implicitRules_->isImplicitNoneType();
402   }
403   bool isImplicitNoneType(const Scope &scope) const {
404     return implicitRulesMap_->at(&scope).isImplicitNoneType();
405   }
406   bool isImplicitNoneExternal() const {
407     return implicitRules_->isImplicitNoneExternal();
408   }
409   void set_inheritFromParent(bool x) {
410     implicitRules_->set_inheritFromParent(x);
411   }
412 
413 protected:
414   void BeginScope(const Scope &);
415   void SetScope(const Scope &);
416 
417 private:
418   // implicit rules in effect for current scope
419   ImplicitRules *implicitRules_{nullptr};
420   std::optional<SourceName> prevImplicit_;
421   std::optional<SourceName> prevImplicitNone_;
422   std::optional<SourceName> prevImplicitNoneType_;
423   std::optional<SourceName> prevParameterStmt_;
424 
425   bool HandleImplicitNone(const std::list<ImplicitNoneNameSpec> &nameSpecs);
426 };
427 
428 // Track array specifications. They can occur in AttrSpec, EntityDecl,
429 // ObjectDecl, DimensionStmt, CommonBlockObject, BasedPointer, and
430 // ComponentDecl.
431 // 1. INTEGER, DIMENSION(10) :: x
432 // 2. INTEGER :: x(10)
433 // 3. ALLOCATABLE :: x(:)
434 // 4. DIMENSION :: x(10)
435 // 5. COMMON x(10)
436 // 6. POINTER(p,x(10))
437 class ArraySpecVisitor : public virtual BaseVisitor {
438 public:
439   void Post(const parser::ArraySpec &);
440   void Post(const parser::ComponentArraySpec &);
441   void Post(const parser::CoarraySpec &);
442   void Post(const parser::AttrSpec &) { PostAttrSpec(); }
443   void Post(const parser::ComponentAttrSpec &) { PostAttrSpec(); }
444 
445 protected:
446   const ArraySpec &arraySpec();
447   void set_arraySpec(const ArraySpec arraySpec) { arraySpec_ = arraySpec; }
448   const ArraySpec &coarraySpec();
449   void BeginArraySpec();
450   void EndArraySpec();
451   void ClearArraySpec() { arraySpec_.clear(); }
452   void ClearCoarraySpec() { coarraySpec_.clear(); }
453 
454 private:
455   // arraySpec_/coarraySpec_ are populated from any ArraySpec/CoarraySpec
456   ArraySpec arraySpec_;
457   ArraySpec coarraySpec_;
458   // When an ArraySpec is under an AttrSpec or ComponentAttrSpec, it is moved
459   // into attrArraySpec_
460   ArraySpec attrArraySpec_;
461   ArraySpec attrCoarraySpec_;
462 
463   void PostAttrSpec();
464 };
465 
466 // Manages a stack of function result information.  We defer the processing
467 // of a type specification that appears in the prefix of a FUNCTION statement
468 // until the function result variable appears in the specification part
469 // or the end of the specification part.  This allows for forward references
470 // in the type specification to resolve to local names.
471 class FuncResultStack {
472 public:
473   explicit FuncResultStack(ScopeHandler &scopeHandler)
474       : scopeHandler_{scopeHandler} {}
475   ~FuncResultStack();
476 
477   struct FuncInfo {
478     FuncInfo(const Scope &s, SourceName at) : scope{s}, source{at} {}
479     const Scope &scope;
480     SourceName source;
481     // Parse tree of the type specification in the FUNCTION prefix
482     const parser::DeclarationTypeSpec *parsedType{nullptr};
483     // Name of the function RESULT in the FUNCTION suffix, if any
484     const parser::Name *resultName{nullptr};
485     // Result symbol
486     Symbol *resultSymbol{nullptr};
487     bool inFunctionStmt{false}; // true between Pre/Post of FunctionStmt
488   };
489 
490   // Completes the definition of the top function's result.
491   void CompleteFunctionResultType();
492   // Completes the definition of a symbol if it is the top function's result.
493   void CompleteTypeIfFunctionResult(Symbol &);
494 
495   FuncInfo *Top() { return stack_.empty() ? nullptr : &stack_.back(); }
496   FuncInfo &Push(const Scope &scope, SourceName at) {
497     return stack_.emplace_back(scope, at);
498   }
499   void Pop();
500 
501 private:
502   ScopeHandler &scopeHandler_;
503   std::vector<FuncInfo> stack_;
504 };
505 
506 // Manage a stack of Scopes
507 class ScopeHandler : public ImplicitRulesVisitor {
508 public:
509   using ImplicitRulesVisitor::Post;
510   using ImplicitRulesVisitor::Pre;
511 
512   Scope &currScope() { return DEREF(currScope_); }
513   // The enclosing host procedure if current scope is in an internal procedure
514   Scope *GetHostProcedure();
515   // The innermost enclosing program unit scope, ignoring BLOCK and other
516   // construct scopes.
517   Scope &InclusiveScope();
518   // The enclosing scope, skipping derived types.
519   Scope &NonDerivedTypeScope();
520 
521   // Create a new scope and push it on the scope stack.
522   void PushScope(Scope::Kind kind, Symbol *symbol);
523   void PushScope(Scope &scope);
524   void PopScope();
525   void SetScope(Scope &);
526 
527   template <typename T> bool Pre(const parser::Statement<T> &x) {
528     messageHandler().set_currStmtSource(x.source);
529     currScope_->AddSourceRange(x.source);
530     return true;
531   }
532   template <typename T> void Post(const parser::Statement<T> &) {
533     messageHandler().set_currStmtSource(std::nullopt);
534   }
535 
536   // Special messages: already declared; referencing symbol's declaration;
537   // about a type; two names & locations
538   void SayAlreadyDeclared(const parser::Name &, Symbol &);
539   void SayAlreadyDeclared(const SourceName &, Symbol &);
540   void SayAlreadyDeclared(const SourceName &, const SourceName &);
541   void SayWithReason(
542       const parser::Name &, Symbol &, MessageFixedText &&, Message &&);
543   template <typename... A>
544   Message &SayWithDecl(
545       const parser::Name &, Symbol &, MessageFixedText &&, A &&...args);
546   void SayLocalMustBeVariable(const parser::Name &, Symbol &);
547   Message &SayDerivedType(
548       const SourceName &, MessageFixedText &&, const Scope &);
549   Message &Say2(const SourceName &, MessageFixedText &&, const SourceName &,
550       MessageFixedText &&);
551   Message &Say2(
552       const SourceName &, MessageFixedText &&, Symbol &, MessageFixedText &&);
553   Message &Say2(
554       const parser::Name &, MessageFixedText &&, Symbol &, MessageFixedText &&);
555 
556   // Search for symbol by name in current, parent derived type, and
557   // containing scopes
558   Symbol *FindSymbol(const parser::Name &);
559   Symbol *FindSymbol(const Scope &, const parser::Name &);
560   // Search for name only in scope, not in enclosing scopes.
561   Symbol *FindInScope(const Scope &, const parser::Name &);
562   Symbol *FindInScope(const Scope &, const SourceName &);
563   template <typename T> Symbol *FindInScope(const T &name) {
564     return FindInScope(currScope(), name);
565   }
566   // Search for name in a derived type scope and its parents.
567   Symbol *FindInTypeOrParents(const Scope &, const parser::Name &);
568   Symbol *FindInTypeOrParents(const parser::Name &);
569   Symbol *FindInScopeOrBlockConstructs(const Scope &, SourceName);
570   Symbol *FindSeparateModuleProcedureInterface(const parser::Name &);
571   void EraseSymbol(const parser::Name &);
572   void EraseSymbol(const Symbol &symbol) { currScope().erase(symbol.name()); }
573   // Make a new symbol with the name and attrs of an existing one
574   Symbol &CopySymbol(const SourceName &, const Symbol &);
575 
576   // Make symbols in the current or named scope
577   Symbol &MakeSymbol(Scope &, const SourceName &, Attrs);
578   Symbol &MakeSymbol(const SourceName &, Attrs = Attrs{});
579   Symbol &MakeSymbol(const parser::Name &, Attrs = Attrs{});
580   Symbol &MakeHostAssocSymbol(const parser::Name &, const Symbol &);
581 
582   template <typename D>
583   common::IfNoLvalue<Symbol &, D> MakeSymbol(
584       const parser::Name &name, D &&details) {
585     return MakeSymbol(name, Attrs{}, std::move(details));
586   }
587 
588   template <typename D>
589   common::IfNoLvalue<Symbol &, D> MakeSymbol(
590       const parser::Name &name, const Attrs &attrs, D &&details) {
591     return Resolve(name, MakeSymbol(name.source, attrs, std::move(details)));
592   }
593 
594   template <typename D>
595   common::IfNoLvalue<Symbol &, D> MakeSymbol(
596       const SourceName &name, const Attrs &attrs, D &&details) {
597     // Note: don't use FindSymbol here. If this is a derived type scope,
598     // we want to detect whether the name is already declared as a component.
599     auto *symbol{FindInScope(name)};
600     if (!symbol) {
601       symbol = &MakeSymbol(name, attrs);
602       symbol->set_details(std::move(details));
603       return *symbol;
604     }
605     if constexpr (std::is_same_v<DerivedTypeDetails, D>) {
606       if (auto *d{symbol->detailsIf<GenericDetails>()}) {
607         if (!d->specific()) {
608           // derived type with same name as a generic
609           auto *derivedType{d->derivedType()};
610           if (!derivedType) {
611             derivedType =
612                 &currScope().MakeSymbol(name, attrs, std::move(details));
613             d->set_derivedType(*derivedType);
614           } else if (derivedType->CanReplaceDetails(details)) {
615             // was forward-referenced
616             CheckDuplicatedAttrs(name, *symbol, attrs);
617             SetExplicitAttrs(*derivedType, attrs);
618             derivedType->set_details(std::move(details));
619           } else {
620             SayAlreadyDeclared(name, *derivedType);
621           }
622           return *derivedType;
623         }
624       }
625     } else if constexpr (std::is_same_v<ProcEntityDetails, D>) {
626       if (auto *d{symbol->detailsIf<GenericDetails>()}) {
627         if (!d->derivedType()) {
628           // procedure pointer with same name as a generic
629           auto *specific{d->specific()};
630           if (!specific) {
631             specific = &currScope().MakeSymbol(name, attrs, std::move(details));
632             d->set_specific(*specific);
633           } else {
634             SayAlreadyDeclared(name, *specific);
635           }
636           return *specific;
637         }
638       }
639     }
640     if (symbol->CanReplaceDetails(details)) {
641       // update the existing symbol
642       CheckDuplicatedAttrs(name, *symbol, attrs);
643       SetExplicitAttrs(*symbol, attrs);
644       if constexpr (std::is_same_v<SubprogramDetails, D>) {
645         // Dummy argument defined by explicit interface?
646         details.set_isDummy(IsDummy(*symbol));
647       }
648       symbol->set_details(std::move(details));
649       return *symbol;
650     } else if constexpr (std::is_same_v<UnknownDetails, D>) {
651       CheckDuplicatedAttrs(name, *symbol, attrs);
652       SetExplicitAttrs(*symbol, attrs);
653       return *symbol;
654     } else {
655       if (!CheckPossibleBadForwardRef(*symbol)) {
656         if (name.empty() && symbol->name().empty()) {
657           // report the error elsewhere
658           return *symbol;
659         }
660         Symbol &errSym{*symbol};
661         if (auto *d{symbol->detailsIf<GenericDetails>()}) {
662           if (d->specific()) {
663             errSym = *d->specific();
664           } else if (d->derivedType()) {
665             errSym = *d->derivedType();
666           }
667         }
668         SayAlreadyDeclared(name, errSym);
669       }
670       // replace the old symbol with a new one with correct details
671       EraseSymbol(*symbol);
672       auto &result{MakeSymbol(name, attrs, std::move(details))};
673       context().SetError(result);
674       return result;
675     }
676   }
677 
678   void MakeExternal(Symbol &);
679 
680   // C815 duplicated attribute checking; returns false on error
681   bool CheckDuplicatedAttr(SourceName, Symbol &, Attr);
682   bool CheckDuplicatedAttrs(SourceName, Symbol &, Attrs);
683 
684   void SetExplicitAttr(Symbol &symbol, Attr attr) const {
685     symbol.attrs().set(attr);
686     symbol.implicitAttrs().reset(attr);
687   }
688   void SetExplicitAttrs(Symbol &symbol, Attrs attrs) const {
689     symbol.attrs() |= attrs;
690     symbol.implicitAttrs() &= ~attrs;
691   }
692   void SetImplicitAttr(Symbol &symbol, Attr attr) const {
693     symbol.attrs().set(attr);
694     symbol.implicitAttrs().set(attr);
695   }
696   void SetCUDADataAttr(
697       SourceName, Symbol &, std::optional<common::CUDADataAttr>);
698 
699 protected:
700   FuncResultStack &funcResultStack() { return funcResultStack_; }
701 
702   // Apply the implicit type rules to this symbol.
703   void ApplyImplicitRules(Symbol &, bool allowForwardReference = false);
704   bool ImplicitlyTypeForwardRef(Symbol &);
705   void AcquireIntrinsicProcedureFlags(Symbol &);
706   const DeclTypeSpec *GetImplicitType(
707       Symbol &, bool respectImplicitNoneType = true);
708   void CheckEntryDummyUse(SourceName, Symbol *);
709   bool ConvertToObjectEntity(Symbol &);
710   bool ConvertToProcEntity(Symbol &, std::optional<SourceName> = std::nullopt);
711 
712   const DeclTypeSpec &MakeNumericType(
713       TypeCategory, const std::optional<parser::KindSelector> &);
714   const DeclTypeSpec &MakeNumericType(TypeCategory, int);
715   const DeclTypeSpec &MakeLogicalType(
716       const std::optional<parser::KindSelector> &);
717   const DeclTypeSpec &MakeLogicalType(int);
718   void NotePossibleBadForwardRef(const parser::Name &);
719   std::optional<SourceName> HadForwardRef(const Symbol &) const;
720   bool CheckPossibleBadForwardRef(const Symbol &);
721 
722   bool inSpecificationPart_{false};
723   bool deferImplicitTyping_{false};
724   bool skipImplicitTyping_{false};
725   bool inEquivalenceStmt_{false};
726 
727   // Some information is collected from a specification part for deferred
728   // processing in DeclarationPartVisitor functions (e.g., CheckSaveStmts())
729   // that are called by ResolveNamesVisitor::FinishSpecificationPart().  Since
730   // specification parts can nest (e.g., INTERFACE bodies), the collected
731   // information that is not contained in the scope needs to be packaged
732   // and restorable.
733   struct SpecificationPartState {
734     std::set<SourceName> forwardRefs;
735     // Collect equivalence sets and process at end of specification part
736     std::vector<const std::list<parser::EquivalenceObject> *> equivalenceSets;
737     // Names of all common block objects in the scope
738     std::set<SourceName> commonBlockObjects;
739     // Names of all names that show in a declare target declaration
740     std::set<SourceName> declareTargetNames;
741     // Info about SAVE statements and attributes in current scope
742     struct {
743       std::optional<SourceName> saveAll; // "SAVE" without entity list
744       std::set<SourceName> entities; // names of entities with save attr
745       std::set<SourceName> commons; // names of common blocks with save attr
746     } saveInfo;
747   } specPartState_;
748 
749   // Some declaration processing can and should be deferred to
750   // ResolveExecutionParts() to avoid prematurely creating implicitly-typed
751   // local symbols that should be host associations.
752   struct DeferredDeclarationState {
753     // The content of each namelist group
754     std::list<const parser::NamelistStmt::Group *> namelistGroups;
755   };
756   DeferredDeclarationState *GetDeferredDeclarationState(bool add = false) {
757     if (!add && deferred_.find(&currScope()) == deferred_.end()) {
758       return nullptr;
759     } else {
760       return &deferred_.emplace(&currScope(), DeferredDeclarationState{})
761                   .first->second;
762     }
763   }
764 
765   void SkipImplicitTyping(bool skip) {
766     deferImplicitTyping_ = skipImplicitTyping_ = skip;
767   }
768 
769 private:
770   Scope *currScope_{nullptr};
771   FuncResultStack funcResultStack_{*this};
772   std::map<Scope *, DeferredDeclarationState> deferred_;
773 };
774 
775 class ModuleVisitor : public virtual ScopeHandler {
776 public:
777   bool Pre(const parser::AccessStmt &);
778   bool Pre(const parser::Only &);
779   bool Pre(const parser::Rename::Names &);
780   bool Pre(const parser::Rename::Operators &);
781   bool Pre(const parser::UseStmt &);
782   void Post(const parser::UseStmt &);
783 
784   void BeginModule(const parser::Name &, bool isSubmodule);
785   bool BeginSubmodule(const parser::Name &, const parser::ParentIdentifier &);
786   void ApplyDefaultAccess();
787   Symbol &AddGenericUse(GenericDetails &, const SourceName &, const Symbol &);
788   void AddAndCheckModuleUse(SourceName, bool isIntrinsic);
789   void CollectUseRenames(const parser::UseStmt &);
790   void ClearUseRenames() { useRenames_.clear(); }
791   void ClearUseOnly() { useOnly_.clear(); }
792   void ClearModuleUses() {
793     intrinsicUses_.clear();
794     nonIntrinsicUses_.clear();
795   }
796 
797 private:
798   // The location of the last AccessStmt without access-ids, if any.
799   std::optional<SourceName> prevAccessStmt_;
800   // The scope of the module during a UseStmt
801   Scope *useModuleScope_{nullptr};
802   // Names that have appeared in a rename clause of USE statements
803   std::set<std::pair<SourceName, SourceName>> useRenames_;
804   // Names that have appeared in an ONLY clause of a USE statement
805   std::set<std::pair<SourceName, Scope *>> useOnly_;
806   // Intrinsic and non-intrinsic (explicit or not) module names that
807   // have appeared in USE statements; used for C1406 warnings.
808   std::set<SourceName> intrinsicUses_;
809   std::set<SourceName> nonIntrinsicUses_;
810 
811   Symbol &SetAccess(const SourceName &, Attr attr, Symbol * = nullptr);
812   // A rename in a USE statement: local => use
813   struct SymbolRename {
814     Symbol *local{nullptr};
815     Symbol *use{nullptr};
816   };
817   // Record a use from useModuleScope_ of use Name/Symbol as local Name/Symbol
818   SymbolRename AddUse(const SourceName &localName, const SourceName &useName);
819   SymbolRename AddUse(const SourceName &, const SourceName &, Symbol *);
820   void DoAddUse(
821       SourceName, SourceName, Symbol &localSymbol, const Symbol &useSymbol);
822   void AddUse(const GenericSpecInfo &);
823   // Record a name appearing as the target of a USE rename clause
824   void AddUseRename(SourceName name, SourceName moduleName) {
825     useRenames_.emplace(std::make_pair(name, moduleName));
826   }
827   bool IsUseRenamed(const SourceName &name) const {
828     return useModuleScope_ && useModuleScope_->symbol() &&
829         useRenames_.find({name, useModuleScope_->symbol()->name()}) !=
830         useRenames_.end();
831   }
832   // Record a name appearing in a USE ONLY clause
833   void AddUseOnly(const SourceName &name) {
834     useOnly_.emplace(std::make_pair(name, useModuleScope_));
835   }
836   bool IsUseOnly(const SourceName &name) const {
837     return useOnly_.find({name, useModuleScope_}) != useOnly_.end();
838   }
839   Scope *FindModule(const parser::Name &, std::optional<bool> isIntrinsic,
840       Scope *ancestor = nullptr);
841 };
842 
843 class GenericHandler : public virtual ScopeHandler {
844 protected:
845   using ProcedureKind = parser::ProcedureStmt::Kind;
846   void ResolveSpecificsInGeneric(Symbol &, bool isEndOfSpecificationPart);
847   void DeclaredPossibleSpecificProc(Symbol &);
848 
849   // Mappings of generics to their as-yet specific proc names and kinds
850   using SpecificProcMapType =
851       std::multimap<Symbol *, std::pair<const parser::Name *, ProcedureKind>>;
852   SpecificProcMapType specificsForGenericProcs_;
853   // inversion of SpecificProcMapType: maps pending proc names to generics
854   using GenericProcMapType = std::multimap<SourceName, Symbol *>;
855   GenericProcMapType genericsForSpecificProcs_;
856 };
857 
858 class InterfaceVisitor : public virtual ScopeHandler,
859                          public virtual GenericHandler {
860 public:
861   bool Pre(const parser::InterfaceStmt &);
862   void Post(const parser::InterfaceStmt &);
863   void Post(const parser::EndInterfaceStmt &);
864   bool Pre(const parser::GenericSpec &);
865   bool Pre(const parser::ProcedureStmt &);
866   bool Pre(const parser::GenericStmt &);
867   void Post(const parser::GenericStmt &);
868 
869   bool inInterfaceBlock() const;
870   bool isGeneric() const;
871   bool isAbstract() const;
872 
873 protected:
874   Symbol &GetGenericSymbol() { return DEREF(genericInfo_.top().symbol); }
875   // Add to generic the symbol for the subprogram with the same name
876   void CheckGenericProcedures(Symbol &);
877 
878 private:
879   // A new GenericInfo is pushed for each interface block and generic stmt
880   struct GenericInfo {
881     GenericInfo(bool isInterface, bool isAbstract = false)
882         : isInterface{isInterface}, isAbstract{isAbstract} {}
883     bool isInterface; // in interface block
884     bool isAbstract; // in abstract interface block
885     Symbol *symbol{nullptr}; // the generic symbol being defined
886   };
887   std::stack<GenericInfo> genericInfo_;
888   const GenericInfo &GetGenericInfo() const { return genericInfo_.top(); }
889   void SetGenericSymbol(Symbol &symbol) { genericInfo_.top().symbol = &symbol; }
890   void AddSpecificProcs(const std::list<parser::Name> &, ProcedureKind);
891   void ResolveNewSpecifics();
892 };
893 
894 class SubprogramVisitor : public virtual ScopeHandler, public InterfaceVisitor {
895 public:
896   bool HandleStmtFunction(const parser::StmtFunctionStmt &);
897   bool Pre(const parser::SubroutineStmt &);
898   bool Pre(const parser::FunctionStmt &);
899   void Post(const parser::FunctionStmt &);
900   bool Pre(const parser::EntryStmt &);
901   void Post(const parser::EntryStmt &);
902   bool Pre(const parser::InterfaceBody::Subroutine &);
903   void Post(const parser::InterfaceBody::Subroutine &);
904   bool Pre(const parser::InterfaceBody::Function &);
905   void Post(const parser::InterfaceBody::Function &);
906   bool Pre(const parser::Suffix &);
907   bool Pre(const parser::PrefixSpec &);
908   bool Pre(const parser::PrefixSpec::Attributes &);
909   void Post(const parser::PrefixSpec::Launch_Bounds &);
910   void Post(const parser::PrefixSpec::Cluster_Dims &);
911 
912   bool BeginSubprogram(const parser::Name &, Symbol::Flag,
913       bool hasModulePrefix = false,
914       const parser::LanguageBindingSpec * = nullptr,
915       const ProgramTree::EntryStmtList * = nullptr);
916   bool BeginMpSubprogram(const parser::Name &);
917   void PushBlockDataScope(const parser::Name &);
918   void EndSubprogram(std::optional<parser::CharBlock> stmtSource = std::nullopt,
919       const std::optional<parser::LanguageBindingSpec> * = nullptr,
920       const ProgramTree::EntryStmtList * = nullptr);
921 
922 protected:
923   // Set when we see a stmt function that is really an array element assignment
924   bool misparsedStmtFuncFound_{false};
925 
926 private:
927   // Edits an existing symbol created for earlier calls to a subprogram or ENTRY
928   // so that it can be replaced by a later definition.
929   bool HandlePreviousCalls(const parser::Name &, Symbol &, Symbol::Flag);
930   void CheckExtantProc(const parser::Name &, Symbol::Flag);
931   // Create a subprogram symbol in the current scope and push a new scope.
932   Symbol &PushSubprogramScope(const parser::Name &, Symbol::Flag,
933       const parser::LanguageBindingSpec * = nullptr,
934       bool hasModulePrefix = false);
935   Symbol *GetSpecificFromGeneric(const parser::Name &);
936   Symbol &PostSubprogramStmt();
937   void CreateDummyArgument(SubprogramDetails &, const parser::Name &);
938   void CreateEntry(const parser::EntryStmt &stmt, Symbol &subprogram);
939   void PostEntryStmt(const parser::EntryStmt &stmt);
940   void HandleLanguageBinding(Symbol *,
941       std::optional<parser::CharBlock> stmtSource,
942       const std::optional<parser::LanguageBindingSpec> *);
943 };
944 
945 class DeclarationVisitor : public ArraySpecVisitor,
946                            public virtual GenericHandler {
947 public:
948   using ArraySpecVisitor::Post;
949   using ScopeHandler::Post;
950   using ScopeHandler::Pre;
951 
952   bool Pre(const parser::Initialization &);
953   void Post(const parser::EntityDecl &);
954   void Post(const parser::ObjectDecl &);
955   void Post(const parser::PointerDecl &);
956   bool Pre(const parser::BindStmt &) { return BeginAttrs(); }
957   void Post(const parser::BindStmt &) { EndAttrs(); }
958   bool Pre(const parser::BindEntity &);
959   bool Pre(const parser::OldParameterStmt &);
960   bool Pre(const parser::NamedConstantDef &);
961   bool Pre(const parser::NamedConstant &);
962   void Post(const parser::EnumDef &);
963   bool Pre(const parser::Enumerator &);
964   bool Pre(const parser::AccessSpec &);
965   bool Pre(const parser::AsynchronousStmt &);
966   bool Pre(const parser::ContiguousStmt &);
967   bool Pre(const parser::ExternalStmt &);
968   bool Pre(const parser::IntentStmt &);
969   bool Pre(const parser::IntrinsicStmt &);
970   bool Pre(const parser::OptionalStmt &);
971   bool Pre(const parser::ProtectedStmt &);
972   bool Pre(const parser::ValueStmt &);
973   bool Pre(const parser::VolatileStmt &);
974   bool Pre(const parser::AllocatableStmt &) {
975     objectDeclAttr_ = Attr::ALLOCATABLE;
976     return true;
977   }
978   void Post(const parser::AllocatableStmt &) { objectDeclAttr_ = std::nullopt; }
979   bool Pre(const parser::TargetStmt &) {
980     objectDeclAttr_ = Attr::TARGET;
981     return true;
982   }
983   bool Pre(const parser::CUDAAttributesStmt &);
984   void Post(const parser::TargetStmt &) { objectDeclAttr_ = std::nullopt; }
985   void Post(const parser::DimensionStmt::Declaration &);
986   void Post(const parser::CodimensionDecl &);
987   bool Pre(const parser::TypeDeclarationStmt &);
988   void Post(const parser::TypeDeclarationStmt &);
989   void Post(const parser::IntegerTypeSpec &);
990   void Post(const parser::UnsignedTypeSpec &);
991   void Post(const parser::IntrinsicTypeSpec::Real &);
992   void Post(const parser::IntrinsicTypeSpec::Complex &);
993   void Post(const parser::IntrinsicTypeSpec::Logical &);
994   void Post(const parser::IntrinsicTypeSpec::Character &);
995   void Post(const parser::CharSelector::LengthAndKind &);
996   void Post(const parser::CharLength &);
997   void Post(const parser::LengthSelector &);
998   bool Pre(const parser::KindParam &);
999   bool Pre(const parser::VectorTypeSpec &);
1000   void Post(const parser::VectorTypeSpec &);
1001   bool Pre(const parser::DeclarationTypeSpec::Type &);
1002   void Post(const parser::DeclarationTypeSpec::Type &);
1003   bool Pre(const parser::DeclarationTypeSpec::Class &);
1004   void Post(const parser::DeclarationTypeSpec::Class &);
1005   void Post(const parser::DeclarationTypeSpec::Record &);
1006   void Post(const parser::DerivedTypeSpec &);
1007   bool Pre(const parser::DerivedTypeDef &);
1008   bool Pre(const parser::DerivedTypeStmt &);
1009   void Post(const parser::DerivedTypeStmt &);
1010   bool Pre(const parser::TypeParamDefStmt &) { return BeginDecl(); }
1011   void Post(const parser::TypeParamDefStmt &);
1012   bool Pre(const parser::TypeAttrSpec::Extends &);
1013   bool Pre(const parser::PrivateStmt &);
1014   bool Pre(const parser::SequenceStmt &);
1015   bool Pre(const parser::ComponentDefStmt &) { return BeginDecl(); }
1016   void Post(const parser::ComponentDefStmt &) { EndDecl(); }
1017   void Post(const parser::ComponentDecl &);
1018   void Post(const parser::FillDecl &);
1019   bool Pre(const parser::ProcedureDeclarationStmt &);
1020   void Post(const parser::ProcedureDeclarationStmt &);
1021   bool Pre(const parser::DataComponentDefStmt &); // returns false
1022   bool Pre(const parser::ProcComponentDefStmt &);
1023   void Post(const parser::ProcComponentDefStmt &);
1024   bool Pre(const parser::ProcPointerInit &);
1025   void Post(const parser::ProcInterface &);
1026   void Post(const parser::ProcDecl &);
1027   bool Pre(const parser::TypeBoundProcedurePart &);
1028   void Post(const parser::TypeBoundProcedurePart &);
1029   void Post(const parser::ContainsStmt &);
1030   bool Pre(const parser::TypeBoundProcBinding &) { return BeginAttrs(); }
1031   void Post(const parser::TypeBoundProcBinding &) { EndAttrs(); }
1032   void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &);
1033   void Post(const parser::TypeBoundProcedureStmt::WithInterface &);
1034   bool Pre(const parser::FinalProcedureStmt &);
1035   bool Pre(const parser::TypeBoundGenericStmt &);
1036   bool Pre(const parser::StructureDef &); // returns false
1037   bool Pre(const parser::Union::UnionStmt &);
1038   bool Pre(const parser::StructureField &);
1039   void Post(const parser::StructureField &);
1040   bool Pre(const parser::AllocateStmt &);
1041   void Post(const parser::AllocateStmt &);
1042   bool Pre(const parser::StructureConstructor &);
1043   bool Pre(const parser::NamelistStmt::Group &);
1044   bool Pre(const parser::IoControlSpec &);
1045   bool Pre(const parser::CommonStmt::Block &);
1046   bool Pre(const parser::CommonBlockObject &);
1047   void Post(const parser::CommonBlockObject &);
1048   bool Pre(const parser::EquivalenceStmt &);
1049   bool Pre(const parser::SaveStmt &);
1050   bool Pre(const parser::BasedPointer &);
1051   void Post(const parser::BasedPointer &);
1052 
1053   void PointerInitialization(
1054       const parser::Name &, const parser::InitialDataTarget &);
1055   void PointerInitialization(
1056       const parser::Name &, const parser::ProcPointerInit &);
1057   void NonPointerInitialization(
1058       const parser::Name &, const parser::ConstantExpr &);
1059   void CheckExplicitInterface(const parser::Name &);
1060   void CheckBindings(const parser::TypeBoundProcedureStmt::WithoutInterface &);
1061 
1062   const parser::Name *ResolveDesignator(const parser::Designator &);
1063   int GetVectorElementKind(
1064       TypeCategory category, const std::optional<parser::KindSelector> &kind);
1065 
1066 protected:
1067   bool BeginDecl();
1068   void EndDecl();
1069   Symbol &DeclareObjectEntity(const parser::Name &, Attrs = Attrs{});
1070   // Make sure that there's an entity in an enclosing scope called Name
1071   Symbol &FindOrDeclareEnclosingEntity(const parser::Name &);
1072   // Declare a LOCAL/LOCAL_INIT/REDUCE entity while setting a locality flag. If
1073   // there isn't a type specified it comes from the entity in the containing
1074   // scope, or implicit rules.
1075   void DeclareLocalEntity(const parser::Name &, Symbol::Flag);
1076   // Declare a statement entity (i.e., an implied DO loop index for
1077   // a DATA statement or an array constructor).  If there isn't an explict
1078   // type specified, implicit rules apply. Return pointer to the new symbol,
1079   // or nullptr on error.
1080   Symbol *DeclareStatementEntity(const parser::DoVariable &,
1081       const std::optional<parser::IntegerTypeSpec> &);
1082   Symbol &MakeCommonBlockSymbol(const parser::Name &);
1083   Symbol &MakeCommonBlockSymbol(const std::optional<parser::Name> &);
1084   bool CheckUseError(const parser::Name &);
1085   void CheckAccessibility(const SourceName &, bool, Symbol &);
1086   void CheckCommonBlocks();
1087   void CheckSaveStmts();
1088   void CheckEquivalenceSets();
1089   bool CheckNotInBlock(const char *);
1090   bool NameIsKnownOrIntrinsic(const parser::Name &);
1091   void FinishNamelists();
1092 
1093   // Each of these returns a pointer to a resolved Name (i.e. with symbol)
1094   // or nullptr in case of error.
1095   const parser::Name *ResolveStructureComponent(
1096       const parser::StructureComponent &);
1097   const parser::Name *ResolveDataRef(const parser::DataRef &);
1098   const parser::Name *ResolveName(const parser::Name &);
1099   bool PassesSharedLocalityChecks(const parser::Name &name, Symbol &symbol);
1100   Symbol *NoteInterfaceName(const parser::Name &);
1101   bool IsUplevelReference(const Symbol &);
1102 
1103   std::optional<SourceName> BeginCheckOnIndexUseInOwnBounds(
1104       const parser::DoVariable &name) {
1105     std::optional<SourceName> result{checkIndexUseInOwnBounds_};
1106     checkIndexUseInOwnBounds_ = name.thing.thing.source;
1107     return result;
1108   }
1109   void EndCheckOnIndexUseInOwnBounds(const std::optional<SourceName> &restore) {
1110     checkIndexUseInOwnBounds_ = restore;
1111   }
1112   void NoteScalarSpecificationArgument(const Symbol &symbol) {
1113     mustBeScalar_.emplace(symbol);
1114   }
1115   // Declare an object or procedure entity.
1116   // T is one of: EntityDetails, ObjectEntityDetails, ProcEntityDetails
1117   template <typename T>
1118   Symbol &DeclareEntity(const parser::Name &name, Attrs attrs) {
1119     Symbol &symbol{MakeSymbol(name, attrs)};
1120     if (context().HasError(symbol) || symbol.has<T>()) {
1121       return symbol; // OK or error already reported
1122     } else if (symbol.has<UnknownDetails>()) {
1123       symbol.set_details(T{});
1124       return symbol;
1125     } else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
1126       symbol.set_details(T{std::move(*details)});
1127       return symbol;
1128     } else if (std::is_same_v<EntityDetails, T> &&
1129         (symbol.has<ObjectEntityDetails>() ||
1130             symbol.has<ProcEntityDetails>())) {
1131       return symbol; // OK
1132     } else if (auto *details{symbol.detailsIf<UseDetails>()}) {
1133       Say(name.source,
1134           "'%s' is use-associated from module '%s' and cannot be re-declared"_err_en_US,
1135           name.source, GetUsedModule(*details).name());
1136     } else if (auto *details{symbol.detailsIf<SubprogramNameDetails>()}) {
1137       if (details->kind() == SubprogramKind::Module) {
1138         Say2(name,
1139             "Declaration of '%s' conflicts with its use as module procedure"_err_en_US,
1140             symbol, "Module procedure definition"_en_US);
1141       } else if (details->kind() == SubprogramKind::Internal) {
1142         Say2(name,
1143             "Declaration of '%s' conflicts with its use as internal procedure"_err_en_US,
1144             symbol, "Internal procedure definition"_en_US);
1145       } else {
1146         DIE("unexpected kind");
1147       }
1148     } else if (std::is_same_v<ObjectEntityDetails, T> &&
1149         symbol.has<ProcEntityDetails>()) {
1150       SayWithDecl(
1151           name, symbol, "'%s' is already declared as a procedure"_err_en_US);
1152     } else if (std::is_same_v<ProcEntityDetails, T> &&
1153         symbol.has<ObjectEntityDetails>()) {
1154       if (FindCommonBlockContaining(symbol)) {
1155         SayWithDecl(name, symbol,
1156             "'%s' may not be a procedure as it is in a COMMON block"_err_en_US);
1157       } else {
1158         SayWithDecl(
1159             name, symbol, "'%s' is already declared as an object"_err_en_US);
1160       }
1161     } else if (!CheckPossibleBadForwardRef(symbol)) {
1162       SayAlreadyDeclared(name, symbol);
1163     }
1164     context().SetError(symbol);
1165     return symbol;
1166   }
1167 
1168 private:
1169   // The attribute corresponding to the statement containing an ObjectDecl
1170   std::optional<Attr> objectDeclAttr_;
1171   // Info about current character type while walking DeclTypeSpec.
1172   // Also captures any "*length" specifier on an individual declaration.
1173   struct {
1174     std::optional<ParamValue> length;
1175     std::optional<KindExpr> kind;
1176   } charInfo_;
1177   // Info about current derived type or STRUCTURE while walking
1178   // DerivedTypeDef / StructureDef
1179   struct {
1180     const parser::Name *extends{nullptr}; // EXTENDS(name)
1181     bool privateComps{false}; // components are private by default
1182     bool privateBindings{false}; // bindings are private by default
1183     bool sawContains{false}; // currently processing bindings
1184     bool sequence{false}; // is a sequence type
1185     const Symbol *type{nullptr}; // derived type being defined
1186     bool isStructure{false}; // is a DEC STRUCTURE
1187   } derivedTypeInfo_;
1188   // In a ProcedureDeclarationStmt or ProcComponentDefStmt, this is
1189   // the interface name, if any.
1190   const parser::Name *interfaceName_{nullptr};
1191   // Map type-bound generic to binding names of its specific bindings
1192   std::multimap<Symbol *, const parser::Name *> genericBindings_;
1193   // Info about current ENUM
1194   struct EnumeratorState {
1195     // Enum value must hold inside a C_INT (7.6.2).
1196     std::optional<int> value{0};
1197   } enumerationState_;
1198   // Set for OldParameterStmt processing
1199   bool inOldStyleParameterStmt_{false};
1200   // Set when walking DATA & array constructor implied DO loop bounds
1201   // to warn about use of the implied DO intex therein.
1202   std::optional<SourceName> checkIndexUseInOwnBounds_;
1203   bool isVectorType_{false};
1204   UnorderedSymbolSet mustBeScalar_;
1205 
1206   bool HandleAttributeStmt(Attr, const std::list<parser::Name> &);
1207   Symbol &HandleAttributeStmt(Attr, const parser::Name &);
1208   Symbol &DeclareUnknownEntity(const parser::Name &, Attrs);
1209   Symbol &DeclareProcEntity(
1210       const parser::Name &, Attrs, const Symbol *interface);
1211   void SetType(const parser::Name &, const DeclTypeSpec &);
1212   std::optional<DerivedTypeSpec> ResolveDerivedType(const parser::Name &);
1213   std::optional<DerivedTypeSpec> ResolveExtendsType(
1214       const parser::Name &, const parser::Name *);
1215   Symbol *MakeTypeSymbol(const SourceName &, Details &&);
1216   Symbol *MakeTypeSymbol(const parser::Name &, Details &&);
1217   bool OkToAddComponent(const parser::Name &, const Symbol *extends = nullptr);
1218   ParamValue GetParamValue(
1219       const parser::TypeParamValue &, common::TypeParamAttr attr);
1220   void CheckCommonBlockDerivedType(
1221       const SourceName &, const Symbol &, UnorderedSymbolSet &);
1222   Attrs HandleSaveName(const SourceName &, Attrs);
1223   void AddSaveName(std::set<SourceName> &, const SourceName &);
1224   bool HandleUnrestrictedSpecificIntrinsicFunction(const parser::Name &);
1225   const parser::Name *FindComponent(const parser::Name *, const parser::Name &);
1226   void Initialization(const parser::Name &, const parser::Initialization &,
1227       bool inComponentDecl);
1228   bool FindAndMarkDeclareTargetSymbol(const parser::Name &);
1229   bool PassesLocalityChecks(
1230       const parser::Name &name, Symbol &symbol, Symbol::Flag flag);
1231   bool CheckForHostAssociatedImplicit(const parser::Name &);
1232   bool HasCycle(const Symbol &, const Symbol *interface);
1233   bool MustBeScalar(const Symbol &symbol) const {
1234     return mustBeScalar_.find(symbol) != mustBeScalar_.end();
1235   }
1236   void DeclareIntrinsic(const parser::Name &);
1237 };
1238 
1239 // Resolve construct entities and statement entities.
1240 // Check that construct names don't conflict with other names.
1241 class ConstructVisitor : public virtual DeclarationVisitor {
1242 public:
1243   bool Pre(const parser::ConcurrentHeader &);
1244   bool Pre(const parser::LocalitySpec::Local &);
1245   bool Pre(const parser::LocalitySpec::LocalInit &);
1246   bool Pre(const parser::LocalitySpec::Reduce &);
1247   bool Pre(const parser::LocalitySpec::Shared &);
1248   bool Pre(const parser::AcSpec &);
1249   bool Pre(const parser::AcImpliedDo &);
1250   bool Pre(const parser::DataImpliedDo &);
1251   bool Pre(const parser::DataIDoObject &);
1252   bool Pre(const parser::DataStmtObject &);
1253   bool Pre(const parser::DataStmtValue &);
1254   bool Pre(const parser::DoConstruct &);
1255   void Post(const parser::DoConstruct &);
1256   bool Pre(const parser::ForallConstruct &);
1257   void Post(const parser::ForallConstruct &);
1258   bool Pre(const parser::ForallStmt &);
1259   void Post(const parser::ForallStmt &);
1260   bool Pre(const parser::BlockConstruct &);
1261   void Post(const parser::Selector &);
1262   void Post(const parser::AssociateStmt &);
1263   void Post(const parser::EndAssociateStmt &);
1264   bool Pre(const parser::Association &);
1265   void Post(const parser::SelectTypeStmt &);
1266   void Post(const parser::SelectRankStmt &);
1267   bool Pre(const parser::SelectTypeConstruct &);
1268   void Post(const parser::SelectTypeConstruct &);
1269   bool Pre(const parser::SelectTypeConstruct::TypeCase &);
1270   void Post(const parser::SelectTypeConstruct::TypeCase &);
1271   // Creates Block scopes with neither symbol name nor symbol details.
1272   bool Pre(const parser::SelectRankConstruct::RankCase &);
1273   void Post(const parser::SelectRankConstruct::RankCase &);
1274   bool Pre(const parser::TypeGuardStmt::Guard &);
1275   void Post(const parser::TypeGuardStmt::Guard &);
1276   void Post(const parser::SelectRankCaseStmt::Rank &);
1277   bool Pre(const parser::ChangeTeamStmt &);
1278   void Post(const parser::EndChangeTeamStmt &);
1279   void Post(const parser::CoarrayAssociation &);
1280 
1281   // Definitions of construct names
1282   bool Pre(const parser::WhereConstructStmt &x) { return CheckDef(x.t); }
1283   bool Pre(const parser::ForallConstructStmt &x) { return CheckDef(x.t); }
1284   bool Pre(const parser::CriticalStmt &x) { return CheckDef(x.t); }
1285   bool Pre(const parser::LabelDoStmt &) {
1286     return false; // error recovery
1287   }
1288   bool Pre(const parser::NonLabelDoStmt &x) { return CheckDef(x.t); }
1289   bool Pre(const parser::IfThenStmt &x) { return CheckDef(x.t); }
1290   bool Pre(const parser::SelectCaseStmt &x) { return CheckDef(x.t); }
1291   bool Pre(const parser::SelectRankConstruct &);
1292   void Post(const parser::SelectRankConstruct &);
1293   bool Pre(const parser::SelectRankStmt &x) {
1294     return CheckDef(std::get<0>(x.t));
1295   }
1296   bool Pre(const parser::SelectTypeStmt &x) {
1297     return CheckDef(std::get<0>(x.t));
1298   }
1299 
1300   // References to construct names
1301   void Post(const parser::MaskedElsewhereStmt &x) { CheckRef(x.t); }
1302   void Post(const parser::ElsewhereStmt &x) { CheckRef(x.v); }
1303   void Post(const parser::EndWhereStmt &x) { CheckRef(x.v); }
1304   void Post(const parser::EndForallStmt &x) { CheckRef(x.v); }
1305   void Post(const parser::EndCriticalStmt &x) { CheckRef(x.v); }
1306   void Post(const parser::EndDoStmt &x) { CheckRef(x.v); }
1307   void Post(const parser::ElseIfStmt &x) { CheckRef(x.t); }
1308   void Post(const parser::ElseStmt &x) { CheckRef(x.v); }
1309   void Post(const parser::EndIfStmt &x) { CheckRef(x.v); }
1310   void Post(const parser::CaseStmt &x) { CheckRef(x.t); }
1311   void Post(const parser::EndSelectStmt &x) { CheckRef(x.v); }
1312   void Post(const parser::SelectRankCaseStmt &x) { CheckRef(x.t); }
1313   void Post(const parser::TypeGuardStmt &x) { CheckRef(x.t); }
1314   void Post(const parser::CycleStmt &x) { CheckRef(x.v); }
1315   void Post(const parser::ExitStmt &x) { CheckRef(x.v); }
1316 
1317   void HandleImpliedAsynchronousInScope(const parser::Block &);
1318 
1319 private:
1320   // R1105 selector -> expr | variable
1321   // expr is set in either case unless there were errors
1322   struct Selector {
1323     Selector() {}
1324     Selector(const SourceName &source, MaybeExpr &&expr)
1325         : source{source}, expr{std::move(expr)} {}
1326     operator bool() const { return expr.has_value(); }
1327     parser::CharBlock source;
1328     MaybeExpr expr;
1329   };
1330   // association -> [associate-name =>] selector
1331   struct Association {
1332     const parser::Name *name{nullptr};
1333     Selector selector;
1334   };
1335   std::vector<Association> associationStack_;
1336   Association *currentAssociation_{nullptr};
1337 
1338   template <typename T> bool CheckDef(const T &t) {
1339     return CheckDef(std::get<std::optional<parser::Name>>(t));
1340   }
1341   template <typename T> void CheckRef(const T &t) {
1342     CheckRef(std::get<std::optional<parser::Name>>(t));
1343   }
1344   bool CheckDef(const std::optional<parser::Name> &);
1345   void CheckRef(const std::optional<parser::Name> &);
1346   const DeclTypeSpec &ToDeclTypeSpec(evaluate::DynamicType &&);
1347   const DeclTypeSpec &ToDeclTypeSpec(
1348       evaluate::DynamicType &&, MaybeSubscriptIntExpr &&length);
1349   Symbol *MakeAssocEntity();
1350   void SetTypeFromAssociation(Symbol &);
1351   void SetAttrsFromAssociation(Symbol &);
1352   Selector ResolveSelector(const parser::Selector &);
1353   void ResolveIndexName(const parser::ConcurrentControl &control);
1354   void SetCurrentAssociation(std::size_t n);
1355   Association &GetCurrentAssociation();
1356   void PushAssociation();
1357   void PopAssociation(std::size_t count = 1);
1358 };
1359 
1360 // Create scopes for OpenACC constructs
1361 class AccVisitor : public virtual DeclarationVisitor {
1362 public:
1363   void AddAccSourceRange(const parser::CharBlock &);
1364 
1365   static bool NeedsScope(const parser::OpenACCBlockConstruct &);
1366 
1367   bool Pre(const parser::OpenACCBlockConstruct &);
1368   void Post(const parser::OpenACCBlockConstruct &);
1369   bool Pre(const parser::OpenACCCombinedConstruct &);
1370   void Post(const parser::OpenACCCombinedConstruct &);
1371   bool Pre(const parser::AccBeginBlockDirective &x) {
1372     AddAccSourceRange(x.source);
1373     return true;
1374   }
1375   void Post(const parser::AccBeginBlockDirective &) {
1376     messageHandler().set_currStmtSource(std::nullopt);
1377   }
1378   bool Pre(const parser::AccEndBlockDirective &x) {
1379     AddAccSourceRange(x.source);
1380     return true;
1381   }
1382   void Post(const parser::AccEndBlockDirective &) {
1383     messageHandler().set_currStmtSource(std::nullopt);
1384   }
1385   bool Pre(const parser::AccBeginLoopDirective &x) {
1386     AddAccSourceRange(x.source);
1387     return true;
1388   }
1389   void Post(const parser::AccBeginLoopDirective &x) {
1390     messageHandler().set_currStmtSource(std::nullopt);
1391   }
1392 };
1393 
1394 bool AccVisitor::NeedsScope(const parser::OpenACCBlockConstruct &x) {
1395   const auto &beginBlockDir{std::get<parser::AccBeginBlockDirective>(x.t)};
1396   const auto &beginDir{std::get<parser::AccBlockDirective>(beginBlockDir.t)};
1397   switch (beginDir.v) {
1398   case llvm::acc::Directive::ACCD_data:
1399   case llvm::acc::Directive::ACCD_host_data:
1400   case llvm::acc::Directive::ACCD_kernels:
1401   case llvm::acc::Directive::ACCD_parallel:
1402   case llvm::acc::Directive::ACCD_serial:
1403     return true;
1404   default:
1405     return false;
1406   }
1407 }
1408 
1409 void AccVisitor::AddAccSourceRange(const parser::CharBlock &source) {
1410   messageHandler().set_currStmtSource(source);
1411   currScope().AddSourceRange(source);
1412 }
1413 
1414 bool AccVisitor::Pre(const parser::OpenACCBlockConstruct &x) {
1415   if (NeedsScope(x)) {
1416     PushScope(Scope::Kind::OpenACCConstruct, nullptr);
1417   }
1418   return true;
1419 }
1420 
1421 void AccVisitor::Post(const parser::OpenACCBlockConstruct &x) {
1422   if (NeedsScope(x)) {
1423     PopScope();
1424   }
1425 }
1426 
1427 bool AccVisitor::Pre(const parser::OpenACCCombinedConstruct &x) {
1428   PushScope(Scope::Kind::OpenACCConstruct, nullptr);
1429   return true;
1430 }
1431 
1432 void AccVisitor::Post(const parser::OpenACCCombinedConstruct &x) { PopScope(); }
1433 
1434 // Create scopes for OpenMP constructs
1435 class OmpVisitor : public virtual DeclarationVisitor {
1436 public:
1437   void AddOmpSourceRange(const parser::CharBlock &);
1438 
1439   static bool NeedsScope(const parser::OpenMPBlockConstruct &);
1440   static bool NeedsScope(const parser::OmpClause &);
1441 
1442   bool Pre(const parser::OpenMPRequiresConstruct &x) {
1443     AddOmpSourceRange(x.source);
1444     return true;
1445   }
1446   bool Pre(const parser::OmpSimpleStandaloneDirective &x) {
1447     AddOmpSourceRange(x.source);
1448     return true;
1449   }
1450   bool Pre(const parser::OpenMPBlockConstruct &);
1451   void Post(const parser::OpenMPBlockConstruct &);
1452   bool Pre(const parser::OmpBeginBlockDirective &x) {
1453     AddOmpSourceRange(x.source);
1454     return true;
1455   }
1456   void Post(const parser::OmpBeginBlockDirective &) {
1457     messageHandler().set_currStmtSource(std::nullopt);
1458   }
1459   bool Pre(const parser::OmpEndBlockDirective &x) {
1460     AddOmpSourceRange(x.source);
1461     return true;
1462   }
1463   void Post(const parser::OmpEndBlockDirective &) {
1464     messageHandler().set_currStmtSource(std::nullopt);
1465   }
1466 
1467   bool Pre(const parser::OpenMPLoopConstruct &) {
1468     PushScope(Scope::Kind::OtherConstruct, nullptr);
1469     return true;
1470   }
1471   void Post(const parser::OpenMPLoopConstruct &) { PopScope(); }
1472   bool Pre(const parser::OmpBeginLoopDirective &x) {
1473     AddOmpSourceRange(x.source);
1474     return true;
1475   }
1476 
1477   bool Pre(const parser::OpenMPDeclareMapperConstruct &);
1478 
1479   bool Pre(const parser::OmpMapClause &);
1480 
1481   void Post(const parser::OmpBeginLoopDirective &) {
1482     messageHandler().set_currStmtSource(std::nullopt);
1483   }
1484   bool Pre(const parser::OmpEndLoopDirective &x) {
1485     AddOmpSourceRange(x.source);
1486     return true;
1487   }
1488   void Post(const parser::OmpEndLoopDirective &) {
1489     messageHandler().set_currStmtSource(std::nullopt);
1490   }
1491 
1492   bool Pre(const parser::OpenMPSectionsConstruct &) {
1493     PushScope(Scope::Kind::OtherConstruct, nullptr);
1494     return true;
1495   }
1496   void Post(const parser::OpenMPSectionsConstruct &) { PopScope(); }
1497   bool Pre(const parser::OmpBeginSectionsDirective &x) {
1498     AddOmpSourceRange(x.source);
1499     return true;
1500   }
1501   void Post(const parser::OmpBeginSectionsDirective &) {
1502     messageHandler().set_currStmtSource(std::nullopt);
1503   }
1504   bool Pre(const parser::OmpEndSectionsDirective &x) {
1505     AddOmpSourceRange(x.source);
1506     return true;
1507   }
1508   void Post(const parser::OmpEndSectionsDirective &) {
1509     messageHandler().set_currStmtSource(std::nullopt);
1510   }
1511   bool Pre(const parser::OmpCriticalDirective &x) {
1512     AddOmpSourceRange(x.source);
1513     return true;
1514   }
1515   void Post(const parser::OmpCriticalDirective &) {
1516     messageHandler().set_currStmtSource(std::nullopt);
1517   }
1518   bool Pre(const parser::OmpEndCriticalDirective &x) {
1519     AddOmpSourceRange(x.source);
1520     return true;
1521   }
1522   void Post(const parser::OmpEndCriticalDirective &) {
1523     messageHandler().set_currStmtSource(std::nullopt);
1524   }
1525   bool Pre(const parser::OpenMPThreadprivate &) {
1526     SkipImplicitTyping(true);
1527     return true;
1528   }
1529   void Post(const parser::OpenMPThreadprivate &) { SkipImplicitTyping(false); }
1530   bool Pre(const parser::OpenMPDeclareTargetConstruct &x) {
1531     const auto &spec{std::get<parser::OmpDeclareTargetSpecifier>(x.t)};
1532     auto populateDeclareTargetNames{
1533         [this](const parser::OmpObjectList &objectList) {
1534           for (const auto &ompObject : objectList.v) {
1535             common::visit(
1536                 common::visitors{
1537                     [&](const parser::Designator &designator) {
1538                       if (const auto *name{
1539                               semantics::getDesignatorNameIfDataRef(
1540                                   designator)}) {
1541                         specPartState_.declareTargetNames.insert(name->source);
1542                       }
1543                     },
1544                     [&](const parser::Name &name) {
1545                       specPartState_.declareTargetNames.insert(name.source);
1546                     },
1547                 },
1548                 ompObject.u);
1549           }
1550         }};
1551 
1552     if (const auto *objectList{parser::Unwrap<parser::OmpObjectList>(spec.u)}) {
1553       populateDeclareTargetNames(*objectList);
1554     } else if (const auto *clauseList{
1555                    parser::Unwrap<parser::OmpClauseList>(spec.u)}) {
1556       for (const auto &clause : clauseList->v) {
1557         if (const auto *toClause{
1558                 std::get_if<parser::OmpClause::To>(&clause.u)}) {
1559           populateDeclareTargetNames(
1560               std::get<parser::OmpObjectList>(toClause->v.t));
1561         } else if (const auto *linkClause{
1562                        std::get_if<parser::OmpClause::Link>(&clause.u)}) {
1563           populateDeclareTargetNames(linkClause->v);
1564         } else if (const auto *enterClause{
1565                        std::get_if<parser::OmpClause::Enter>(&clause.u)}) {
1566           populateDeclareTargetNames(enterClause->v);
1567         }
1568       }
1569     }
1570 
1571     SkipImplicitTyping(true);
1572     return true;
1573   }
1574   void Post(const parser::OpenMPDeclareTargetConstruct &) {
1575     SkipImplicitTyping(false);
1576   }
1577   bool Pre(const parser::OpenMPDeclarativeAllocate &) {
1578     SkipImplicitTyping(true);
1579     return true;
1580   }
1581   void Post(const parser::OpenMPDeclarativeAllocate &) {
1582     SkipImplicitTyping(false);
1583   }
1584   bool Pre(const parser::OpenMPDeclarativeConstruct &x) {
1585     AddOmpSourceRange(x.source);
1586     return true;
1587   }
1588   void Post(const parser::OpenMPDeclarativeConstruct &) {
1589     messageHandler().set_currStmtSource(std::nullopt);
1590   }
1591   bool Pre(const parser::OpenMPDepobjConstruct &x) {
1592     AddOmpSourceRange(x.source);
1593     return true;
1594   }
1595   void Post(const parser::OpenMPDepobjConstruct &x) {
1596     messageHandler().set_currStmtSource(std::nullopt);
1597   }
1598   bool Pre(const parser::OpenMPAtomicConstruct &x) {
1599     return common::visit(common::visitors{[&](const auto &u) -> bool {
1600       AddOmpSourceRange(u.source);
1601       return true;
1602     }},
1603         x.u);
1604   }
1605   void Post(const parser::OpenMPAtomicConstruct &) {
1606     messageHandler().set_currStmtSource(std::nullopt);
1607   }
1608   bool Pre(const parser::OmpClause &x) {
1609     if (NeedsScope(x)) {
1610       PushScope(Scope::Kind::OtherClause, nullptr);
1611     }
1612     return true;
1613   }
1614   void Post(const parser::OmpClause &x) {
1615     if (NeedsScope(x)) {
1616       PopScope();
1617     }
1618   }
1619 };
1620 
1621 bool OmpVisitor::NeedsScope(const parser::OpenMPBlockConstruct &x) {
1622   const auto &beginBlockDir{std::get<parser::OmpBeginBlockDirective>(x.t)};
1623   const auto &beginDir{std::get<parser::OmpBlockDirective>(beginBlockDir.t)};
1624   switch (beginDir.v) {
1625   case llvm::omp::Directive::OMPD_master:
1626   case llvm::omp::Directive::OMPD_ordered:
1627   case llvm::omp::Directive::OMPD_taskgroup:
1628     return false;
1629   default:
1630     return true;
1631   }
1632 }
1633 
1634 bool OmpVisitor::NeedsScope(const parser::OmpClause &x) {
1635   // Iterators contain declarations, whose scope extends until the end
1636   // the clause.
1637   return llvm::omp::canHaveIterator(x.Id());
1638 }
1639 
1640 void OmpVisitor::AddOmpSourceRange(const parser::CharBlock &source) {
1641   messageHandler().set_currStmtSource(source);
1642   currScope().AddSourceRange(source);
1643 }
1644 
1645 bool OmpVisitor::Pre(const parser::OpenMPBlockConstruct &x) {
1646   if (NeedsScope(x)) {
1647     PushScope(Scope::Kind::OtherConstruct, nullptr);
1648   }
1649   return true;
1650 }
1651 
1652 void OmpVisitor::Post(const parser::OpenMPBlockConstruct &x) {
1653   if (NeedsScope(x)) {
1654     PopScope();
1655   }
1656 }
1657 
1658 // This "manually" walks the tree of the construct, because we need
1659 // to resolve the type before the map clauses are processed - when
1660 // just following the natural flow, the map clauses gets processed before
1661 // the type has been fully processed.
1662 bool OmpVisitor::Pre(const parser::OpenMPDeclareMapperConstruct &x) {
1663   AddOmpSourceRange(x.source);
1664   BeginDeclTypeSpec();
1665   const auto &spec{std::get<parser::OmpDeclareMapperSpecifier>(x.t)};
1666   Symbol *mapperSym{nullptr};
1667   if (const auto &mapperName{std::get<std::optional<parser::Name>>(spec.t)}) {
1668     mapperSym =
1669         &MakeSymbol(*mapperName, MiscDetails{MiscDetails::Kind::ConstructName});
1670     mapperName->symbol = mapperSym;
1671   } else {
1672     const parser::CharBlock defaultName{"default", 7};
1673     mapperSym = &MakeSymbol(
1674         defaultName, Attrs{}, MiscDetails{MiscDetails::Kind::ConstructName});
1675   }
1676 
1677   PushScope(Scope::Kind::OtherConstruct, nullptr);
1678   Walk(std::get<parser::TypeSpec>(spec.t));
1679   const auto &varName{std::get<parser::ObjectName>(spec.t)};
1680   DeclareObjectEntity(varName);
1681 
1682   Walk(std::get<parser::OmpClauseList>(x.t));
1683 
1684   EndDeclTypeSpec();
1685   PopScope();
1686   return false;
1687 }
1688 
1689 bool OmpVisitor::Pre(const parser::OmpMapClause &x) {
1690   auto &mods{OmpGetModifiers(x)};
1691   if (auto *mapper{OmpGetUniqueModifier<parser::OmpMapper>(mods)}) {
1692     if (auto *symbol{FindSymbol(currScope(), mapper->v)}) {
1693       // TODO: Do we need a specific flag or type here, to distinghuish against
1694       // other ConstructName things? Leaving this for the full implementation
1695       // of mapper lowering.
1696       auto *misc{symbol->detailsIf<MiscDetails>()};
1697       if (!misc || misc->kind() != MiscDetails::Kind::ConstructName)
1698         context().Say(mapper->v.source,
1699             "Name '%s' should be a mapper name"_err_en_US, mapper->v.source);
1700       else
1701         mapper->v.symbol = symbol;
1702     } else {
1703       mapper->v.symbol =
1704           &MakeSymbol(mapper->v, MiscDetails{MiscDetails::Kind::ConstructName});
1705       // TODO: When completing the implementation, we probably want to error if
1706       // the symbol is not declared, but right now, testing that the TODO for
1707       // OmpMapClause happens is obscured by the TODO for declare mapper, so
1708       // leaving this out. Remove the above line once the declare mapper is
1709       // implemented. context().Say(mapper->v.source, "'%s' not
1710       // declared"_err_en_US, mapper->v.source);
1711     }
1712   }
1713   return true;
1714 }
1715 
1716 // Walk the parse tree and resolve names to symbols.
1717 class ResolveNamesVisitor : public virtual ScopeHandler,
1718                             public ModuleVisitor,
1719                             public SubprogramVisitor,
1720                             public ConstructVisitor,
1721                             public OmpVisitor,
1722                             public AccVisitor {
1723 public:
1724   using AccVisitor::Post;
1725   using AccVisitor::Pre;
1726   using ArraySpecVisitor::Post;
1727   using ConstructVisitor::Post;
1728   using ConstructVisitor::Pre;
1729   using DeclarationVisitor::Post;
1730   using DeclarationVisitor::Pre;
1731   using ImplicitRulesVisitor::Post;
1732   using ImplicitRulesVisitor::Pre;
1733   using InterfaceVisitor::Post;
1734   using InterfaceVisitor::Pre;
1735   using ModuleVisitor::Post;
1736   using ModuleVisitor::Pre;
1737   using OmpVisitor::Post;
1738   using OmpVisitor::Pre;
1739   using ScopeHandler::Post;
1740   using ScopeHandler::Pre;
1741   using SubprogramVisitor::Post;
1742   using SubprogramVisitor::Pre;
1743 
1744   ResolveNamesVisitor(
1745       SemanticsContext &context, ImplicitRulesMap &rules, Scope &top)
1746       : BaseVisitor{context, *this, rules}, topScope_{top} {
1747     PushScope(top);
1748   }
1749 
1750   Scope &topScope() const { return topScope_; }
1751 
1752   // Default action for a parse tree node is to visit children.
1753   template <typename T> bool Pre(const T &) { return true; }
1754   template <typename T> void Post(const T &) {}
1755 
1756   bool Pre(const parser::SpecificationPart &);
1757   bool Pre(const parser::Program &);
1758   void Post(const parser::Program &);
1759   bool Pre(const parser::ImplicitStmt &);
1760   void Post(const parser::PointerObject &);
1761   void Post(const parser::AllocateObject &);
1762   bool Pre(const parser::PointerAssignmentStmt &);
1763   void Post(const parser::Designator &);
1764   void Post(const parser::SubstringInquiry &);
1765   template <typename A, typename B>
1766   void Post(const parser::LoopBounds<A, B> &x) {
1767     ResolveName(*parser::Unwrap<parser::Name>(x.name));
1768   }
1769   void Post(const parser::ProcComponentRef &);
1770   bool Pre(const parser::FunctionReference &);
1771   bool Pre(const parser::CallStmt &);
1772   bool Pre(const parser::ImportStmt &);
1773   void Post(const parser::TypeGuardStmt &);
1774   bool Pre(const parser::StmtFunctionStmt &);
1775   bool Pre(const parser::DefinedOpName &);
1776   bool Pre(const parser::ProgramUnit &);
1777   void Post(const parser::AssignStmt &);
1778   void Post(const parser::AssignedGotoStmt &);
1779   void Post(const parser::CompilerDirective &);
1780 
1781   // These nodes should never be reached: they are handled in ProgramUnit
1782   bool Pre(const parser::MainProgram &) {
1783     llvm_unreachable("This node is handled in ProgramUnit");
1784   }
1785   bool Pre(const parser::FunctionSubprogram &) {
1786     llvm_unreachable("This node is handled in ProgramUnit");
1787   }
1788   bool Pre(const parser::SubroutineSubprogram &) {
1789     llvm_unreachable("This node is handled in ProgramUnit");
1790   }
1791   bool Pre(const parser::SeparateModuleSubprogram &) {
1792     llvm_unreachable("This node is handled in ProgramUnit");
1793   }
1794   bool Pre(const parser::Module &) {
1795     llvm_unreachable("This node is handled in ProgramUnit");
1796   }
1797   bool Pre(const parser::Submodule &) {
1798     llvm_unreachable("This node is handled in ProgramUnit");
1799   }
1800   bool Pre(const parser::BlockData &) {
1801     llvm_unreachable("This node is handled in ProgramUnit");
1802   }
1803 
1804   void NoteExecutablePartCall(Symbol::Flag, SourceName, bool hasCUDAChevrons);
1805 
1806   friend void ResolveSpecificationParts(SemanticsContext &, const Symbol &);
1807 
1808 private:
1809   // Kind of procedure we are expecting to see in a ProcedureDesignator
1810   std::optional<Symbol::Flag> expectedProcFlag_;
1811   std::optional<SourceName> prevImportStmt_;
1812   Scope &topScope_;
1813 
1814   void PreSpecificationConstruct(const parser::SpecificationConstruct &);
1815   void CreateCommonBlockSymbols(const parser::CommonStmt &);
1816   void CreateObjectSymbols(const std::list<parser::ObjectDecl> &, Attr);
1817   void CreateGeneric(const parser::GenericSpec &);
1818   void FinishSpecificationPart(const std::list<parser::DeclarationConstruct> &);
1819   void AnalyzeStmtFunctionStmt(const parser::StmtFunctionStmt &);
1820   void CheckImports();
1821   void CheckImport(const SourceName &, const SourceName &);
1822   void HandleCall(Symbol::Flag, const parser::Call &);
1823   void HandleProcedureName(Symbol::Flag, const parser::Name &);
1824   bool CheckImplicitNoneExternal(const SourceName &, const Symbol &);
1825   bool SetProcFlag(const parser::Name &, Symbol &, Symbol::Flag);
1826   void ResolveSpecificationParts(ProgramTree &);
1827   void AddSubpNames(ProgramTree &);
1828   bool BeginScopeForNode(const ProgramTree &);
1829   void EndScopeForNode(const ProgramTree &);
1830   void FinishSpecificationParts(const ProgramTree &);
1831   void FinishExecutionParts(const ProgramTree &);
1832   void FinishDerivedTypeInstantiation(Scope &);
1833   void ResolveExecutionParts(const ProgramTree &);
1834   void UseCUDABuiltinNames();
1835   void HandleDerivedTypesInImplicitStmts(const parser::ImplicitPart &,
1836       const std::list<parser::DeclarationConstruct> &);
1837 };
1838 
1839 // ImplicitRules implementation
1840 
1841 bool ImplicitRules::isImplicitNoneType() const {
1842   if (isImplicitNoneType_) {
1843     return true;
1844   } else if (map_.empty() && inheritFromParent_) {
1845     return parent_->isImplicitNoneType();
1846   } else {
1847     return false; // default if not specified
1848   }
1849 }
1850 
1851 bool ImplicitRules::isImplicitNoneExternal() const {
1852   if (isImplicitNoneExternal_) {
1853     return true;
1854   } else if (inheritFromParent_) {
1855     return parent_->isImplicitNoneExternal();
1856   } else {
1857     return false; // default if not specified
1858   }
1859 }
1860 
1861 const DeclTypeSpec *ImplicitRules::GetType(
1862     SourceName name, bool respectImplicitNoneType) const {
1863   char ch{name.begin()[0]};
1864   if (isImplicitNoneType_ && respectImplicitNoneType) {
1865     return nullptr;
1866   } else if (auto it{map_.find(ch)}; it != map_.end()) {
1867     return &*it->second;
1868   } else if (inheritFromParent_) {
1869     return parent_->GetType(name, respectImplicitNoneType);
1870   } else if (ch >= 'i' && ch <= 'n') {
1871     return &context_.MakeNumericType(TypeCategory::Integer);
1872   } else if (ch >= 'a' && ch <= 'z') {
1873     return &context_.MakeNumericType(TypeCategory::Real);
1874   } else {
1875     return nullptr;
1876   }
1877 }
1878 
1879 void ImplicitRules::SetTypeMapping(const DeclTypeSpec &type,
1880     parser::Location fromLetter, parser::Location toLetter) {
1881   for (char ch = *fromLetter; ch; ch = ImplicitRules::Incr(ch)) {
1882     auto res{map_.emplace(ch, type)};
1883     if (!res.second) {
1884       context_.Say(parser::CharBlock{fromLetter},
1885           "More than one implicit type specified for '%c'"_err_en_US, ch);
1886     }
1887     if (ch == *toLetter) {
1888       break;
1889     }
1890   }
1891 }
1892 
1893 // Return the next char after ch in a way that works for ASCII or EBCDIC.
1894 // Return '\0' for the char after 'z'.
1895 char ImplicitRules::Incr(char ch) {
1896   switch (ch) {
1897   case 'i':
1898     return 'j';
1899   case 'r':
1900     return 's';
1901   case 'z':
1902     return '\0';
1903   default:
1904     return ch + 1;
1905   }
1906 }
1907 
1908 llvm::raw_ostream &operator<<(
1909     llvm::raw_ostream &o, const ImplicitRules &implicitRules) {
1910   o << "ImplicitRules:\n";
1911   for (char ch = 'a'; ch; ch = ImplicitRules::Incr(ch)) {
1912     ShowImplicitRule(o, implicitRules, ch);
1913   }
1914   ShowImplicitRule(o, implicitRules, '_');
1915   ShowImplicitRule(o, implicitRules, '$');
1916   ShowImplicitRule(o, implicitRules, '@');
1917   return o;
1918 }
1919 void ShowImplicitRule(
1920     llvm::raw_ostream &o, const ImplicitRules &implicitRules, char ch) {
1921   auto it{implicitRules.map_.find(ch)};
1922   if (it != implicitRules.map_.end()) {
1923     o << "  " << ch << ": " << *it->second << '\n';
1924   }
1925 }
1926 
1927 template <typename T> void BaseVisitor::Walk(const T &x) {
1928   parser::Walk(x, *this_);
1929 }
1930 
1931 void BaseVisitor::MakePlaceholder(
1932     const parser::Name &name, MiscDetails::Kind kind) {
1933   if (!name.symbol) {
1934     name.symbol = &context_->globalScope().MakeSymbol(
1935         name.source, Attrs{}, MiscDetails{kind});
1936   }
1937 }
1938 
1939 // AttrsVisitor implementation
1940 
1941 bool AttrsVisitor::BeginAttrs() {
1942   CHECK(!attrs_ && !cudaDataAttr_);
1943   attrs_ = Attrs{};
1944   return true;
1945 }
1946 Attrs AttrsVisitor::GetAttrs() {
1947   CHECK(attrs_);
1948   return *attrs_;
1949 }
1950 Attrs AttrsVisitor::EndAttrs() {
1951   Attrs result{GetAttrs()};
1952   attrs_.reset();
1953   cudaDataAttr_.reset();
1954   passName_ = std::nullopt;
1955   bindName_.reset();
1956   isCDefined_ = false;
1957   return result;
1958 }
1959 
1960 bool AttrsVisitor::SetPassNameOn(Symbol &symbol) {
1961   if (!passName_) {
1962     return false;
1963   }
1964   common::visit(common::visitors{
1965                     [&](ProcEntityDetails &x) { x.set_passName(*passName_); },
1966                     [&](ProcBindingDetails &x) { x.set_passName(*passName_); },
1967                     [](auto &) { common::die("unexpected pass name"); },
1968                 },
1969       symbol.details());
1970   return true;
1971 }
1972 
1973 void AttrsVisitor::SetBindNameOn(Symbol &symbol) {
1974   if ((!attrs_ || !attrs_->test(Attr::BIND_C)) &&
1975       !symbol.attrs().test(Attr::BIND_C)) {
1976     return;
1977   }
1978   symbol.SetIsCDefined(isCDefined_);
1979   std::optional<std::string> label{
1980       evaluate::GetScalarConstantValue<evaluate::Ascii>(bindName_)};
1981   // 18.9.2(2): discard leading and trailing blanks
1982   if (label) {
1983     symbol.SetIsExplicitBindName(true);
1984     auto first{label->find_first_not_of(" ")};
1985     if (first == std::string::npos) {
1986       // Empty NAME= means no binding at all (18.10.2p2)
1987       return;
1988     }
1989     auto last{label->find_last_not_of(" ")};
1990     label = label->substr(first, last - first + 1);
1991   } else if (symbol.GetIsExplicitBindName()) {
1992     // don't try to override explicit binding name with default
1993     return;
1994   } else if (ClassifyProcedure(symbol) == ProcedureDefinitionClass::Internal) {
1995     // BIND(C) does not give an implicit binding label to internal procedures.
1996     return;
1997   } else {
1998     label = symbol.name().ToString();
1999   }
2000   // Checks whether a symbol has two Bind names.
2001   std::string oldBindName;
2002   if (const auto *bindName{symbol.GetBindName()}) {
2003     oldBindName = *bindName;
2004   }
2005   symbol.SetBindName(std::move(*label));
2006   if (!oldBindName.empty()) {
2007     if (const std::string * newBindName{symbol.GetBindName()}) {
2008       if (oldBindName != *newBindName) {
2009         Say(symbol.name(),
2010             "The entity '%s' has multiple BIND names ('%s' and '%s')"_err_en_US,
2011             symbol.name(), oldBindName, *newBindName);
2012       }
2013     }
2014   }
2015 }
2016 
2017 void AttrsVisitor::Post(const parser::LanguageBindingSpec &x) {
2018   if (CheckAndSet(Attr::BIND_C)) {
2019     if (const auto &name{
2020             std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
2021                 x.t)}) {
2022       bindName_ = EvaluateExpr(*name);
2023     }
2024     isCDefined_ = std::get<bool>(x.t);
2025   }
2026 }
2027 bool AttrsVisitor::Pre(const parser::IntentSpec &x) {
2028   CheckAndSet(IntentSpecToAttr(x));
2029   return false;
2030 }
2031 bool AttrsVisitor::Pre(const parser::Pass &x) {
2032   if (CheckAndSet(Attr::PASS)) {
2033     if (x.v) {
2034       passName_ = x.v->source;
2035       MakePlaceholder(*x.v, MiscDetails::Kind::PassName);
2036     }
2037   }
2038   return false;
2039 }
2040 
2041 // C730, C743, C755, C778, C1543 say no attribute or prefix repetitions
2042 bool AttrsVisitor::IsDuplicateAttr(Attr attrName) {
2043   CHECK(attrs_);
2044   if (attrs_->test(attrName)) {
2045     context().Warn(common::LanguageFeature::RedundantAttribute,
2046         currStmtSource().value(),
2047         "Attribute '%s' cannot be used more than once"_warn_en_US,
2048         AttrToString(attrName));
2049     return true;
2050   }
2051   return false;
2052 }
2053 
2054 // See if attrName violates a constraint cause by a conflict.  attr1 and attr2
2055 // name attributes that cannot be used on the same declaration
2056 bool AttrsVisitor::HaveAttrConflict(Attr attrName, Attr attr1, Attr attr2) {
2057   CHECK(attrs_);
2058   if ((attrName == attr1 && attrs_->test(attr2)) ||
2059       (attrName == attr2 && attrs_->test(attr1))) {
2060     Say(currStmtSource().value(),
2061         "Attributes '%s' and '%s' conflict with each other"_err_en_US,
2062         AttrToString(attr1), AttrToString(attr2));
2063     return true;
2064   }
2065   return false;
2066 }
2067 // C759, C1543
2068 bool AttrsVisitor::IsConflictingAttr(Attr attrName) {
2069   return HaveAttrConflict(attrName, Attr::INTENT_IN, Attr::INTENT_INOUT) ||
2070       HaveAttrConflict(attrName, Attr::INTENT_IN, Attr::INTENT_OUT) ||
2071       HaveAttrConflict(attrName, Attr::INTENT_INOUT, Attr::INTENT_OUT) ||
2072       HaveAttrConflict(attrName, Attr::PASS, Attr::NOPASS) || // C781
2073       HaveAttrConflict(attrName, Attr::PURE, Attr::IMPURE) ||
2074       HaveAttrConflict(attrName, Attr::PUBLIC, Attr::PRIVATE) ||
2075       HaveAttrConflict(attrName, Attr::RECURSIVE, Attr::NON_RECURSIVE);
2076 }
2077 bool AttrsVisitor::CheckAndSet(Attr attrName) {
2078   if (IsConflictingAttr(attrName) || IsDuplicateAttr(attrName)) {
2079     return false;
2080   }
2081   attrs_->set(attrName);
2082   return true;
2083 }
2084 bool AttrsVisitor::Pre(const common::CUDADataAttr x) {
2085   if (cudaDataAttr_.value_or(x) != x) {
2086     Say(currStmtSource().value(),
2087         "CUDA data attributes '%s' and '%s' may not both be specified"_err_en_US,
2088         common::EnumToString(*cudaDataAttr_), common::EnumToString(x));
2089   }
2090   cudaDataAttr_ = x;
2091   return false;
2092 }
2093 
2094 // DeclTypeSpecVisitor implementation
2095 
2096 const DeclTypeSpec *DeclTypeSpecVisitor::GetDeclTypeSpec() {
2097   return state_.declTypeSpec;
2098 }
2099 
2100 void DeclTypeSpecVisitor::BeginDeclTypeSpec() {
2101   CHECK(!state_.expectDeclTypeSpec);
2102   CHECK(!state_.declTypeSpec);
2103   state_.expectDeclTypeSpec = true;
2104 }
2105 void DeclTypeSpecVisitor::EndDeclTypeSpec() {
2106   CHECK(state_.expectDeclTypeSpec);
2107   state_ = {};
2108 }
2109 
2110 void DeclTypeSpecVisitor::SetDeclTypeSpecCategory(
2111     DeclTypeSpec::Category category) {
2112   CHECK(state_.expectDeclTypeSpec);
2113   state_.derived.category = category;
2114 }
2115 
2116 bool DeclTypeSpecVisitor::Pre(const parser::TypeGuardStmt &) {
2117   BeginDeclTypeSpec();
2118   return true;
2119 }
2120 void DeclTypeSpecVisitor::Post(const parser::TypeGuardStmt &) {
2121   EndDeclTypeSpec();
2122 }
2123 
2124 void DeclTypeSpecVisitor::Post(const parser::TypeSpec &typeSpec) {
2125   // Record the resolved DeclTypeSpec in the parse tree for use by
2126   // expression semantics if the DeclTypeSpec is a valid TypeSpec.
2127   // The grammar ensures that it's an intrinsic or derived type spec,
2128   // not TYPE(*) or CLASS(*) or CLASS(T).
2129   if (const DeclTypeSpec * spec{state_.declTypeSpec}) {
2130     switch (spec->category()) {
2131     case DeclTypeSpec::Numeric:
2132     case DeclTypeSpec::Logical:
2133     case DeclTypeSpec::Character:
2134       typeSpec.declTypeSpec = spec;
2135       break;
2136     case DeclTypeSpec::TypeDerived:
2137       if (const DerivedTypeSpec * derived{spec->AsDerived()}) {
2138         CheckForAbstractType(derived->typeSymbol()); // C703
2139         typeSpec.declTypeSpec = spec;
2140       }
2141       break;
2142     default:
2143       CRASH_NO_CASE;
2144     }
2145   }
2146 }
2147 
2148 void DeclTypeSpecVisitor::Post(
2149     const parser::IntrinsicTypeSpec::DoublePrecision &) {
2150   MakeNumericType(TypeCategory::Real, context().doublePrecisionKind());
2151 }
2152 void DeclTypeSpecVisitor::Post(
2153     const parser::IntrinsicTypeSpec::DoubleComplex &) {
2154   MakeNumericType(TypeCategory::Complex, context().doublePrecisionKind());
2155 }
2156 void DeclTypeSpecVisitor::MakeNumericType(TypeCategory category, int kind) {
2157   SetDeclTypeSpec(context().MakeNumericType(category, kind));
2158 }
2159 
2160 void DeclTypeSpecVisitor::CheckForAbstractType(const Symbol &typeSymbol) {
2161   if (typeSymbol.attrs().test(Attr::ABSTRACT)) {
2162     Say("ABSTRACT derived type may not be used here"_err_en_US);
2163   }
2164 }
2165 
2166 void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::ClassStar &) {
2167   SetDeclTypeSpec(context().globalScope().MakeClassStarType());
2168 }
2169 void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::TypeStar &) {
2170   SetDeclTypeSpec(context().globalScope().MakeTypeStarType());
2171 }
2172 
2173 // Check that we're expecting to see a DeclTypeSpec (and haven't seen one yet)
2174 // and save it in state_.declTypeSpec.
2175 void DeclTypeSpecVisitor::SetDeclTypeSpec(const DeclTypeSpec &declTypeSpec) {
2176   CHECK(state_.expectDeclTypeSpec);
2177   CHECK(!state_.declTypeSpec);
2178   state_.declTypeSpec = &declTypeSpec;
2179 }
2180 
2181 KindExpr DeclTypeSpecVisitor::GetKindParamExpr(
2182     TypeCategory category, const std::optional<parser::KindSelector> &kind) {
2183   return AnalyzeKindSelector(context(), category, kind);
2184 }
2185 
2186 // MessageHandler implementation
2187 
2188 Message &MessageHandler::Say(MessageFixedText &&msg) {
2189   return context_->Say(currStmtSource().value(), std::move(msg));
2190 }
2191 Message &MessageHandler::Say(MessageFormattedText &&msg) {
2192   return context_->Say(currStmtSource().value(), std::move(msg));
2193 }
2194 Message &MessageHandler::Say(const SourceName &name, MessageFixedText &&msg) {
2195   return Say(name, std::move(msg), name);
2196 }
2197 
2198 // ImplicitRulesVisitor implementation
2199 
2200 void ImplicitRulesVisitor::Post(const parser::ParameterStmt &) {
2201   prevParameterStmt_ = currStmtSource();
2202 }
2203 
2204 bool ImplicitRulesVisitor::Pre(const parser::ImplicitStmt &x) {
2205   bool result{
2206       common::visit(common::visitors{
2207                         [&](const std::list<ImplicitNoneNameSpec> &y) {
2208                           return HandleImplicitNone(y);
2209                         },
2210                         [&](const std::list<parser::ImplicitSpec> &) {
2211                           if (prevImplicitNoneType_) {
2212                             Say("IMPLICIT statement after IMPLICIT NONE or "
2213                                 "IMPLICIT NONE(TYPE) statement"_err_en_US);
2214                             return false;
2215                           }
2216                           implicitRules_->set_isImplicitNoneType(false);
2217                           return true;
2218                         },
2219                     },
2220           x.u)};
2221   prevImplicit_ = currStmtSource();
2222   return result;
2223 }
2224 
2225 bool ImplicitRulesVisitor::Pre(const parser::LetterSpec &x) {
2226   auto loLoc{std::get<parser::Location>(x.t)};
2227   auto hiLoc{loLoc};
2228   if (auto hiLocOpt{std::get<std::optional<parser::Location>>(x.t)}) {
2229     hiLoc = *hiLocOpt;
2230     if (*hiLoc < *loLoc) {
2231       Say(hiLoc, "'%s' does not follow '%s' alphabetically"_err_en_US,
2232           std::string(hiLoc, 1), std::string(loLoc, 1));
2233       return false;
2234     }
2235   }
2236   implicitRules_->SetTypeMapping(*GetDeclTypeSpec(), loLoc, hiLoc);
2237   return false;
2238 }
2239 
2240 bool ImplicitRulesVisitor::Pre(const parser::ImplicitSpec &) {
2241   BeginDeclTypeSpec();
2242   set_allowForwardReferenceToDerivedType(true);
2243   return true;
2244 }
2245 
2246 void ImplicitRulesVisitor::Post(const parser::ImplicitSpec &) {
2247   set_allowForwardReferenceToDerivedType(false);
2248   EndDeclTypeSpec();
2249 }
2250 
2251 void ImplicitRulesVisitor::SetScope(const Scope &scope) {
2252   implicitRules_ = &DEREF(implicitRulesMap_).at(&scope);
2253   prevImplicit_ = std::nullopt;
2254   prevImplicitNone_ = std::nullopt;
2255   prevImplicitNoneType_ = std::nullopt;
2256   prevParameterStmt_ = std::nullopt;
2257 }
2258 void ImplicitRulesVisitor::BeginScope(const Scope &scope) {
2259   // find or create implicit rules for this scope
2260   DEREF(implicitRulesMap_).try_emplace(&scope, context(), implicitRules_);
2261   SetScope(scope);
2262 }
2263 
2264 // TODO: for all of these errors, reference previous statement too
2265 bool ImplicitRulesVisitor::HandleImplicitNone(
2266     const std::list<ImplicitNoneNameSpec> &nameSpecs) {
2267   if (prevImplicitNone_) {
2268     Say("More than one IMPLICIT NONE statement"_err_en_US);
2269     Say(*prevImplicitNone_, "Previous IMPLICIT NONE statement"_en_US);
2270     return false;
2271   }
2272   if (prevParameterStmt_) {
2273     Say("IMPLICIT NONE statement after PARAMETER statement"_err_en_US);
2274     return false;
2275   }
2276   prevImplicitNone_ = currStmtSource();
2277   bool implicitNoneTypeNever{
2278       context().IsEnabled(common::LanguageFeature::ImplicitNoneTypeNever)};
2279   if (nameSpecs.empty()) {
2280     if (!implicitNoneTypeNever) {
2281       prevImplicitNoneType_ = currStmtSource();
2282       implicitRules_->set_isImplicitNoneType(true);
2283       if (prevImplicit_) {
2284         Say("IMPLICIT NONE statement after IMPLICIT statement"_err_en_US);
2285         return false;
2286       }
2287     }
2288   } else {
2289     int sawType{0};
2290     int sawExternal{0};
2291     for (const auto noneSpec : nameSpecs) {
2292       switch (noneSpec) {
2293       case ImplicitNoneNameSpec::External:
2294         implicitRules_->set_isImplicitNoneExternal(true);
2295         ++sawExternal;
2296         break;
2297       case ImplicitNoneNameSpec::Type:
2298         if (!implicitNoneTypeNever) {
2299           prevImplicitNoneType_ = currStmtSource();
2300           implicitRules_->set_isImplicitNoneType(true);
2301           if (prevImplicit_) {
2302             Say("IMPLICIT NONE(TYPE) after IMPLICIT statement"_err_en_US);
2303             return false;
2304           }
2305           ++sawType;
2306         }
2307         break;
2308       }
2309     }
2310     if (sawType > 1) {
2311       Say("TYPE specified more than once in IMPLICIT NONE statement"_err_en_US);
2312       return false;
2313     }
2314     if (sawExternal > 1) {
2315       Say("EXTERNAL specified more than once in IMPLICIT NONE statement"_err_en_US);
2316       return false;
2317     }
2318   }
2319   return true;
2320 }
2321 
2322 // ArraySpecVisitor implementation
2323 
2324 void ArraySpecVisitor::Post(const parser::ArraySpec &x) {
2325   CHECK(arraySpec_.empty());
2326   arraySpec_ = AnalyzeArraySpec(context(), x);
2327 }
2328 void ArraySpecVisitor::Post(const parser::ComponentArraySpec &x) {
2329   CHECK(arraySpec_.empty());
2330   arraySpec_ = AnalyzeArraySpec(context(), x);
2331 }
2332 void ArraySpecVisitor::Post(const parser::CoarraySpec &x) {
2333   CHECK(coarraySpec_.empty());
2334   coarraySpec_ = AnalyzeCoarraySpec(context(), x);
2335 }
2336 
2337 const ArraySpec &ArraySpecVisitor::arraySpec() {
2338   return !arraySpec_.empty() ? arraySpec_ : attrArraySpec_;
2339 }
2340 const ArraySpec &ArraySpecVisitor::coarraySpec() {
2341   return !coarraySpec_.empty() ? coarraySpec_ : attrCoarraySpec_;
2342 }
2343 void ArraySpecVisitor::BeginArraySpec() {
2344   CHECK(arraySpec_.empty());
2345   CHECK(coarraySpec_.empty());
2346   CHECK(attrArraySpec_.empty());
2347   CHECK(attrCoarraySpec_.empty());
2348 }
2349 void ArraySpecVisitor::EndArraySpec() {
2350   CHECK(arraySpec_.empty());
2351   CHECK(coarraySpec_.empty());
2352   attrArraySpec_.clear();
2353   attrCoarraySpec_.clear();
2354 }
2355 void ArraySpecVisitor::PostAttrSpec() {
2356   // Save dimension/codimension from attrs so we can process array/coarray-spec
2357   // on the entity-decl
2358   if (!arraySpec_.empty()) {
2359     if (attrArraySpec_.empty()) {
2360       attrArraySpec_ = arraySpec_;
2361       arraySpec_.clear();
2362     } else {
2363       Say(currStmtSource().value(),
2364           "Attribute 'DIMENSION' cannot be used more than once"_err_en_US);
2365     }
2366   }
2367   if (!coarraySpec_.empty()) {
2368     if (attrCoarraySpec_.empty()) {
2369       attrCoarraySpec_ = coarraySpec_;
2370       coarraySpec_.clear();
2371     } else {
2372       Say(currStmtSource().value(),
2373           "Attribute 'CODIMENSION' cannot be used more than once"_err_en_US);
2374     }
2375   }
2376 }
2377 
2378 // FuncResultStack implementation
2379 
2380 FuncResultStack::~FuncResultStack() { CHECK(stack_.empty()); }
2381 
2382 void FuncResultStack::CompleteFunctionResultType() {
2383   // If the function has a type in the prefix, process it now.
2384   FuncInfo *info{Top()};
2385   if (info && &info->scope == &scopeHandler_.currScope()) {
2386     if (info->parsedType && info->resultSymbol) {
2387       scopeHandler_.messageHandler().set_currStmtSource(info->source);
2388       if (const auto *type{
2389               scopeHandler_.ProcessTypeSpec(*info->parsedType, true)}) {
2390         Symbol &symbol{*info->resultSymbol};
2391         if (!scopeHandler_.context().HasError(symbol)) {
2392           if (symbol.GetType()) {
2393             scopeHandler_.Say(symbol.name(),
2394                 "Function cannot have both an explicit type prefix and a RESULT suffix"_err_en_US);
2395             scopeHandler_.context().SetError(symbol);
2396           } else {
2397             symbol.SetType(*type);
2398           }
2399         }
2400       }
2401       info->parsedType = nullptr;
2402     }
2403   }
2404 }
2405 
2406 // Called from ConvertTo{Object/Proc}Entity to cope with any appearance
2407 // of the function result in a specification expression.
2408 void FuncResultStack::CompleteTypeIfFunctionResult(Symbol &symbol) {
2409   if (FuncInfo * info{Top()}) {
2410     if (info->resultSymbol == &symbol) {
2411       CompleteFunctionResultType();
2412     }
2413   }
2414 }
2415 
2416 void FuncResultStack::Pop() {
2417   if (!stack_.empty() && &stack_.back().scope == &scopeHandler_.currScope()) {
2418     stack_.pop_back();
2419   }
2420 }
2421 
2422 // ScopeHandler implementation
2423 
2424 void ScopeHandler::SayAlreadyDeclared(const parser::Name &name, Symbol &prev) {
2425   SayAlreadyDeclared(name.source, prev);
2426 }
2427 void ScopeHandler::SayAlreadyDeclared(const SourceName &name, Symbol &prev) {
2428   if (context().HasError(prev)) {
2429     // don't report another error about prev
2430   } else {
2431     if (const auto *details{prev.detailsIf<UseDetails>()}) {
2432       Say(name, "'%s' is already declared in this scoping unit"_err_en_US)
2433           .Attach(details->location(),
2434               "It is use-associated with '%s' in module '%s'"_en_US,
2435               details->symbol().name(), GetUsedModule(*details).name());
2436     } else {
2437       SayAlreadyDeclared(name, prev.name());
2438     }
2439     context().SetError(prev);
2440   }
2441 }
2442 void ScopeHandler::SayAlreadyDeclared(
2443     const SourceName &name1, const SourceName &name2) {
2444   if (name1.begin() < name2.begin()) {
2445     SayAlreadyDeclared(name2, name1);
2446   } else {
2447     Say(name1, "'%s' is already declared in this scoping unit"_err_en_US)
2448         .Attach(name2, "Previous declaration of '%s'"_en_US, name2);
2449   }
2450 }
2451 
2452 void ScopeHandler::SayWithReason(const parser::Name &name, Symbol &symbol,
2453     MessageFixedText &&msg1, Message &&msg2) {
2454   bool isFatal{msg1.IsFatal()};
2455   Say(name, std::move(msg1), symbol.name()).Attach(std::move(msg2));
2456   context().SetError(symbol, isFatal);
2457 }
2458 
2459 template <typename... A>
2460 Message &ScopeHandler::SayWithDecl(const parser::Name &name, Symbol &symbol,
2461     MessageFixedText &&msg, A &&...args) {
2462   auto &message{
2463       Say(name.source, std::move(msg), symbol.name(), std::forward<A>(args)...)
2464           .Attach(symbol.name(),
2465               symbol.test(Symbol::Flag::Implicit)
2466                   ? "Implicit declaration of '%s'"_en_US
2467                   : "Declaration of '%s'"_en_US,
2468               name.source)};
2469   if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
2470     if (auto usedAsProc{proc->usedAsProcedureHere()}) {
2471       if (usedAsProc->begin() != symbol.name().begin()) {
2472         message.Attach(*usedAsProc, "Referenced as a procedure"_en_US);
2473       }
2474     }
2475   }
2476   return message;
2477 }
2478 
2479 void ScopeHandler::SayLocalMustBeVariable(
2480     const parser::Name &name, Symbol &symbol) {
2481   SayWithDecl(name, symbol,
2482       "The name '%s' must be a variable to appear"
2483       " in a locality-spec"_err_en_US);
2484 }
2485 
2486 Message &ScopeHandler::SayDerivedType(
2487     const SourceName &name, MessageFixedText &&msg, const Scope &type) {
2488   const Symbol &typeSymbol{DEREF(type.GetSymbol())};
2489   return Say(name, std::move(msg), name, typeSymbol.name())
2490       .Attach(typeSymbol.name(), "Declaration of derived type '%s'"_en_US,
2491           typeSymbol.name());
2492 }
2493 Message &ScopeHandler::Say2(const SourceName &name1, MessageFixedText &&msg1,
2494     const SourceName &name2, MessageFixedText &&msg2) {
2495   return Say(name1, std::move(msg1)).Attach(name2, std::move(msg2), name2);
2496 }
2497 Message &ScopeHandler::Say2(const SourceName &name, MessageFixedText &&msg1,
2498     Symbol &symbol, MessageFixedText &&msg2) {
2499   bool isFatal{msg1.IsFatal()};
2500   Message &result{Say2(name, std::move(msg1), symbol.name(), std::move(msg2))};
2501   context().SetError(symbol, isFatal);
2502   return result;
2503 }
2504 Message &ScopeHandler::Say2(const parser::Name &name, MessageFixedText &&msg1,
2505     Symbol &symbol, MessageFixedText &&msg2) {
2506   bool isFatal{msg1.IsFatal()};
2507   Message &result{
2508       Say2(name.source, std::move(msg1), symbol.name(), std::move(msg2))};
2509   context().SetError(symbol, isFatal);
2510   return result;
2511 }
2512 
2513 // This is essentially GetProgramUnitContaining(), but it can return
2514 // a mutable Scope &, it ignores statement functions, and it fails
2515 // gracefully for error recovery (returning the original Scope).
2516 template <typename T> static T &GetInclusiveScope(T &scope) {
2517   for (T *s{&scope}; !s->IsGlobal(); s = &s->parent()) {
2518     switch (s->kind()) {
2519     case Scope::Kind::Module:
2520     case Scope::Kind::MainProgram:
2521     case Scope::Kind::Subprogram:
2522     case Scope::Kind::BlockData:
2523       if (!s->IsStmtFunction()) {
2524         return *s;
2525       }
2526       break;
2527     default:;
2528     }
2529   }
2530   return scope;
2531 }
2532 
2533 Scope &ScopeHandler::InclusiveScope() { return GetInclusiveScope(currScope()); }
2534 
2535 Scope *ScopeHandler::GetHostProcedure() {
2536   Scope &parent{InclusiveScope().parent()};
2537   switch (parent.kind()) {
2538   case Scope::Kind::Subprogram:
2539     return &parent;
2540   case Scope::Kind::MainProgram:
2541     return &parent;
2542   default:
2543     return nullptr;
2544   }
2545 }
2546 
2547 Scope &ScopeHandler::NonDerivedTypeScope() {
2548   return currScope_->IsDerivedType() ? currScope_->parent() : *currScope_;
2549 }
2550 
2551 void ScopeHandler::PushScope(Scope::Kind kind, Symbol *symbol) {
2552   PushScope(currScope().MakeScope(kind, symbol));
2553 }
2554 void ScopeHandler::PushScope(Scope &scope) {
2555   currScope_ = &scope;
2556   auto kind{currScope_->kind()};
2557   if (kind != Scope::Kind::BlockConstruct &&
2558       kind != Scope::Kind::OtherConstruct && kind != Scope::Kind::OtherClause) {
2559     BeginScope(scope);
2560   }
2561   // The name of a module or submodule cannot be "used" in its scope,
2562   // as we read 19.3.1(2), so we allow the name to be used as a local
2563   // identifier in the module or submodule too.  Same with programs
2564   // (14.1(3)) and BLOCK DATA.
2565   if (!currScope_->IsDerivedType() && kind != Scope::Kind::Module &&
2566       kind != Scope::Kind::MainProgram && kind != Scope::Kind::BlockData) {
2567     if (auto *symbol{scope.symbol()}) {
2568       // Create a dummy symbol so we can't create another one with the same
2569       // name. It might already be there if we previously pushed the scope.
2570       SourceName name{symbol->name()};
2571       if (!FindInScope(scope, name)) {
2572         auto &newSymbol{MakeSymbol(name)};
2573         if (kind == Scope::Kind::Subprogram) {
2574           // Allow for recursive references.  If this symbol is a function
2575           // without an explicit RESULT(), this new symbol will be discarded
2576           // and replaced with an object of the same name.
2577           newSymbol.set_details(HostAssocDetails{*symbol});
2578         } else {
2579           newSymbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName});
2580         }
2581       }
2582     }
2583   }
2584 }
2585 void ScopeHandler::PopScope() {
2586   CHECK(currScope_ && !currScope_->IsGlobal());
2587   // Entities that are not yet classified as objects or procedures are now
2588   // assumed to be objects.
2589   // TODO: Statement functions
2590   for (auto &pair : currScope()) {
2591     ConvertToObjectEntity(*pair.second);
2592   }
2593   funcResultStack_.Pop();
2594   // If popping back into a global scope, pop back to the main global scope.
2595   SetScope(currScope_->parent().IsGlobal() ? context().globalScope()
2596                                            : currScope_->parent());
2597 }
2598 void ScopeHandler::SetScope(Scope &scope) {
2599   currScope_ = &scope;
2600   ImplicitRulesVisitor::SetScope(InclusiveScope());
2601 }
2602 
2603 Symbol *ScopeHandler::FindSymbol(const parser::Name &name) {
2604   return FindSymbol(currScope(), name);
2605 }
2606 Symbol *ScopeHandler::FindSymbol(const Scope &scope, const parser::Name &name) {
2607   if (scope.IsDerivedType()) {
2608     if (Symbol * symbol{scope.FindComponent(name.source)}) {
2609       if (symbol->has<TypeParamDetails>()) {
2610         return Resolve(name, symbol);
2611       }
2612     }
2613     return FindSymbol(scope.parent(), name);
2614   } else {
2615     // In EQUIVALENCE statements only resolve names in the local scope, see
2616     // 19.5.1.4, paragraph 2, item (10)
2617     return Resolve(name,
2618         inEquivalenceStmt_ ? FindInScope(scope, name)
2619                            : scope.FindSymbol(name.source));
2620   }
2621 }
2622 
2623 Symbol &ScopeHandler::MakeSymbol(
2624     Scope &scope, const SourceName &name, Attrs attrs) {
2625   if (Symbol * symbol{FindInScope(scope, name)}) {
2626     CheckDuplicatedAttrs(name, *symbol, attrs);
2627     SetExplicitAttrs(*symbol, attrs);
2628     return *symbol;
2629   } else {
2630     const auto pair{scope.try_emplace(name, attrs, UnknownDetails{})};
2631     CHECK(pair.second); // name was not found, so must be able to add
2632     return *pair.first->second;
2633   }
2634 }
2635 Symbol &ScopeHandler::MakeSymbol(const SourceName &name, Attrs attrs) {
2636   return MakeSymbol(currScope(), name, attrs);
2637 }
2638 Symbol &ScopeHandler::MakeSymbol(const parser::Name &name, Attrs attrs) {
2639   return Resolve(name, MakeSymbol(name.source, attrs));
2640 }
2641 Symbol &ScopeHandler::MakeHostAssocSymbol(
2642     const parser::Name &name, const Symbol &hostSymbol) {
2643   Symbol &symbol{*NonDerivedTypeScope()
2644                       .try_emplace(name.source, HostAssocDetails{hostSymbol})
2645                       .first->second};
2646   name.symbol = &symbol;
2647   symbol.attrs() = hostSymbol.attrs(); // TODO: except PRIVATE, PUBLIC?
2648   // These attributes can be redundantly reapplied without error
2649   // on the host-associated name, at most once (C815).
2650   symbol.implicitAttrs() =
2651       symbol.attrs() & Attrs{Attr::ASYNCHRONOUS, Attr::VOLATILE};
2652   // SAVE statement in the inner scope will create a new symbol.
2653   // If the host variable is used via host association,
2654   // we have to propagate whether SAVE is implicit in the host scope.
2655   // Otherwise, verifications that do not allow explicit SAVE
2656   // attribute would fail.
2657   symbol.implicitAttrs() |= hostSymbol.implicitAttrs() & Attrs{Attr::SAVE};
2658   symbol.flags() = hostSymbol.flags();
2659   return symbol;
2660 }
2661 Symbol &ScopeHandler::CopySymbol(const SourceName &name, const Symbol &symbol) {
2662   CHECK(!FindInScope(name));
2663   return MakeSymbol(currScope(), name, symbol.attrs());
2664 }
2665 
2666 // Look for name only in scope, not in enclosing scopes.
2667 
2668 Symbol *ScopeHandler::FindInScope(
2669     const Scope &scope, const parser::Name &name) {
2670   return Resolve(name, FindInScope(scope, name.source));
2671 }
2672 Symbol *ScopeHandler::FindInScope(const Scope &scope, const SourceName &name) {
2673   // all variants of names, e.g. "operator(.ne.)" for "operator(/=)"
2674   for (const std::string &n : GetAllNames(context(), name)) {
2675     auto it{scope.find(SourceName{n})};
2676     if (it != scope.end()) {
2677       return &*it->second;
2678     }
2679   }
2680   return nullptr;
2681 }
2682 
2683 // Find a component or type parameter by name in a derived type or its parents.
2684 Symbol *ScopeHandler::FindInTypeOrParents(
2685     const Scope &scope, const parser::Name &name) {
2686   return Resolve(name, scope.FindComponent(name.source));
2687 }
2688 Symbol *ScopeHandler::FindInTypeOrParents(const parser::Name &name) {
2689   return FindInTypeOrParents(currScope(), name);
2690 }
2691 Symbol *ScopeHandler::FindInScopeOrBlockConstructs(
2692     const Scope &scope, SourceName name) {
2693   if (Symbol * symbol{FindInScope(scope, name)}) {
2694     return symbol;
2695   }
2696   for (const Scope &child : scope.children()) {
2697     if (child.kind() == Scope::Kind::BlockConstruct) {
2698       if (Symbol * symbol{FindInScopeOrBlockConstructs(child, name)}) {
2699         return symbol;
2700       }
2701     }
2702   }
2703   return nullptr;
2704 }
2705 
2706 void ScopeHandler::EraseSymbol(const parser::Name &name) {
2707   currScope().erase(name.source);
2708   name.symbol = nullptr;
2709 }
2710 
2711 static bool NeedsType(const Symbol &symbol) {
2712   return !symbol.GetType() &&
2713       common::visit(common::visitors{
2714                         [](const EntityDetails &) { return true; },
2715                         [](const ObjectEntityDetails &) { return true; },
2716                         [](const AssocEntityDetails &) { return true; },
2717                         [&](const ProcEntityDetails &p) {
2718                           return symbol.test(Symbol::Flag::Function) &&
2719                               !symbol.attrs().test(Attr::INTRINSIC) &&
2720                               !p.type() && !p.procInterface();
2721                         },
2722                         [](const auto &) { return false; },
2723                     },
2724           symbol.details());
2725 }
2726 
2727 void ScopeHandler::ApplyImplicitRules(
2728     Symbol &symbol, bool allowForwardReference) {
2729   funcResultStack_.CompleteTypeIfFunctionResult(symbol);
2730   if (context().HasError(symbol) || !NeedsType(symbol)) {
2731     return;
2732   }
2733   if (const DeclTypeSpec * type{GetImplicitType(symbol)}) {
2734     if (!skipImplicitTyping_) {
2735       symbol.set(Symbol::Flag::Implicit);
2736       symbol.SetType(*type);
2737     }
2738     return;
2739   }
2740   if (symbol.has<ProcEntityDetails>() && !symbol.attrs().test(Attr::EXTERNAL)) {
2741     std::optional<Symbol::Flag> functionOrSubroutineFlag;
2742     if (symbol.test(Symbol::Flag::Function)) {
2743       functionOrSubroutineFlag = Symbol::Flag::Function;
2744     } else if (symbol.test(Symbol::Flag::Subroutine)) {
2745       functionOrSubroutineFlag = Symbol::Flag::Subroutine;
2746     }
2747     if (IsIntrinsic(symbol.name(), functionOrSubroutineFlag)) {
2748       // type will be determined in expression semantics
2749       AcquireIntrinsicProcedureFlags(symbol);
2750       return;
2751     }
2752   }
2753   if (allowForwardReference && ImplicitlyTypeForwardRef(symbol)) {
2754     return;
2755   }
2756   if (const auto *entity{symbol.detailsIf<EntityDetails>()};
2757       entity && entity->isDummy()) {
2758     // Dummy argument, no declaration or reference; if it turns
2759     // out to be a subroutine, it's fine, and if it is a function
2760     // or object, it'll be caught later.
2761     return;
2762   }
2763   if (deferImplicitTyping_) {
2764     return;
2765   }
2766   if (!context().HasError(symbol)) {
2767     Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US);
2768     context().SetError(symbol);
2769   }
2770 }
2771 
2772 // Extension: Allow forward references to scalar integer dummy arguments
2773 // or variables in COMMON to appear in specification expressions under
2774 // IMPLICIT NONE(TYPE) when what would otherwise have been their implicit
2775 // type is default INTEGER.
2776 bool ScopeHandler::ImplicitlyTypeForwardRef(Symbol &symbol) {
2777   if (!inSpecificationPart_ || context().HasError(symbol) ||
2778       !(IsDummy(symbol) || FindCommonBlockContaining(symbol)) ||
2779       symbol.Rank() != 0 ||
2780       !context().languageFeatures().IsEnabled(
2781           common::LanguageFeature::ForwardRefImplicitNone)) {
2782     return false;
2783   }
2784   const DeclTypeSpec *type{
2785       GetImplicitType(symbol, false /*ignore IMPLICIT NONE*/)};
2786   if (!type || !type->IsNumeric(TypeCategory::Integer)) {
2787     return false;
2788   }
2789   auto kind{evaluate::ToInt64(type->numericTypeSpec().kind())};
2790   if (!kind || *kind != context().GetDefaultKind(TypeCategory::Integer)) {
2791     return false;
2792   }
2793   if (!ConvertToObjectEntity(symbol)) {
2794     return false;
2795   }
2796   // TODO: check no INTENT(OUT) if dummy?
2797   context().Warn(common::LanguageFeature::ForwardRefImplicitNone, symbol.name(),
2798       "'%s' was used without (or before) being explicitly typed"_warn_en_US,
2799       symbol.name());
2800   symbol.set(Symbol::Flag::Implicit);
2801   symbol.SetType(*type);
2802   return true;
2803 }
2804 
2805 // Ensure that the symbol for an intrinsic procedure is marked with
2806 // the INTRINSIC attribute.  Also set PURE &/or ELEMENTAL as
2807 // appropriate.
2808 void ScopeHandler::AcquireIntrinsicProcedureFlags(Symbol &symbol) {
2809   SetImplicitAttr(symbol, Attr::INTRINSIC);
2810   switch (context().intrinsics().GetIntrinsicClass(symbol.name().ToString())) {
2811   case evaluate::IntrinsicClass::elementalFunction:
2812   case evaluate::IntrinsicClass::elementalSubroutine:
2813     SetExplicitAttr(symbol, Attr::ELEMENTAL);
2814     SetExplicitAttr(symbol, Attr::PURE);
2815     break;
2816   case evaluate::IntrinsicClass::impureSubroutine:
2817     break;
2818   default:
2819     SetExplicitAttr(symbol, Attr::PURE);
2820   }
2821 }
2822 
2823 const DeclTypeSpec *ScopeHandler::GetImplicitType(
2824     Symbol &symbol, bool respectImplicitNoneType) {
2825   const Scope *scope{&symbol.owner()};
2826   if (scope->IsGlobal()) {
2827     scope = &currScope();
2828   }
2829   scope = &GetInclusiveScope(*scope);
2830   const auto *type{implicitRulesMap_->at(scope).GetType(
2831       symbol.name(), respectImplicitNoneType)};
2832   if (type) {
2833     if (const DerivedTypeSpec * derived{type->AsDerived()}) {
2834       // Resolve any forward-referenced derived type; a quick no-op else.
2835       auto &instantiatable{*const_cast<DerivedTypeSpec *>(derived)};
2836       instantiatable.Instantiate(currScope());
2837     }
2838   }
2839   return type;
2840 }
2841 
2842 void ScopeHandler::CheckEntryDummyUse(SourceName source, Symbol *symbol) {
2843   if (!inSpecificationPart_ && symbol &&
2844       symbol->test(Symbol::Flag::EntryDummyArgument)) {
2845     Say(source,
2846         "Dummy argument '%s' may not be used before its ENTRY statement"_err_en_US,
2847         symbol->name());
2848     symbol->set(Symbol::Flag::EntryDummyArgument, false);
2849   }
2850 }
2851 
2852 // Convert symbol to be a ObjectEntity or return false if it can't be.
2853 bool ScopeHandler::ConvertToObjectEntity(Symbol &symbol) {
2854   if (symbol.has<ObjectEntityDetails>()) {
2855     // nothing to do
2856   } else if (symbol.has<UnknownDetails>()) {
2857     // These are attributes that a name could have picked up from
2858     // an attribute statement or type declaration statement.
2859     if (symbol.attrs().HasAny({Attr::EXTERNAL, Attr::INTRINSIC})) {
2860       return false;
2861     }
2862     symbol.set_details(ObjectEntityDetails{});
2863   } else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
2864     if (symbol.attrs().HasAny({Attr::EXTERNAL, Attr::INTRINSIC})) {
2865       return false;
2866     }
2867     funcResultStack_.CompleteTypeIfFunctionResult(symbol);
2868     symbol.set_details(ObjectEntityDetails{std::move(*details)});
2869   } else if (auto *useDetails{symbol.detailsIf<UseDetails>()}) {
2870     return useDetails->symbol().has<ObjectEntityDetails>();
2871   } else if (auto *hostDetails{symbol.detailsIf<HostAssocDetails>()}) {
2872     return hostDetails->symbol().has<ObjectEntityDetails>();
2873   } else {
2874     return false;
2875   }
2876   return true;
2877 }
2878 // Convert symbol to be a ProcEntity or return false if it can't be.
2879 bool ScopeHandler::ConvertToProcEntity(
2880     Symbol &symbol, std::optional<SourceName> usedHere) {
2881   if (symbol.has<ProcEntityDetails>()) {
2882   } else if (symbol.has<UnknownDetails>()) {
2883     symbol.set_details(ProcEntityDetails{});
2884   } else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
2885     if (IsFunctionResult(symbol) &&
2886         !(IsPointer(symbol) && symbol.attrs().test(Attr::EXTERNAL))) {
2887       // Don't turn function result into a procedure pointer unless both
2888       // POINTER and EXTERNAL
2889       return false;
2890     }
2891     funcResultStack_.CompleteTypeIfFunctionResult(symbol);
2892     symbol.set_details(ProcEntityDetails{std::move(*details)});
2893     if (symbol.GetType() && !symbol.test(Symbol::Flag::Implicit)) {
2894       CHECK(!symbol.test(Symbol::Flag::Subroutine));
2895       symbol.set(Symbol::Flag::Function);
2896     }
2897   } else if (auto *useDetails{symbol.detailsIf<UseDetails>()}) {
2898     return useDetails->symbol().has<ProcEntityDetails>();
2899   } else if (auto *hostDetails{symbol.detailsIf<HostAssocDetails>()}) {
2900     return hostDetails->symbol().has<ProcEntityDetails>();
2901   } else {
2902     return false;
2903   }
2904   auto &proc{symbol.get<ProcEntityDetails>()};
2905   if (usedHere && !proc.usedAsProcedureHere()) {
2906     proc.set_usedAsProcedureHere(*usedHere);
2907   }
2908   return true;
2909 }
2910 
2911 const DeclTypeSpec &ScopeHandler::MakeNumericType(
2912     TypeCategory category, const std::optional<parser::KindSelector> &kind) {
2913   KindExpr value{GetKindParamExpr(category, kind)};
2914   if (auto known{evaluate::ToInt64(value)}) {
2915     return MakeNumericType(category, static_cast<int>(*known));
2916   } else {
2917     return currScope_->MakeNumericType(category, std::move(value));
2918   }
2919 }
2920 
2921 const DeclTypeSpec &ScopeHandler::MakeNumericType(
2922     TypeCategory category, int kind) {
2923   return context().MakeNumericType(category, kind);
2924 }
2925 
2926 const DeclTypeSpec &ScopeHandler::MakeLogicalType(
2927     const std::optional<parser::KindSelector> &kind) {
2928   KindExpr value{GetKindParamExpr(TypeCategory::Logical, kind)};
2929   if (auto known{evaluate::ToInt64(value)}) {
2930     return MakeLogicalType(static_cast<int>(*known));
2931   } else {
2932     return currScope_->MakeLogicalType(std::move(value));
2933   }
2934 }
2935 
2936 const DeclTypeSpec &ScopeHandler::MakeLogicalType(int kind) {
2937   return context().MakeLogicalType(kind);
2938 }
2939 
2940 void ScopeHandler::NotePossibleBadForwardRef(const parser::Name &name) {
2941   if (inSpecificationPart_ && !deferImplicitTyping_ && name.symbol) {
2942     auto kind{currScope().kind()};
2943     if ((kind == Scope::Kind::Subprogram && !currScope().IsStmtFunction()) ||
2944         kind == Scope::Kind::BlockConstruct) {
2945       bool isHostAssociated{&name.symbol->owner() == &currScope()
2946               ? name.symbol->has<HostAssocDetails>()
2947               : name.symbol->owner().Contains(currScope())};
2948       if (isHostAssociated) {
2949         specPartState_.forwardRefs.insert(name.source);
2950       }
2951     }
2952   }
2953 }
2954 
2955 std::optional<SourceName> ScopeHandler::HadForwardRef(
2956     const Symbol &symbol) const {
2957   auto iter{specPartState_.forwardRefs.find(symbol.name())};
2958   if (iter != specPartState_.forwardRefs.end()) {
2959     return *iter;
2960   }
2961   return std::nullopt;
2962 }
2963 
2964 bool ScopeHandler::CheckPossibleBadForwardRef(const Symbol &symbol) {
2965   if (!context().HasError(symbol)) {
2966     if (auto fwdRef{HadForwardRef(symbol)}) {
2967       const Symbol *outer{symbol.owner().FindSymbol(symbol.name())};
2968       if (outer && symbol.has<UseDetails>() &&
2969           &symbol.GetUltimate() == &outer->GetUltimate()) {
2970         // e.g. IMPORT of host's USE association
2971         return false;
2972       }
2973       Say(*fwdRef,
2974           "Forward reference to '%s' is not allowed in the same specification part"_err_en_US,
2975           *fwdRef)
2976           .Attach(symbol.name(), "Later declaration of '%s'"_en_US, *fwdRef);
2977       context().SetError(symbol);
2978       return true;
2979     }
2980     if ((IsDummy(symbol) || FindCommonBlockContaining(symbol)) &&
2981         isImplicitNoneType() && symbol.test(Symbol::Flag::Implicit) &&
2982         !context().HasError(symbol)) {
2983       // Dummy or COMMON was implicitly typed despite IMPLICIT NONE(TYPE) in
2984       // ApplyImplicitRules() due to use in a specification expression,
2985       // and no explicit type declaration appeared later.
2986       Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US);
2987       context().SetError(symbol);
2988       return true;
2989     }
2990   }
2991   return false;
2992 }
2993 
2994 void ScopeHandler::MakeExternal(Symbol &symbol) {
2995   if (!symbol.attrs().test(Attr::EXTERNAL)) {
2996     SetImplicitAttr(symbol, Attr::EXTERNAL);
2997     if (symbol.attrs().test(Attr::INTRINSIC)) { // C840
2998       Say(symbol.name(),
2999           "Symbol '%s' cannot have both EXTERNAL and INTRINSIC attributes"_err_en_US,
3000           symbol.name());
3001     }
3002   }
3003 }
3004 
3005 bool ScopeHandler::CheckDuplicatedAttr(
3006     SourceName name, Symbol &symbol, Attr attr) {
3007   if (attr == Attr::SAVE) {
3008     // checked elsewhere
3009   } else if (symbol.attrs().test(attr)) { // C815
3010     if (symbol.implicitAttrs().test(attr)) {
3011       // Implied attribute is now confirmed explicitly
3012       symbol.implicitAttrs().reset(attr);
3013     } else {
3014       Say(name, "%s attribute was already specified on '%s'"_err_en_US,
3015           EnumToString(attr), name);
3016       return false;
3017     }
3018   }
3019   return true;
3020 }
3021 
3022 bool ScopeHandler::CheckDuplicatedAttrs(
3023     SourceName name, Symbol &symbol, Attrs attrs) {
3024   bool ok{true};
3025   attrs.IterateOverMembers(
3026       [&](Attr x) { ok &= CheckDuplicatedAttr(name, symbol, x); });
3027   return ok;
3028 }
3029 
3030 void ScopeHandler::SetCUDADataAttr(SourceName source, Symbol &symbol,
3031     std::optional<common::CUDADataAttr> attr) {
3032   if (attr) {
3033     ConvertToObjectEntity(symbol);
3034     if (auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
3035       if (*attr != object->cudaDataAttr().value_or(*attr)) {
3036         Say(source,
3037             "'%s' already has another CUDA data attribute ('%s')"_err_en_US,
3038             symbol.name(),
3039             std::string{common::EnumToString(*object->cudaDataAttr())}.c_str());
3040       } else {
3041         object->set_cudaDataAttr(attr);
3042       }
3043     } else {
3044       Say(source,
3045           "'%s' is not an object and may not have a CUDA data attribute"_err_en_US,
3046           symbol.name());
3047     }
3048   }
3049 }
3050 
3051 // ModuleVisitor implementation
3052 
3053 bool ModuleVisitor::Pre(const parser::Only &x) {
3054   common::visit(common::visitors{
3055                     [&](const Indirection<parser::GenericSpec> &generic) {
3056                       GenericSpecInfo genericSpecInfo{generic.value()};
3057                       AddUseOnly(genericSpecInfo.symbolName());
3058                       AddUse(genericSpecInfo);
3059                     },
3060                     [&](const parser::Name &name) {
3061                       AddUseOnly(name.source);
3062                       Resolve(name, AddUse(name.source, name.source).use);
3063                     },
3064                     [&](const parser::Rename &rename) { Walk(rename); },
3065                 },
3066       x.u);
3067   return false;
3068 }
3069 
3070 void ModuleVisitor::CollectUseRenames(const parser::UseStmt &useStmt) {
3071   auto doRename{[&](const parser::Rename &rename) {
3072     if (const auto *names{std::get_if<parser::Rename::Names>(&rename.u)}) {
3073       AddUseRename(std::get<1>(names->t).source, useStmt.moduleName.source);
3074     }
3075   }};
3076   common::visit(
3077       common::visitors{
3078           [&](const std::list<parser::Rename> &renames) {
3079             for (const auto &rename : renames) {
3080               doRename(rename);
3081             }
3082           },
3083           [&](const std::list<parser::Only> &onlys) {
3084             for (const auto &only : onlys) {
3085               if (const auto *rename{std::get_if<parser::Rename>(&only.u)}) {
3086                 doRename(*rename);
3087               }
3088             }
3089           },
3090       },
3091       useStmt.u);
3092 }
3093 
3094 bool ModuleVisitor::Pre(const parser::Rename::Names &x) {
3095   const auto &localName{std::get<0>(x.t)};
3096   const auto &useName{std::get<1>(x.t)};
3097   SymbolRename rename{AddUse(localName.source, useName.source)};
3098   Resolve(useName, rename.use);
3099   Resolve(localName, rename.local);
3100   return false;
3101 }
3102 bool ModuleVisitor::Pre(const parser::Rename::Operators &x) {
3103   const parser::DefinedOpName &local{std::get<0>(x.t)};
3104   const parser::DefinedOpName &use{std::get<1>(x.t)};
3105   GenericSpecInfo localInfo{local};
3106   GenericSpecInfo useInfo{use};
3107   if (IsIntrinsicOperator(context(), local.v.source)) {
3108     Say(local.v,
3109         "Intrinsic operator '%s' may not be used as a defined operator"_err_en_US);
3110   } else if (IsLogicalConstant(context(), local.v.source)) {
3111     Say(local.v,
3112         "Logical constant '%s' may not be used as a defined operator"_err_en_US);
3113   } else {
3114     SymbolRename rename{AddUse(localInfo.symbolName(), useInfo.symbolName())};
3115     useInfo.Resolve(rename.use);
3116     localInfo.Resolve(rename.local);
3117   }
3118   return false;
3119 }
3120 
3121 // Set useModuleScope_ to the Scope of the module being used.
3122 bool ModuleVisitor::Pre(const parser::UseStmt &x) {
3123   std::optional<bool> isIntrinsic;
3124   if (x.nature) {
3125     isIntrinsic = *x.nature == parser::UseStmt::ModuleNature::Intrinsic;
3126   } else if (currScope().IsModule() && currScope().symbol() &&
3127       currScope().symbol()->attrs().test(Attr::INTRINSIC)) {
3128     // Intrinsic modules USE only other intrinsic modules
3129     isIntrinsic = true;
3130   }
3131   useModuleScope_ = FindModule(x.moduleName, isIntrinsic);
3132   if (!useModuleScope_) {
3133     return false;
3134   }
3135   AddAndCheckModuleUse(x.moduleName.source,
3136       useModuleScope_->parent().kind() == Scope::Kind::IntrinsicModules);
3137   // use the name from this source file
3138   useModuleScope_->symbol()->ReplaceName(x.moduleName.source);
3139   return true;
3140 }
3141 
3142 void ModuleVisitor::Post(const parser::UseStmt &x) {
3143   if (const auto *list{std::get_if<std::list<parser::Rename>>(&x.u)}) {
3144     // Not a use-only: collect the names that were used in renames,
3145     // then add a use for each public name that was not renamed.
3146     std::set<SourceName> useNames;
3147     for (const auto &rename : *list) {
3148       common::visit(common::visitors{
3149                         [&](const parser::Rename::Names &names) {
3150                           useNames.insert(std::get<1>(names.t).source);
3151                         },
3152                         [&](const parser::Rename::Operators &ops) {
3153                           useNames.insert(std::get<1>(ops.t).v.source);
3154                         },
3155                     },
3156           rename.u);
3157     }
3158     for (const auto &[name, symbol] : *useModuleScope_) {
3159       if (symbol->attrs().test(Attr::PUBLIC) && !IsUseRenamed(symbol->name()) &&
3160           (!symbol->implicitAttrs().test(Attr::INTRINSIC) ||
3161               symbol->has<UseDetails>()) &&
3162           !symbol->has<MiscDetails>() && useNames.count(name) == 0) {
3163         SourceName location{x.moduleName.source};
3164         if (auto *localSymbol{FindInScope(name)}) {
3165           DoAddUse(location, localSymbol->name(), *localSymbol, *symbol);
3166         } else {
3167           DoAddUse(location, location, CopySymbol(name, *symbol), *symbol);
3168         }
3169       }
3170     }
3171   }
3172   useModuleScope_ = nullptr;
3173 }
3174 
3175 ModuleVisitor::SymbolRename ModuleVisitor::AddUse(
3176     const SourceName &localName, const SourceName &useName) {
3177   return AddUse(localName, useName, FindInScope(*useModuleScope_, useName));
3178 }
3179 
3180 ModuleVisitor::SymbolRename ModuleVisitor::AddUse(
3181     const SourceName &localName, const SourceName &useName, Symbol *useSymbol) {
3182   if (!useModuleScope_) {
3183     return {}; // error occurred finding module
3184   }
3185   if (!useSymbol) {
3186     Say(useName, "'%s' not found in module '%s'"_err_en_US, MakeOpName(useName),
3187         useModuleScope_->GetName().value());
3188     return {};
3189   }
3190   if (useSymbol->attrs().test(Attr::PRIVATE) &&
3191       !FindModuleFileContaining(currScope())) {
3192     // Privacy is not enforced in module files so that generic interfaces
3193     // can be resolved to private specific procedures in specification
3194     // expressions.
3195     Say(useName, "'%s' is PRIVATE in '%s'"_err_en_US, MakeOpName(useName),
3196         useModuleScope_->GetName().value());
3197     return {};
3198   }
3199   auto &localSymbol{MakeSymbol(localName)};
3200   DoAddUse(useName, localName, localSymbol, *useSymbol);
3201   return {&localSymbol, useSymbol};
3202 }
3203 
3204 // symbol must be either a Use or a Generic formed by merging two uses.
3205 // Convert it to a UseError with this additional location.
3206 static bool ConvertToUseError(
3207     Symbol &symbol, const SourceName &location, const Scope &module) {
3208   if (auto *ued{symbol.detailsIf<UseErrorDetails>()}) {
3209     ued->add_occurrence(location, module);
3210     return true;
3211   }
3212   const auto *useDetails{symbol.detailsIf<UseDetails>()};
3213   if (!useDetails) {
3214     if (auto *genericDetails{symbol.detailsIf<GenericDetails>()}) {
3215       if (!genericDetails->uses().empty()) {
3216         useDetails = &genericDetails->uses().at(0)->get<UseDetails>();
3217       }
3218     }
3219   }
3220   if (useDetails) {
3221     symbol.set_details(
3222         UseErrorDetails{*useDetails}.add_occurrence(location, module));
3223     return true;
3224   } else {
3225     return false;
3226   }
3227 }
3228 
3229 void ModuleVisitor::DoAddUse(SourceName location, SourceName localName,
3230     Symbol &originalLocal, const Symbol &useSymbol) {
3231   Symbol *localSymbol{&originalLocal};
3232   if (auto *details{localSymbol->detailsIf<UseErrorDetails>()}) {
3233     details->add_occurrence(location, *useModuleScope_);
3234     return;
3235   }
3236   const Symbol &useUltimate{useSymbol.GetUltimate()};
3237   const auto *useGeneric{useUltimate.detailsIf<GenericDetails>()};
3238   if (localSymbol->has<UnknownDetails>()) {
3239     if (useGeneric &&
3240         ((useGeneric->specific() &&
3241              IsProcedurePointer(*useGeneric->specific())) ||
3242             (useGeneric->derivedType() &&
3243                 useUltimate.name() != localSymbol->name()))) {
3244       // We are use-associating a generic that either shadows a procedure
3245       // pointer or shadows a derived type with a distinct name.
3246       // Local references that might be made to the procedure pointer should
3247       // use a UseDetails symbol for proper data addressing, and a derived
3248       // type needs to be in scope with its local name.  So create an
3249       // empty local generic now into which the use-associated generic may
3250       // be copied.
3251       localSymbol->set_details(GenericDetails{});
3252       localSymbol->get<GenericDetails>().set_kind(useGeneric->kind());
3253     } else { // just create UseDetails
3254       localSymbol->set_details(UseDetails{localName, useSymbol});
3255       localSymbol->attrs() =
3256           useSymbol.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE, Attr::SAVE};
3257       localSymbol->implicitAttrs() =
3258           localSymbol->attrs() & Attrs{Attr::ASYNCHRONOUS, Attr::VOLATILE};
3259       localSymbol->flags() = useSymbol.flags();
3260       return;
3261     }
3262   }
3263 
3264   Symbol &localUltimate{localSymbol->GetUltimate()};
3265   if (&localUltimate == &useUltimate) {
3266     // use-associating the same symbol again -- ok
3267     return;
3268   }
3269 
3270   // There are many possible combinations of symbol types that could arrive
3271   // with the same (local) name vie USE association from distinct modules.
3272   // Fortran allows a generic interface to share its name with a derived type,
3273   // or with the name of a non-generic procedure (which should be one of the
3274   // generic's specific procedures).  Implementing all these possibilities is
3275   // complicated.
3276   // Error cases are converted into UseErrorDetails symbols to trigger error
3277   // messages when/if bad combinations are actually used later in the program.
3278   // The error cases are:
3279   //   - two distinct derived types
3280   //   - two distinct non-generic procedures
3281   //   - a generic and a non-generic that is not already one of its specifics
3282   //   - anything other than a derived type, non-generic procedure, or
3283   //     generic procedure being combined with something other than an
3284   //     prior USE association of itself
3285   auto *localGeneric{localUltimate.detailsIf<GenericDetails>()};
3286   Symbol *localDerivedType{nullptr};
3287   if (localUltimate.has<DerivedTypeDetails>()) {
3288     localDerivedType = &localUltimate;
3289   } else if (localGeneric) {
3290     if (auto *dt{localGeneric->derivedType()};
3291         dt && !dt->attrs().test(Attr::PRIVATE)) {
3292       localDerivedType = dt;
3293     }
3294   }
3295   const Symbol *useDerivedType{nullptr};
3296   if (useUltimate.has<DerivedTypeDetails>()) {
3297     useDerivedType = &useUltimate;
3298   } else if (useGeneric) {
3299     if (const auto *dt{useGeneric->derivedType()};
3300         dt && !dt->attrs().test(Attr::PRIVATE)) {
3301       useDerivedType = dt;
3302     }
3303   }
3304 
3305   Symbol *localProcedure{nullptr};
3306   if (localGeneric) {
3307     if (localGeneric->specific() &&
3308         !localGeneric->specific()->attrs().test(Attr::PRIVATE)) {
3309       localProcedure = localGeneric->specific();
3310     }
3311   } else if (IsProcedure(localUltimate)) {
3312     localProcedure = &localUltimate;
3313   }
3314   const Symbol *useProcedure{nullptr};
3315   if (useGeneric) {
3316     if (useGeneric->specific() &&
3317         !useGeneric->specific()->attrs().test(Attr::PRIVATE)) {
3318       useProcedure = useGeneric->specific();
3319     }
3320   } else if (IsProcedure(useUltimate)) {
3321     useProcedure = &useUltimate;
3322   }
3323 
3324   // Creates a UseErrorDetails symbol in the current scope for a
3325   // current UseDetails symbol, but leaves the UseDetails in the
3326   // scope's name map.
3327   auto CreateLocalUseError{[&]() {
3328     EraseSymbol(*localSymbol);
3329     CHECK(localSymbol->has<UseDetails>());
3330     UseErrorDetails details{localSymbol->get<UseDetails>()};
3331     details.add_occurrence(location, *useModuleScope_);
3332     Symbol *newSymbol{&MakeSymbol(localName, Attrs{}, std::move(details))};
3333     // Restore *localSymbol in currScope
3334     auto iter{currScope().find(localName)};
3335     CHECK(iter != currScope().end() && &*iter->second == newSymbol);
3336     iter->second = MutableSymbolRef{*localSymbol};
3337     return newSymbol;
3338   }};
3339 
3340   // When two derived types arrived, try to combine them.
3341   const Symbol *combinedDerivedType{nullptr};
3342   if (!useDerivedType) {
3343     combinedDerivedType = localDerivedType;
3344   } else if (!localDerivedType) {
3345     if (useDerivedType->name() == localName) {
3346       combinedDerivedType = useDerivedType;
3347     } else {
3348       combinedDerivedType =
3349           &currScope().MakeSymbol(localSymbol->name(), useDerivedType->attrs(),
3350               UseDetails{localSymbol->name(), *useDerivedType});
3351     }
3352   } else if (&localDerivedType->GetUltimate() ==
3353       &useDerivedType->GetUltimate()) {
3354     combinedDerivedType = localDerivedType;
3355   } else {
3356     const Scope *localScope{localDerivedType->GetUltimate().scope()};
3357     const Scope *useScope{useDerivedType->GetUltimate().scope()};
3358     if (localScope && useScope && localScope->derivedTypeSpec() &&
3359         useScope->derivedTypeSpec() &&
3360         evaluate::AreSameDerivedType(
3361             *localScope->derivedTypeSpec(), *useScope->derivedTypeSpec())) {
3362       combinedDerivedType = localDerivedType;
3363     } else {
3364       // Create a local UseErrorDetails for the ambiguous derived type
3365       if (localGeneric) {
3366         combinedDerivedType = CreateLocalUseError();
3367       } else {
3368         ConvertToUseError(*localSymbol, location, *useModuleScope_);
3369         localDerivedType = nullptr;
3370         localGeneric = nullptr;
3371         combinedDerivedType = localSymbol;
3372       }
3373     }
3374     if (!localGeneric && !useGeneric) {
3375       return; // both symbols are derived types; done
3376     }
3377   }
3378 
3379   auto AreSameProcedure{[&](const Symbol &p1, const Symbol &p2) {
3380     if (&p1 == &p2) {
3381       return true;
3382     } else if (p1.name() != p2.name()) {
3383       return false;
3384     } else if (p1.attrs().test(Attr::INTRINSIC) ||
3385         p2.attrs().test(Attr::INTRINSIC)) {
3386       return p1.attrs().test(Attr::INTRINSIC) &&
3387           p2.attrs().test(Attr::INTRINSIC);
3388     } else if (!IsProcedure(p1) || !IsProcedure(p2)) {
3389       return false;
3390     } else if (IsPointer(p1) || IsPointer(p2)) {
3391       return false;
3392     } else if (const auto *subp{p1.detailsIf<SubprogramDetails>()};
3393                subp && !subp->isInterface()) {
3394       return false; // defined in module, not an external
3395     } else if (const auto *subp{p2.detailsIf<SubprogramDetails>()};
3396                subp && !subp->isInterface()) {
3397       return false; // defined in module, not an external
3398     } else {
3399       // Both are external interfaces, perhaps to the same procedure
3400       auto class1{ClassifyProcedure(p1)};
3401       auto class2{ClassifyProcedure(p2)};
3402       if (class1 == ProcedureDefinitionClass::External &&
3403           class2 == ProcedureDefinitionClass::External) {
3404         auto chars1{evaluate::characteristics::Procedure::Characterize(
3405             p1, GetFoldingContext())};
3406         auto chars2{evaluate::characteristics::Procedure::Characterize(
3407             p2, GetFoldingContext())};
3408         // same procedure interface defined identically in two modules?
3409         return chars1 && chars2 && *chars1 == *chars2;
3410       } else {
3411         return false;
3412       }
3413     }
3414   }};
3415 
3416   // When two non-generic procedures arrived, try to combine them.
3417   const Symbol *combinedProcedure{nullptr};
3418   if (!localProcedure) {
3419     combinedProcedure = useProcedure;
3420   } else if (!useProcedure) {
3421     combinedProcedure = localProcedure;
3422   } else {
3423     if (AreSameProcedure(
3424             localProcedure->GetUltimate(), useProcedure->GetUltimate())) {
3425       if (!localGeneric && !useGeneric) {
3426         return; // both symbols are non-generic procedures
3427       }
3428       combinedProcedure = localProcedure;
3429     }
3430   }
3431 
3432   // Prepare to merge generics
3433   bool cantCombine{false};
3434   if (localGeneric) {
3435     if (useGeneric || useDerivedType) {
3436     } else if (&useUltimate == &BypassGeneric(localUltimate).GetUltimate()) {
3437       return; // nothing to do; used subprogram is local's specific
3438     } else if (useUltimate.attrs().test(Attr::INTRINSIC) &&
3439         useUltimate.name() == localSymbol->name()) {
3440       return; // local generic can extend intrinsic
3441     } else {
3442       for (const auto &ref : localGeneric->specificProcs()) {
3443         if (&ref->GetUltimate() == &useUltimate) {
3444           return; // used non-generic is already a specific of local generic
3445         }
3446       }
3447       cantCombine = true;
3448     }
3449   } else if (useGeneric) {
3450     if (localDerivedType) {
3451     } else if (&localUltimate == &BypassGeneric(useUltimate).GetUltimate() ||
3452         (localSymbol->attrs().test(Attr::INTRINSIC) &&
3453             localUltimate.name() == useUltimate.name())) {
3454       // Local is the specific of the used generic or an intrinsic with the
3455       // same name; replace it.
3456       EraseSymbol(*localSymbol);
3457       Symbol &newSymbol{MakeSymbol(localName,
3458           useUltimate.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE},
3459           UseDetails{localName, useUltimate})};
3460       newSymbol.flags() = useSymbol.flags();
3461       return;
3462     } else {
3463       for (const auto &ref : useGeneric->specificProcs()) {
3464         if (&ref->GetUltimate() == &localUltimate) {
3465           return; // local non-generic is already a specific of used generic
3466         }
3467       }
3468       cantCombine = true;
3469     }
3470   } else {
3471     cantCombine = true;
3472   }
3473 
3474   // If symbols are not combinable, create a use error.
3475   if (cantCombine) {
3476     if (!ConvertToUseError(*localSymbol, location, *useModuleScope_)) {
3477       Say(location,
3478           "Cannot use-associate '%s'; it is already declared in this scope"_err_en_US,
3479           localName)
3480           .Attach(localSymbol->name(), "Previous declaration of '%s'"_en_US,
3481               localName);
3482     }
3483     return;
3484   }
3485 
3486   // At this point, there must be at least one generic interface.
3487   CHECK(localGeneric || (useGeneric && (localDerivedType || localProcedure)));
3488 
3489   // Ensure that a use-associated specific procedure that is a procedure
3490   // pointer is properly represented as a USE association of an entity.
3491   if (IsProcedurePointer(useProcedure)) {
3492     Symbol &combined{currScope().MakeSymbol(localSymbol->name(),
3493         useProcedure->attrs(), UseDetails{localName, *useProcedure})};
3494     combined.flags() |= useProcedure->flags();
3495     combinedProcedure = &combined;
3496   }
3497 
3498   if (localGeneric) {
3499     // Create a local copy of a previously use-associated generic so that
3500     // it can be locally extended without corrupting the original.
3501     if (localSymbol->has<UseDetails>()) {
3502       GenericDetails generic;
3503       generic.CopyFrom(DEREF(localGeneric));
3504       EraseSymbol(*localSymbol);
3505       Symbol &newSymbol{MakeSymbol(
3506           localSymbol->name(), localSymbol->attrs(), std::move(generic))};
3507       newSymbol.flags() = localSymbol->flags();
3508       localGeneric = &newSymbol.get<GenericDetails>();
3509       localGeneric->AddUse(*localSymbol);
3510       localSymbol = &newSymbol;
3511     }
3512     if (useGeneric) {
3513       // Combine two use-associated generics
3514       localSymbol->attrs() =
3515           useSymbol.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE};
3516       localSymbol->flags() = useSymbol.flags();
3517       AddGenericUse(*localGeneric, localName, useUltimate);
3518       localGeneric->clear_derivedType();
3519       localGeneric->CopyFrom(*useGeneric);
3520     }
3521     localGeneric->clear_derivedType();
3522     if (combinedDerivedType) {
3523       localGeneric->set_derivedType(*const_cast<Symbol *>(combinedDerivedType));
3524     }
3525     localGeneric->clear_specific();
3526     if (combinedProcedure) {
3527       localGeneric->set_specific(*const_cast<Symbol *>(combinedProcedure));
3528     }
3529   } else {
3530     CHECK(localSymbol->has<UseDetails>());
3531     // Create a local copy of the use-associated generic, then extend it
3532     // with the combined derived type &/or non-generic procedure.
3533     GenericDetails generic;
3534     generic.CopyFrom(*useGeneric);
3535     EraseSymbol(*localSymbol);
3536     Symbol &newSymbol{MakeSymbol(localName,
3537         useUltimate.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE},
3538         std::move(generic))};
3539     newSymbol.flags() = useUltimate.flags();
3540     auto &newUseGeneric{newSymbol.get<GenericDetails>()};
3541     AddGenericUse(newUseGeneric, localName, useUltimate);
3542     newUseGeneric.AddUse(*localSymbol);
3543     if (combinedDerivedType) {
3544       if (const auto *oldDT{newUseGeneric.derivedType()}) {
3545         CHECK(&oldDT->GetUltimate() == &combinedDerivedType->GetUltimate());
3546       } else {
3547         newUseGeneric.set_derivedType(
3548             *const_cast<Symbol *>(combinedDerivedType));
3549       }
3550     }
3551     if (combinedProcedure) {
3552       newUseGeneric.set_specific(*const_cast<Symbol *>(combinedProcedure));
3553     }
3554   }
3555 }
3556 
3557 void ModuleVisitor::AddUse(const GenericSpecInfo &info) {
3558   if (useModuleScope_) {
3559     const auto &name{info.symbolName()};
3560     auto rename{AddUse(name, name, FindInScope(*useModuleScope_, name))};
3561     info.Resolve(rename.use);
3562   }
3563 }
3564 
3565 // Create a UseDetails symbol for this USE and add it to generic
3566 Symbol &ModuleVisitor::AddGenericUse(
3567     GenericDetails &generic, const SourceName &name, const Symbol &useSymbol) {
3568   Symbol &newSymbol{
3569       currScope().MakeSymbol(name, {}, UseDetails{name, useSymbol})};
3570   generic.AddUse(newSymbol);
3571   return newSymbol;
3572 }
3573 
3574 // Enforce F'2023 C1406 as a warning
3575 void ModuleVisitor::AddAndCheckModuleUse(SourceName name, bool isIntrinsic) {
3576   if (isIntrinsic) {
3577     if (auto iter{nonIntrinsicUses_.find(name)};
3578         iter != nonIntrinsicUses_.end()) {
3579       if (auto *msg{context().Warn(common::LanguageFeature::MiscUseExtensions,
3580               name,
3581               "Should not USE the intrinsic module '%s' in the same scope as a USE of the non-intrinsic module"_port_en_US,
3582               name)}) {
3583         msg->Attach(*iter, "Previous USE of '%s'"_en_US, *iter);
3584       }
3585     }
3586     intrinsicUses_.insert(name);
3587   } else {
3588     if (auto iter{intrinsicUses_.find(name)}; iter != intrinsicUses_.end()) {
3589       if (auto *msg{context().Warn(common::LanguageFeature::MiscUseExtensions,
3590               name,
3591               "Should not USE the non-intrinsic module '%s' in the same scope as a USE of the intrinsic module"_port_en_US,
3592               name)}) {
3593         msg->Attach(*iter, "Previous USE of '%s'"_en_US, *iter);
3594       }
3595     }
3596     nonIntrinsicUses_.insert(name);
3597   }
3598 }
3599 
3600 bool ModuleVisitor::BeginSubmodule(
3601     const parser::Name &name, const parser::ParentIdentifier &parentId) {
3602   const auto &ancestorName{std::get<parser::Name>(parentId.t)};
3603   Scope *parentScope{nullptr};
3604   Scope *ancestor{FindModule(ancestorName, false /*not intrinsic*/)};
3605   if (ancestor) {
3606     if (const auto &parentName{
3607             std::get<std::optional<parser::Name>>(parentId.t)}) {
3608       parentScope = FindModule(*parentName, false /*not intrinsic*/, ancestor);
3609     } else {
3610       parentScope = ancestor;
3611     }
3612   }
3613   if (parentScope) {
3614     PushScope(*parentScope);
3615   } else {
3616     // Error recovery: there's no ancestor scope, so create a dummy one to
3617     // hold the submodule's scope.
3618     SourceName dummyName{context().GetTempName(currScope())};
3619     Symbol &dummySymbol{MakeSymbol(dummyName, Attrs{}, ModuleDetails{false})};
3620     PushScope(Scope::Kind::Module, &dummySymbol);
3621     parentScope = &currScope();
3622   }
3623   BeginModule(name, true);
3624   set_inheritFromParent(false); // submodules don't inherit parents' implicits
3625   if (ancestor && !ancestor->AddSubmodule(name.source, currScope())) {
3626     Say(name, "Module '%s' already has a submodule named '%s'"_err_en_US,
3627         ancestorName.source, name.source);
3628   }
3629   return true;
3630 }
3631 
3632 void ModuleVisitor::BeginModule(const parser::Name &name, bool isSubmodule) {
3633   // Submodule symbols are not visible in their parents' scopes.
3634   Symbol &symbol{isSubmodule ? Resolve(name,
3635                                    currScope().MakeSymbol(name.source, Attrs{},
3636                                        ModuleDetails{true}))
3637                              : MakeSymbol(name, ModuleDetails{false})};
3638   auto &details{symbol.get<ModuleDetails>()};
3639   PushScope(Scope::Kind::Module, &symbol);
3640   details.set_scope(&currScope());
3641   prevAccessStmt_ = std::nullopt;
3642 }
3643 
3644 // Find a module or submodule by name and return its scope.
3645 // If ancestor is present, look for a submodule of that ancestor module.
3646 // May have to read a .mod file to find it.
3647 // If an error occurs, report it and return nullptr.
3648 Scope *ModuleVisitor::FindModule(const parser::Name &name,
3649     std::optional<bool> isIntrinsic, Scope *ancestor) {
3650   ModFileReader reader{context()};
3651   Scope *scope{
3652       reader.Read(name.source, isIntrinsic, ancestor, /*silent=*/false)};
3653   if (scope) {
3654     if (DoesScopeContain(scope, currScope())) { // 14.2.2(1)
3655       std::optional<SourceName> submoduleName;
3656       if (const Scope * container{FindModuleOrSubmoduleContaining(currScope())};
3657           container && container->IsSubmodule()) {
3658         submoduleName = container->GetName();
3659       }
3660       if (submoduleName) {
3661         Say(name.source,
3662             "Module '%s' cannot USE itself from its own submodule '%s'"_err_en_US,
3663             name.source, *submoduleName);
3664       } else {
3665         Say(name, "Module '%s' cannot USE itself"_err_en_US);
3666       }
3667     }
3668     Resolve(name, scope->symbol());
3669   }
3670   return scope;
3671 }
3672 
3673 void ModuleVisitor::ApplyDefaultAccess() {
3674   const auto *moduleDetails{
3675       DEREF(currScope().symbol()).detailsIf<ModuleDetails>()};
3676   CHECK(moduleDetails);
3677   Attr defaultAttr{
3678       DEREF(moduleDetails).isDefaultPrivate() ? Attr::PRIVATE : Attr::PUBLIC};
3679   for (auto &pair : currScope()) {
3680     Symbol &symbol{*pair.second};
3681     if (!symbol.attrs().HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
3682       Attr attr{defaultAttr};
3683       if (auto *generic{symbol.detailsIf<GenericDetails>()}) {
3684         if (generic->derivedType()) {
3685           // If a generic interface has a derived type of the same
3686           // name that has an explicit accessibility attribute, then
3687           // the generic must have the same accessibility.
3688           if (generic->derivedType()->attrs().test(Attr::PUBLIC)) {
3689             attr = Attr::PUBLIC;
3690           } else if (generic->derivedType()->attrs().test(Attr::PRIVATE)) {
3691             attr = Attr::PRIVATE;
3692           }
3693         }
3694       }
3695       SetImplicitAttr(symbol, attr);
3696     }
3697   }
3698 }
3699 
3700 // InterfaceVistor implementation
3701 
3702 bool InterfaceVisitor::Pre(const parser::InterfaceStmt &x) {
3703   bool isAbstract{std::holds_alternative<parser::Abstract>(x.u)};
3704   genericInfo_.emplace(/*isInterface*/ true, isAbstract);
3705   return BeginAttrs();
3706 }
3707 
3708 void InterfaceVisitor::Post(const parser::InterfaceStmt &) { EndAttrs(); }
3709 
3710 void InterfaceVisitor::Post(const parser::EndInterfaceStmt &) {
3711   ResolveNewSpecifics();
3712   genericInfo_.pop();
3713 }
3714 
3715 // Create a symbol in genericSymbol_ for this GenericSpec.
3716 bool InterfaceVisitor::Pre(const parser::GenericSpec &x) {
3717   if (auto *symbol{FindInScope(GenericSpecInfo{x}.symbolName())}) {
3718     SetGenericSymbol(*symbol);
3719   }
3720   return false;
3721 }
3722 
3723 bool InterfaceVisitor::Pre(const parser::ProcedureStmt &x) {
3724   if (!isGeneric()) {
3725     Say("A PROCEDURE statement is only allowed in a generic interface block"_err_en_US);
3726   } else {
3727     auto kind{std::get<parser::ProcedureStmt::Kind>(x.t)};
3728     const auto &names{std::get<std::list<parser::Name>>(x.t)};
3729     AddSpecificProcs(names, kind);
3730   }
3731   return false;
3732 }
3733 
3734 bool InterfaceVisitor::Pre(const parser::GenericStmt &) {
3735   genericInfo_.emplace(/*isInterface*/ false);
3736   return BeginAttrs();
3737 }
3738 void InterfaceVisitor::Post(const parser::GenericStmt &x) {
3739   auto attrs{EndAttrs()};
3740   if (Symbol * symbol{GetGenericInfo().symbol}) {
3741     SetExplicitAttrs(*symbol, attrs);
3742   }
3743   const auto &names{std::get<std::list<parser::Name>>(x.t)};
3744   AddSpecificProcs(names, ProcedureKind::Procedure);
3745   ResolveNewSpecifics();
3746   genericInfo_.pop();
3747 }
3748 
3749 bool InterfaceVisitor::inInterfaceBlock() const {
3750   return !genericInfo_.empty() && GetGenericInfo().isInterface;
3751 }
3752 bool InterfaceVisitor::isGeneric() const {
3753   return !genericInfo_.empty() && GetGenericInfo().symbol;
3754 }
3755 bool InterfaceVisitor::isAbstract() const {
3756   return !genericInfo_.empty() && GetGenericInfo().isAbstract;
3757 }
3758 
3759 void InterfaceVisitor::AddSpecificProcs(
3760     const std::list<parser::Name> &names, ProcedureKind kind) {
3761   if (Symbol * symbol{GetGenericInfo().symbol};
3762       symbol && symbol->has<GenericDetails>()) {
3763     for (const auto &name : names) {
3764       specificsForGenericProcs_.emplace(symbol, std::make_pair(&name, kind));
3765       genericsForSpecificProcs_.emplace(name.source, symbol);
3766     }
3767   }
3768 }
3769 
3770 // By now we should have seen all specific procedures referenced by name in
3771 // this generic interface. Resolve those names to symbols.
3772 void GenericHandler::ResolveSpecificsInGeneric(
3773     Symbol &generic, bool isEndOfSpecificationPart) {
3774   auto &details{generic.get<GenericDetails>()};
3775   UnorderedSymbolSet symbolsSeen;
3776   for (const Symbol &symbol : details.specificProcs()) {
3777     symbolsSeen.insert(symbol.GetUltimate());
3778   }
3779   auto range{specificsForGenericProcs_.equal_range(&generic)};
3780   SpecificProcMapType retain;
3781   for (auto it{range.first}; it != range.second; ++it) {
3782     const parser::Name *name{it->second.first};
3783     auto kind{it->second.second};
3784     const Symbol *symbol{isEndOfSpecificationPart
3785             ? FindSymbol(*name)
3786             : FindInScope(generic.owner(), *name)};
3787     ProcedureDefinitionClass defClass{ProcedureDefinitionClass::None};
3788     const Symbol *specific{symbol};
3789     const Symbol *ultimate{nullptr};
3790     if (symbol) {
3791       // Subtlety: when *symbol is a use- or host-association, the specific
3792       // procedure that is recorded in the GenericDetails below must be *symbol,
3793       // not the specific procedure shadowed by a generic, because that specific
3794       // procedure may be a symbol from another module and its name unavailable
3795       // to emit to a module file.
3796       const Symbol &bypassed{BypassGeneric(*symbol)};
3797       if (symbol == &symbol->GetUltimate()) {
3798         specific = &bypassed;
3799       }
3800       ultimate = &bypassed.GetUltimate();
3801       defClass = ClassifyProcedure(*ultimate);
3802     }
3803     std::optional<MessageFixedText> error;
3804     if (defClass == ProcedureDefinitionClass::Module) {
3805       // ok
3806     } else if (kind == ProcedureKind::ModuleProcedure) {
3807       error = "'%s' is not a module procedure"_err_en_US;
3808     } else {
3809       switch (defClass) {
3810       case ProcedureDefinitionClass::Intrinsic:
3811       case ProcedureDefinitionClass::External:
3812       case ProcedureDefinitionClass::Internal:
3813       case ProcedureDefinitionClass::Dummy:
3814       case ProcedureDefinitionClass::Pointer:
3815         break;
3816       case ProcedureDefinitionClass::None:
3817         error = "'%s' is not a procedure"_err_en_US;
3818         break;
3819       default:
3820         error =
3821             "'%s' is not a procedure that can appear in a generic interface"_err_en_US;
3822         break;
3823       }
3824     }
3825     if (error) {
3826       if (isEndOfSpecificationPart) {
3827         Say(*name, std::move(*error));
3828       } else {
3829         // possible forward reference, catch it later
3830         retain.emplace(&generic, std::make_pair(name, kind));
3831       }
3832     } else if (!ultimate) {
3833     } else if (symbolsSeen.insert(*ultimate).second /*true if added*/) {
3834       // When a specific procedure is a USE association, that association
3835       // is saved in the generic's specifics, not its ultimate symbol,
3836       // so that module file output of interfaces can distinguish them.
3837       details.AddSpecificProc(*specific, name->source);
3838     } else if (specific == ultimate) {
3839       Say(name->source,
3840           "Procedure '%s' is already specified in generic '%s'"_err_en_US,
3841           name->source, MakeOpName(generic.name()));
3842     } else {
3843       Say(name->source,
3844           "Procedure '%s' from module '%s' is already specified in generic '%s'"_err_en_US,
3845           ultimate->name(), ultimate->owner().GetName().value(),
3846           MakeOpName(generic.name()));
3847     }
3848   }
3849   specificsForGenericProcs_.erase(range.first, range.second);
3850   specificsForGenericProcs_.merge(std::move(retain));
3851 }
3852 
3853 void GenericHandler::DeclaredPossibleSpecificProc(Symbol &proc) {
3854   auto range{genericsForSpecificProcs_.equal_range(proc.name())};
3855   for (auto iter{range.first}; iter != range.second; ++iter) {
3856     ResolveSpecificsInGeneric(*iter->second, false);
3857   }
3858 }
3859 
3860 void InterfaceVisitor::ResolveNewSpecifics() {
3861   if (Symbol * generic{genericInfo_.top().symbol};
3862       generic && generic->has<GenericDetails>()) {
3863     ResolveSpecificsInGeneric(*generic, false);
3864   }
3865 }
3866 
3867 // Mixed interfaces are allowed by the standard.
3868 // If there is a derived type with the same name, they must all be functions.
3869 void InterfaceVisitor::CheckGenericProcedures(Symbol &generic) {
3870   ResolveSpecificsInGeneric(generic, true);
3871   auto &details{generic.get<GenericDetails>()};
3872   if (auto *proc{details.CheckSpecific()}) {
3873     context().Warn(common::UsageWarning::HomonymousSpecific,
3874         proc->name().begin() > generic.name().begin() ? proc->name()
3875                                                       : generic.name(),
3876         "'%s' should not be the name of both a generic interface and a procedure unless it is a specific procedure of the generic"_warn_en_US,
3877         generic.name());
3878   }
3879   auto &specifics{details.specificProcs()};
3880   if (specifics.empty()) {
3881     if (details.derivedType()) {
3882       generic.set(Symbol::Flag::Function);
3883     }
3884     return;
3885   }
3886   const Symbol *function{nullptr};
3887   const Symbol *subroutine{nullptr};
3888   for (const Symbol &specific : specifics) {
3889     if (!function && specific.test(Symbol::Flag::Function)) {
3890       function = &specific;
3891     } else if (!subroutine && specific.test(Symbol::Flag::Subroutine)) {
3892       subroutine = &specific;
3893       if (details.derivedType() &&
3894           context().ShouldWarn(
3895               common::LanguageFeature::SubroutineAndFunctionSpecifics) &&
3896           !InModuleFile()) {
3897         SayDerivedType(generic.name(),
3898             "Generic interface '%s' should only contain functions due to derived type with same name"_warn_en_US,
3899             *details.derivedType()->GetUltimate().scope())
3900             .set_languageFeature(
3901                 common::LanguageFeature::SubroutineAndFunctionSpecifics);
3902       }
3903     }
3904     if (function && subroutine) { // F'2023 C1514
3905       if (auto *msg{context().Warn(
3906               common::LanguageFeature::SubroutineAndFunctionSpecifics,
3907               generic.name(),
3908               "Generic interface '%s' has both a function and a subroutine"_warn_en_US,
3909               generic.name())}) {
3910         msg->Attach(function->name(), "Function declaration"_en_US)
3911             .Attach(subroutine->name(), "Subroutine declaration"_en_US);
3912       }
3913       break;
3914     }
3915   }
3916   if (function && !subroutine) {
3917     generic.set(Symbol::Flag::Function);
3918   } else if (subroutine && !function) {
3919     generic.set(Symbol::Flag::Subroutine);
3920   }
3921 }
3922 
3923 // SubprogramVisitor implementation
3924 
3925 // Return false if it is actually an assignment statement.
3926 bool SubprogramVisitor::HandleStmtFunction(const parser::StmtFunctionStmt &x) {
3927   const auto &name{std::get<parser::Name>(x.t)};
3928   const DeclTypeSpec *resultType{nullptr};
3929   // Look up name: provides return type or tells us if it's an array
3930   if (auto *symbol{FindSymbol(name)}) {
3931     Symbol &ultimate{symbol->GetUltimate()};
3932     if (ultimate.has<ObjectEntityDetails>() ||
3933         ultimate.has<AssocEntityDetails>() ||
3934         CouldBeDataPointerValuedFunction(&ultimate) ||
3935         (&symbol->owner() == &currScope() && IsFunctionResult(*symbol))) {
3936       misparsedStmtFuncFound_ = true;
3937       return false;
3938     }
3939     if (IsHostAssociated(*symbol, currScope())) {
3940       context().Warn(common::LanguageFeature::StatementFunctionExtensions,
3941           name.source,
3942           "Name '%s' from host scope should have a type declaration before its local statement function definition"_port_en_US,
3943           name.source);
3944       MakeSymbol(name, Attrs{}, UnknownDetails{});
3945     } else if (auto *entity{ultimate.detailsIf<EntityDetails>()};
3946                entity && !ultimate.has<ProcEntityDetails>()) {
3947       resultType = entity->type();
3948       ultimate.details() = UnknownDetails{}; // will be replaced below
3949     } else {
3950       misparsedStmtFuncFound_ = true;
3951     }
3952   }
3953   if (misparsedStmtFuncFound_) {
3954     Say(name,
3955         "'%s' has not been declared as an array or pointer-valued function"_err_en_US);
3956     return false;
3957   }
3958   auto &symbol{PushSubprogramScope(name, Symbol::Flag::Function)};
3959   symbol.set(Symbol::Flag::StmtFunction);
3960   EraseSymbol(symbol); // removes symbol added by PushSubprogramScope
3961   auto &details{symbol.get<SubprogramDetails>()};
3962   for (const auto &dummyName : std::get<std::list<parser::Name>>(x.t)) {
3963     ObjectEntityDetails dummyDetails{true};
3964     if (auto *dummySymbol{FindInScope(currScope().parent(), dummyName)}) {
3965       if (auto *d{dummySymbol->GetType()}) {
3966         dummyDetails.set_type(*d);
3967       }
3968     }
3969     Symbol &dummy{MakeSymbol(dummyName, std::move(dummyDetails))};
3970     ApplyImplicitRules(dummy);
3971     details.add_dummyArg(dummy);
3972   }
3973   ObjectEntityDetails resultDetails;
3974   if (resultType) {
3975     resultDetails.set_type(*resultType);
3976   }
3977   resultDetails.set_funcResult(true);
3978   Symbol &result{MakeSymbol(name, std::move(resultDetails))};
3979   result.flags().set(Symbol::Flag::StmtFunction);
3980   ApplyImplicitRules(result);
3981   details.set_result(result);
3982   // The analysis of the expression that constitutes the body of the
3983   // statement function is deferred to FinishSpecificationPart() so that
3984   // all declarations and implicit typing are complete.
3985   PopScope();
3986   return true;
3987 }
3988 
3989 bool SubprogramVisitor::Pre(const parser::Suffix &suffix) {
3990   if (suffix.resultName) {
3991     if (IsFunction(currScope())) {
3992       if (FuncResultStack::FuncInfo * info{funcResultStack().Top()}) {
3993         if (info->inFunctionStmt) {
3994           info->resultName = &suffix.resultName.value();
3995         } else {
3996           // will check the result name in Post(EntryStmt)
3997         }
3998       }
3999     } else {
4000       Message &msg{Say(*suffix.resultName,
4001           "RESULT(%s) may appear only in a function"_err_en_US)};
4002       if (const Symbol * subprogram{InclusiveScope().symbol()}) {
4003         msg.Attach(subprogram->name(), "Containing subprogram"_en_US);
4004       }
4005     }
4006   }
4007   // LanguageBindingSpec deferred to Post(EntryStmt) or, for FunctionStmt,
4008   // all the way to EndSubprogram().
4009   return false;
4010 }
4011 
4012 bool SubprogramVisitor::Pre(const parser::PrefixSpec &x) {
4013   // Save this to process after UseStmt and ImplicitPart
4014   if (const auto *parsedType{std::get_if<parser::DeclarationTypeSpec>(&x.u)}) {
4015     if (FuncResultStack::FuncInfo * info{funcResultStack().Top()}) {
4016       if (info->parsedType) { // C1543
4017         Say(currStmtSource().value_or(info->source),
4018             "FUNCTION prefix cannot specify the type more than once"_err_en_US);
4019       } else {
4020         info->parsedType = parsedType;
4021         if (auto at{currStmtSource()}) {
4022           info->source = *at;
4023         }
4024       }
4025     } else {
4026       Say(currStmtSource().value(),
4027           "SUBROUTINE prefix cannot specify a type"_err_en_US);
4028     }
4029     return false;
4030   } else {
4031     return true;
4032   }
4033 }
4034 
4035 bool SubprogramVisitor::Pre(const parser::PrefixSpec::Attributes &attrs) {
4036   if (auto *subp{currScope().symbol()
4037               ? currScope().symbol()->detailsIf<SubprogramDetails>()
4038               : nullptr}) {
4039     for (auto attr : attrs.v) {
4040       if (auto current{subp->cudaSubprogramAttrs()}) {
4041         if (attr == *current ||
4042             (*current == common::CUDASubprogramAttrs::HostDevice &&
4043                 (attr == common::CUDASubprogramAttrs::Host ||
4044                     attr == common::CUDASubprogramAttrs::Device))) {
4045           context().Warn(common::LanguageFeature::RedundantAttribute,
4046               currStmtSource().value(),
4047               "ATTRIBUTES(%s) appears more than once"_warn_en_US,
4048               common::EnumToString(attr));
4049         } else if ((attr == common::CUDASubprogramAttrs::Host ||
4050                        attr == common::CUDASubprogramAttrs::Device) &&
4051             (*current == common::CUDASubprogramAttrs::Host ||
4052                 *current == common::CUDASubprogramAttrs::Device ||
4053                 *current == common::CUDASubprogramAttrs::HostDevice)) {
4054           // HOST,DEVICE or DEVICE,HOST -> HostDevice
4055           subp->set_cudaSubprogramAttrs(
4056               common::CUDASubprogramAttrs::HostDevice);
4057         } else {
4058           Say(currStmtSource().value(),
4059               "ATTRIBUTES(%s) conflicts with earlier ATTRIBUTES(%s)"_err_en_US,
4060               common::EnumToString(attr), common::EnumToString(*current));
4061         }
4062       } else {
4063         subp->set_cudaSubprogramAttrs(attr);
4064       }
4065     }
4066     if (auto attrs{subp->cudaSubprogramAttrs()}) {
4067       if (*attrs == common::CUDASubprogramAttrs::Global ||
4068           *attrs == common::CUDASubprogramAttrs::Device) {
4069         const Scope &scope{currScope()};
4070         const Scope *mod{FindModuleContaining(scope)};
4071         if (mod &&
4072             (mod->GetName().value() == "cudadevice" ||
4073                 mod->GetName().value() == "__cuda_device")) {
4074           return false;
4075         }
4076         // Implicitly USE the cudadevice module by copying its symbols in the
4077         // current scope.
4078         const Scope &cudaDeviceScope{context().GetCUDADeviceScope()};
4079         for (auto sym : cudaDeviceScope.GetSymbols()) {
4080           if (!currScope().FindSymbol(sym->name())) {
4081             auto &localSymbol{MakeSymbol(
4082                 sym->name(), Attrs{}, UseDetails{sym->name(), *sym})};
4083             localSymbol.flags() = sym->flags();
4084           }
4085         }
4086       }
4087     }
4088   }
4089   return false;
4090 }
4091 
4092 void SubprogramVisitor::Post(const parser::PrefixSpec::Launch_Bounds &x) {
4093   std::vector<std::int64_t> bounds;
4094   bool ok{true};
4095   for (const auto &sicx : x.v) {
4096     if (auto value{evaluate::ToInt64(EvaluateExpr(sicx))}) {
4097       bounds.push_back(*value);
4098     } else {
4099       ok = false;
4100     }
4101   }
4102   if (!ok || bounds.size() < 2 || bounds.size() > 3) {
4103     Say(currStmtSource().value(),
4104         "Operands of LAUNCH_BOUNDS() must be 2 or 3 integer constants"_err_en_US);
4105   } else if (auto *subp{currScope().symbol()
4106                      ? currScope().symbol()->detailsIf<SubprogramDetails>()
4107                      : nullptr}) {
4108     if (subp->cudaLaunchBounds().empty()) {
4109       subp->set_cudaLaunchBounds(std::move(bounds));
4110     } else {
4111       Say(currStmtSource().value(),
4112           "LAUNCH_BOUNDS() may only appear once"_err_en_US);
4113     }
4114   }
4115 }
4116 
4117 void SubprogramVisitor::Post(const parser::PrefixSpec::Cluster_Dims &x) {
4118   std::vector<std::int64_t> dims;
4119   bool ok{true};
4120   for (const auto &sicx : x.v) {
4121     if (auto value{evaluate::ToInt64(EvaluateExpr(sicx))}) {
4122       dims.push_back(*value);
4123     } else {
4124       ok = false;
4125     }
4126   }
4127   if (!ok || dims.size() != 3) {
4128     Say(currStmtSource().value(),
4129         "Operands of CLUSTER_DIMS() must be three integer constants"_err_en_US);
4130   } else if (auto *subp{currScope().symbol()
4131                      ? currScope().symbol()->detailsIf<SubprogramDetails>()
4132                      : nullptr}) {
4133     if (subp->cudaClusterDims().empty()) {
4134       subp->set_cudaClusterDims(std::move(dims));
4135     } else {
4136       Say(currStmtSource().value(),
4137           "CLUSTER_DIMS() may only appear once"_err_en_US);
4138     }
4139   }
4140 }
4141 
4142 static bool HasModulePrefix(const std::list<parser::PrefixSpec> &prefixes) {
4143   for (const auto &prefix : prefixes) {
4144     if (std::holds_alternative<parser::PrefixSpec::Module>(prefix.u)) {
4145       return true;
4146     }
4147   }
4148   return false;
4149 }
4150 
4151 bool SubprogramVisitor::Pre(const parser::InterfaceBody::Subroutine &x) {
4152   const auto &stmtTuple{
4153       std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t};
4154   return BeginSubprogram(std::get<parser::Name>(stmtTuple),
4155       Symbol::Flag::Subroutine,
4156       HasModulePrefix(std::get<std::list<parser::PrefixSpec>>(stmtTuple)));
4157 }
4158 void SubprogramVisitor::Post(const parser::InterfaceBody::Subroutine &x) {
4159   const auto &stmt{std::get<parser::Statement<parser::SubroutineStmt>>(x.t)};
4160   EndSubprogram(stmt.source,
4161       &std::get<std::optional<parser::LanguageBindingSpec>>(stmt.statement.t));
4162 }
4163 bool SubprogramVisitor::Pre(const parser::InterfaceBody::Function &x) {
4164   const auto &stmtTuple{
4165       std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t};
4166   return BeginSubprogram(std::get<parser::Name>(stmtTuple),
4167       Symbol::Flag::Function,
4168       HasModulePrefix(std::get<std::list<parser::PrefixSpec>>(stmtTuple)));
4169 }
4170 void SubprogramVisitor::Post(const parser::InterfaceBody::Function &x) {
4171   const auto &stmt{std::get<parser::Statement<parser::FunctionStmt>>(x.t)};
4172   const auto &maybeSuffix{
4173       std::get<std::optional<parser::Suffix>>(stmt.statement.t)};
4174   EndSubprogram(stmt.source, maybeSuffix ? &maybeSuffix->binding : nullptr);
4175 }
4176 
4177 bool SubprogramVisitor::Pre(const parser::SubroutineStmt &stmt) {
4178   BeginAttrs();
4179   Walk(std::get<std::list<parser::PrefixSpec>>(stmt.t));
4180   Walk(std::get<parser::Name>(stmt.t));
4181   Walk(std::get<std::list<parser::DummyArg>>(stmt.t));
4182   // Don't traverse the LanguageBindingSpec now; it's deferred to EndSubprogram.
4183   Symbol &symbol{PostSubprogramStmt()};
4184   SubprogramDetails &details{symbol.get<SubprogramDetails>()};
4185   for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
4186     if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) {
4187       CreateDummyArgument(details, *dummyName);
4188     } else {
4189       details.add_alternateReturn();
4190     }
4191   }
4192   return false;
4193 }
4194 bool SubprogramVisitor::Pre(const parser::FunctionStmt &) {
4195   FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())};
4196   CHECK(!info.inFunctionStmt);
4197   info.inFunctionStmt = true;
4198   if (auto at{currStmtSource()}) {
4199     info.source = *at;
4200   }
4201   return BeginAttrs();
4202 }
4203 bool SubprogramVisitor::Pre(const parser::EntryStmt &) { return BeginAttrs(); }
4204 
4205 void SubprogramVisitor::Post(const parser::FunctionStmt &stmt) {
4206   const auto &name{std::get<parser::Name>(stmt.t)};
4207   Symbol &symbol{PostSubprogramStmt()};
4208   SubprogramDetails &details{symbol.get<SubprogramDetails>()};
4209   for (const auto &dummyName : std::get<std::list<parser::Name>>(stmt.t)) {
4210     CreateDummyArgument(details, dummyName);
4211   }
4212   const parser::Name *funcResultName;
4213   FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())};
4214   CHECK(info.inFunctionStmt);
4215   info.inFunctionStmt = false;
4216   bool distinctResultName{
4217       info.resultName && info.resultName->source != name.source};
4218   if (distinctResultName) {
4219     // Note that RESULT is ignored if it has the same name as the function.
4220     // The symbol created by PushScope() is retained as a place-holder
4221     // for error detection.
4222     funcResultName = info.resultName;
4223   } else {
4224     EraseSymbol(name); // was added by PushScope()
4225     funcResultName = &name;
4226   }
4227   if (details.isFunction()) {
4228     CHECK(context().HasError(currScope().symbol()));
4229   } else {
4230     // RESULT(x) can be the same explicitly-named RESULT(x) as an ENTRY
4231     // statement.
4232     Symbol *result{nullptr};
4233     if (distinctResultName) {
4234       if (auto iter{currScope().find(funcResultName->source)};
4235           iter != currScope().end()) {
4236         Symbol &entryResult{*iter->second};
4237         if (IsFunctionResult(entryResult)) {
4238           result = &entryResult;
4239         }
4240       }
4241     }
4242     if (result) {
4243       Resolve(*funcResultName, *result);
4244     } else {
4245       // add function result to function scope
4246       EntityDetails funcResultDetails;
4247       funcResultDetails.set_funcResult(true);
4248       result = &MakeSymbol(*funcResultName, std::move(funcResultDetails));
4249     }
4250     info.resultSymbol = result;
4251     details.set_result(*result);
4252   }
4253   // C1560.
4254   if (info.resultName && !distinctResultName) {
4255     context().Warn(common::UsageWarning::HomonymousResult,
4256         info.resultName->source,
4257         "The function name should not appear in RESULT; references to '%s' "
4258         "inside the function will be considered as references to the "
4259         "result only"_warn_en_US,
4260         name.source);
4261     // RESULT name was ignored above, the only side effect from doing so will be
4262     // the inability to make recursive calls. The related parser::Name is still
4263     // resolved to the created function result symbol because every parser::Name
4264     // should be resolved to avoid internal errors.
4265     Resolve(*info.resultName, info.resultSymbol);
4266   }
4267   name.symbol = &symbol; // must not be function result symbol
4268   // Clear the RESULT() name now in case an ENTRY statement in the implicit-part
4269   // has a RESULT() suffix.
4270   info.resultName = nullptr;
4271 }
4272 
4273 Symbol &SubprogramVisitor::PostSubprogramStmt() {
4274   Symbol &symbol{*currScope().symbol()};
4275   SetExplicitAttrs(symbol, EndAttrs());
4276   if (symbol.attrs().test(Attr::MODULE)) {
4277     symbol.attrs().set(Attr::EXTERNAL, false);
4278     symbol.implicitAttrs().set(Attr::EXTERNAL, false);
4279   }
4280   return symbol;
4281 }
4282 
4283 void SubprogramVisitor::Post(const parser::EntryStmt &stmt) {
4284   if (const auto &suffix{std::get<std::optional<parser::Suffix>>(stmt.t)}) {
4285     Walk(suffix->binding);
4286   }
4287   PostEntryStmt(stmt);
4288   EndAttrs();
4289 }
4290 
4291 void SubprogramVisitor::CreateDummyArgument(
4292     SubprogramDetails &details, const parser::Name &name) {
4293   Symbol *dummy{FindInScope(name)};
4294   if (dummy) {
4295     if (IsDummy(*dummy)) {
4296       if (dummy->test(Symbol::Flag::EntryDummyArgument)) {
4297         dummy->set(Symbol::Flag::EntryDummyArgument, false);
4298       } else {
4299         Say(name,
4300             "'%s' appears more than once as a dummy argument name in this subprogram"_err_en_US,
4301             name.source);
4302         return;
4303       }
4304     } else {
4305       SayWithDecl(name, *dummy,
4306           "'%s' may not appear as a dummy argument name in this subprogram"_err_en_US);
4307       return;
4308     }
4309   } else {
4310     dummy = &MakeSymbol(name, EntityDetails{true});
4311   }
4312   details.add_dummyArg(DEREF(dummy));
4313 }
4314 
4315 void SubprogramVisitor::CreateEntry(
4316     const parser::EntryStmt &stmt, Symbol &subprogram) {
4317   const auto &entryName{std::get<parser::Name>(stmt.t)};
4318   Scope &outer{currScope().parent()};
4319   Symbol::Flag subpFlag{subprogram.test(Symbol::Flag::Function)
4320           ? Symbol::Flag::Function
4321           : Symbol::Flag::Subroutine};
4322   Attrs attrs;
4323   const auto &suffix{std::get<std::optional<parser::Suffix>>(stmt.t)};
4324   bool hasGlobalBindingName{outer.IsGlobal() && suffix && suffix->binding &&
4325       std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
4326           suffix->binding->t)
4327           .has_value()};
4328   if (!hasGlobalBindingName) {
4329     if (Symbol * extant{FindSymbol(outer, entryName)}) {
4330       if (!HandlePreviousCalls(entryName, *extant, subpFlag)) {
4331         if (outer.IsTopLevel()) {
4332           Say2(entryName,
4333               "'%s' is already defined as a global identifier"_err_en_US,
4334               *extant, "Previous definition of '%s'"_en_US);
4335         } else {
4336           SayAlreadyDeclared(entryName, *extant);
4337         }
4338         return;
4339       }
4340       attrs = extant->attrs();
4341     }
4342   }
4343   std::optional<SourceName> distinctResultName;
4344   if (suffix && suffix->resultName &&
4345       suffix->resultName->source != entryName.source) {
4346     distinctResultName = suffix->resultName->source;
4347   }
4348   if (outer.IsModule() && !attrs.test(Attr::PRIVATE)) {
4349     attrs.set(Attr::PUBLIC);
4350   }
4351   Symbol *entrySymbol{nullptr};
4352   if (hasGlobalBindingName) {
4353     // Hide the entry's symbol in a new anonymous global scope so
4354     // that its name doesn't clash with anything.
4355     Symbol &symbol{MakeSymbol(outer, context().GetTempName(outer), Attrs{})};
4356     symbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName});
4357     Scope &hidden{outer.MakeScope(Scope::Kind::Global, &symbol)};
4358     entrySymbol = &MakeSymbol(hidden, entryName.source, attrs);
4359   } else {
4360     entrySymbol = FindInScope(outer, entryName.source);
4361     if (entrySymbol) {
4362       if (auto *generic{entrySymbol->detailsIf<GenericDetails>()}) {
4363         if (auto *specific{generic->specific()}) {
4364           // Forward reference to ENTRY from a generic interface
4365           entrySymbol = specific;
4366           CheckDuplicatedAttrs(entryName.source, *entrySymbol, attrs);
4367           SetExplicitAttrs(*entrySymbol, attrs);
4368         }
4369       }
4370     } else {
4371       entrySymbol = &MakeSymbol(outer, entryName.source, attrs);
4372     }
4373   }
4374   SubprogramDetails entryDetails;
4375   entryDetails.set_entryScope(currScope());
4376   entrySymbol->set(subpFlag);
4377   if (subpFlag == Symbol::Flag::Function) {
4378     Symbol *result{nullptr};
4379     EntityDetails resultDetails;
4380     resultDetails.set_funcResult(true);
4381     if (distinctResultName) {
4382       // An explicit RESULT() can also be an explicit RESULT()
4383       // of the function or another ENTRY.
4384       if (auto iter{currScope().find(suffix->resultName->source)};
4385           iter != currScope().end()) {
4386         result = &*iter->second;
4387       }
4388       if (!result) {
4389         result =
4390             &MakeSymbol(*distinctResultName, Attrs{}, std::move(resultDetails));
4391       } else if (!result->has<EntityDetails>()) {
4392         Say(*distinctResultName,
4393             "ENTRY cannot have RESULT(%s) that is not a variable"_err_en_US,
4394             *distinctResultName)
4395             .Attach(result->name(), "Existing declaration of '%s'"_en_US,
4396                 result->name());
4397         result = nullptr;
4398       }
4399       if (result) {
4400         Resolve(*suffix->resultName, *result);
4401       }
4402     } else {
4403       result = &MakeSymbol(entryName.source, Attrs{}, std::move(resultDetails));
4404     }
4405     if (result) {
4406       entryDetails.set_result(*result);
4407     }
4408   }
4409   if (subpFlag == Symbol::Flag::Subroutine || distinctResultName) {
4410     Symbol &assoc{MakeSymbol(entryName.source)};
4411     assoc.set_details(HostAssocDetails{*entrySymbol});
4412     assoc.set(Symbol::Flag::Subroutine);
4413   }
4414   Resolve(entryName, *entrySymbol);
4415   std::set<SourceName> dummies;
4416   for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
4417     if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) {
4418       auto pair{dummies.insert(dummyName->source)};
4419       if (!pair.second) {
4420         Say(*dummyName,
4421             "'%s' appears more than once as a dummy argument name in this ENTRY statement"_err_en_US,
4422             dummyName->source);
4423         continue;
4424       }
4425       Symbol *dummy{FindInScope(*dummyName)};
4426       if (dummy) {
4427         if (!IsDummy(*dummy)) {
4428           evaluate::AttachDeclaration(
4429               Say(*dummyName,
4430                   "'%s' may not appear as a dummy argument name in this ENTRY statement"_err_en_US,
4431                   dummyName->source),
4432               *dummy);
4433           continue;
4434         }
4435       } else {
4436         dummy = &MakeSymbol(*dummyName, EntityDetails{true});
4437         dummy->set(Symbol::Flag::EntryDummyArgument);
4438       }
4439       entryDetails.add_dummyArg(DEREF(dummy));
4440     } else if (subpFlag == Symbol::Flag::Function) { // C1573
4441       Say(entryName,
4442           "ENTRY in a function may not have an alternate return dummy argument"_err_en_US);
4443       break;
4444     } else {
4445       entryDetails.add_alternateReturn();
4446     }
4447   }
4448   entrySymbol->set_details(std::move(entryDetails));
4449 }
4450 
4451 void SubprogramVisitor::PostEntryStmt(const parser::EntryStmt &stmt) {
4452   // The entry symbol should have already been created and resolved
4453   // in CreateEntry(), called by BeginSubprogram(), with one exception (below).
4454   const auto &name{std::get<parser::Name>(stmt.t)};
4455   Scope &inclusiveScope{InclusiveScope()};
4456   if (!name.symbol) {
4457     if (inclusiveScope.kind() != Scope::Kind::Subprogram) {
4458       Say(name.source,
4459           "ENTRY '%s' may appear only in a subroutine or function"_err_en_US,
4460           name.source);
4461     } else if (FindSeparateModuleSubprogramInterface(inclusiveScope.symbol())) {
4462       Say(name.source,
4463           "ENTRY '%s' may not appear in a separate module procedure"_err_en_US,
4464           name.source);
4465     } else {
4466       // C1571 - entry is nested, so was not put into the program tree; error
4467       // is emitted from MiscChecker in semantics.cpp.
4468     }
4469     return;
4470   }
4471   Symbol &entrySymbol{*name.symbol};
4472   if (context().HasError(entrySymbol)) {
4473     return;
4474   }
4475   if (!entrySymbol.has<SubprogramDetails>()) {
4476     SayAlreadyDeclared(name, entrySymbol);
4477     return;
4478   }
4479   SubprogramDetails &entryDetails{entrySymbol.get<SubprogramDetails>()};
4480   CHECK(entryDetails.entryScope() == &inclusiveScope);
4481   SetCUDADataAttr(name.source, entrySymbol, cudaDataAttr());
4482   entrySymbol.attrs() |= GetAttrs();
4483   SetBindNameOn(entrySymbol);
4484   for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
4485     if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) {
4486       if (Symbol * dummy{FindInScope(*dummyName)}) {
4487         if (dummy->test(Symbol::Flag::EntryDummyArgument)) {
4488           const auto *subp{dummy->detailsIf<SubprogramDetails>()};
4489           if (subp && subp->isInterface()) { // ok
4490           } else if (!dummy->has<EntityDetails>() &&
4491               !dummy->has<ObjectEntityDetails>() &&
4492               !dummy->has<ProcEntityDetails>()) {
4493             SayWithDecl(*dummyName, *dummy,
4494                 "ENTRY dummy argument '%s' was previously declared as an item that may not be used as a dummy argument"_err_en_US);
4495           }
4496           dummy->set(Symbol::Flag::EntryDummyArgument, false);
4497         }
4498       }
4499     }
4500   }
4501 }
4502 
4503 Symbol *ScopeHandler::FindSeparateModuleProcedureInterface(
4504     const parser::Name &name) {
4505   auto *symbol{FindSymbol(name)};
4506   if (symbol && symbol->has<SubprogramNameDetails>()) {
4507     const Scope *parent{nullptr};
4508     if (currScope().IsSubmodule()) {
4509       parent = currScope().symbol()->get<ModuleDetails>().parent();
4510     }
4511     symbol = parent ? FindSymbol(*parent, name) : nullptr;
4512   }
4513   if (symbol) {
4514     if (auto *generic{symbol->detailsIf<GenericDetails>()}) {
4515       symbol = generic->specific();
4516     }
4517   }
4518   if (const Symbol * defnIface{FindSeparateModuleSubprogramInterface(symbol)}) {
4519     // Error recovery in case of multiple definitions
4520     symbol = const_cast<Symbol *>(defnIface);
4521   }
4522   if (!IsSeparateModuleProcedureInterface(symbol)) {
4523     Say(name, "'%s' was not declared a separate module procedure"_err_en_US);
4524     symbol = nullptr;
4525   }
4526   return symbol;
4527 }
4528 
4529 // A subprogram declared with MODULE PROCEDURE
4530 bool SubprogramVisitor::BeginMpSubprogram(const parser::Name &name) {
4531   Symbol *symbol{FindSeparateModuleProcedureInterface(name)};
4532   if (!symbol) {
4533     return false;
4534   }
4535   if (symbol->owner() == currScope() && symbol->scope()) {
4536     // This is a MODULE PROCEDURE whose interface appears in its host.
4537     // Convert the module procedure's interface into a subprogram.
4538     SetScope(DEREF(symbol->scope()));
4539     symbol->get<SubprogramDetails>().set_isInterface(false);
4540     name.symbol = symbol;
4541   } else {
4542     // Copy the interface into a new subprogram scope.
4543     EraseSymbol(name);
4544     Symbol &newSymbol{MakeSymbol(name, SubprogramDetails{})};
4545     PushScope(Scope::Kind::Subprogram, &newSymbol);
4546     auto &newSubprogram{newSymbol.get<SubprogramDetails>()};
4547     newSubprogram.set_moduleInterface(*symbol);
4548     auto &subprogram{symbol->get<SubprogramDetails>()};
4549     if (const auto *name{subprogram.bindName()}) {
4550       newSubprogram.set_bindName(std::string{*name});
4551     }
4552     newSymbol.attrs() |= symbol->attrs();
4553     newSymbol.set(symbol->test(Symbol::Flag::Subroutine)
4554             ? Symbol::Flag::Subroutine
4555             : Symbol::Flag::Function);
4556     MapSubprogramToNewSymbols(*symbol, newSymbol, currScope());
4557   }
4558   return true;
4559 }
4560 
4561 // A subprogram or interface declared with SUBROUTINE or FUNCTION
4562 bool SubprogramVisitor::BeginSubprogram(const parser::Name &name,
4563     Symbol::Flag subpFlag, bool hasModulePrefix,
4564     const parser::LanguageBindingSpec *bindingSpec,
4565     const ProgramTree::EntryStmtList *entryStmts) {
4566   bool isValid{true};
4567   if (hasModulePrefix && !currScope().IsModule() &&
4568       !currScope().IsSubmodule()) { // C1547
4569     Say(name,
4570         "'%s' is a MODULE procedure which must be declared within a "
4571         "MODULE or SUBMODULE"_err_en_US);
4572     // Don't return here because it can be useful to have the scope set for
4573     // other semantic checks run before we print the errors
4574     isValid = false;
4575   }
4576   Symbol *moduleInterface{nullptr};
4577   if (isValid && hasModulePrefix && !inInterfaceBlock()) {
4578     moduleInterface = FindSeparateModuleProcedureInterface(name);
4579     if (moduleInterface && &moduleInterface->owner() == &currScope()) {
4580       // Subprogram is MODULE FUNCTION or MODULE SUBROUTINE with an interface
4581       // previously defined in the same scope.
4582       if (GenericDetails *
4583           generic{DEREF(FindSymbol(name)).detailsIf<GenericDetails>()}) {
4584         generic->clear_specific();
4585         name.symbol = nullptr;
4586       } else {
4587         EraseSymbol(name);
4588       }
4589     }
4590   }
4591   Symbol &newSymbol{
4592       PushSubprogramScope(name, subpFlag, bindingSpec, hasModulePrefix)};
4593   if (moduleInterface) {
4594     newSymbol.get<SubprogramDetails>().set_moduleInterface(*moduleInterface);
4595     if (moduleInterface->attrs().test(Attr::PRIVATE)) {
4596       SetImplicitAttr(newSymbol, Attr::PRIVATE);
4597     } else if (moduleInterface->attrs().test(Attr::PUBLIC)) {
4598       SetImplicitAttr(newSymbol, Attr::PUBLIC);
4599     }
4600   }
4601   if (entryStmts) {
4602     for (const auto &ref : *entryStmts) {
4603       CreateEntry(*ref, newSymbol);
4604     }
4605   }
4606   return true;
4607 }
4608 
4609 void SubprogramVisitor::HandleLanguageBinding(Symbol *symbol,
4610     std::optional<parser::CharBlock> stmtSource,
4611     const std::optional<parser::LanguageBindingSpec> *binding) {
4612   if (binding && *binding && symbol) {
4613     // Finally process the BIND(C,NAME=name) now that symbols in the name
4614     // expression will resolve to local names if needed.
4615     auto flagRestorer{common::ScopedSet(inSpecificationPart_, false)};
4616     auto originalStmtSource{messageHandler().currStmtSource()};
4617     messageHandler().set_currStmtSource(stmtSource);
4618     BeginAttrs();
4619     Walk(**binding);
4620     SetBindNameOn(*symbol);
4621     symbol->attrs() |= EndAttrs();
4622     messageHandler().set_currStmtSource(originalStmtSource);
4623   }
4624 }
4625 
4626 void SubprogramVisitor::EndSubprogram(
4627     std::optional<parser::CharBlock> stmtSource,
4628     const std::optional<parser::LanguageBindingSpec> *binding,
4629     const ProgramTree::EntryStmtList *entryStmts) {
4630   HandleLanguageBinding(currScope().symbol(), stmtSource, binding);
4631   if (entryStmts) {
4632     for (const auto &ref : *entryStmts) {
4633       const parser::EntryStmt &entryStmt{*ref};
4634       if (const auto &suffix{
4635               std::get<std::optional<parser::Suffix>>(entryStmt.t)}) {
4636         const auto &name{std::get<parser::Name>(entryStmt.t)};
4637         HandleLanguageBinding(name.symbol, name.source, &suffix->binding);
4638       }
4639     }
4640   }
4641   if (inInterfaceBlock() && currScope().symbol()) {
4642     DeclaredPossibleSpecificProc(*currScope().symbol());
4643   }
4644   PopScope();
4645 }
4646 
4647 bool SubprogramVisitor::HandlePreviousCalls(
4648     const parser::Name &name, Symbol &symbol, Symbol::Flag subpFlag) {
4649   // If the extant symbol is a generic, check its homonymous specific
4650   // procedure instead if it has one.
4651   if (auto *generic{symbol.detailsIf<GenericDetails>()}) {
4652     return generic->specific() &&
4653         HandlePreviousCalls(name, *generic->specific(), subpFlag);
4654   } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}; proc &&
4655              !proc->isDummy() &&
4656              !symbol.attrs().HasAny(Attrs{Attr::INTRINSIC, Attr::POINTER})) {
4657     // There's a symbol created for previous calls to this subprogram or
4658     // ENTRY's name.  We have to replace that symbol in situ to avoid the
4659     // obligation to rewrite symbol pointers in the parse tree.
4660     if (!symbol.test(subpFlag)) {
4661       auto other{subpFlag == Symbol::Flag::Subroutine
4662               ? Symbol::Flag::Function
4663               : Symbol::Flag::Subroutine};
4664       // External statements issue an explicit EXTERNAL attribute.
4665       if (symbol.attrs().test(Attr::EXTERNAL) &&
4666           !symbol.implicitAttrs().test(Attr::EXTERNAL)) {
4667         // Warn if external statement previously declared.
4668         context().Warn(common::LanguageFeature::RedundantAttribute, name.source,
4669             "EXTERNAL attribute was already specified on '%s'"_warn_en_US,
4670             name.source);
4671       } else if (symbol.test(other)) {
4672         Say2(name,
4673             subpFlag == Symbol::Flag::Function
4674                 ? "'%s' was previously called as a subroutine"_err_en_US
4675                 : "'%s' was previously called as a function"_err_en_US,
4676             symbol, "Previous call of '%s'"_en_US);
4677       } else {
4678         symbol.set(subpFlag);
4679       }
4680     }
4681     EntityDetails entity;
4682     if (proc->type()) {
4683       entity.set_type(*proc->type());
4684     }
4685     symbol.details() = std::move(entity);
4686     return true;
4687   } else {
4688     return symbol.has<UnknownDetails>() || symbol.has<SubprogramNameDetails>();
4689   }
4690 }
4691 
4692 void SubprogramVisitor::CheckExtantProc(
4693     const parser::Name &name, Symbol::Flag subpFlag) {
4694   if (auto *prev{FindSymbol(name)}) {
4695     if (IsDummy(*prev)) {
4696     } else if (auto *entity{prev->detailsIf<EntityDetails>()};
4697                IsPointer(*prev) && entity && !entity->type()) {
4698       // POINTER attribute set before interface
4699     } else if (inInterfaceBlock() && currScope() != prev->owner()) {
4700       // Procedures in an INTERFACE block do not resolve to symbols
4701       // in scopes between the global scope and the current scope.
4702     } else if (!HandlePreviousCalls(name, *prev, subpFlag)) {
4703       SayAlreadyDeclared(name, *prev);
4704     }
4705   }
4706 }
4707 
4708 Symbol &SubprogramVisitor::PushSubprogramScope(const parser::Name &name,
4709     Symbol::Flag subpFlag, const parser::LanguageBindingSpec *bindingSpec,
4710     bool hasModulePrefix) {
4711   Symbol *symbol{GetSpecificFromGeneric(name)};
4712   if (!symbol) {
4713     if (bindingSpec && currScope().IsGlobal() &&
4714         std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
4715             bindingSpec->t)
4716             .has_value()) {
4717       // Create this new top-level subprogram with a binding label
4718       // in a new global scope, so that its symbol's name won't clash
4719       // with another symbol that has a distinct binding label.
4720       PushScope(Scope::Kind::Global,
4721           &MakeSymbol(context().GetTempName(currScope()), Attrs{},
4722               MiscDetails{MiscDetails::Kind::ScopeName}));
4723     }
4724     CheckExtantProc(name, subpFlag);
4725     symbol = &MakeSymbol(name, SubprogramDetails{});
4726   }
4727   symbol->ReplaceName(name.source);
4728   symbol->set(subpFlag);
4729   PushScope(Scope::Kind::Subprogram, symbol);
4730   if (subpFlag == Symbol::Flag::Function) {
4731     funcResultStack().Push(currScope(), name.source);
4732   }
4733   if (inInterfaceBlock()) {
4734     auto &details{symbol->get<SubprogramDetails>()};
4735     details.set_isInterface();
4736     if (isAbstract()) {
4737       SetExplicitAttr(*symbol, Attr::ABSTRACT);
4738     } else if (hasModulePrefix) {
4739       SetExplicitAttr(*symbol, Attr::MODULE);
4740     } else {
4741       MakeExternal(*symbol);
4742     }
4743     if (isGeneric()) {
4744       Symbol &genericSymbol{GetGenericSymbol()};
4745       if (auto *details{genericSymbol.detailsIf<GenericDetails>()}) {
4746         details->AddSpecificProc(*symbol, name.source);
4747       } else {
4748         CHECK(context().HasError(genericSymbol));
4749       }
4750     }
4751     set_inheritFromParent(false); // interfaces don't inherit, even if MODULE
4752   }
4753   if (Symbol * found{FindSymbol(name)};
4754       found && found->has<HostAssocDetails>()) {
4755     found->set(subpFlag); // PushScope() created symbol
4756   }
4757   return *symbol;
4758 }
4759 
4760 void SubprogramVisitor::PushBlockDataScope(const parser::Name &name) {
4761   if (auto *prev{FindSymbol(name)}) {
4762     if (prev->attrs().test(Attr::EXTERNAL) && prev->has<ProcEntityDetails>()) {
4763       if (prev->test(Symbol::Flag::Subroutine) ||
4764           prev->test(Symbol::Flag::Function)) {
4765         Say2(name, "BLOCK DATA '%s' has been called"_err_en_US, *prev,
4766             "Previous call of '%s'"_en_US);
4767       }
4768       EraseSymbol(name);
4769     }
4770   }
4771   if (name.source.empty()) {
4772     // Don't let unnamed BLOCK DATA conflict with unnamed PROGRAM
4773     PushScope(Scope::Kind::BlockData, nullptr);
4774   } else {
4775     PushScope(Scope::Kind::BlockData, &MakeSymbol(name, SubprogramDetails{}));
4776   }
4777 }
4778 
4779 // If name is a generic, return specific subprogram with the same name.
4780 Symbol *SubprogramVisitor::GetSpecificFromGeneric(const parser::Name &name) {
4781   // Search for the name but don't resolve it
4782   if (auto *symbol{currScope().FindSymbol(name.source)}) {
4783     if (symbol->has<SubprogramNameDetails>()) {
4784       if (inInterfaceBlock()) {
4785         // Subtle: clear any MODULE flag so that the new interface
4786         // symbol doesn't inherit it and ruin the ability to check it.
4787         symbol->attrs().reset(Attr::MODULE);
4788       }
4789     } else if (auto *details{symbol->detailsIf<GenericDetails>()}) {
4790       // found generic, want specific procedure
4791       auto *specific{details->specific()};
4792       Attrs moduleAttr;
4793       if (inInterfaceBlock()) {
4794         if (specific) {
4795           // Defining an interface in a generic of the same name which is
4796           // already shadowing another procedure.  In some cases, the shadowed
4797           // procedure is about to be replaced.
4798           if (specific->has<SubprogramNameDetails>() &&
4799               specific->attrs().test(Attr::MODULE)) {
4800             // The shadowed procedure is a separate module procedure that is
4801             // actually defined later in this (sub)module.
4802             // Define its interface now as a new symbol.
4803             moduleAttr.set(Attr::MODULE);
4804             specific = nullptr;
4805           } else if (&specific->owner() != &symbol->owner()) {
4806             // The shadowed procedure was from an enclosing scope and will be
4807             // overridden by this interface definition.
4808             specific = nullptr;
4809           }
4810           if (!specific) {
4811             details->clear_specific();
4812           }
4813         } else if (const auto *dType{details->derivedType()}) {
4814           if (&dType->owner() != &symbol->owner()) {
4815             // The shadowed derived type was from an enclosing scope and
4816             // will be overridden by this interface definition.
4817             details->clear_derivedType();
4818           }
4819         }
4820       }
4821       if (!specific) {
4822         specific = &currScope().MakeSymbol(
4823             name.source, std::move(moduleAttr), SubprogramDetails{});
4824         if (details->derivedType()) {
4825           // A specific procedure with the same name as a derived type
4826           SayAlreadyDeclared(name, *details->derivedType());
4827         } else {
4828           details->set_specific(Resolve(name, *specific));
4829         }
4830       } else if (isGeneric()) {
4831         SayAlreadyDeclared(name, *specific);
4832       }
4833       if (specific->has<SubprogramNameDetails>()) {
4834         specific->set_details(Details{SubprogramDetails{}});
4835       }
4836       return specific;
4837     }
4838   }
4839   return nullptr;
4840 }
4841 
4842 // DeclarationVisitor implementation
4843 
4844 bool DeclarationVisitor::BeginDecl() {
4845   BeginDeclTypeSpec();
4846   BeginArraySpec();
4847   return BeginAttrs();
4848 }
4849 void DeclarationVisitor::EndDecl() {
4850   EndDeclTypeSpec();
4851   EndArraySpec();
4852   EndAttrs();
4853 }
4854 
4855 bool DeclarationVisitor::CheckUseError(const parser::Name &name) {
4856   return HadUseError(context(), name.source, name.symbol);
4857 }
4858 
4859 // Report error if accessibility of symbol doesn't match isPrivate.
4860 void DeclarationVisitor::CheckAccessibility(
4861     const SourceName &name, bool isPrivate, Symbol &symbol) {
4862   if (symbol.attrs().test(Attr::PRIVATE) != isPrivate) {
4863     Say2(name,
4864         "'%s' does not have the same accessibility as its previous declaration"_err_en_US,
4865         symbol, "Previous declaration of '%s'"_en_US);
4866   }
4867 }
4868 
4869 bool DeclarationVisitor::Pre(const parser::TypeDeclarationStmt &x) {
4870   BeginDecl();
4871   // If INTRINSIC appears as an attr-spec, handle it now as if the
4872   // names had appeared on an INTRINSIC attribute statement beforehand.
4873   for (const auto &attr : std::get<std::list<parser::AttrSpec>>(x.t)) {
4874     if (std::holds_alternative<parser::Intrinsic>(attr.u)) {
4875       for (const auto &decl : std::get<std::list<parser::EntityDecl>>(x.t)) {
4876         DeclareIntrinsic(parser::GetFirstName(decl));
4877       }
4878       break;
4879     }
4880   }
4881   return true;
4882 }
4883 void DeclarationVisitor::Post(const parser::TypeDeclarationStmt &) {
4884   EndDecl();
4885 }
4886 
4887 void DeclarationVisitor::Post(const parser::DimensionStmt::Declaration &x) {
4888   DeclareObjectEntity(std::get<parser::Name>(x.t));
4889 }
4890 void DeclarationVisitor::Post(const parser::CodimensionDecl &x) {
4891   DeclareObjectEntity(std::get<parser::Name>(x.t));
4892 }
4893 
4894 bool DeclarationVisitor::Pre(const parser::Initialization &) {
4895   // Defer inspection of initializers to Initialization() so that the
4896   // symbol being initialized will be available within the initialization
4897   // expression.
4898   return false;
4899 }
4900 
4901 void DeclarationVisitor::Post(const parser::EntityDecl &x) {
4902   const auto &name{std::get<parser::ObjectName>(x.t)};
4903   Attrs attrs{attrs_ ? HandleSaveName(name.source, *attrs_) : Attrs{}};
4904   attrs.set(Attr::INTRINSIC, false); // dealt with in Pre(TypeDeclarationStmt)
4905   Symbol &symbol{DeclareUnknownEntity(name, attrs)};
4906   symbol.ReplaceName(name.source);
4907   SetCUDADataAttr(name.source, symbol, cudaDataAttr());
4908   if (const auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) {
4909     ConvertToObjectEntity(symbol) || ConvertToProcEntity(symbol);
4910     symbol.set(
4911         Symbol::Flag::EntryDummyArgument, false); // forestall excessive errors
4912     Initialization(name, *init, false);
4913   } else if (attrs.test(Attr::PARAMETER)) { // C882, C883
4914     Say(name, "Missing initialization for parameter '%s'"_err_en_US);
4915   }
4916   if (auto *scopeSymbol{currScope().symbol()}) {
4917     if (auto *details{scopeSymbol->detailsIf<DerivedTypeDetails>()}) {
4918       if (details->isDECStructure()) {
4919         details->add_component(symbol);
4920       }
4921     }
4922   }
4923 }
4924 
4925 void DeclarationVisitor::Post(const parser::PointerDecl &x) {
4926   const auto &name{std::get<parser::Name>(x.t)};
4927   if (const auto &deferredShapeSpecs{
4928           std::get<std::optional<parser::DeferredShapeSpecList>>(x.t)}) {
4929     CHECK(arraySpec().empty());
4930     BeginArraySpec();
4931     set_arraySpec(AnalyzeDeferredShapeSpecList(context(), *deferredShapeSpecs));
4932     Symbol &symbol{DeclareObjectEntity(name, Attrs{Attr::POINTER})};
4933     symbol.ReplaceName(name.source);
4934     EndArraySpec();
4935   } else {
4936     if (const auto *symbol{FindInScope(name)}) {
4937       const auto *subp{symbol->detailsIf<SubprogramDetails>()};
4938       if (!symbol->has<UseDetails>() && // error caught elsewhere
4939           !symbol->has<ObjectEntityDetails>() &&
4940           !symbol->has<ProcEntityDetails>() &&
4941           !symbol->CanReplaceDetails(ObjectEntityDetails{}) &&
4942           !symbol->CanReplaceDetails(ProcEntityDetails{}) &&
4943           !(subp && subp->isInterface())) {
4944         Say(name, "'%s' cannot have the POINTER attribute"_err_en_US);
4945       }
4946     }
4947     HandleAttributeStmt(Attr::POINTER, std::get<parser::Name>(x.t));
4948   }
4949 }
4950 
4951 bool DeclarationVisitor::Pre(const parser::BindEntity &x) {
4952   auto kind{std::get<parser::BindEntity::Kind>(x.t)};
4953   auto &name{std::get<parser::Name>(x.t)};
4954   Symbol *symbol;
4955   if (kind == parser::BindEntity::Kind::Object) {
4956     symbol = &HandleAttributeStmt(Attr::BIND_C, name);
4957   } else {
4958     symbol = &MakeCommonBlockSymbol(name);
4959     SetExplicitAttr(*symbol, Attr::BIND_C);
4960   }
4961   // 8.6.4(1)
4962   // Some entities such as named constant or module name need to checked
4963   // elsewhere. This is to skip the ICE caused by setting Bind name for non-name
4964   // things such as data type and also checks for procedures.
4965   if (symbol->has<CommonBlockDetails>() || symbol->has<ObjectEntityDetails>() ||
4966       symbol->has<EntityDetails>()) {
4967     SetBindNameOn(*symbol);
4968   } else {
4969     Say(name,
4970         "Only variable and named common block can be in BIND statement"_err_en_US);
4971   }
4972   return false;
4973 }
4974 bool DeclarationVisitor::Pre(const parser::OldParameterStmt &x) {
4975   inOldStyleParameterStmt_ = true;
4976   Walk(x.v);
4977   inOldStyleParameterStmt_ = false;
4978   return false;
4979 }
4980 bool DeclarationVisitor::Pre(const parser::NamedConstantDef &x) {
4981   auto &name{std::get<parser::NamedConstant>(x.t).v};
4982   auto &symbol{HandleAttributeStmt(Attr::PARAMETER, name)};
4983   ConvertToObjectEntity(symbol);
4984   auto *details{symbol.detailsIf<ObjectEntityDetails>()};
4985   if (!details || symbol.test(Symbol::Flag::CrayPointer) ||
4986       symbol.test(Symbol::Flag::CrayPointee)) {
4987     SayWithDecl(
4988         name, symbol, "PARAMETER attribute not allowed on '%s'"_err_en_US);
4989     return false;
4990   }
4991   const auto &expr{std::get<parser::ConstantExpr>(x.t)};
4992   if (details->init() || symbol.test(Symbol::Flag::InDataStmt)) {
4993     Say(name, "Named constant '%s' already has a value"_err_en_US);
4994   }
4995   if (inOldStyleParameterStmt_) {
4996     // non-standard extension PARAMETER statement (no parentheses)
4997     Walk(expr);
4998     auto folded{EvaluateExpr(expr)};
4999     if (details->type()) {
5000       SayWithDecl(name, symbol,
5001           "Alternative style PARAMETER '%s' must not already have an explicit type"_err_en_US);
5002     } else if (folded) {
5003       auto at{expr.thing.value().source};
5004       if (evaluate::IsActuallyConstant(*folded)) {
5005         if (const auto *type{currScope().GetType(*folded)}) {
5006           if (type->IsPolymorphic()) {
5007             Say(at, "The expression must not be polymorphic"_err_en_US);
5008           } else if (auto shape{ToArraySpec(
5009                          GetFoldingContext(), evaluate::GetShape(*folded))}) {
5010             // The type of the named constant is assumed from the expression.
5011             details->set_type(*type);
5012             details->set_init(std::move(*folded));
5013             details->set_shape(std::move(*shape));
5014           } else {
5015             Say(at, "The expression must have constant shape"_err_en_US);
5016           }
5017         } else {
5018           Say(at, "The expression must have a known type"_err_en_US);
5019         }
5020       } else {
5021         Say(at, "The expression must be a constant of known type"_err_en_US);
5022       }
5023     }
5024   } else {
5025     // standard-conforming PARAMETER statement (with parentheses)
5026     ApplyImplicitRules(symbol);
5027     Walk(expr);
5028     if (auto converted{EvaluateNonPointerInitializer(
5029             symbol, expr, expr.thing.value().source)}) {
5030       details->set_init(std::move(*converted));
5031     }
5032   }
5033   return false;
5034 }
5035 bool DeclarationVisitor::Pre(const parser::NamedConstant &x) {
5036   const parser::Name &name{x.v};
5037   if (!FindSymbol(name)) {
5038     Say(name, "Named constant '%s' not found"_err_en_US);
5039   } else {
5040     CheckUseError(name);
5041   }
5042   return false;
5043 }
5044 
5045 bool DeclarationVisitor::Pre(const parser::Enumerator &enumerator) {
5046   const parser::Name &name{std::get<parser::NamedConstant>(enumerator.t).v};
5047   Symbol *symbol{FindInScope(name)};
5048   if (symbol && !symbol->has<UnknownDetails>()) {
5049     // Contrary to named constants appearing in a PARAMETER statement,
5050     // enumerator names should not have their type, dimension or any other
5051     // attributes defined before they are declared in the enumerator statement,
5052     // with the exception of accessibility.
5053     // This is not explicitly forbidden by the standard, but they are scalars
5054     // which type is left for the compiler to chose, so do not let users try to
5055     // tamper with that.
5056     SayAlreadyDeclared(name, *symbol);
5057     symbol = nullptr;
5058   } else {
5059     // Enumerators are treated as PARAMETER (section 7.6 paragraph (4))
5060     symbol = &MakeSymbol(name, Attrs{Attr::PARAMETER}, ObjectEntityDetails{});
5061     symbol->SetType(context().MakeNumericType(
5062         TypeCategory::Integer, evaluate::CInteger::kind));
5063   }
5064 
5065   if (auto &init{std::get<std::optional<parser::ScalarIntConstantExpr>>(
5066           enumerator.t)}) {
5067     Walk(*init); // Resolve names in expression before evaluation.
5068     if (auto value{EvaluateInt64(context(), *init)}) {
5069       // Cast all init expressions to C_INT so that they can then be
5070       // safely incremented (see 7.6 Note 2).
5071       enumerationState_.value = static_cast<int>(*value);
5072     } else {
5073       Say(name,
5074           "Enumerator value could not be computed "
5075           "from the given expression"_err_en_US);
5076       // Prevent resolution of next enumerators value
5077       enumerationState_.value = std::nullopt;
5078     }
5079   }
5080 
5081   if (symbol) {
5082     if (enumerationState_.value) {
5083       symbol->get<ObjectEntityDetails>().set_init(SomeExpr{
5084           evaluate::Expr<evaluate::CInteger>{*enumerationState_.value}});
5085     } else {
5086       context().SetError(*symbol);
5087     }
5088   }
5089 
5090   if (enumerationState_.value) {
5091     (*enumerationState_.value)++;
5092   }
5093   return false;
5094 }
5095 
5096 void DeclarationVisitor::Post(const parser::EnumDef &) {
5097   enumerationState_ = EnumeratorState{};
5098 }
5099 
5100 bool DeclarationVisitor::Pre(const parser::AccessSpec &x) {
5101   Attr attr{AccessSpecToAttr(x)};
5102   if (!NonDerivedTypeScope().IsModule()) { // C817
5103     Say(currStmtSource().value(),
5104         "%s attribute may only appear in the specification part of a module"_err_en_US,
5105         EnumToString(attr));
5106   }
5107   CheckAndSet(attr);
5108   return false;
5109 }
5110 
5111 bool DeclarationVisitor::Pre(const parser::AsynchronousStmt &x) {
5112   return HandleAttributeStmt(Attr::ASYNCHRONOUS, x.v);
5113 }
5114 bool DeclarationVisitor::Pre(const parser::ContiguousStmt &x) {
5115   return HandleAttributeStmt(Attr::CONTIGUOUS, x.v);
5116 }
5117 bool DeclarationVisitor::Pre(const parser::ExternalStmt &x) {
5118   HandleAttributeStmt(Attr::EXTERNAL, x.v);
5119   for (const auto &name : x.v) {
5120     auto *symbol{FindSymbol(name)};
5121     if (!ConvertToProcEntity(DEREF(symbol), name.source)) {
5122       // Check if previous symbol is an interface.
5123       if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
5124         if (details->isInterface()) {
5125           // Warn if interface previously declared.
5126           context().Warn(common::LanguageFeature::RedundantAttribute,
5127               name.source,
5128               "EXTERNAL attribute was already specified on '%s'"_warn_en_US,
5129               name.source);
5130         }
5131       } else {
5132         SayWithDecl(
5133             name, *symbol, "EXTERNAL attribute not allowed on '%s'"_err_en_US);
5134       }
5135     } else if (symbol->attrs().test(Attr::INTRINSIC)) { // C840
5136       Say(symbol->name(),
5137           "Symbol '%s' cannot have both INTRINSIC and EXTERNAL attributes"_err_en_US,
5138           symbol->name());
5139     }
5140   }
5141   return false;
5142 }
5143 bool DeclarationVisitor::Pre(const parser::IntentStmt &x) {
5144   auto &intentSpec{std::get<parser::IntentSpec>(x.t)};
5145   auto &names{std::get<std::list<parser::Name>>(x.t)};
5146   return CheckNotInBlock("INTENT") && // C1107
5147       HandleAttributeStmt(IntentSpecToAttr(intentSpec), names);
5148 }
5149 bool DeclarationVisitor::Pre(const parser::IntrinsicStmt &x) {
5150   for (const auto &name : x.v) {
5151     DeclareIntrinsic(name);
5152   }
5153   return false;
5154 }
5155 void DeclarationVisitor::DeclareIntrinsic(const parser::Name &name) {
5156   HandleAttributeStmt(Attr::INTRINSIC, name);
5157   if (!IsIntrinsic(name.source, std::nullopt)) {
5158     Say(name.source, "'%s' is not a known intrinsic procedure"_err_en_US);
5159   }
5160   auto &symbol{DEREF(FindSymbol(name))};
5161   if (symbol.has<GenericDetails>()) {
5162     // Generic interface is extending intrinsic; ok
5163   } else if (!ConvertToProcEntity(symbol, name.source)) {
5164     SayWithDecl(
5165         name, symbol, "INTRINSIC attribute not allowed on '%s'"_err_en_US);
5166   } else if (symbol.attrs().test(Attr::EXTERNAL)) { // C840
5167     Say(symbol.name(),
5168         "Symbol '%s' cannot have both EXTERNAL and INTRINSIC attributes"_err_en_US,
5169         symbol.name());
5170   } else {
5171     if (symbol.GetType()) {
5172       // These warnings are worded so that they should make sense in either
5173       // order.
5174       if (auto *msg{context().Warn(
5175               common::UsageWarning::IgnoredIntrinsicFunctionType, symbol.name(),
5176               "Explicit type declaration ignored for intrinsic function '%s'"_warn_en_US,
5177               symbol.name())}) {
5178         msg->Attach(name.source,
5179             "INTRINSIC statement for explicitly-typed '%s'"_en_US, name.source);
5180       }
5181     }
5182     if (!symbol.test(Symbol::Flag::Function) &&
5183         !symbol.test(Symbol::Flag::Subroutine)) {
5184       if (context().intrinsics().IsIntrinsicFunction(name.source.ToString())) {
5185         symbol.set(Symbol::Flag::Function);
5186       } else if (context().intrinsics().IsIntrinsicSubroutine(
5187                      name.source.ToString())) {
5188         symbol.set(Symbol::Flag::Subroutine);
5189       }
5190     }
5191   }
5192 }
5193 bool DeclarationVisitor::Pre(const parser::OptionalStmt &x) {
5194   return CheckNotInBlock("OPTIONAL") && // C1107
5195       HandleAttributeStmt(Attr::OPTIONAL, x.v);
5196 }
5197 bool DeclarationVisitor::Pre(const parser::ProtectedStmt &x) {
5198   return HandleAttributeStmt(Attr::PROTECTED, x.v);
5199 }
5200 bool DeclarationVisitor::Pre(const parser::ValueStmt &x) {
5201   return CheckNotInBlock("VALUE") && // C1107
5202       HandleAttributeStmt(Attr::VALUE, x.v);
5203 }
5204 bool DeclarationVisitor::Pre(const parser::VolatileStmt &x) {
5205   return HandleAttributeStmt(Attr::VOLATILE, x.v);
5206 }
5207 bool DeclarationVisitor::Pre(const parser::CUDAAttributesStmt &x) {
5208   auto attr{std::get<common::CUDADataAttr>(x.t)};
5209   for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
5210     auto *symbol{FindInScope(name)};
5211     if (symbol && symbol->has<UseDetails>()) {
5212       Say(currStmtSource().value(),
5213           "Cannot apply CUDA data attribute to use-associated '%s'"_err_en_US,
5214           name.source);
5215     } else {
5216       if (!symbol) {
5217         symbol = &MakeSymbol(name, ObjectEntityDetails{});
5218       }
5219       SetCUDADataAttr(name.source, *symbol, attr);
5220     }
5221   }
5222   return false;
5223 }
5224 // Handle a statement that sets an attribute on a list of names.
5225 bool DeclarationVisitor::HandleAttributeStmt(
5226     Attr attr, const std::list<parser::Name> &names) {
5227   for (const auto &name : names) {
5228     HandleAttributeStmt(attr, name);
5229   }
5230   return false;
5231 }
5232 Symbol &DeclarationVisitor::HandleAttributeStmt(
5233     Attr attr, const parser::Name &name) {
5234   auto *symbol{FindInScope(name)};
5235   if (attr == Attr::ASYNCHRONOUS || attr == Attr::VOLATILE) {
5236     // these can be set on a symbol that is host-assoc or use-assoc
5237     if (!symbol &&
5238         (currScope().kind() == Scope::Kind::Subprogram ||
5239             currScope().kind() == Scope::Kind::BlockConstruct)) {
5240       if (auto *hostSymbol{FindSymbol(name)}) {
5241         symbol = &MakeHostAssocSymbol(name, *hostSymbol);
5242       }
5243     }
5244   } else if (symbol && symbol->has<UseDetails>()) {
5245     if (symbol->GetUltimate().attrs().test(attr)) {
5246       context().Warn(common::LanguageFeature::RedundantAttribute,
5247           currStmtSource().value(),
5248           "Use-associated '%s' already has '%s' attribute"_warn_en_US,
5249           name.source, EnumToString(attr));
5250     } else {
5251       Say(currStmtSource().value(),
5252           "Cannot change %s attribute on use-associated '%s'"_err_en_US,
5253           EnumToString(attr), name.source);
5254     }
5255     return *symbol;
5256   }
5257   if (!symbol) {
5258     symbol = &MakeSymbol(name, EntityDetails{});
5259   }
5260   if (CheckDuplicatedAttr(name.source, *symbol, attr)) {
5261     HandleSaveName(name.source, Attrs{attr});
5262     SetExplicitAttr(*symbol, attr);
5263   }
5264   return *symbol;
5265 }
5266 // C1107
5267 bool DeclarationVisitor::CheckNotInBlock(const char *stmt) {
5268   if (currScope().kind() == Scope::Kind::BlockConstruct) {
5269     Say(MessageFormattedText{
5270         "%s statement is not allowed in a BLOCK construct"_err_en_US, stmt});
5271     return false;
5272   } else {
5273     return true;
5274   }
5275 }
5276 
5277 void DeclarationVisitor::Post(const parser::ObjectDecl &x) {
5278   CHECK(objectDeclAttr_);
5279   const auto &name{std::get<parser::ObjectName>(x.t)};
5280   DeclareObjectEntity(name, Attrs{*objectDeclAttr_});
5281 }
5282 
5283 // Declare an entity not yet known to be an object or proc.
5284 Symbol &DeclarationVisitor::DeclareUnknownEntity(
5285     const parser::Name &name, Attrs attrs) {
5286   if (!arraySpec().empty() || !coarraySpec().empty()) {
5287     return DeclareObjectEntity(name, attrs);
5288   } else {
5289     Symbol &symbol{DeclareEntity<EntityDetails>(name, attrs)};
5290     if (auto *type{GetDeclTypeSpec()}) {
5291       SetType(name, *type);
5292     }
5293     charInfo_.length.reset();
5294     if (symbol.attrs().test(Attr::EXTERNAL)) {
5295       ConvertToProcEntity(symbol);
5296     } else if (symbol.attrs().HasAny(Attrs{Attr::ALLOCATABLE,
5297                    Attr::ASYNCHRONOUS, Attr::CONTIGUOUS, Attr::PARAMETER,
5298                    Attr::SAVE, Attr::TARGET, Attr::VALUE, Attr::VOLATILE})) {
5299       ConvertToObjectEntity(symbol);
5300     }
5301     if (attrs.test(Attr::BIND_C)) {
5302       SetBindNameOn(symbol);
5303     }
5304     return symbol;
5305   }
5306 }
5307 
5308 bool DeclarationVisitor::HasCycle(
5309     const Symbol &procSymbol, const Symbol *interface) {
5310   SourceOrderedSymbolSet procsInCycle;
5311   procsInCycle.insert(procSymbol);
5312   while (interface) {
5313     if (procsInCycle.count(*interface) > 0) {
5314       for (const auto &procInCycle : procsInCycle) {
5315         Say(procInCycle->name(),
5316             "The interface for procedure '%s' is recursively defined"_err_en_US,
5317             procInCycle->name());
5318         context().SetError(*procInCycle);
5319       }
5320       return true;
5321     } else if (const auto *procDetails{
5322                    interface->detailsIf<ProcEntityDetails>()}) {
5323       procsInCycle.insert(*interface);
5324       interface = procDetails->procInterface();
5325     } else {
5326       break;
5327     }
5328   }
5329   return false;
5330 }
5331 
5332 Symbol &DeclarationVisitor::DeclareProcEntity(
5333     const parser::Name &name, Attrs attrs, const Symbol *interface) {
5334   Symbol *proc{nullptr};
5335   if (auto *extant{FindInScope(name)}) {
5336     if (auto *d{extant->detailsIf<GenericDetails>()}; d && !d->derivedType()) {
5337       // procedure pointer with same name as a generic
5338       if (auto *specific{d->specific()}) {
5339         SayAlreadyDeclared(name, *specific);
5340       } else {
5341         // Create the ProcEntityDetails symbol in the scope as the "specific()"
5342         // symbol behind an existing GenericDetails symbol of the same name.
5343         proc = &Resolve(name,
5344             currScope().MakeSymbol(name.source, attrs, ProcEntityDetails{}));
5345         d->set_specific(*proc);
5346       }
5347     }
5348   }
5349   Symbol &symbol{proc ? *proc : DeclareEntity<ProcEntityDetails>(name, attrs)};
5350   if (auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
5351     if (context().HasError(symbol)) {
5352     } else if (HasCycle(symbol, interface)) {
5353       return symbol;
5354     } else if (interface && (details->procInterface() || details->type())) {
5355       SayWithDecl(name, symbol,
5356           "The interface for procedure '%s' has already been declared"_err_en_US);
5357       context().SetError(symbol);
5358     } else if (interface) {
5359       details->set_procInterfaces(
5360           *interface, BypassGeneric(interface->GetUltimate()));
5361       if (interface->test(Symbol::Flag::Function)) {
5362         symbol.set(Symbol::Flag::Function);
5363       } else if (interface->test(Symbol::Flag::Subroutine)) {
5364         symbol.set(Symbol::Flag::Subroutine);
5365       }
5366     } else if (auto *type{GetDeclTypeSpec()}) {
5367       SetType(name, *type);
5368       symbol.set(Symbol::Flag::Function);
5369     }
5370     SetBindNameOn(symbol);
5371     SetPassNameOn(symbol);
5372   }
5373   return symbol;
5374 }
5375 
5376 Symbol &DeclarationVisitor::DeclareObjectEntity(
5377     const parser::Name &name, Attrs attrs) {
5378   Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, attrs)};
5379   if (auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
5380     if (auto *type{GetDeclTypeSpec()}) {
5381       SetType(name, *type);
5382     }
5383     if (!arraySpec().empty()) {
5384       if (details->IsArray()) {
5385         if (!context().HasError(symbol)) {
5386           Say(name,
5387               "The dimensions of '%s' have already been declared"_err_en_US);
5388           context().SetError(symbol);
5389         }
5390       } else if (MustBeScalar(symbol)) {
5391         context().Warn(common::UsageWarning::PreviousScalarUse, name.source,
5392             "'%s' appeared earlier as a scalar actual argument to a specification function"_warn_en_US,
5393             name.source);
5394       } else if (details->init() || symbol.test(Symbol::Flag::InDataStmt)) {
5395         Say(name, "'%s' was initialized earlier as a scalar"_err_en_US);
5396       } else {
5397         details->set_shape(arraySpec());
5398       }
5399     }
5400     if (!coarraySpec().empty()) {
5401       if (details->IsCoarray()) {
5402         if (!context().HasError(symbol)) {
5403           Say(name,
5404               "The codimensions of '%s' have already been declared"_err_en_US);
5405           context().SetError(symbol);
5406         }
5407       } else {
5408         details->set_coshape(coarraySpec());
5409       }
5410     }
5411     SetBindNameOn(symbol);
5412   }
5413   ClearArraySpec();
5414   ClearCoarraySpec();
5415   charInfo_.length.reset();
5416   return symbol;
5417 }
5418 
5419 void DeclarationVisitor::Post(const parser::IntegerTypeSpec &x) {
5420   if (!isVectorType_) {
5421     SetDeclTypeSpec(MakeNumericType(TypeCategory::Integer, x.v));
5422   }
5423 }
5424 void DeclarationVisitor::Post(const parser::UnsignedTypeSpec &x) {
5425   if (!isVectorType_) {
5426     if (!context().IsEnabled(common::LanguageFeature::Unsigned) &&
5427         !context().AnyFatalError()) {
5428       context().Say("-funsigned is required to enable UNSIGNED type"_err_en_US);
5429     }
5430     SetDeclTypeSpec(MakeNumericType(TypeCategory::Unsigned, x.v));
5431   }
5432 }
5433 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Real &x) {
5434   if (!isVectorType_) {
5435     SetDeclTypeSpec(MakeNumericType(TypeCategory::Real, x.kind));
5436   }
5437 }
5438 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Complex &x) {
5439   SetDeclTypeSpec(MakeNumericType(TypeCategory::Complex, x.kind));
5440 }
5441 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Logical &x) {
5442   SetDeclTypeSpec(MakeLogicalType(x.kind));
5443 }
5444 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Character &) {
5445   if (!charInfo_.length) {
5446     charInfo_.length = ParamValue{1, common::TypeParamAttr::Len};
5447   }
5448   if (!charInfo_.kind) {
5449     charInfo_.kind =
5450         KindExpr{context().GetDefaultKind(TypeCategory::Character)};
5451   }
5452   SetDeclTypeSpec(currScope().MakeCharacterType(
5453       std::move(*charInfo_.length), std::move(*charInfo_.kind)));
5454   charInfo_ = {};
5455 }
5456 void DeclarationVisitor::Post(const parser::CharSelector::LengthAndKind &x) {
5457   charInfo_.kind = EvaluateSubscriptIntExpr(x.kind);
5458   std::optional<std::int64_t> intKind{ToInt64(charInfo_.kind)};
5459   if (intKind &&
5460       !context().targetCharacteristics().IsTypeEnabled(
5461           TypeCategory::Character, *intKind)) { // C715, C719
5462     Say(currStmtSource().value(),
5463         "KIND value (%jd) not valid for CHARACTER"_err_en_US, *intKind);
5464     charInfo_.kind = std::nullopt; // prevent further errors
5465   }
5466   if (x.length) {
5467     charInfo_.length = GetParamValue(*x.length, common::TypeParamAttr::Len);
5468   }
5469 }
5470 void DeclarationVisitor::Post(const parser::CharLength &x) {
5471   if (const auto *length{std::get_if<std::uint64_t>(&x.u)}) {
5472     charInfo_.length = ParamValue{
5473         static_cast<ConstantSubscript>(*length), common::TypeParamAttr::Len};
5474   } else {
5475     charInfo_.length = GetParamValue(
5476         std::get<parser::TypeParamValue>(x.u), common::TypeParamAttr::Len);
5477   }
5478 }
5479 void DeclarationVisitor::Post(const parser::LengthSelector &x) {
5480   if (const auto *param{std::get_if<parser::TypeParamValue>(&x.u)}) {
5481     charInfo_.length = GetParamValue(*param, common::TypeParamAttr::Len);
5482   }
5483 }
5484 
5485 bool DeclarationVisitor::Pre(const parser::KindParam &x) {
5486   if (const auto *kind{std::get_if<
5487           parser::Scalar<parser::Integer<parser::Constant<parser::Name>>>>(
5488           &x.u)}) {
5489     const parser::Name &name{kind->thing.thing.thing};
5490     if (!FindSymbol(name)) {
5491       Say(name, "Parameter '%s' not found"_err_en_US);
5492     }
5493   }
5494   return false;
5495 }
5496 
5497 int DeclarationVisitor::GetVectorElementKind(
5498     TypeCategory category, const std::optional<parser::KindSelector> &kind) {
5499   KindExpr value{GetKindParamExpr(category, kind)};
5500   if (auto known{evaluate::ToInt64(value)}) {
5501     return static_cast<int>(*known);
5502   }
5503   common::die("Vector element kind must be known at compile-time");
5504 }
5505 
5506 bool DeclarationVisitor::Pre(const parser::VectorTypeSpec &) {
5507   // PowerPC vector types are allowed only on Power architectures.
5508   if (!currScope().context().targetCharacteristics().isPPC()) {
5509     Say(currStmtSource().value(),
5510         "Vector type is only supported for PowerPC"_err_en_US);
5511     isVectorType_ = false;
5512     return false;
5513   }
5514   isVectorType_ = true;
5515   return true;
5516 }
5517 // Create semantic::DerivedTypeSpec for Vector types here.
5518 void DeclarationVisitor::Post(const parser::VectorTypeSpec &x) {
5519   llvm::StringRef typeName;
5520   llvm::SmallVector<ParamValue> typeParams;
5521   DerivedTypeSpec::Category vectorCategory;
5522 
5523   isVectorType_ = false;
5524   common::visit(
5525       common::visitors{
5526           [&](const parser::IntrinsicVectorTypeSpec &y) {
5527             vectorCategory = DerivedTypeSpec::Category::IntrinsicVector;
5528             int vecElemKind = 0;
5529             typeName = "__builtin_ppc_intrinsic_vector";
5530             common::visit(
5531                 common::visitors{
5532                     [&](const parser::IntegerTypeSpec &z) {
5533                       vecElemKind = GetVectorElementKind(
5534                           TypeCategory::Integer, std::move(z.v));
5535                       typeParams.push_back(ParamValue(
5536                           static_cast<common::ConstantSubscript>(
5537                               common::VectorElementCategory::Integer),
5538                           common::TypeParamAttr::Kind));
5539                     },
5540                     [&](const parser::IntrinsicTypeSpec::Real &z) {
5541                       vecElemKind = GetVectorElementKind(
5542                           TypeCategory::Real, std::move(z.kind));
5543                       typeParams.push_back(
5544                           ParamValue(static_cast<common::ConstantSubscript>(
5545                                          common::VectorElementCategory::Real),
5546                               common::TypeParamAttr::Kind));
5547                     },
5548                     [&](const parser::UnsignedTypeSpec &z) {
5549                       vecElemKind = GetVectorElementKind(
5550                           TypeCategory::Integer, std::move(z.v));
5551                       typeParams.push_back(ParamValue(
5552                           static_cast<common::ConstantSubscript>(
5553                               common::VectorElementCategory::Unsigned),
5554                           common::TypeParamAttr::Kind));
5555                     },
5556                 },
5557                 y.v.u);
5558             typeParams.push_back(
5559                 ParamValue(static_cast<common::ConstantSubscript>(vecElemKind),
5560                     common::TypeParamAttr::Kind));
5561           },
5562           [&](const parser::VectorTypeSpec::PairVectorTypeSpec &y) {
5563             vectorCategory = DerivedTypeSpec::Category::PairVector;
5564             typeName = "__builtin_ppc_pair_vector";
5565           },
5566           [&](const parser::VectorTypeSpec::QuadVectorTypeSpec &y) {
5567             vectorCategory = DerivedTypeSpec::Category::QuadVector;
5568             typeName = "__builtin_ppc_quad_vector";
5569           },
5570       },
5571       x.u);
5572 
5573   auto ppcBuiltinTypesScope = currScope().context().GetPPCBuiltinTypesScope();
5574   if (!ppcBuiltinTypesScope) {
5575     common::die("INTERNAL: The __ppc_types module was not found ");
5576   }
5577 
5578   auto iter{ppcBuiltinTypesScope->find(
5579       semantics::SourceName{typeName.data(), typeName.size()})};
5580   if (iter == ppcBuiltinTypesScope->cend()) {
5581     common::die("INTERNAL: The __ppc_types module does not define "
5582                 "the type '%s'",
5583         typeName.data());
5584   }
5585 
5586   const semantics::Symbol &typeSymbol{*iter->second};
5587   DerivedTypeSpec vectorDerivedType{typeName.data(), typeSymbol};
5588   vectorDerivedType.set_category(vectorCategory);
5589   if (typeParams.size()) {
5590     vectorDerivedType.AddRawParamValue(nullptr, std::move(typeParams[0]));
5591     vectorDerivedType.AddRawParamValue(nullptr, std::move(typeParams[1]));
5592     vectorDerivedType.CookParameters(GetFoldingContext());
5593   }
5594 
5595   if (const DeclTypeSpec *
5596       extant{ppcBuiltinTypesScope->FindInstantiatedDerivedType(
5597           vectorDerivedType, DeclTypeSpec::Category::TypeDerived)}) {
5598     // This derived type and parameter expressions (if any) are already present
5599     // in the __ppc_intrinsics scope.
5600     SetDeclTypeSpec(*extant);
5601   } else {
5602     DeclTypeSpec &type{ppcBuiltinTypesScope->MakeDerivedType(
5603         DeclTypeSpec::Category::TypeDerived, std::move(vectorDerivedType))};
5604     DerivedTypeSpec &derived{type.derivedTypeSpec()};
5605     auto restorer{
5606         GetFoldingContext().messages().SetLocation(currStmtSource().value())};
5607     derived.Instantiate(*ppcBuiltinTypesScope);
5608     SetDeclTypeSpec(type);
5609   }
5610 }
5611 
5612 bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Type &) {
5613   CHECK(GetDeclTypeSpecCategory() == DeclTypeSpec::Category::TypeDerived);
5614   return true;
5615 }
5616 
5617 void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Type &type) {
5618   const parser::Name &derivedName{std::get<parser::Name>(type.derived.t)};
5619   if (const Symbol * derivedSymbol{derivedName.symbol}) {
5620     CheckForAbstractType(*derivedSymbol); // C706
5621   }
5622 }
5623 
5624 bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Class &) {
5625   SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived);
5626   return true;
5627 }
5628 
5629 void DeclarationVisitor::Post(
5630     const parser::DeclarationTypeSpec::Class &parsedClass) {
5631   const auto &typeName{std::get<parser::Name>(parsedClass.derived.t)};
5632   if (auto spec{ResolveDerivedType(typeName)};
5633       spec && !IsExtensibleType(&*spec)) { // C705
5634     SayWithDecl(typeName, *typeName.symbol,
5635         "Non-extensible derived type '%s' may not be used with CLASS"
5636         " keyword"_err_en_US);
5637   }
5638 }
5639 
5640 void DeclarationVisitor::Post(const parser::DerivedTypeSpec &x) {
5641   const auto &typeName{std::get<parser::Name>(x.t)};
5642   auto spec{ResolveDerivedType(typeName)};
5643   if (!spec) {
5644     return;
5645   }
5646   bool seenAnyName{false};
5647   for (const auto &typeParamSpec :
5648       std::get<std::list<parser::TypeParamSpec>>(x.t)) {
5649     const auto &optKeyword{
5650         std::get<std::optional<parser::Keyword>>(typeParamSpec.t)};
5651     std::optional<SourceName> name;
5652     if (optKeyword) {
5653       seenAnyName = true;
5654       name = optKeyword->v.source;
5655     } else if (seenAnyName) {
5656       Say(typeName.source, "Type parameter value must have a name"_err_en_US);
5657       continue;
5658     }
5659     const auto &value{std::get<parser::TypeParamValue>(typeParamSpec.t)};
5660     // The expressions in a derived type specifier whose values define
5661     // non-defaulted type parameters are evaluated (folded) in the enclosing
5662     // scope.  The KIND/LEN distinction is resolved later in
5663     // DerivedTypeSpec::CookParameters().
5664     ParamValue param{GetParamValue(value, common::TypeParamAttr::Kind)};
5665     if (!param.isExplicit() || param.GetExplicit()) {
5666       spec->AddRawParamValue(
5667           common::GetPtrFromOptional(optKeyword), std::move(param));
5668     }
5669   }
5670   // The DerivedTypeSpec *spec is used initially as a search key.
5671   // If it turns out to have the same name and actual parameter
5672   // value expressions as another DerivedTypeSpec in the current
5673   // scope does, then we'll use that extant spec; otherwise, when this
5674   // spec is distinct from all derived types previously instantiated
5675   // in the current scope, this spec will be moved into that collection.
5676   const auto &dtDetails{spec->typeSymbol().get<DerivedTypeDetails>()};
5677   auto category{GetDeclTypeSpecCategory()};
5678   if (dtDetails.isForwardReferenced()) {
5679     DeclTypeSpec &type{currScope().MakeDerivedType(category, std::move(*spec))};
5680     SetDeclTypeSpec(type);
5681     return;
5682   }
5683   // Normalize parameters to produce a better search key.
5684   spec->CookParameters(GetFoldingContext());
5685   if (!spec->MightBeParameterized()) {
5686     spec->EvaluateParameters(context());
5687   }
5688   if (const DeclTypeSpec *
5689       extant{currScope().FindInstantiatedDerivedType(*spec, category)}) {
5690     // This derived type and parameter expressions (if any) are already present
5691     // in this scope.
5692     SetDeclTypeSpec(*extant);
5693   } else {
5694     DeclTypeSpec &type{currScope().MakeDerivedType(category, std::move(*spec))};
5695     DerivedTypeSpec &derived{type.derivedTypeSpec()};
5696     if (derived.MightBeParameterized() &&
5697         currScope().IsParameterizedDerivedType()) {
5698       // Defer instantiation; use the derived type's definition's scope.
5699       derived.set_scope(DEREF(spec->typeSymbol().scope()));
5700     } else if (&currScope() == spec->typeSymbol().scope()) {
5701       // Direct recursive use of a type in the definition of one of its
5702       // components: defer instantiation
5703     } else {
5704       auto restorer{
5705           GetFoldingContext().messages().SetLocation(currStmtSource().value())};
5706       derived.Instantiate(currScope());
5707     }
5708     SetDeclTypeSpec(type);
5709   }
5710   // Capture the DerivedTypeSpec in the parse tree for use in building
5711   // structure constructor expressions.
5712   x.derivedTypeSpec = &GetDeclTypeSpec()->derivedTypeSpec();
5713 }
5714 
5715 void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Record &rec) {
5716   const auto &typeName{rec.v};
5717   if (auto spec{ResolveDerivedType(typeName)}) {
5718     spec->CookParameters(GetFoldingContext());
5719     spec->EvaluateParameters(context());
5720     if (const DeclTypeSpec *
5721         extant{currScope().FindInstantiatedDerivedType(
5722             *spec, DeclTypeSpec::TypeDerived)}) {
5723       SetDeclTypeSpec(*extant);
5724     } else {
5725       Say(typeName.source, "%s is not a known STRUCTURE"_err_en_US,
5726           typeName.source);
5727     }
5728   }
5729 }
5730 
5731 // The descendents of DerivedTypeDef in the parse tree are visited directly
5732 // in this Pre() routine so that recursive use of the derived type can be
5733 // supported in the components.
5734 bool DeclarationVisitor::Pre(const parser::DerivedTypeDef &x) {
5735   auto &stmt{std::get<parser::Statement<parser::DerivedTypeStmt>>(x.t)};
5736   Walk(stmt);
5737   Walk(std::get<std::list<parser::Statement<parser::TypeParamDefStmt>>>(x.t));
5738   auto &scope{currScope()};
5739   CHECK(scope.symbol());
5740   CHECK(scope.symbol()->scope() == &scope);
5741   auto &details{scope.symbol()->get<DerivedTypeDetails>()};
5742   for (auto &paramName : std::get<std::list<parser::Name>>(stmt.statement.t)) {
5743     if (auto *symbol{FindInScope(scope, paramName)}) {
5744       if (auto *details{symbol->detailsIf<TypeParamDetails>()}) {
5745         if (!details->attr()) {
5746           Say(paramName,
5747               "No definition found for type parameter '%s'"_err_en_US); // C742
5748         }
5749       }
5750     }
5751   }
5752   Walk(std::get<std::list<parser::Statement<parser::PrivateOrSequence>>>(x.t));
5753   const auto &componentDefs{
5754       std::get<std::list<parser::Statement<parser::ComponentDefStmt>>>(x.t)};
5755   Walk(componentDefs);
5756   if (derivedTypeInfo_.sequence) {
5757     details.set_sequence(true);
5758     if (componentDefs.empty()) {
5759       // F'2023 C745 - not enforced by any compiler
5760       context().Warn(common::LanguageFeature::EmptySequenceType, stmt.source,
5761           "A sequence type should have at least one component"_warn_en_US);
5762     }
5763     if (!details.paramDeclOrder().empty()) { // C740
5764       Say(stmt.source,
5765           "A sequence type may not have type parameters"_err_en_US);
5766     }
5767     if (derivedTypeInfo_.extends) { // C735
5768       Say(stmt.source,
5769           "A sequence type may not have the EXTENDS attribute"_err_en_US);
5770     }
5771   }
5772   Walk(std::get<std::optional<parser::TypeBoundProcedurePart>>(x.t));
5773   Walk(std::get<parser::Statement<parser::EndTypeStmt>>(x.t));
5774   details.set_isForwardReferenced(false);
5775   derivedTypeInfo_ = {};
5776   PopScope();
5777   return false;
5778 }
5779 
5780 bool DeclarationVisitor::Pre(const parser::DerivedTypeStmt &) {
5781   return BeginAttrs();
5782 }
5783 void DeclarationVisitor::Post(const parser::DerivedTypeStmt &x) {
5784   auto &name{std::get<parser::Name>(x.t)};
5785   // Resolve the EXTENDS() clause before creating the derived
5786   // type's symbol to foil attempts to recursively extend a type.
5787   auto *extendsName{derivedTypeInfo_.extends};
5788   std::optional<DerivedTypeSpec> extendsType{
5789       ResolveExtendsType(name, extendsName)};
5790   DerivedTypeDetails derivedTypeDetails;
5791   // Catch any premature structure constructors within the definition
5792   derivedTypeDetails.set_isForwardReferenced(true);
5793   auto &symbol{MakeSymbol(name, GetAttrs(), std::move(derivedTypeDetails))};
5794   symbol.ReplaceName(name.source);
5795   derivedTypeInfo_.type = &symbol;
5796   PushScope(Scope::Kind::DerivedType, &symbol);
5797   if (extendsType) {
5798     // Declare the "parent component"; private if the type is.
5799     // Any symbol stored in the EXTENDS() clause is temporarily
5800     // hidden so that a new symbol can be created for the parent
5801     // component without producing spurious errors about already
5802     // existing.
5803     const Symbol &extendsSymbol{extendsType->typeSymbol()};
5804     auto restorer{common::ScopedSet(extendsName->symbol, nullptr)};
5805     if (OkToAddComponent(*extendsName, &extendsSymbol)) {
5806       auto &comp{DeclareEntity<ObjectEntityDetails>(*extendsName, Attrs{})};
5807       comp.attrs().set(
5808           Attr::PRIVATE, extendsSymbol.attrs().test(Attr::PRIVATE));
5809       comp.implicitAttrs().set(
5810           Attr::PRIVATE, extendsSymbol.implicitAttrs().test(Attr::PRIVATE));
5811       comp.set(Symbol::Flag::ParentComp);
5812       DeclTypeSpec &type{currScope().MakeDerivedType(
5813           DeclTypeSpec::TypeDerived, std::move(*extendsType))};
5814       type.derivedTypeSpec().set_scope(DEREF(extendsSymbol.scope()));
5815       comp.SetType(type);
5816       DerivedTypeDetails &details{symbol.get<DerivedTypeDetails>()};
5817       details.add_component(comp);
5818     }
5819   }
5820   // Create symbols now for type parameters so that they shadow names
5821   // from the enclosing specification part.
5822   if (auto *details{symbol.detailsIf<DerivedTypeDetails>()}) {
5823     for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
5824       if (Symbol * symbol{MakeTypeSymbol(name, TypeParamDetails{})}) {
5825         details->add_paramNameOrder(*symbol);
5826       }
5827     }
5828   }
5829   EndAttrs();
5830 }
5831 
5832 void DeclarationVisitor::Post(const parser::TypeParamDefStmt &x) {
5833   auto *type{GetDeclTypeSpec()};
5834   DerivedTypeDetails *derivedDetails{nullptr};
5835   if (Symbol * dtSym{currScope().symbol()}) {
5836     derivedDetails = dtSym->detailsIf<DerivedTypeDetails>();
5837   }
5838   auto attr{std::get<common::TypeParamAttr>(x.t)};
5839   for (auto &decl : std::get<std::list<parser::TypeParamDecl>>(x.t)) {
5840     auto &name{std::get<parser::Name>(decl.t)};
5841     if (Symbol * symbol{FindInScope(currScope(), name)}) {
5842       if (auto *paramDetails{symbol->detailsIf<TypeParamDetails>()}) {
5843         if (!paramDetails->attr()) {
5844           paramDetails->set_attr(attr);
5845           SetType(name, *type);
5846           if (auto &init{std::get<std::optional<parser::ScalarIntConstantExpr>>(
5847                   decl.t)}) {
5848             if (auto maybeExpr{AnalyzeExpr(context(), *init)}) {
5849               if (auto *intExpr{std::get_if<SomeIntExpr>(&maybeExpr->u)}) {
5850                 paramDetails->set_init(std::move(*intExpr));
5851               }
5852             }
5853           }
5854           if (derivedDetails) {
5855             derivedDetails->add_paramDeclOrder(*symbol);
5856           }
5857         } else {
5858           Say(name,
5859               "Type parameter '%s' was already declared in this derived type"_err_en_US);
5860         }
5861       }
5862     } else {
5863       Say(name, "'%s' is not a parameter of this derived type"_err_en_US);
5864     }
5865   }
5866   EndDecl();
5867 }
5868 bool DeclarationVisitor::Pre(const parser::TypeAttrSpec::Extends &x) {
5869   if (derivedTypeInfo_.extends) {
5870     Say(currStmtSource().value(),
5871         "Attribute 'EXTENDS' cannot be used more than once"_err_en_US);
5872   } else {
5873     derivedTypeInfo_.extends = &x.v;
5874   }
5875   return false;
5876 }
5877 
5878 bool DeclarationVisitor::Pre(const parser::PrivateStmt &) {
5879   if (!currScope().parent().IsModule()) {
5880     Say("PRIVATE is only allowed in a derived type that is"
5881         " in a module"_err_en_US); // C766
5882   } else if (derivedTypeInfo_.sawContains) {
5883     derivedTypeInfo_.privateBindings = true;
5884   } else if (!derivedTypeInfo_.privateComps) {
5885     derivedTypeInfo_.privateComps = true;
5886   } else { // C738
5887     context().Warn(common::LanguageFeature::RedundantAttribute,
5888         "PRIVATE should not appear more than once in derived type components"_warn_en_US);
5889   }
5890   return false;
5891 }
5892 bool DeclarationVisitor::Pre(const parser::SequenceStmt &) {
5893   if (derivedTypeInfo_.sequence) { // C738
5894     context().Warn(common::LanguageFeature::RedundantAttribute,
5895         "SEQUENCE should not appear more than once in derived type components"_warn_en_US);
5896   }
5897   derivedTypeInfo_.sequence = true;
5898   return false;
5899 }
5900 void DeclarationVisitor::Post(const parser::ComponentDecl &x) {
5901   const auto &name{std::get<parser::Name>(x.t)};
5902   auto attrs{GetAttrs()};
5903   if (derivedTypeInfo_.privateComps &&
5904       !attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
5905     attrs.set(Attr::PRIVATE);
5906   }
5907   if (const auto *declType{GetDeclTypeSpec()}) {
5908     if (const auto *derived{declType->AsDerived()}) {
5909       if (!attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) {
5910         if (derivedTypeInfo_.type == &derived->typeSymbol()) { // C744
5911           Say("Recursive use of the derived type requires "
5912               "POINTER or ALLOCATABLE"_err_en_US);
5913         }
5914       }
5915       // TODO: This would be more appropriate in CheckDerivedType()
5916       if (auto it{FindCoarrayUltimateComponent(*derived)}) { // C748
5917         std::string ultimateName{it.BuildResultDesignatorName()};
5918         // Strip off the leading "%"
5919         if (ultimateName.length() > 1) {
5920           ultimateName.erase(0, 1);
5921           if (attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) {
5922             evaluate::AttachDeclaration(
5923                 Say(name.source,
5924                     "A component with a POINTER or ALLOCATABLE attribute may "
5925                     "not "
5926                     "be of a type with a coarray ultimate component (named "
5927                     "'%s')"_err_en_US,
5928                     ultimateName),
5929                 derived->typeSymbol());
5930           }
5931           if (!arraySpec().empty() || !coarraySpec().empty()) {
5932             evaluate::AttachDeclaration(
5933                 Say(name.source,
5934                     "An array or coarray component may not be of a type with a "
5935                     "coarray ultimate component (named '%s')"_err_en_US,
5936                     ultimateName),
5937                 derived->typeSymbol());
5938           }
5939         }
5940       }
5941     }
5942   }
5943   if (OkToAddComponent(name)) {
5944     auto &symbol{DeclareObjectEntity(name, attrs)};
5945     SetCUDADataAttr(name.source, symbol, cudaDataAttr());
5946     if (symbol.has<ObjectEntityDetails>()) {
5947       if (auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) {
5948         Initialization(name, *init, true);
5949       }
5950     }
5951     currScope().symbol()->get<DerivedTypeDetails>().add_component(symbol);
5952   }
5953   ClearArraySpec();
5954   ClearCoarraySpec();
5955 }
5956 void DeclarationVisitor::Post(const parser::FillDecl &x) {
5957   // Replace "%FILL" with a distinct generated name
5958   const auto &name{std::get<parser::Name>(x.t)};
5959   const_cast<SourceName &>(name.source) = context().GetTempName(currScope());
5960   if (OkToAddComponent(name)) {
5961     auto &symbol{DeclareObjectEntity(name, GetAttrs())};
5962     currScope().symbol()->get<DerivedTypeDetails>().add_component(symbol);
5963   }
5964   ClearArraySpec();
5965 }
5966 bool DeclarationVisitor::Pre(const parser::ProcedureDeclarationStmt &x) {
5967   CHECK(!interfaceName_);
5968   const auto &procAttrSpec{std::get<std::list<parser::ProcAttrSpec>>(x.t)};
5969   for (const parser::ProcAttrSpec &procAttr : procAttrSpec) {
5970     if (auto *bindC{std::get_if<parser::LanguageBindingSpec>(&procAttr.u)}) {
5971       if (std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>(
5972               bindC->t)
5973               .has_value()) {
5974         if (std::get<std::list<parser::ProcDecl>>(x.t).size() > 1) {
5975           Say(context().location().value(),
5976               "A procedure declaration statement with a binding name may not declare multiple procedures"_err_en_US);
5977         }
5978         break;
5979       }
5980     }
5981   }
5982   return BeginDecl();
5983 }
5984 void DeclarationVisitor::Post(const parser::ProcedureDeclarationStmt &) {
5985   interfaceName_ = nullptr;
5986   EndDecl();
5987 }
5988 bool DeclarationVisitor::Pre(const parser::DataComponentDefStmt &x) {
5989   // Overrides parse tree traversal so as to handle attributes first,
5990   // so POINTER & ALLOCATABLE enable forward references to derived types.
5991   Walk(std::get<std::list<parser::ComponentAttrSpec>>(x.t));
5992   set_allowForwardReferenceToDerivedType(
5993       GetAttrs().HasAny({Attr::POINTER, Attr::ALLOCATABLE}));
5994   Walk(std::get<parser::DeclarationTypeSpec>(x.t));
5995   set_allowForwardReferenceToDerivedType(false);
5996   if (derivedTypeInfo_.sequence) { // C740
5997     if (const auto *declType{GetDeclTypeSpec()}) {
5998       if (!declType->AsIntrinsic() && !declType->IsSequenceType() &&
5999           !InModuleFile()) {
6000         if (GetAttrs().test(Attr::POINTER) &&
6001             context().IsEnabled(common::LanguageFeature::PointerInSeqType)) {
6002           context().Warn(common::LanguageFeature::PointerInSeqType,
6003               "A sequence type data component that is a pointer to a non-sequence type is not standard"_port_en_US);
6004         } else {
6005           Say("A sequence type data component must either be of an intrinsic type or a derived sequence type"_err_en_US);
6006         }
6007       }
6008     }
6009   }
6010   Walk(std::get<std::list<parser::ComponentOrFill>>(x.t));
6011   return false;
6012 }
6013 bool DeclarationVisitor::Pre(const parser::ProcComponentDefStmt &) {
6014   CHECK(!interfaceName_);
6015   return true;
6016 }
6017 void DeclarationVisitor::Post(const parser::ProcComponentDefStmt &) {
6018   interfaceName_ = nullptr;
6019 }
6020 bool DeclarationVisitor::Pre(const parser::ProcPointerInit &x) {
6021   if (auto *name{std::get_if<parser::Name>(&x.u)}) {
6022     return !NameIsKnownOrIntrinsic(*name) && !CheckUseError(*name);
6023   } else {
6024     const auto &null{DEREF(std::get_if<parser::NullInit>(&x.u))};
6025     Walk(null);
6026     if (auto nullInit{EvaluateExpr(null)}) {
6027       if (!evaluate::IsNullPointer(*nullInit)) {
6028         Say(null.v.value().source,
6029             "Procedure pointer initializer must be a name or intrinsic NULL()"_err_en_US);
6030       }
6031     }
6032     return false;
6033   }
6034 }
6035 void DeclarationVisitor::Post(const parser::ProcInterface &x) {
6036   if (auto *name{std::get_if<parser::Name>(&x.u)}) {
6037     interfaceName_ = name;
6038     NoteInterfaceName(*name);
6039   }
6040 }
6041 void DeclarationVisitor::Post(const parser::ProcDecl &x) {
6042   const auto &name{std::get<parser::Name>(x.t)};
6043   // Don't use BypassGeneric or GetUltimate on this symbol, they can
6044   // lead to unusable names in module files.
6045   const Symbol *procInterface{
6046       interfaceName_ ? interfaceName_->symbol : nullptr};
6047   auto attrs{HandleSaveName(name.source, GetAttrs())};
6048   DerivedTypeDetails *dtDetails{nullptr};
6049   if (Symbol * symbol{currScope().symbol()}) {
6050     dtDetails = symbol->detailsIf<DerivedTypeDetails>();
6051   }
6052   if (!dtDetails) {
6053     attrs.set(Attr::EXTERNAL);
6054   }
6055   Symbol &symbol{DeclareProcEntity(name, attrs, procInterface)};
6056   SetCUDADataAttr(name.source, symbol, cudaDataAttr()); // for error
6057   symbol.ReplaceName(name.source);
6058   if (dtDetails) {
6059     dtDetails->add_component(symbol);
6060   }
6061   DeclaredPossibleSpecificProc(symbol);
6062 }
6063 
6064 bool DeclarationVisitor::Pre(const parser::TypeBoundProcedurePart &) {
6065   derivedTypeInfo_.sawContains = true;
6066   return true;
6067 }
6068 
6069 // Resolve binding names from type-bound generics, saved in genericBindings_.
6070 void DeclarationVisitor::Post(const parser::TypeBoundProcedurePart &) {
6071   // track specifics seen for the current generic to detect duplicates:
6072   const Symbol *currGeneric{nullptr};
6073   std::set<SourceName> specifics;
6074   for (const auto &[generic, bindingName] : genericBindings_) {
6075     if (generic != currGeneric) {
6076       currGeneric = generic;
6077       specifics.clear();
6078     }
6079     auto [it, inserted]{specifics.insert(bindingName->source)};
6080     if (!inserted) {
6081       Say(*bindingName, // C773
6082           "Binding name '%s' was already specified for generic '%s'"_err_en_US,
6083           bindingName->source, generic->name())
6084           .Attach(*it, "Previous specification of '%s'"_en_US, *it);
6085       continue;
6086     }
6087     auto *symbol{FindInTypeOrParents(*bindingName)};
6088     if (!symbol) {
6089       Say(*bindingName, // C772
6090           "Binding name '%s' not found in this derived type"_err_en_US);
6091     } else if (!symbol->has<ProcBindingDetails>()) {
6092       SayWithDecl(*bindingName, *symbol, // C772
6093           "'%s' is not the name of a specific binding of this type"_err_en_US);
6094     } else {
6095       generic->get<GenericDetails>().AddSpecificProc(
6096           *symbol, bindingName->source);
6097     }
6098   }
6099   genericBindings_.clear();
6100 }
6101 
6102 void DeclarationVisitor::Post(const parser::ContainsStmt &) {
6103   if (derivedTypeInfo_.sequence) {
6104     Say("A sequence type may not have a CONTAINS statement"_err_en_US); // C740
6105   }
6106 }
6107 
6108 void DeclarationVisitor::Post(
6109     const parser::TypeBoundProcedureStmt::WithoutInterface &x) {
6110   if (GetAttrs().test(Attr::DEFERRED)) { // C783
6111     Say("DEFERRED is only allowed when an interface-name is provided"_err_en_US);
6112   }
6113   for (auto &declaration : x.declarations) {
6114     auto &bindingName{std::get<parser::Name>(declaration.t)};
6115     auto &optName{std::get<std::optional<parser::Name>>(declaration.t)};
6116     const parser::Name &procedureName{optName ? *optName : bindingName};
6117     Symbol *procedure{FindSymbol(procedureName)};
6118     if (!procedure) {
6119       procedure = NoteInterfaceName(procedureName);
6120     }
6121     if (procedure) {
6122       const Symbol &bindTo{BypassGeneric(*procedure)};
6123       if (auto *s{MakeTypeSymbol(bindingName, ProcBindingDetails{bindTo})}) {
6124         SetPassNameOn(*s);
6125         if (GetAttrs().test(Attr::DEFERRED)) {
6126           context().SetError(*s);
6127         }
6128       }
6129     }
6130   }
6131 }
6132 
6133 void DeclarationVisitor::CheckBindings(
6134     const parser::TypeBoundProcedureStmt::WithoutInterface &tbps) {
6135   CHECK(currScope().IsDerivedType());
6136   for (auto &declaration : tbps.declarations) {
6137     auto &bindingName{std::get<parser::Name>(declaration.t)};
6138     if (Symbol * binding{FindInScope(bindingName)}) {
6139       if (auto *details{binding->detailsIf<ProcBindingDetails>()}) {
6140         const Symbol &ultimate{details->symbol().GetUltimate()};
6141         const Symbol &procedure{BypassGeneric(ultimate)};
6142         if (&procedure != &ultimate) {
6143           details->ReplaceSymbol(procedure);
6144         }
6145         if (!CanBeTypeBoundProc(procedure)) {
6146           if (details->symbol().name() != binding->name()) {
6147             Say(binding->name(),
6148                 "The binding of '%s' ('%s') must be either an accessible "
6149                 "module procedure or an external procedure with "
6150                 "an explicit interface"_err_en_US,
6151                 binding->name(), details->symbol().name());
6152           } else {
6153             Say(binding->name(),
6154                 "'%s' must be either an accessible module procedure "
6155                 "or an external procedure with an explicit interface"_err_en_US,
6156                 binding->name());
6157           }
6158           context().SetError(*binding);
6159         }
6160       }
6161     }
6162   }
6163 }
6164 
6165 void DeclarationVisitor::Post(
6166     const parser::TypeBoundProcedureStmt::WithInterface &x) {
6167   if (!GetAttrs().test(Attr::DEFERRED)) { // C783
6168     Say("DEFERRED is required when an interface-name is provided"_err_en_US);
6169   }
6170   if (Symbol * interface{NoteInterfaceName(x.interfaceName)}) {
6171     for (auto &bindingName : x.bindingNames) {
6172       if (auto *s{
6173               MakeTypeSymbol(bindingName, ProcBindingDetails{*interface})}) {
6174         SetPassNameOn(*s);
6175         if (!GetAttrs().test(Attr::DEFERRED)) {
6176           context().SetError(*s);
6177         }
6178       }
6179     }
6180   }
6181 }
6182 
6183 bool DeclarationVisitor::Pre(const parser::FinalProcedureStmt &x) {
6184   if (currScope().IsDerivedType() && currScope().symbol()) {
6185     if (auto *details{currScope().symbol()->detailsIf<DerivedTypeDetails>()}) {
6186       for (const auto &subrName : x.v) {
6187         Symbol *symbol{FindSymbol(subrName)};
6188         if (!symbol) {
6189           // FINAL procedures must be module subroutines
6190           symbol = &MakeSymbol(
6191               currScope().parent(), subrName.source, Attrs{Attr::MODULE});
6192           Resolve(subrName, symbol);
6193           symbol->set_details(ProcEntityDetails{});
6194           symbol->set(Symbol::Flag::Subroutine);
6195         }
6196         if (auto pair{details->finals().emplace(subrName.source, *symbol)};
6197             !pair.second) { // C787
6198           Say(subrName.source,
6199               "FINAL subroutine '%s' already appeared in this derived type"_err_en_US,
6200               subrName.source)
6201               .Attach(pair.first->first,
6202                   "earlier appearance of this FINAL subroutine"_en_US);
6203         }
6204       }
6205     }
6206   }
6207   return false;
6208 }
6209 
6210 bool DeclarationVisitor::Pre(const parser::TypeBoundGenericStmt &x) {
6211   const auto &accessSpec{std::get<std::optional<parser::AccessSpec>>(x.t)};
6212   const auto &genericSpec{std::get<Indirection<parser::GenericSpec>>(x.t)};
6213   const auto &bindingNames{std::get<std::list<parser::Name>>(x.t)};
6214   GenericSpecInfo info{genericSpec.value()};
6215   SourceName symbolName{info.symbolName()};
6216   bool isPrivate{accessSpec ? accessSpec->v == parser::AccessSpec::Kind::Private
6217                             : derivedTypeInfo_.privateBindings};
6218   auto *genericSymbol{FindInScope(symbolName)};
6219   if (genericSymbol) {
6220     if (!genericSymbol->has<GenericDetails>()) {
6221       genericSymbol = nullptr; // MakeTypeSymbol will report the error below
6222     }
6223   } else {
6224     // look in ancestor types for a generic of the same name
6225     for (const auto &name : GetAllNames(context(), symbolName)) {
6226       if (Symbol * inherited{currScope().FindComponent(SourceName{name})}) {
6227         if (inherited->has<GenericDetails>()) {
6228           CheckAccessibility(symbolName, isPrivate, *inherited); // C771
6229         } else {
6230           Say(symbolName,
6231               "Type bound generic procedure '%s' may not have the same name as a non-generic symbol inherited from an ancestor type"_err_en_US)
6232               .Attach(inherited->name(), "Inherited symbol"_en_US);
6233         }
6234         break;
6235       }
6236     }
6237   }
6238   if (genericSymbol) {
6239     CheckAccessibility(symbolName, isPrivate, *genericSymbol); // C771
6240   } else {
6241     genericSymbol = MakeTypeSymbol(symbolName, GenericDetails{});
6242     if (!genericSymbol) {
6243       return false;
6244     }
6245     if (isPrivate) {
6246       SetExplicitAttr(*genericSymbol, Attr::PRIVATE);
6247     }
6248   }
6249   for (const parser::Name &bindingName : bindingNames) {
6250     genericBindings_.emplace(genericSymbol, &bindingName);
6251   }
6252   info.Resolve(genericSymbol);
6253   return false;
6254 }
6255 
6256 // DEC STRUCTUREs are handled thus to allow for nested definitions.
6257 bool DeclarationVisitor::Pre(const parser::StructureDef &def) {
6258   const auto &structureStatement{
6259       std::get<parser::Statement<parser::StructureStmt>>(def.t)};
6260   auto saveDerivedTypeInfo{derivedTypeInfo_};
6261   derivedTypeInfo_ = {};
6262   derivedTypeInfo_.isStructure = true;
6263   derivedTypeInfo_.sequence = true;
6264   Scope *previousStructure{nullptr};
6265   if (saveDerivedTypeInfo.isStructure) {
6266     previousStructure = &currScope();
6267     PopScope();
6268   }
6269   const parser::StructureStmt &structStmt{structureStatement.statement};
6270   const auto &name{std::get<std::optional<parser::Name>>(structStmt.t)};
6271   if (!name) {
6272     // Construct a distinct generated name for an anonymous structure
6273     auto &mutableName{const_cast<std::optional<parser::Name> &>(name)};
6274     mutableName.emplace(
6275         parser::Name{context().GetTempName(currScope()), nullptr});
6276   }
6277   auto &symbol{MakeSymbol(*name, DerivedTypeDetails{})};
6278   symbol.ReplaceName(name->source);
6279   symbol.get<DerivedTypeDetails>().set_sequence(true);
6280   symbol.get<DerivedTypeDetails>().set_isDECStructure(true);
6281   derivedTypeInfo_.type = &symbol;
6282   PushScope(Scope::Kind::DerivedType, &symbol);
6283   const auto &fields{std::get<std::list<parser::StructureField>>(def.t)};
6284   Walk(fields);
6285   PopScope();
6286   // Complete the definition
6287   DerivedTypeSpec derivedTypeSpec{symbol.name(), symbol};
6288   derivedTypeSpec.set_scope(DEREF(symbol.scope()));
6289   derivedTypeSpec.CookParameters(GetFoldingContext());
6290   derivedTypeSpec.EvaluateParameters(context());
6291   DeclTypeSpec &type{currScope().MakeDerivedType(
6292       DeclTypeSpec::TypeDerived, std::move(derivedTypeSpec))};
6293   type.derivedTypeSpec().Instantiate(currScope());
6294   // Restore previous structure definition context, if any
6295   derivedTypeInfo_ = saveDerivedTypeInfo;
6296   if (previousStructure) {
6297     PushScope(*previousStructure);
6298   }
6299   // Handle any entity declarations on the STRUCTURE statement
6300   const auto &decls{std::get<std::list<parser::EntityDecl>>(structStmt.t)};
6301   if (!decls.empty()) {
6302     BeginDecl();
6303     SetDeclTypeSpec(type);
6304     Walk(decls);
6305     EndDecl();
6306   }
6307   return false;
6308 }
6309 
6310 bool DeclarationVisitor::Pre(const parser::Union::UnionStmt &) {
6311   Say("support for UNION"_todo_en_US); // TODO
6312   return true;
6313 }
6314 
6315 bool DeclarationVisitor::Pre(const parser::StructureField &x) {
6316   if (std::holds_alternative<parser::Statement<parser::DataComponentDefStmt>>(
6317           x.u)) {
6318     BeginDecl();
6319   }
6320   return true;
6321 }
6322 
6323 void DeclarationVisitor::Post(const parser::StructureField &x) {
6324   if (std::holds_alternative<parser::Statement<parser::DataComponentDefStmt>>(
6325           x.u)) {
6326     EndDecl();
6327   }
6328 }
6329 
6330 bool DeclarationVisitor::Pre(const parser::AllocateStmt &) {
6331   BeginDeclTypeSpec();
6332   return true;
6333 }
6334 void DeclarationVisitor::Post(const parser::AllocateStmt &) {
6335   EndDeclTypeSpec();
6336 }
6337 
6338 bool DeclarationVisitor::Pre(const parser::StructureConstructor &x) {
6339   auto &parsedType{std::get<parser::DerivedTypeSpec>(x.t)};
6340   const DeclTypeSpec *type{ProcessTypeSpec(parsedType)};
6341   if (!type) {
6342     return false;
6343   }
6344   const DerivedTypeSpec *spec{type->AsDerived()};
6345   const Scope *typeScope{spec ? spec->scope() : nullptr};
6346   if (!typeScope) {
6347     return false;
6348   }
6349 
6350   // N.B C7102 is implicitly enforced by having inaccessible types not
6351   // being found in resolution.
6352   // More constraints are enforced in expression.cpp so that they
6353   // can apply to structure constructors that have been converted
6354   // from misparsed function references.
6355   for (const auto &component :
6356       std::get<std::list<parser::ComponentSpec>>(x.t)) {
6357     // Visit the component spec expression, but not the keyword, since
6358     // we need to resolve its symbol in the scope of the derived type.
6359     Walk(std::get<parser::ComponentDataSource>(component.t));
6360     if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) {
6361       FindInTypeOrParents(*typeScope, kw->v);
6362     }
6363   }
6364   return false;
6365 }
6366 
6367 bool DeclarationVisitor::Pre(const parser::BasedPointer &) {
6368   BeginArraySpec();
6369   return true;
6370 }
6371 
6372 void DeclarationVisitor::Post(const parser::BasedPointer &bp) {
6373   const parser::ObjectName &pointerName{std::get<0>(bp.t)};
6374   auto *pointer{FindSymbol(pointerName)};
6375   if (!pointer) {
6376     pointer = &MakeSymbol(pointerName, ObjectEntityDetails{});
6377   } else if (!ConvertToObjectEntity(*pointer)) {
6378     SayWithDecl(pointerName, *pointer, "'%s' is not a variable"_err_en_US);
6379   } else if (IsNamedConstant(*pointer)) {
6380     SayWithDecl(pointerName, *pointer,
6381         "'%s' is a named constant and may not be a Cray pointer"_err_en_US);
6382   } else if (pointer->Rank() > 0) {
6383     SayWithDecl(
6384         pointerName, *pointer, "Cray pointer '%s' must be a scalar"_err_en_US);
6385   } else if (pointer->test(Symbol::Flag::CrayPointee)) {
6386     Say(pointerName,
6387         "'%s' cannot be a Cray pointer as it is already a Cray pointee"_err_en_US);
6388   }
6389   pointer->set(Symbol::Flag::CrayPointer);
6390   const DeclTypeSpec &pointerType{MakeNumericType(
6391       TypeCategory::Integer, context().defaultKinds().subscriptIntegerKind())};
6392   const auto *type{pointer->GetType()};
6393   if (!type) {
6394     pointer->SetType(pointerType);
6395   } else if (*type != pointerType) {
6396     Say(pointerName.source, "Cray pointer '%s' must have type %s"_err_en_US,
6397         pointerName.source, pointerType.AsFortran());
6398   }
6399   const parser::ObjectName &pointeeName{std::get<1>(bp.t)};
6400   DeclareObjectEntity(pointeeName);
6401   if (Symbol * pointee{pointeeName.symbol}) {
6402     if (!ConvertToObjectEntity(*pointee)) {
6403       return;
6404     }
6405     if (IsNamedConstant(*pointee)) {
6406       Say(pointeeName,
6407           "'%s' is a named constant and may not be a Cray pointee"_err_en_US);
6408       return;
6409     }
6410     if (pointee->test(Symbol::Flag::CrayPointer)) {
6411       Say(pointeeName,
6412           "'%s' cannot be a Cray pointee as it is already a Cray pointer"_err_en_US);
6413     } else if (pointee->test(Symbol::Flag::CrayPointee)) {
6414       Say(pointeeName, "'%s' was already declared as a Cray pointee"_err_en_US);
6415     } else {
6416       pointee->set(Symbol::Flag::CrayPointee);
6417     }
6418     if (const auto *pointeeType{pointee->GetType()}) {
6419       if (const auto *derived{pointeeType->AsDerived()}) {
6420         if (!IsSequenceOrBindCType(derived)) {
6421           context().Warn(common::LanguageFeature::NonSequenceCrayPointee,
6422               pointeeName.source,
6423               "Type of Cray pointee '%s' is a derived type that is neither SEQUENCE nor BIND(C)"_warn_en_US,
6424               pointeeName.source);
6425         }
6426       }
6427     }
6428     currScope().add_crayPointer(pointeeName.source, *pointer);
6429   }
6430 }
6431 
6432 bool DeclarationVisitor::Pre(const parser::NamelistStmt::Group &x) {
6433   if (!CheckNotInBlock("NAMELIST")) { // C1107
6434     return false;
6435   }
6436   const auto &groupName{std::get<parser::Name>(x.t)};
6437   auto *groupSymbol{FindInScope(groupName)};
6438   if (!groupSymbol || !groupSymbol->has<NamelistDetails>()) {
6439     groupSymbol = &MakeSymbol(groupName, NamelistDetails{});
6440     groupSymbol->ReplaceName(groupName.source);
6441   }
6442   // Name resolution of group items is deferred to FinishNamelists()
6443   // so that host association is handled correctly.
6444   GetDeferredDeclarationState(true)->namelistGroups.emplace_back(&x);
6445   return false;
6446 }
6447 
6448 void DeclarationVisitor::FinishNamelists() {
6449   if (auto *deferred{GetDeferredDeclarationState()}) {
6450     for (const parser::NamelistStmt::Group *group : deferred->namelistGroups) {
6451       if (auto *groupSymbol{FindInScope(std::get<parser::Name>(group->t))}) {
6452         if (auto *details{groupSymbol->detailsIf<NamelistDetails>()}) {
6453           for (const auto &name : std::get<std::list<parser::Name>>(group->t)) {
6454             auto *symbol{FindSymbol(name)};
6455             if (!symbol) {
6456               symbol = &MakeSymbol(name, ObjectEntityDetails{});
6457               ApplyImplicitRules(*symbol);
6458             } else if (!ConvertToObjectEntity(symbol->GetUltimate())) {
6459               SayWithDecl(name, *symbol, "'%s' is not a variable"_err_en_US);
6460               context().SetError(*groupSymbol);
6461             }
6462             symbol->GetUltimate().set(Symbol::Flag::InNamelist);
6463             details->add_object(*symbol);
6464           }
6465         }
6466       }
6467     }
6468     deferred->namelistGroups.clear();
6469   }
6470 }
6471 
6472 bool DeclarationVisitor::Pre(const parser::IoControlSpec &x) {
6473   if (const auto *name{std::get_if<parser::Name>(&x.u)}) {
6474     auto *symbol{FindSymbol(*name)};
6475     if (!symbol) {
6476       Say(*name, "Namelist group '%s' not found"_err_en_US);
6477     } else if (!symbol->GetUltimate().has<NamelistDetails>()) {
6478       SayWithDecl(
6479           *name, *symbol, "'%s' is not the name of a namelist group"_err_en_US);
6480     }
6481   }
6482   return true;
6483 }
6484 
6485 bool DeclarationVisitor::Pre(const parser::CommonStmt::Block &x) {
6486   CheckNotInBlock("COMMON"); // C1107
6487   return true;
6488 }
6489 
6490 bool DeclarationVisitor::Pre(const parser::CommonBlockObject &) {
6491   BeginArraySpec();
6492   return true;
6493 }
6494 
6495 void DeclarationVisitor::Post(const parser::CommonBlockObject &x) {
6496   const auto &name{std::get<parser::Name>(x.t)};
6497   DeclareObjectEntity(name);
6498   auto pair{specPartState_.commonBlockObjects.insert(name.source)};
6499   if (!pair.second) {
6500     const SourceName &prev{*pair.first};
6501     Say2(name.source, "'%s' is already in a COMMON block"_err_en_US, prev,
6502         "Previous occurrence of '%s' in a COMMON block"_en_US);
6503   }
6504 }
6505 
6506 bool DeclarationVisitor::Pre(const parser::EquivalenceStmt &x) {
6507   // save equivalence sets to be processed after specification part
6508   if (CheckNotInBlock("EQUIVALENCE")) { // C1107
6509     for (const std::list<parser::EquivalenceObject> &set : x.v) {
6510       specPartState_.equivalenceSets.push_back(&set);
6511     }
6512   }
6513   return false; // don't implicitly declare names yet
6514 }
6515 
6516 void DeclarationVisitor::CheckEquivalenceSets() {
6517   EquivalenceSets equivSets{context()};
6518   inEquivalenceStmt_ = true;
6519   for (const auto *set : specPartState_.equivalenceSets) {
6520     const auto &source{set->front().v.value().source};
6521     if (set->size() <= 1) { // R871
6522       Say(source, "Equivalence set must have more than one object"_err_en_US);
6523     }
6524     for (const parser::EquivalenceObject &object : *set) {
6525       const auto &designator{object.v.value()};
6526       // The designator was not resolved when it was encountered, so do it now.
6527       // AnalyzeExpr causes array sections to be changed to substrings as needed
6528       Walk(designator);
6529       if (AnalyzeExpr(context(), designator)) {
6530         equivSets.AddToSet(designator);
6531       }
6532     }
6533     equivSets.FinishSet(source);
6534   }
6535   inEquivalenceStmt_ = false;
6536   for (auto &set : equivSets.sets()) {
6537     if (!set.empty()) {
6538       currScope().add_equivalenceSet(std::move(set));
6539     }
6540   }
6541   specPartState_.equivalenceSets.clear();
6542 }
6543 
6544 bool DeclarationVisitor::Pre(const parser::SaveStmt &x) {
6545   if (x.v.empty()) {
6546     specPartState_.saveInfo.saveAll = currStmtSource();
6547     currScope().set_hasSAVE();
6548   } else {
6549     for (const parser::SavedEntity &y : x.v) {
6550       auto kind{std::get<parser::SavedEntity::Kind>(y.t)};
6551       const auto &name{std::get<parser::Name>(y.t)};
6552       if (kind == parser::SavedEntity::Kind::Common) {
6553         MakeCommonBlockSymbol(name);
6554         AddSaveName(specPartState_.saveInfo.commons, name.source);
6555       } else {
6556         HandleAttributeStmt(Attr::SAVE, name);
6557       }
6558     }
6559   }
6560   return false;
6561 }
6562 
6563 void DeclarationVisitor::CheckSaveStmts() {
6564   for (const SourceName &name : specPartState_.saveInfo.entities) {
6565     auto *symbol{FindInScope(name)};
6566     if (!symbol) {
6567       // error was reported
6568     } else if (specPartState_.saveInfo.saveAll) {
6569       // C889 - note that pgi, ifort, xlf do not enforce this constraint
6570       if (context().ShouldWarn(common::LanguageFeature::RedundantAttribute)) {
6571         Say2(name,
6572             "Explicit SAVE of '%s' is redundant due to global SAVE statement"_warn_en_US,
6573             *specPartState_.saveInfo.saveAll, "Global SAVE statement"_en_US)
6574             .set_languageFeature(common::LanguageFeature::RedundantAttribute);
6575       }
6576     } else if (!IsSaved(*symbol)) {
6577       SetExplicitAttr(*symbol, Attr::SAVE);
6578     }
6579   }
6580   for (const SourceName &name : specPartState_.saveInfo.commons) {
6581     if (auto *symbol{currScope().FindCommonBlock(name)}) {
6582       auto &objects{symbol->get<CommonBlockDetails>().objects()};
6583       if (objects.empty()) {
6584         if (currScope().kind() != Scope::Kind::BlockConstruct) {
6585           Say(name,
6586               "'%s' appears as a COMMON block in a SAVE statement but not in"
6587               " a COMMON statement"_err_en_US);
6588         } else { // C1108
6589           Say(name,
6590               "SAVE statement in BLOCK construct may not contain a"
6591               " common block name '%s'"_err_en_US);
6592         }
6593       } else {
6594         for (auto &object : symbol->get<CommonBlockDetails>().objects()) {
6595           if (!IsSaved(*object)) {
6596             SetImplicitAttr(*object, Attr::SAVE);
6597           }
6598         }
6599       }
6600     }
6601   }
6602   specPartState_.saveInfo = {};
6603 }
6604 
6605 // Record SAVEd names in specPartState_.saveInfo.entities.
6606 Attrs DeclarationVisitor::HandleSaveName(const SourceName &name, Attrs attrs) {
6607   if (attrs.test(Attr::SAVE)) {
6608     AddSaveName(specPartState_.saveInfo.entities, name);
6609   }
6610   return attrs;
6611 }
6612 
6613 // Record a name in a set of those to be saved.
6614 void DeclarationVisitor::AddSaveName(
6615     std::set<SourceName> &set, const SourceName &name) {
6616   auto pair{set.insert(name)};
6617   if (!pair.second &&
6618       context().ShouldWarn(common::LanguageFeature::RedundantAttribute)) {
6619     Say2(name, "SAVE attribute was already specified on '%s'"_warn_en_US,
6620         *pair.first, "Previous specification of SAVE attribute"_en_US)
6621         .set_languageFeature(common::LanguageFeature::RedundantAttribute);
6622   }
6623 }
6624 
6625 // Check types of common block objects, now that they are known.
6626 void DeclarationVisitor::CheckCommonBlocks() {
6627   // check for empty common blocks
6628   for (const auto &pair : currScope().commonBlocks()) {
6629     const auto &symbol{*pair.second};
6630     if (symbol.get<CommonBlockDetails>().objects().empty() &&
6631         symbol.attrs().test(Attr::BIND_C)) {
6632       Say(symbol.name(),
6633           "'%s' appears as a COMMON block in a BIND statement but not in"
6634           " a COMMON statement"_err_en_US);
6635     }
6636   }
6637   // check objects in common blocks
6638   for (const auto &name : specPartState_.commonBlockObjects) {
6639     const auto *symbol{currScope().FindSymbol(name)};
6640     if (!symbol) {
6641       continue;
6642     }
6643     const auto &attrs{symbol->attrs()};
6644     if (attrs.test(Attr::ALLOCATABLE)) {
6645       Say(name,
6646           "ALLOCATABLE object '%s' may not appear in a COMMON block"_err_en_US);
6647     } else if (attrs.test(Attr::BIND_C)) {
6648       Say(name,
6649           "Variable '%s' with BIND attribute may not appear in a COMMON block"_err_en_US);
6650     } else if (IsNamedConstant(*symbol)) {
6651       Say(name,
6652           "A named constant '%s' may not appear in a COMMON block"_err_en_US);
6653     } else if (IsDummy(*symbol)) {
6654       Say(name,
6655           "Dummy argument '%s' may not appear in a COMMON block"_err_en_US);
6656     } else if (symbol->IsFuncResult()) {
6657       Say(name,
6658           "Function result '%s' may not appear in a COMMON block"_err_en_US);
6659     } else if (const DeclTypeSpec * type{symbol->GetType()}) {
6660       if (type->category() == DeclTypeSpec::ClassStar) {
6661         Say(name,
6662             "Unlimited polymorphic pointer '%s' may not appear in a COMMON block"_err_en_US);
6663       } else if (const auto *derived{type->AsDerived()}) {
6664         if (!IsSequenceOrBindCType(derived)) {
6665           Say(name,
6666               "Derived type '%s' in COMMON block must have the BIND or"
6667               " SEQUENCE attribute"_err_en_US);
6668         }
6669         UnorderedSymbolSet typeSet;
6670         CheckCommonBlockDerivedType(name, derived->typeSymbol(), typeSet);
6671       }
6672     }
6673   }
6674   specPartState_.commonBlockObjects = {};
6675 }
6676 
6677 Symbol &DeclarationVisitor::MakeCommonBlockSymbol(const parser::Name &name) {
6678   return Resolve(name, currScope().MakeCommonBlock(name.source));
6679 }
6680 Symbol &DeclarationVisitor::MakeCommonBlockSymbol(
6681     const std::optional<parser::Name> &name) {
6682   if (name) {
6683     return MakeCommonBlockSymbol(*name);
6684   } else {
6685     return MakeCommonBlockSymbol(parser::Name{});
6686   }
6687 }
6688 
6689 bool DeclarationVisitor::NameIsKnownOrIntrinsic(const parser::Name &name) {
6690   return FindSymbol(name) || HandleUnrestrictedSpecificIntrinsicFunction(name);
6691 }
6692 
6693 // Check if this derived type can be in a COMMON block.
6694 void DeclarationVisitor::CheckCommonBlockDerivedType(const SourceName &name,
6695     const Symbol &typeSymbol, UnorderedSymbolSet &typeSet) {
6696   if (auto iter{typeSet.find(SymbolRef{typeSymbol})}; iter != typeSet.end()) {
6697     return;
6698   }
6699   typeSet.emplace(typeSymbol);
6700   if (const auto *scope{typeSymbol.scope()}) {
6701     for (const auto &pair : *scope) {
6702       const Symbol &component{*pair.second};
6703       if (component.attrs().test(Attr::ALLOCATABLE)) {
6704         Say2(name,
6705             "Derived type variable '%s' may not appear in a COMMON block"
6706             " due to ALLOCATABLE component"_err_en_US,
6707             component.name(), "Component with ALLOCATABLE attribute"_en_US);
6708         return;
6709       }
6710       const auto *details{component.detailsIf<ObjectEntityDetails>()};
6711       if (component.test(Symbol::Flag::InDataStmt) ||
6712           (details && details->init())) {
6713         Say2(name,
6714             "Derived type variable '%s' may not appear in a COMMON block due to component with default initialization"_err_en_US,
6715             component.name(), "Component with default initialization"_en_US);
6716         return;
6717       }
6718       if (details) {
6719         if (const auto *type{details->type()}) {
6720           if (const auto *derived{type->AsDerived()}) {
6721             const Symbol &derivedTypeSymbol{derived->typeSymbol()};
6722             CheckCommonBlockDerivedType(name, derivedTypeSymbol, typeSet);
6723           }
6724         }
6725       }
6726     }
6727   }
6728 }
6729 
6730 bool DeclarationVisitor::HandleUnrestrictedSpecificIntrinsicFunction(
6731     const parser::Name &name) {
6732   if (auto interface{context().intrinsics().IsSpecificIntrinsicFunction(
6733           name.source.ToString())}) {
6734     // Unrestricted specific intrinsic function names (e.g., "cos")
6735     // are acceptable as procedure interfaces.  The presence of the
6736     // INTRINSIC flag will cause this symbol to have a complete interface
6737     // recreated for it later on demand, but capturing its result type here
6738     // will make GetType() return a correct result without having to
6739     // probe the intrinsics table again.
6740     Symbol &symbol{MakeSymbol(InclusiveScope(), name.source, Attrs{})};
6741     SetImplicitAttr(symbol, Attr::INTRINSIC);
6742     CHECK(interface->functionResult.has_value());
6743     evaluate::DynamicType dyType{
6744         DEREF(interface->functionResult->GetTypeAndShape()).type()};
6745     CHECK(common::IsNumericTypeCategory(dyType.category()));
6746     const DeclTypeSpec &typeSpec{
6747         MakeNumericType(dyType.category(), dyType.kind())};
6748     ProcEntityDetails details;
6749     details.set_type(typeSpec);
6750     symbol.set_details(std::move(details));
6751     symbol.set(Symbol::Flag::Function);
6752     if (interface->IsElemental()) {
6753       SetExplicitAttr(symbol, Attr::ELEMENTAL);
6754     }
6755     if (interface->IsPure()) {
6756       SetExplicitAttr(symbol, Attr::PURE);
6757     }
6758     Resolve(name, symbol);
6759     return true;
6760   } else {
6761     return false;
6762   }
6763 }
6764 
6765 // Checks for all locality-specs: LOCAL, LOCAL_INIT, and SHARED
6766 bool DeclarationVisitor::PassesSharedLocalityChecks(
6767     const parser::Name &name, Symbol &symbol) {
6768   if (!IsVariableName(symbol)) {
6769     SayLocalMustBeVariable(name, symbol); // C1124
6770     return false;
6771   }
6772   if (symbol.owner() == currScope()) { // C1125 and C1126
6773     SayAlreadyDeclared(name, symbol);
6774     return false;
6775   }
6776   return true;
6777 }
6778 
6779 // Checks for locality-specs LOCAL, LOCAL_INIT, and REDUCE
6780 bool DeclarationVisitor::PassesLocalityChecks(
6781     const parser::Name &name, Symbol &symbol, Symbol::Flag flag) {
6782   bool isReduce{flag == Symbol::Flag::LocalityReduce};
6783   const char *specName{
6784       flag == Symbol::Flag::LocalityLocalInit ? "LOCAL_INIT" : "LOCAL"};
6785   if (IsAllocatable(symbol) && !isReduce) { // F'2023 C1130
6786     SayWithDecl(name, symbol,
6787         "ALLOCATABLE variable '%s' not allowed in a %s locality-spec"_err_en_US,
6788         specName);
6789     return false;
6790   }
6791   if (IsOptional(symbol)) { // F'2023 C1130-C1131
6792     SayWithDecl(name, symbol,
6793         "OPTIONAL argument '%s' not allowed in a locality-spec"_err_en_US);
6794     return false;
6795   }
6796   if (IsIntentIn(symbol)) { // F'2023 C1130-C1131
6797     SayWithDecl(name, symbol,
6798         "INTENT IN argument '%s' not allowed in a locality-spec"_err_en_US);
6799     return false;
6800   }
6801   if (IsFinalizable(symbol) && !isReduce) { // F'2023 C1130
6802     SayWithDecl(name, symbol,
6803         "Finalizable variable '%s' not allowed in a %s locality-spec"_err_en_US,
6804         specName);
6805     return false;
6806   }
6807   if (evaluate::IsCoarray(symbol) && !isReduce) { // F'2023 C1130
6808     SayWithDecl(name, symbol,
6809         "Coarray '%s' not allowed in a %s locality-spec"_err_en_US, specName);
6810     return false;
6811   }
6812   if (const DeclTypeSpec * type{symbol.GetType()}) {
6813     if (type->IsPolymorphic() && IsDummy(symbol) && !IsPointer(symbol) &&
6814         !isReduce) { // F'2023 C1130
6815       SayWithDecl(name, symbol,
6816           "Nonpointer polymorphic argument '%s' not allowed in a %s locality-spec"_err_en_US,
6817           specName);
6818       return false;
6819     }
6820   }
6821   if (symbol.attrs().test(Attr::ASYNCHRONOUS) && isReduce) { // F'2023 C1131
6822     SayWithDecl(name, symbol,
6823         "ASYNCHRONOUS variable '%s' not allowed in a REDUCE locality-spec"_err_en_US);
6824     return false;
6825   }
6826   if (symbol.attrs().test(Attr::VOLATILE) && isReduce) { // F'2023 C1131
6827     SayWithDecl(name, symbol,
6828         "VOLATILE variable '%s' not allowed in a REDUCE locality-spec"_err_en_US);
6829     return false;
6830   }
6831   if (IsAssumedSizeArray(symbol)) { // F'2023 C1130-C1131
6832     SayWithDecl(name, symbol,
6833         "Assumed size array '%s' not allowed in a locality-spec"_err_en_US);
6834     return false;
6835   }
6836   if (std::optional<Message> whyNot{WhyNotDefinable(
6837           name.source, currScope(), DefinabilityFlags{}, symbol)}) {
6838     SayWithReason(name, symbol,
6839         "'%s' may not appear in a locality-spec because it is not definable"_err_en_US,
6840         std::move(whyNot->set_severity(parser::Severity::Because)));
6841     return false;
6842   }
6843   return PassesSharedLocalityChecks(name, symbol);
6844 }
6845 
6846 Symbol &DeclarationVisitor::FindOrDeclareEnclosingEntity(
6847     const parser::Name &name) {
6848   Symbol *prev{FindSymbol(name)};
6849   if (!prev) {
6850     // Declare the name as an object in the enclosing scope so that
6851     // the name can't be repurposed there later as something else.
6852     prev = &MakeSymbol(InclusiveScope(), name.source, Attrs{});
6853     ConvertToObjectEntity(*prev);
6854     ApplyImplicitRules(*prev);
6855   }
6856   return *prev;
6857 }
6858 
6859 void DeclarationVisitor::DeclareLocalEntity(
6860     const parser::Name &name, Symbol::Flag flag) {
6861   Symbol &prev{FindOrDeclareEnclosingEntity(name)};
6862   if (PassesLocalityChecks(name, prev, flag)) {
6863     if (auto *symbol{&MakeHostAssocSymbol(name, prev)}) {
6864       symbol->set(flag);
6865     }
6866   }
6867 }
6868 
6869 Symbol *DeclarationVisitor::DeclareStatementEntity(
6870     const parser::DoVariable &doVar,
6871     const std::optional<parser::IntegerTypeSpec> &type) {
6872   const parser::Name &name{doVar.thing.thing};
6873   const DeclTypeSpec *declTypeSpec{nullptr};
6874   if (auto *prev{FindSymbol(name)}) {
6875     if (prev->owner() == currScope()) {
6876       SayAlreadyDeclared(name, *prev);
6877       return nullptr;
6878     }
6879     name.symbol = nullptr;
6880     // F'2023 19.4 p5 ambiguous rule about outer declarations
6881     declTypeSpec = prev->GetType();
6882   }
6883   Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, {})};
6884   if (!symbol.has<ObjectEntityDetails>()) {
6885     return nullptr; // error was reported in DeclareEntity
6886   }
6887   if (type) {
6888     declTypeSpec = ProcessTypeSpec(*type);
6889   }
6890   if (declTypeSpec) {
6891     // Subtlety: Don't let a "*length" specifier (if any is pending) affect the
6892     // declaration of this implied DO loop control variable.
6893     auto restorer{
6894         common::ScopedSet(charInfo_.length, std::optional<ParamValue>{})};
6895     SetType(name, *declTypeSpec);
6896   } else {
6897     ApplyImplicitRules(symbol);
6898   }
6899   return Resolve(name, &symbol);
6900 }
6901 
6902 // Set the type of an entity or report an error.
6903 void DeclarationVisitor::SetType(
6904     const parser::Name &name, const DeclTypeSpec &type) {
6905   CHECK(name.symbol);
6906   auto &symbol{*name.symbol};
6907   if (charInfo_.length) { // Declaration has "*length" (R723)
6908     auto length{std::move(*charInfo_.length)};
6909     charInfo_.length.reset();
6910     if (type.category() == DeclTypeSpec::Character) {
6911       auto kind{type.characterTypeSpec().kind()};
6912       // Recurse with correct type.
6913       SetType(name,
6914           currScope().MakeCharacterType(std::move(length), std::move(kind)));
6915       return;
6916     } else { // C753
6917       Say(name,
6918           "A length specifier cannot be used to declare the non-character entity '%s'"_err_en_US);
6919     }
6920   }
6921   if (auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
6922     if (proc->procInterface()) {
6923       Say(name,
6924           "'%s' has an explicit interface and may not also have a type"_err_en_US);
6925       context().SetError(symbol);
6926       return;
6927     }
6928   }
6929   auto *prevType{symbol.GetType()};
6930   if (!prevType) {
6931     if (symbol.test(Symbol::Flag::InDataStmt) && isImplicitNoneType()) {
6932       context().Warn(common::LanguageFeature::ForwardRefImplicitNoneData,
6933           name.source,
6934           "'%s' appeared in a DATA statement before its type was declared under IMPLICIT NONE(TYPE)"_port_en_US,
6935           name.source);
6936     }
6937     symbol.SetType(type);
6938   } else if (symbol.has<UseDetails>()) {
6939     // error recovery case, redeclaration of use-associated name
6940   } else if (HadForwardRef(symbol)) {
6941     // error recovery after use of host-associated name
6942   } else if (!symbol.test(Symbol::Flag::Implicit)) {
6943     SayWithDecl(
6944         name, symbol, "The type of '%s' has already been declared"_err_en_US);
6945     context().SetError(symbol);
6946   } else if (type != *prevType) {
6947     SayWithDecl(name, symbol,
6948         "The type of '%s' has already been implicitly declared"_err_en_US);
6949     context().SetError(symbol);
6950   } else {
6951     symbol.set(Symbol::Flag::Implicit, false);
6952   }
6953 }
6954 
6955 std::optional<DerivedTypeSpec> DeclarationVisitor::ResolveDerivedType(
6956     const parser::Name &name) {
6957   Scope &outer{NonDerivedTypeScope()};
6958   Symbol *symbol{FindSymbol(outer, name)};
6959   Symbol *ultimate{symbol ? &symbol->GetUltimate() : nullptr};
6960   auto *generic{ultimate ? ultimate->detailsIf<GenericDetails>() : nullptr};
6961   if (generic) {
6962     if (Symbol * genDT{generic->derivedType()}) {
6963       symbol = genDT;
6964       generic = nullptr;
6965     }
6966   }
6967   if (!symbol || symbol->has<UnknownDetails>() ||
6968       (generic && &ultimate->owner() == &outer)) {
6969     if (allowForwardReferenceToDerivedType()) {
6970       if (!symbol) {
6971         symbol = &MakeSymbol(outer, name.source, Attrs{});
6972         Resolve(name, *symbol);
6973       } else if (generic) {
6974         // forward ref to type with later homonymous generic
6975         symbol = &outer.MakeSymbol(name.source, Attrs{}, UnknownDetails{});
6976         generic->set_derivedType(*symbol);
6977         name.symbol = symbol;
6978       }
6979       DerivedTypeDetails details;
6980       details.set_isForwardReferenced(true);
6981       symbol->set_details(std::move(details));
6982     } else { // C732
6983       Say(name, "Derived type '%s' not found"_err_en_US);
6984       return std::nullopt;
6985     }
6986   } else if (&DEREF(symbol).owner() != &outer &&
6987       !ultimate->has<GenericDetails>()) {
6988     // Prevent a later declaration in this scope of a host-associated
6989     // type name.
6990     outer.add_importName(name.source);
6991   }
6992   if (CheckUseError(name)) {
6993     return std::nullopt;
6994   } else if (symbol->GetUltimate().has<DerivedTypeDetails>()) {
6995     return DerivedTypeSpec{name.source, *symbol};
6996   } else {
6997     Say(name, "'%s' is not a derived type"_err_en_US);
6998     return std::nullopt;
6999   }
7000 }
7001 
7002 std::optional<DerivedTypeSpec> DeclarationVisitor::ResolveExtendsType(
7003     const parser::Name &typeName, const parser::Name *extendsName) {
7004   if (extendsName) {
7005     if (typeName.source == extendsName->source) {
7006       Say(extendsName->source,
7007           "Derived type '%s' cannot extend itself"_err_en_US);
7008     } else if (auto dtSpec{ResolveDerivedType(*extendsName)}) {
7009       if (!dtSpec->IsForwardReferenced()) {
7010         return dtSpec;
7011       }
7012       Say(typeName.source,
7013           "Derived type '%s' cannot extend type '%s' that has not yet been defined"_err_en_US,
7014           typeName.source, extendsName->source);
7015     }
7016   }
7017   return std::nullopt;
7018 }
7019 
7020 Symbol *DeclarationVisitor::NoteInterfaceName(const parser::Name &name) {
7021   // The symbol is checked later by CheckExplicitInterface() and
7022   // CheckBindings().  It can be a forward reference.
7023   if (!NameIsKnownOrIntrinsic(name)) {
7024     Symbol &symbol{MakeSymbol(InclusiveScope(), name.source, Attrs{})};
7025     Resolve(name, symbol);
7026   }
7027   return name.symbol;
7028 }
7029 
7030 void DeclarationVisitor::CheckExplicitInterface(const parser::Name &name) {
7031   if (const Symbol * symbol{name.symbol}) {
7032     const Symbol &ultimate{symbol->GetUltimate()};
7033     if (!context().HasError(*symbol) && !context().HasError(ultimate) &&
7034         !BypassGeneric(ultimate).HasExplicitInterface()) {
7035       Say(name,
7036           "'%s' must be an abstract interface or a procedure with an explicit interface"_err_en_US,
7037           symbol->name());
7038     }
7039   }
7040 }
7041 
7042 // Create a symbol for a type parameter, component, or procedure binding in
7043 // the current derived type scope. Return false on error.
7044 Symbol *DeclarationVisitor::MakeTypeSymbol(
7045     const parser::Name &name, Details &&details) {
7046   return Resolve(name, MakeTypeSymbol(name.source, std::move(details)));
7047 }
7048 Symbol *DeclarationVisitor::MakeTypeSymbol(
7049     const SourceName &name, Details &&details) {
7050   Scope &derivedType{currScope()};
7051   CHECK(derivedType.IsDerivedType());
7052   if (auto *symbol{FindInScope(derivedType, name)}) { // C742
7053     Say2(name,
7054         "Type parameter, component, or procedure binding '%s'"
7055         " already defined in this type"_err_en_US,
7056         *symbol, "Previous definition of '%s'"_en_US);
7057     return nullptr;
7058   } else {
7059     auto attrs{GetAttrs()};
7060     // Apply binding-private-stmt if present and this is a procedure binding
7061     if (derivedTypeInfo_.privateBindings &&
7062         !attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE}) &&
7063         std::holds_alternative<ProcBindingDetails>(details)) {
7064       attrs.set(Attr::PRIVATE);
7065     }
7066     Symbol &result{MakeSymbol(name, attrs, std::move(details))};
7067     SetCUDADataAttr(name, result, cudaDataAttr());
7068     return &result;
7069   }
7070 }
7071 
7072 // Return true if it is ok to declare this component in the current scope.
7073 // Otherwise, emit an error and return false.
7074 bool DeclarationVisitor::OkToAddComponent(
7075     const parser::Name &name, const Symbol *extends) {
7076   for (const Scope *scope{&currScope()}; scope;) {
7077     CHECK(scope->IsDerivedType());
7078     if (auto *prev{FindInScope(*scope, name.source)}) {
7079       std::optional<parser::MessageFixedText> msg;
7080       std::optional<common::UsageWarning> warning;
7081       if (context().HasError(*prev)) { // don't pile on
7082       } else if (extends) {
7083         msg = "Type cannot be extended as it has a component named"
7084               " '%s'"_err_en_US;
7085       } else if (CheckAccessibleSymbol(currScope(), *prev)) {
7086         // inaccessible component -- redeclaration is ok
7087         if (context().ShouldWarn(
7088                 common::UsageWarning::RedeclaredInaccessibleComponent)) {
7089           msg =
7090               "Component '%s' is inaccessibly declared in or as a parent of this derived type"_warn_en_US;
7091           warning = common::UsageWarning::RedeclaredInaccessibleComponent;
7092         }
7093       } else if (prev->test(Symbol::Flag::ParentComp)) {
7094         msg =
7095             "'%s' is a parent type of this type and so cannot be a component"_err_en_US;
7096       } else if (scope == &currScope()) {
7097         msg =
7098             "Component '%s' is already declared in this derived type"_err_en_US;
7099       } else {
7100         msg =
7101             "Component '%s' is already declared in a parent of this derived type"_err_en_US;
7102       }
7103       if (msg) {
7104         auto &said{Say2(name, std::move(*msg), *prev,
7105             "Previous declaration of '%s'"_en_US)};
7106         if (msg->severity() == parser::Severity::Error) {
7107           Resolve(name, *prev);
7108           return false;
7109         }
7110         if (warning) {
7111           said.set_usageWarning(*warning);
7112         }
7113       }
7114     }
7115     if (scope == &currScope() && extends) {
7116       // The parent component has not yet been added to the scope.
7117       scope = extends->scope();
7118     } else {
7119       scope = scope->GetDerivedTypeParent();
7120     }
7121   }
7122   return true;
7123 }
7124 
7125 ParamValue DeclarationVisitor::GetParamValue(
7126     const parser::TypeParamValue &x, common::TypeParamAttr attr) {
7127   return common::visit(
7128       common::visitors{
7129           [=](const parser::ScalarIntExpr &x) { // C704
7130             return ParamValue{EvaluateIntExpr(x), attr};
7131           },
7132           [=](const parser::Star &) { return ParamValue::Assumed(attr); },
7133           [=](const parser::TypeParamValue::Deferred &) {
7134             return ParamValue::Deferred(attr);
7135           },
7136       },
7137       x.u);
7138 }
7139 
7140 // ConstructVisitor implementation
7141 
7142 void ConstructVisitor::ResolveIndexName(
7143     const parser::ConcurrentControl &control) {
7144   const parser::Name &name{std::get<parser::Name>(control.t)};
7145   auto *prev{FindSymbol(name)};
7146   if (prev) {
7147     if (prev->owner() == currScope()) {
7148       SayAlreadyDeclared(name, *prev);
7149       return;
7150     } else if (prev->owner().kind() == Scope::Kind::Forall &&
7151         context().ShouldWarn(
7152             common::LanguageFeature::OddIndexVariableRestrictions)) {
7153       SayWithDecl(name, *prev,
7154           "Index variable '%s' should not also be an index in an enclosing FORALL or DO CONCURRENT"_port_en_US)
7155           .set_languageFeature(
7156               common::LanguageFeature::OddIndexVariableRestrictions);
7157     }
7158     name.symbol = nullptr;
7159   }
7160   auto &symbol{DeclareObjectEntity(name)};
7161   if (symbol.GetType()) {
7162     // type came from explicit type-spec
7163   } else if (!prev) {
7164     ApplyImplicitRules(symbol);
7165   } else {
7166     // Odd rules in F'2023 19.4 paras 6 & 8.
7167     Symbol &prevRoot{prev->GetUltimate()};
7168     if (const auto *type{prevRoot.GetType()}) {
7169       symbol.SetType(*type);
7170     } else {
7171       ApplyImplicitRules(symbol);
7172     }
7173     if (prevRoot.has<ObjectEntityDetails>() ||
7174         ConvertToObjectEntity(prevRoot)) {
7175       if (prevRoot.IsObjectArray() &&
7176           context().ShouldWarn(
7177               common::LanguageFeature::OddIndexVariableRestrictions)) {
7178         SayWithDecl(name, *prev,
7179             "Index variable '%s' should be scalar in the enclosing scope"_port_en_US)
7180             .set_languageFeature(
7181                 common::LanguageFeature::OddIndexVariableRestrictions);
7182       }
7183     } else if (!prevRoot.has<CommonBlockDetails>() &&
7184         context().ShouldWarn(
7185             common::LanguageFeature::OddIndexVariableRestrictions)) {
7186       SayWithDecl(name, *prev,
7187           "Index variable '%s' should be a scalar object or common block if it is present in the enclosing scope"_port_en_US)
7188           .set_languageFeature(
7189               common::LanguageFeature::OddIndexVariableRestrictions);
7190     }
7191   }
7192   EvaluateExpr(parser::Scalar{parser::Integer{common::Clone(name)}});
7193 }
7194 
7195 // We need to make sure that all of the index-names get declared before the
7196 // expressions in the loop control are evaluated so that references to the
7197 // index-names in the expressions are correctly detected.
7198 bool ConstructVisitor::Pre(const parser::ConcurrentHeader &header) {
7199   BeginDeclTypeSpec();
7200   Walk(std::get<std::optional<parser::IntegerTypeSpec>>(header.t));
7201   const auto &controls{
7202       std::get<std::list<parser::ConcurrentControl>>(header.t)};
7203   for (const auto &control : controls) {
7204     ResolveIndexName(control);
7205   }
7206   Walk(controls);
7207   Walk(std::get<std::optional<parser::ScalarLogicalExpr>>(header.t));
7208   EndDeclTypeSpec();
7209   return false;
7210 }
7211 
7212 bool ConstructVisitor::Pre(const parser::LocalitySpec::Local &x) {
7213   for (auto &name : x.v) {
7214     DeclareLocalEntity(name, Symbol::Flag::LocalityLocal);
7215   }
7216   return false;
7217 }
7218 
7219 bool ConstructVisitor::Pre(const parser::LocalitySpec::LocalInit &x) {
7220   for (auto &name : x.v) {
7221     DeclareLocalEntity(name, Symbol::Flag::LocalityLocalInit);
7222   }
7223   return false;
7224 }
7225 
7226 bool ConstructVisitor::Pre(const parser::LocalitySpec::Reduce &x) {
7227   for (const auto &name : std::get<std::list<parser::Name>>(x.t)) {
7228     DeclareLocalEntity(name, Symbol::Flag::LocalityReduce);
7229   }
7230   return false;
7231 }
7232 
7233 bool ConstructVisitor::Pre(const parser::LocalitySpec::Shared &x) {
7234   for (const auto &name : x.v) {
7235     if (!FindSymbol(name)) {
7236       context().Warn(common::UsageWarning::ImplicitShared, name.source,
7237           "Variable '%s' with SHARED locality implicitly declared"_warn_en_US,
7238           name.source);
7239     }
7240     Symbol &prev{FindOrDeclareEnclosingEntity(name)};
7241     if (PassesSharedLocalityChecks(name, prev)) {
7242       MakeHostAssocSymbol(name, prev).set(Symbol::Flag::LocalityShared);
7243     }
7244   }
7245   return false;
7246 }
7247 
7248 bool ConstructVisitor::Pre(const parser::AcSpec &x) {
7249   ProcessTypeSpec(x.type);
7250   Walk(x.values);
7251   return false;
7252 }
7253 
7254 // Section 19.4, paragraph 5 says that each ac-do-variable has the scope of the
7255 // enclosing ac-implied-do
7256 bool ConstructVisitor::Pre(const parser::AcImpliedDo &x) {
7257   auto &values{std::get<std::list<parser::AcValue>>(x.t)};
7258   auto &control{std::get<parser::AcImpliedDoControl>(x.t)};
7259   auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(control.t)};
7260   auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)};
7261   // F'2018 has the scope of the implied DO variable covering the entire
7262   // implied DO production (19.4(5)), which seems wrong in cases where the name
7263   // of the implied DO variable appears in one of the bound expressions. Thus
7264   // this extension, which shrinks the scope of the variable to exclude the
7265   // expressions in the bounds.
7266   auto restore{BeginCheckOnIndexUseInOwnBounds(bounds.name)};
7267   Walk(bounds.lower);
7268   Walk(bounds.upper);
7269   Walk(bounds.step);
7270   EndCheckOnIndexUseInOwnBounds(restore);
7271   PushScope(Scope::Kind::ImpliedDos, nullptr);
7272   DeclareStatementEntity(bounds.name, type);
7273   Walk(values);
7274   PopScope();
7275   return false;
7276 }
7277 
7278 bool ConstructVisitor::Pre(const parser::DataImpliedDo &x) {
7279   auto &objects{std::get<std::list<parser::DataIDoObject>>(x.t)};
7280   auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(x.t)};
7281   auto &bounds{std::get<parser::DataImpliedDo::Bounds>(x.t)};
7282   // See comment in Pre(AcImpliedDo) above.
7283   auto restore{BeginCheckOnIndexUseInOwnBounds(bounds.name)};
7284   Walk(bounds.lower);
7285   Walk(bounds.upper);
7286   Walk(bounds.step);
7287   EndCheckOnIndexUseInOwnBounds(restore);
7288   bool pushScope{currScope().kind() != Scope::Kind::ImpliedDos};
7289   if (pushScope) {
7290     PushScope(Scope::Kind::ImpliedDos, nullptr);
7291   }
7292   DeclareStatementEntity(bounds.name, type);
7293   Walk(objects);
7294   if (pushScope) {
7295     PopScope();
7296   }
7297   return false;
7298 }
7299 
7300 // Sets InDataStmt flag on a variable (or misidentified function) in a DATA
7301 // statement so that the predicate IsInitialized() will be true
7302 // during semantic analysis before the symbol's initializer is constructed.
7303 bool ConstructVisitor::Pre(const parser::DataIDoObject &x) {
7304   common::visit(
7305       common::visitors{
7306           [&](const parser::Scalar<Indirection<parser::Designator>> &y) {
7307             Walk(y.thing.value());
7308             const parser::Name &first{parser::GetFirstName(y.thing.value())};
7309             if (first.symbol) {
7310               first.symbol->set(Symbol::Flag::InDataStmt);
7311             }
7312           },
7313           [&](const Indirection<parser::DataImpliedDo> &y) { Walk(y.value()); },
7314       },
7315       x.u);
7316   return false;
7317 }
7318 
7319 bool ConstructVisitor::Pre(const parser::DataStmtObject &x) {
7320   // Subtle: DATA statements may appear in both the specification and
7321   // execution parts, but should be treated as if in the execution part
7322   // for purposes of implicit variable declaration vs. host association.
7323   // When a name first appears as an object in a DATA statement, it should
7324   // be implicitly declared locally as if it had been assigned.
7325   auto flagRestorer{common::ScopedSet(inSpecificationPart_, false)};
7326   common::visit(
7327       common::visitors{
7328           [&](const Indirection<parser::Variable> &y) {
7329             auto restorer{common::ScopedSet(deferImplicitTyping_, true)};
7330             Walk(y.value());
7331             const parser::Name &first{parser::GetFirstName(y.value())};
7332             if (first.symbol) {
7333               first.symbol->set(Symbol::Flag::InDataStmt);
7334             }
7335           },
7336           [&](const parser::DataImpliedDo &y) {
7337             PushScope(Scope::Kind::ImpliedDos, nullptr);
7338             Walk(y);
7339             PopScope();
7340           },
7341       },
7342       x.u);
7343   return false;
7344 }
7345 
7346 bool ConstructVisitor::Pre(const parser::DataStmtValue &x) {
7347   const auto &data{std::get<parser::DataStmtConstant>(x.t)};
7348   auto &mutableData{const_cast<parser::DataStmtConstant &>(data)};
7349   if (auto *elem{parser::Unwrap<parser::ArrayElement>(mutableData)}) {
7350     if (const auto *name{std::get_if<parser::Name>(&elem->base.u)}) {
7351       if (const Symbol * symbol{FindSymbol(*name)};
7352           symbol && symbol->GetUltimate().has<DerivedTypeDetails>()) {
7353         mutableData.u = elem->ConvertToStructureConstructor(
7354             DerivedTypeSpec{name->source, *symbol});
7355       }
7356     }
7357   }
7358   return true;
7359 }
7360 
7361 bool ConstructVisitor::Pre(const parser::DoConstruct &x) {
7362   if (x.IsDoConcurrent()) {
7363     // The new scope has Kind::Forall for index variable name conflict
7364     // detection with nested FORALL/DO CONCURRENT constructs in
7365     // ResolveIndexName().
7366     PushScope(Scope::Kind::Forall, nullptr);
7367   }
7368   return true;
7369 }
7370 void ConstructVisitor::Post(const parser::DoConstruct &x) {
7371   if (x.IsDoConcurrent()) {
7372     PopScope();
7373   }
7374 }
7375 
7376 bool ConstructVisitor::Pre(const parser::ForallConstruct &) {
7377   PushScope(Scope::Kind::Forall, nullptr);
7378   return true;
7379 }
7380 void ConstructVisitor::Post(const parser::ForallConstruct &) { PopScope(); }
7381 bool ConstructVisitor::Pre(const parser::ForallStmt &) {
7382   PushScope(Scope::Kind::Forall, nullptr);
7383   return true;
7384 }
7385 void ConstructVisitor::Post(const parser::ForallStmt &) { PopScope(); }
7386 
7387 bool ConstructVisitor::Pre(const parser::BlockConstruct &x) {
7388   const auto &[blockStmt, specPart, execPart, endBlockStmt] = x.t;
7389   Walk(blockStmt);
7390   CheckDef(blockStmt.statement.v);
7391   PushScope(Scope::Kind::BlockConstruct, nullptr);
7392   Walk(specPart);
7393   HandleImpliedAsynchronousInScope(execPart);
7394   Walk(execPart);
7395   Walk(endBlockStmt);
7396   PopScope();
7397   CheckRef(endBlockStmt.statement.v);
7398   return false;
7399 }
7400 
7401 void ConstructVisitor::Post(const parser::Selector &x) {
7402   GetCurrentAssociation().selector = ResolveSelector(x);
7403 }
7404 
7405 void ConstructVisitor::Post(const parser::AssociateStmt &x) {
7406   CheckDef(x.t);
7407   PushScope(Scope::Kind::OtherConstruct, nullptr);
7408   const auto assocCount{std::get<std::list<parser::Association>>(x.t).size()};
7409   for (auto nthLastAssoc{assocCount}; nthLastAssoc > 0; --nthLastAssoc) {
7410     SetCurrentAssociation(nthLastAssoc);
7411     if (auto *symbol{MakeAssocEntity()}) {
7412       const MaybeExpr &expr{GetCurrentAssociation().selector.expr};
7413       if (ExtractCoarrayRef(expr)) { // C1103
7414         Say("Selector must not be a coindexed object"_err_en_US);
7415       }
7416       if (evaluate::IsAssumedRank(expr)) {
7417         Say("Selector must not be assumed-rank"_err_en_US);
7418       }
7419       SetTypeFromAssociation(*symbol);
7420       SetAttrsFromAssociation(*symbol);
7421     }
7422   }
7423   PopAssociation(assocCount);
7424 }
7425 
7426 void ConstructVisitor::Post(const parser::EndAssociateStmt &x) {
7427   PopScope();
7428   CheckRef(x.v);
7429 }
7430 
7431 bool ConstructVisitor::Pre(const parser::Association &x) {
7432   PushAssociation();
7433   const auto &name{std::get<parser::Name>(x.t)};
7434   GetCurrentAssociation().name = &name;
7435   return true;
7436 }
7437 
7438 bool ConstructVisitor::Pre(const parser::ChangeTeamStmt &x) {
7439   CheckDef(x.t);
7440   PushScope(Scope::Kind::OtherConstruct, nullptr);
7441   PushAssociation();
7442   return true;
7443 }
7444 
7445 void ConstructVisitor::Post(const parser::CoarrayAssociation &x) {
7446   const auto &decl{std::get<parser::CodimensionDecl>(x.t)};
7447   const auto &name{std::get<parser::Name>(decl.t)};
7448   if (auto *symbol{FindInScope(name)}) {
7449     const auto &selector{std::get<parser::Selector>(x.t)};
7450     if (auto sel{ResolveSelector(selector)}) {
7451       const Symbol *whole{UnwrapWholeSymbolDataRef(sel.expr)};
7452       if (!whole || whole->Corank() == 0) {
7453         Say(sel.source, // C1116
7454             "Selector in coarray association must name a coarray"_err_en_US);
7455       } else if (auto dynType{sel.expr->GetType()}) {
7456         if (!symbol->GetType()) {
7457           symbol->SetType(ToDeclTypeSpec(std::move(*dynType)));
7458         }
7459       }
7460     }
7461   }
7462 }
7463 
7464 void ConstructVisitor::Post(const parser::EndChangeTeamStmt &x) {
7465   PopAssociation();
7466   PopScope();
7467   CheckRef(x.t);
7468 }
7469 
7470 bool ConstructVisitor::Pre(const parser::SelectTypeConstruct &) {
7471   PushAssociation();
7472   return true;
7473 }
7474 
7475 void ConstructVisitor::Post(const parser::SelectTypeConstruct &) {
7476   PopAssociation();
7477 }
7478 
7479 void ConstructVisitor::Post(const parser::SelectTypeStmt &x) {
7480   auto &association{GetCurrentAssociation()};
7481   if (const std::optional<parser::Name> &name{std::get<1>(x.t)}) {
7482     // This isn't a name in the current scope, it is in each TypeGuardStmt
7483     MakePlaceholder(*name, MiscDetails::Kind::SelectTypeAssociateName);
7484     association.name = &*name;
7485     if (ExtractCoarrayRef(association.selector.expr)) { // C1103
7486       Say("Selector must not be a coindexed object"_err_en_US);
7487     }
7488     if (association.selector.expr) {
7489       auto exprType{association.selector.expr->GetType()};
7490       if (exprType && !exprType->IsPolymorphic()) { // C1159
7491         Say(association.selector.source,
7492             "Selector '%s' in SELECT TYPE statement must be "
7493             "polymorphic"_err_en_US);
7494       }
7495     }
7496   } else {
7497     if (const Symbol *
7498         whole{UnwrapWholeSymbolDataRef(association.selector.expr)}) {
7499       ConvertToObjectEntity(const_cast<Symbol &>(*whole));
7500       if (!IsVariableName(*whole)) {
7501         Say(association.selector.source, // C901
7502             "Selector is not a variable"_err_en_US);
7503         association = {};
7504       }
7505       if (const DeclTypeSpec * type{whole->GetType()}) {
7506         if (!type->IsPolymorphic()) { // C1159
7507           Say(association.selector.source,
7508               "Selector '%s' in SELECT TYPE statement must be "
7509               "polymorphic"_err_en_US);
7510         }
7511       }
7512     } else {
7513       Say(association.selector.source, // C1157
7514           "Selector is not a named variable: 'associate-name =>' is required"_err_en_US);
7515       association = {};
7516     }
7517   }
7518 }
7519 
7520 void ConstructVisitor::Post(const parser::SelectRankStmt &x) {
7521   auto &association{GetCurrentAssociation()};
7522   if (const std::optional<parser::Name> &name{std::get<1>(x.t)}) {
7523     // This isn't a name in the current scope, it is in each SelectRankCaseStmt
7524     MakePlaceholder(*name, MiscDetails::Kind::SelectRankAssociateName);
7525     association.name = &*name;
7526   }
7527 }
7528 
7529 bool ConstructVisitor::Pre(const parser::SelectTypeConstruct::TypeCase &) {
7530   PushScope(Scope::Kind::OtherConstruct, nullptr);
7531   return true;
7532 }
7533 void ConstructVisitor::Post(const parser::SelectTypeConstruct::TypeCase &) {
7534   PopScope();
7535 }
7536 
7537 bool ConstructVisitor::Pre(const parser::SelectRankConstruct::RankCase &) {
7538   PushScope(Scope::Kind::OtherConstruct, nullptr);
7539   return true;
7540 }
7541 void ConstructVisitor::Post(const parser::SelectRankConstruct::RankCase &) {
7542   PopScope();
7543 }
7544 
7545 bool ConstructVisitor::Pre(const parser::TypeGuardStmt::Guard &x) {
7546   if (std::holds_alternative<parser::DerivedTypeSpec>(x.u)) {
7547     // CLASS IS (t)
7548     SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived);
7549   }
7550   return true;
7551 }
7552 
7553 void ConstructVisitor::Post(const parser::TypeGuardStmt::Guard &x) {
7554   if (auto *symbol{MakeAssocEntity()}) {
7555     if (std::holds_alternative<parser::Default>(x.u)) {
7556       SetTypeFromAssociation(*symbol);
7557     } else if (const auto *type{GetDeclTypeSpec()}) {
7558       symbol->SetType(*type);
7559     }
7560     SetAttrsFromAssociation(*symbol);
7561   }
7562 }
7563 
7564 void ConstructVisitor::Post(const parser::SelectRankCaseStmt::Rank &x) {
7565   if (auto *symbol{MakeAssocEntity()}) {
7566     SetTypeFromAssociation(*symbol);
7567     auto &details{symbol->get<AssocEntityDetails>()};
7568     // Don't call SetAttrsFromAssociation() for SELECT RANK.
7569     Attrs selectorAttrs{
7570         evaluate::GetAttrs(GetCurrentAssociation().selector.expr)};
7571     Attrs attrsToKeep{Attr::ASYNCHRONOUS, Attr::TARGET, Attr::VOLATILE};
7572     if (const auto *rankValue{
7573             std::get_if<parser::ScalarIntConstantExpr>(&x.u)}) {
7574       // RANK(n)
7575       if (auto expr{EvaluateIntExpr(*rankValue)}) {
7576         if (auto val{evaluate::ToInt64(*expr)}) {
7577           details.set_rank(*val);
7578           attrsToKeep |= Attrs{Attr::ALLOCATABLE, Attr::POINTER};
7579         } else {
7580           Say("RANK() expression must be constant"_err_en_US);
7581         }
7582       }
7583     } else if (std::holds_alternative<parser::Star>(x.u)) {
7584       // RANK(*): assumed-size
7585       details.set_IsAssumedSize();
7586     } else {
7587       CHECK(std::holds_alternative<parser::Default>(x.u));
7588       // RANK DEFAULT: assumed-rank
7589       details.set_IsAssumedRank();
7590       attrsToKeep |= Attrs{Attr::ALLOCATABLE, Attr::POINTER};
7591     }
7592     symbol->attrs() |= selectorAttrs & attrsToKeep;
7593   }
7594 }
7595 
7596 bool ConstructVisitor::Pre(const parser::SelectRankConstruct &) {
7597   PushAssociation();
7598   return true;
7599 }
7600 
7601 void ConstructVisitor::Post(const parser::SelectRankConstruct &) {
7602   PopAssociation();
7603 }
7604 
7605 bool ConstructVisitor::CheckDef(const std::optional<parser::Name> &x) {
7606   if (x && !x->symbol) {
7607     // Construct names are not scoped by BLOCK in the standard, but many,
7608     // but not all, compilers do treat them as if they were so scoped.
7609     if (Symbol * inner{FindInScope(currScope(), *x)}) {
7610       SayAlreadyDeclared(*x, *inner);
7611     } else {
7612       if (context().ShouldWarn(common::LanguageFeature::BenignNameClash)) {
7613         if (Symbol *
7614             other{FindInScopeOrBlockConstructs(InclusiveScope(), x->source)}) {
7615           SayWithDecl(*x, *other,
7616               "The construct name '%s' should be distinct at the subprogram level"_port_en_US)
7617               .set_languageFeature(common::LanguageFeature::BenignNameClash);
7618         }
7619       }
7620       MakeSymbol(*x, MiscDetails{MiscDetails::Kind::ConstructName});
7621     }
7622   }
7623   return true;
7624 }
7625 
7626 void ConstructVisitor::CheckRef(const std::optional<parser::Name> &x) {
7627   if (x) {
7628     // Just add an occurrence of this name; checking is done in ValidateLabels
7629     FindSymbol(*x);
7630   }
7631 }
7632 
7633 // Make a symbol for the associating entity of the current association.
7634 Symbol *ConstructVisitor::MakeAssocEntity() {
7635   Symbol *symbol{nullptr};
7636   auto &association{GetCurrentAssociation()};
7637   if (association.name) {
7638     symbol = &MakeSymbol(*association.name, UnknownDetails{});
7639     if (symbol->has<AssocEntityDetails>() && symbol->owner() == currScope()) {
7640       Say(*association.name, // C1102
7641           "The associate name '%s' is already used in this associate statement"_err_en_US);
7642       return nullptr;
7643     }
7644   } else if (const Symbol *
7645       whole{UnwrapWholeSymbolDataRef(association.selector.expr)}) {
7646     symbol = &MakeSymbol(whole->name());
7647   } else {
7648     return nullptr;
7649   }
7650   if (auto &expr{association.selector.expr}) {
7651     symbol->set_details(AssocEntityDetails{common::Clone(*expr)});
7652   } else {
7653     symbol->set_details(AssocEntityDetails{});
7654   }
7655   return symbol;
7656 }
7657 
7658 // Set the type of symbol based on the current association selector.
7659 void ConstructVisitor::SetTypeFromAssociation(Symbol &symbol) {
7660   auto &details{symbol.get<AssocEntityDetails>()};
7661   const MaybeExpr *pexpr{&details.expr()};
7662   if (!*pexpr) {
7663     pexpr = &GetCurrentAssociation().selector.expr;
7664   }
7665   if (*pexpr) {
7666     const SomeExpr &expr{**pexpr};
7667     if (std::optional<evaluate::DynamicType> type{expr.GetType()}) {
7668       if (const auto *charExpr{
7669               evaluate::UnwrapExpr<evaluate::Expr<evaluate::SomeCharacter>>(
7670                   expr)}) {
7671         symbol.SetType(ToDeclTypeSpec(std::move(*type),
7672             FoldExpr(common::visit(
7673                 [](const auto &kindChar) { return kindChar.LEN(); },
7674                 charExpr->u))));
7675       } else {
7676         symbol.SetType(ToDeclTypeSpec(std::move(*type)));
7677       }
7678     } else {
7679       // BOZ literals, procedure designators, &c. are not acceptable
7680       Say(symbol.name(), "Associate name '%s' must have a type"_err_en_US);
7681     }
7682   }
7683 }
7684 
7685 // If current selector is a variable, set some of its attributes on symbol.
7686 // For ASSOCIATE, CHANGE TEAM, and SELECT TYPE only; not SELECT RANK.
7687 void ConstructVisitor::SetAttrsFromAssociation(Symbol &symbol) {
7688   Attrs attrs{evaluate::GetAttrs(GetCurrentAssociation().selector.expr)};
7689   symbol.attrs() |=
7690       attrs & Attrs{Attr::TARGET, Attr::ASYNCHRONOUS, Attr::VOLATILE};
7691   if (attrs.test(Attr::POINTER)) {
7692     SetImplicitAttr(symbol, Attr::TARGET);
7693   }
7694 }
7695 
7696 ConstructVisitor::Selector ConstructVisitor::ResolveSelector(
7697     const parser::Selector &x) {
7698   return common::visit(common::visitors{
7699                            [&](const parser::Expr &expr) {
7700                              return Selector{expr.source, EvaluateExpr(x)};
7701                            },
7702                            [&](const parser::Variable &var) {
7703                              return Selector{var.GetSource(), EvaluateExpr(x)};
7704                            },
7705                        },
7706       x.u);
7707 }
7708 
7709 // Set the current association to the nth to the last association on the
7710 // association stack.  The top of the stack is at n = 1.  This allows access
7711 // to the interior of a list of associations at the top of the stack.
7712 void ConstructVisitor::SetCurrentAssociation(std::size_t n) {
7713   CHECK(n > 0 && n <= associationStack_.size());
7714   currentAssociation_ = &associationStack_[associationStack_.size() - n];
7715 }
7716 
7717 ConstructVisitor::Association &ConstructVisitor::GetCurrentAssociation() {
7718   CHECK(currentAssociation_);
7719   return *currentAssociation_;
7720 }
7721 
7722 void ConstructVisitor::PushAssociation() {
7723   associationStack_.emplace_back(Association{});
7724   currentAssociation_ = &associationStack_.back();
7725 }
7726 
7727 void ConstructVisitor::PopAssociation(std::size_t count) {
7728   CHECK(count > 0 && count <= associationStack_.size());
7729   associationStack_.resize(associationStack_.size() - count);
7730   currentAssociation_ =
7731       associationStack_.empty() ? nullptr : &associationStack_.back();
7732 }
7733 
7734 const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec(
7735     evaluate::DynamicType &&type) {
7736   switch (type.category()) {
7737     SWITCH_COVERS_ALL_CASES
7738   case common::TypeCategory::Integer:
7739   case common::TypeCategory::Unsigned:
7740   case common::TypeCategory::Real:
7741   case common::TypeCategory::Complex:
7742     return context().MakeNumericType(type.category(), type.kind());
7743   case common::TypeCategory::Logical:
7744     return context().MakeLogicalType(type.kind());
7745   case common::TypeCategory::Derived:
7746     if (type.IsAssumedType()) {
7747       return currScope().MakeTypeStarType();
7748     } else if (type.IsUnlimitedPolymorphic()) {
7749       return currScope().MakeClassStarType();
7750     } else {
7751       return currScope().MakeDerivedType(
7752           type.IsPolymorphic() ? DeclTypeSpec::ClassDerived
7753                                : DeclTypeSpec::TypeDerived,
7754           common::Clone(type.GetDerivedTypeSpec())
7755 
7756       );
7757     }
7758   case common::TypeCategory::Character:
7759     CRASH_NO_CASE;
7760   }
7761 }
7762 
7763 const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec(
7764     evaluate::DynamicType &&type, MaybeSubscriptIntExpr &&length) {
7765   CHECK(type.category() == common::TypeCategory::Character);
7766   if (length) {
7767     return currScope().MakeCharacterType(
7768         ParamValue{SomeIntExpr{*std::move(length)}, common::TypeParamAttr::Len},
7769         KindExpr{type.kind()});
7770   } else {
7771     return currScope().MakeCharacterType(
7772         ParamValue::Deferred(common::TypeParamAttr::Len),
7773         KindExpr{type.kind()});
7774   }
7775 }
7776 
7777 class ExecutionPartSkimmerBase {
7778 public:
7779   template <typename A> bool Pre(const A &) { return true; }
7780   template <typename A> void Post(const A &) {}
7781 
7782   bool InNestedBlockConstruct() const { return blockDepth_ > 0; }
7783 
7784   bool Pre(const parser::AssociateConstruct &) {
7785     PushScope();
7786     return true;
7787   }
7788   void Post(const parser::AssociateConstruct &) { PopScope(); }
7789   bool Pre(const parser::Association &x) {
7790     Hide(std::get<parser::Name>(x.t));
7791     return true;
7792   }
7793   bool Pre(const parser::BlockConstruct &) {
7794     PushScope();
7795     ++blockDepth_;
7796     return true;
7797   }
7798   void Post(const parser::BlockConstruct &) {
7799     --blockDepth_;
7800     PopScope();
7801   }
7802   // Note declarations of local names in BLOCK constructs.
7803   // Don't have to worry about INTENT(), VALUE, or OPTIONAL
7804   // (pertinent only to dummy arguments), ASYNCHRONOUS/VOLATILE,
7805   // or accessibility attributes,
7806   bool Pre(const parser::EntityDecl &x) {
7807     Hide(std::get<parser::ObjectName>(x.t));
7808     return true;
7809   }
7810   bool Pre(const parser::ObjectDecl &x) {
7811     Hide(std::get<parser::ObjectName>(x.t));
7812     return true;
7813   }
7814   bool Pre(const parser::PointerDecl &x) {
7815     Hide(std::get<parser::Name>(x.t));
7816     return true;
7817   }
7818   bool Pre(const parser::BindEntity &x) {
7819     Hide(std::get<parser::Name>(x.t));
7820     return true;
7821   }
7822   bool Pre(const parser::ContiguousStmt &x) {
7823     for (const parser::Name &name : x.v) {
7824       Hide(name);
7825     }
7826     return true;
7827   }
7828   bool Pre(const parser::DimensionStmt::Declaration &x) {
7829     Hide(std::get<parser::Name>(x.t));
7830     return true;
7831   }
7832   bool Pre(const parser::ExternalStmt &x) {
7833     for (const parser::Name &name : x.v) {
7834       Hide(name);
7835     }
7836     return true;
7837   }
7838   bool Pre(const parser::IntrinsicStmt &x) {
7839     for (const parser::Name &name : x.v) {
7840       Hide(name);
7841     }
7842     return true;
7843   }
7844   bool Pre(const parser::CodimensionStmt &x) {
7845     for (const parser::CodimensionDecl &decl : x.v) {
7846       Hide(std::get<parser::Name>(decl.t));
7847     }
7848     return true;
7849   }
7850   void Post(const parser::ImportStmt &x) {
7851     if (x.kind == common::ImportKind::None ||
7852         x.kind == common::ImportKind::Only) {
7853       if (!nestedScopes_.front().importOnly.has_value()) {
7854         nestedScopes_.front().importOnly.emplace();
7855       }
7856       for (const auto &name : x.names) {
7857         nestedScopes_.front().importOnly->emplace(name.source);
7858       }
7859     } else {
7860       // no special handling needed for explicit names or IMPORT, ALL
7861     }
7862   }
7863   void Post(const parser::UseStmt &x) {
7864     if (const auto *onlyList{std::get_if<std::list<parser::Only>>(&x.u)}) {
7865       for (const auto &only : *onlyList) {
7866         if (const auto *name{std::get_if<parser::Name>(&only.u)}) {
7867           Hide(*name);
7868         } else if (const auto *rename{std::get_if<parser::Rename>(&only.u)}) {
7869           if (const auto *names{
7870                   std::get_if<parser::Rename::Names>(&rename->u)}) {
7871             Hide(std::get<0>(names->t));
7872           }
7873         }
7874       }
7875     } else {
7876       // USE may or may not shadow symbols in host scopes
7877       nestedScopes_.front().hasUseWithoutOnly = true;
7878     }
7879   }
7880   bool Pre(const parser::DerivedTypeStmt &x) {
7881     Hide(std::get<parser::Name>(x.t));
7882     PushScope();
7883     return true;
7884   }
7885   void Post(const parser::DerivedTypeDef &) { PopScope(); }
7886   bool Pre(const parser::SelectTypeConstruct &) {
7887     PushScope();
7888     return true;
7889   }
7890   void Post(const parser::SelectTypeConstruct &) { PopScope(); }
7891   bool Pre(const parser::SelectTypeStmt &x) {
7892     if (const auto &maybeName{std::get<1>(x.t)}) {
7893       Hide(*maybeName);
7894     }
7895     return true;
7896   }
7897   bool Pre(const parser::SelectRankConstruct &) {
7898     PushScope();
7899     return true;
7900   }
7901   void Post(const parser::SelectRankConstruct &) { PopScope(); }
7902   bool Pre(const parser::SelectRankStmt &x) {
7903     if (const auto &maybeName{std::get<1>(x.t)}) {
7904       Hide(*maybeName);
7905     }
7906     return true;
7907   }
7908 
7909   // Iterator-modifiers contain variable declarations, and do introduce
7910   // a new scope. These variables can only have integer types, and their
7911   // scope only extends until the end of the clause. A potential alternative
7912   // to the code below may be to ignore OpenMP clauses, but it's not clear
7913   // if OMP-specific checks can be avoided altogether.
7914   bool Pre(const parser::OmpClause &x) {
7915     if (OmpVisitor::NeedsScope(x)) {
7916       PushScope();
7917     }
7918     return true;
7919   }
7920   void Post(const parser::OmpClause &x) {
7921     if (OmpVisitor::NeedsScope(x)) {
7922       PopScope();
7923     }
7924   }
7925 
7926 protected:
7927   bool IsHidden(SourceName name) {
7928     for (const auto &scope : nestedScopes_) {
7929       if (scope.locals.find(name) != scope.locals.end()) {
7930         return true; // shadowed by nested declaration
7931       }
7932       if (scope.hasUseWithoutOnly) {
7933         break;
7934       }
7935       if (scope.importOnly &&
7936           scope.importOnly->find(name) == scope.importOnly->end()) {
7937         return true; // not imported
7938       }
7939     }
7940     return false;
7941   }
7942 
7943   void EndWalk() { CHECK(nestedScopes_.empty()); }
7944 
7945 private:
7946   void PushScope() { nestedScopes_.emplace_front(); }
7947   void PopScope() { nestedScopes_.pop_front(); }
7948   void Hide(const parser::Name &name) {
7949     nestedScopes_.front().locals.emplace(name.source);
7950   }
7951 
7952   int blockDepth_{0};
7953   struct NestedScopeInfo {
7954     bool hasUseWithoutOnly{false};
7955     std::set<SourceName> locals;
7956     std::optional<std::set<SourceName>> importOnly;
7957   };
7958   std::list<NestedScopeInfo> nestedScopes_;
7959 };
7960 
7961 class ExecutionPartAsyncIOSkimmer : public ExecutionPartSkimmerBase {
7962 public:
7963   explicit ExecutionPartAsyncIOSkimmer(SemanticsContext &context)
7964       : context_{context} {}
7965 
7966   void Walk(const parser::Block &block) {
7967     parser::Walk(block, *this);
7968     EndWalk();
7969   }
7970 
7971   const std::set<SourceName> asyncIONames() const { return asyncIONames_; }
7972 
7973   using ExecutionPartSkimmerBase::Post;
7974   using ExecutionPartSkimmerBase::Pre;
7975 
7976   bool Pre(const parser::IoControlSpec::Asynchronous &async) {
7977     if (auto folded{evaluate::Fold(
7978             context_.foldingContext(), AnalyzeExpr(context_, async.v))}) {
7979       if (auto str{
7980               evaluate::GetScalarConstantValue<evaluate::Ascii>(*folded)}) {
7981         for (char ch : *str) {
7982           if (ch != ' ') {
7983             inAsyncIO_ = ch == 'y' || ch == 'Y';
7984             break;
7985           }
7986         }
7987       }
7988     }
7989     return true;
7990   }
7991   void Post(const parser::ReadStmt &) { inAsyncIO_ = false; }
7992   void Post(const parser::WriteStmt &) { inAsyncIO_ = false; }
7993   void Post(const parser::IoControlSpec::Size &size) {
7994     if (const auto *designator{
7995             std::get_if<common::Indirection<parser::Designator>>(
7996                 &size.v.thing.thing.u)}) {
7997       NoteAsyncIODesignator(designator->value());
7998     }
7999   }
8000   void Post(const parser::InputItem &x) {
8001     if (const auto *var{std::get_if<parser::Variable>(&x.u)}) {
8002       if (const auto *designator{
8003               std::get_if<common::Indirection<parser::Designator>>(&var->u)}) {
8004         NoteAsyncIODesignator(designator->value());
8005       }
8006     }
8007   }
8008   void Post(const parser::OutputItem &x) {
8009     if (const auto *expr{std::get_if<parser::Expr>(&x.u)}) {
8010       if (const auto *designator{
8011               std::get_if<common::Indirection<parser::Designator>>(&expr->u)}) {
8012         NoteAsyncIODesignator(designator->value());
8013       }
8014     }
8015   }
8016 
8017 private:
8018   void NoteAsyncIODesignator(const parser::Designator &designator) {
8019     if (inAsyncIO_ && !InNestedBlockConstruct()) {
8020       const parser::Name &name{parser::GetFirstName(designator)};
8021       if (!IsHidden(name.source)) {
8022         asyncIONames_.insert(name.source);
8023       }
8024     }
8025   }
8026 
8027   SemanticsContext &context_;
8028   bool inAsyncIO_{false};
8029   std::set<SourceName> asyncIONames_;
8030 };
8031 
8032 // Any data list item or SIZE= specifier of an I/O data transfer statement
8033 // with ASYNCHRONOUS="YES" implicitly has the ASYNCHRONOUS attribute in the
8034 // local scope.
8035 void ConstructVisitor::HandleImpliedAsynchronousInScope(
8036     const parser::Block &block) {
8037   ExecutionPartAsyncIOSkimmer skimmer{context()};
8038   skimmer.Walk(block);
8039   for (auto name : skimmer.asyncIONames()) {
8040     if (Symbol * symbol{currScope().FindSymbol(name)}) {
8041       if (!symbol->attrs().test(Attr::ASYNCHRONOUS)) {
8042         if (&symbol->owner() != &currScope()) {
8043           symbol = &*currScope()
8044                          .try_emplace(name, HostAssocDetails{*symbol})
8045                          .first->second;
8046         }
8047         if (symbol->has<AssocEntityDetails>()) {
8048           symbol = const_cast<Symbol *>(&GetAssociationRoot(*symbol));
8049         }
8050         SetImplicitAttr(*symbol, Attr::ASYNCHRONOUS);
8051       }
8052     }
8053   }
8054 }
8055 
8056 // ResolveNamesVisitor implementation
8057 
8058 bool ResolveNamesVisitor::Pre(const parser::FunctionReference &x) {
8059   HandleCall(Symbol::Flag::Function, x.v);
8060   return false;
8061 }
8062 bool ResolveNamesVisitor::Pre(const parser::CallStmt &x) {
8063   HandleCall(Symbol::Flag::Subroutine, x.call);
8064   Walk(x.chevrons);
8065   return false;
8066 }
8067 
8068 bool ResolveNamesVisitor::Pre(const parser::ImportStmt &x) {
8069   auto &scope{currScope()};
8070   // Check C896 and C899: where IMPORT statements are allowed
8071   switch (scope.kind()) {
8072   case Scope::Kind::Module:
8073     if (scope.IsModule()) {
8074       Say("IMPORT is not allowed in a module scoping unit"_err_en_US);
8075       return false;
8076     } else if (x.kind == common::ImportKind::None) {
8077       Say("IMPORT,NONE is not allowed in a submodule scoping unit"_err_en_US);
8078       return false;
8079     }
8080     break;
8081   case Scope::Kind::MainProgram:
8082     Say("IMPORT is not allowed in a main program scoping unit"_err_en_US);
8083     return false;
8084   case Scope::Kind::Subprogram:
8085     if (scope.parent().IsGlobal()) {
8086       Say("IMPORT is not allowed in an external subprogram scoping unit"_err_en_US);
8087       return false;
8088     }
8089     break;
8090   case Scope::Kind::BlockData: // C1415 (in part)
8091     Say("IMPORT is not allowed in a BLOCK DATA subprogram"_err_en_US);
8092     return false;
8093   default:;
8094   }
8095   if (auto error{scope.SetImportKind(x.kind)}) {
8096     Say(std::move(*error));
8097   }
8098   for (auto &name : x.names) {
8099     if (Symbol * outer{FindSymbol(scope.parent(), name)}) {
8100       scope.add_importName(name.source);
8101       if (Symbol * symbol{FindInScope(name)}) {
8102         if (outer->GetUltimate() == symbol->GetUltimate()) {
8103           context().Warn(common::LanguageFeature::BenignNameClash, name.source,
8104               "The same '%s' is already present in this scope"_port_en_US,
8105               name.source);
8106         } else {
8107           Say(name,
8108               "A distinct '%s' is already present in this scope"_err_en_US)
8109               .Attach(symbol->name(), "Previous declaration of '%s'"_en_US)
8110               .Attach(outer->name(), "Declaration of '%s' in host scope"_en_US);
8111         }
8112       }
8113     } else {
8114       Say(name, "'%s' not found in host scope"_err_en_US);
8115     }
8116   }
8117   prevImportStmt_ = currStmtSource();
8118   return false;
8119 }
8120 
8121 const parser::Name *DeclarationVisitor::ResolveStructureComponent(
8122     const parser::StructureComponent &x) {
8123   return FindComponent(ResolveDataRef(x.base), x.component);
8124 }
8125 
8126 const parser::Name *DeclarationVisitor::ResolveDesignator(
8127     const parser::Designator &x) {
8128   return common::visit(
8129       common::visitors{
8130           [&](const parser::DataRef &x) { return ResolveDataRef(x); },
8131           [&](const parser::Substring &x) {
8132             Walk(std::get<parser::SubstringRange>(x.t).t);
8133             return ResolveDataRef(std::get<parser::DataRef>(x.t));
8134           },
8135       },
8136       x.u);
8137 }
8138 
8139 const parser::Name *DeclarationVisitor::ResolveDataRef(
8140     const parser::DataRef &x) {
8141   return common::visit(
8142       common::visitors{
8143           [=](const parser::Name &y) { return ResolveName(y); },
8144           [=](const Indirection<parser::StructureComponent> &y) {
8145             return ResolveStructureComponent(y.value());
8146           },
8147           [&](const Indirection<parser::ArrayElement> &y) {
8148             Walk(y.value().subscripts);
8149             const parser::Name *name{ResolveDataRef(y.value().base)};
8150             if (name && name->symbol) {
8151               if (!IsProcedure(*name->symbol)) {
8152                 ConvertToObjectEntity(*name->symbol);
8153               } else if (!context().HasError(*name->symbol)) {
8154                 SayWithDecl(*name, *name->symbol,
8155                     "Cannot reference function '%s' as data"_err_en_US);
8156                 context().SetError(*name->symbol);
8157               }
8158             }
8159             return name;
8160           },
8161           [&](const Indirection<parser::CoindexedNamedObject> &y) {
8162             Walk(y.value().imageSelector);
8163             return ResolveDataRef(y.value().base);
8164           },
8165       },
8166       x.u);
8167 }
8168 
8169 // If implicit types are allowed, ensure name is in the symbol table.
8170 // Otherwise, report an error if it hasn't been declared.
8171 const parser::Name *DeclarationVisitor::ResolveName(const parser::Name &name) {
8172   if (!FindSymbol(name)) {
8173     if (FindAndMarkDeclareTargetSymbol(name)) {
8174       return &name;
8175     }
8176   }
8177 
8178   if (CheckForHostAssociatedImplicit(name)) {
8179     NotePossibleBadForwardRef(name);
8180     return &name;
8181   }
8182   if (Symbol * symbol{name.symbol}) {
8183     if (CheckUseError(name)) {
8184       return nullptr; // reported an error
8185     }
8186     NotePossibleBadForwardRef(name);
8187     symbol->set(Symbol::Flag::ImplicitOrError, false);
8188     if (IsUplevelReference(*symbol)) {
8189       MakeHostAssocSymbol(name, *symbol);
8190     } else if (IsDummy(*symbol) ||
8191         (!symbol->GetType() && FindCommonBlockContaining(*symbol))) {
8192       CheckEntryDummyUse(name.source, symbol);
8193       ConvertToObjectEntity(*symbol);
8194       ApplyImplicitRules(*symbol);
8195     } else if (const auto *tpd{symbol->detailsIf<TypeParamDetails>()};
8196                tpd && !tpd->attr()) {
8197       Say(name,
8198           "Type parameter '%s' was referenced before being declared"_err_en_US,
8199           name.source);
8200       context().SetError(*symbol);
8201     }
8202     if (checkIndexUseInOwnBounds_ &&
8203         *checkIndexUseInOwnBounds_ == name.source && !InModuleFile()) {
8204       context().Warn(common::LanguageFeature::ImpliedDoIndexScope, name.source,
8205           "Implied DO index '%s' uses an object of the same name in its bounds expressions"_port_en_US,
8206           name.source);
8207     }
8208     return &name;
8209   }
8210   if (isImplicitNoneType() && !deferImplicitTyping_) {
8211     Say(name, "No explicit type declared for '%s'"_err_en_US);
8212     return nullptr;
8213   }
8214   // Create the symbol, then ensure that it is accessible
8215   if (checkIndexUseInOwnBounds_ && *checkIndexUseInOwnBounds_ == name.source) {
8216     Say(name,
8217         "Implied DO index '%s' uses itself in its own bounds expressions"_err_en_US,
8218         name.source);
8219   }
8220   MakeSymbol(InclusiveScope(), name.source, Attrs{});
8221   auto *symbol{FindSymbol(name)};
8222   if (!symbol) {
8223     Say(name,
8224         "'%s' from host scoping unit is not accessible due to IMPORT"_err_en_US);
8225     return nullptr;
8226   }
8227   ConvertToObjectEntity(*symbol);
8228   ApplyImplicitRules(*symbol);
8229   NotePossibleBadForwardRef(name);
8230   return &name;
8231 }
8232 
8233 // A specification expression may refer to a symbol in the host procedure that
8234 // is implicitly typed. Because specification parts are processed before
8235 // execution parts, this may be the first time we see the symbol. It can't be a
8236 // local in the current scope (because it's in a specification expression) so
8237 // either it is implicitly declared in the host procedure or it is an error.
8238 // We create a symbol in the host assuming it is the former; if that proves to
8239 // be wrong we report an error later in CheckDeclarations().
8240 bool DeclarationVisitor::CheckForHostAssociatedImplicit(
8241     const parser::Name &name) {
8242   if (!inSpecificationPart_ || inEquivalenceStmt_) {
8243     return false;
8244   }
8245   if (name.symbol) {
8246     ApplyImplicitRules(*name.symbol, true);
8247   }
8248   if (Scope * host{GetHostProcedure()}; host && !isImplicitNoneType(*host)) {
8249     Symbol *hostSymbol{nullptr};
8250     if (!name.symbol) {
8251       if (currScope().CanImport(name.source)) {
8252         hostSymbol = &MakeSymbol(*host, name.source, Attrs{});
8253         ConvertToObjectEntity(*hostSymbol);
8254         ApplyImplicitRules(*hostSymbol);
8255         hostSymbol->set(Symbol::Flag::ImplicitOrError);
8256       }
8257     } else if (name.symbol->test(Symbol::Flag::ImplicitOrError)) {
8258       hostSymbol = name.symbol;
8259     }
8260     if (hostSymbol) {
8261       Symbol &symbol{MakeHostAssocSymbol(name, *hostSymbol)};
8262       if (auto *assoc{symbol.detailsIf<HostAssocDetails>()}) {
8263         if (isImplicitNoneType()) {
8264           assoc->implicitOrExplicitTypeError = true;
8265         } else {
8266           assoc->implicitOrSpecExprError = true;
8267         }
8268         return true;
8269       }
8270     }
8271   }
8272   return false;
8273 }
8274 
8275 bool DeclarationVisitor::IsUplevelReference(const Symbol &symbol) {
8276   if (symbol.owner().IsTopLevel()) {
8277     return false;
8278   }
8279   const Scope &symbolUnit{GetProgramUnitContaining(symbol)};
8280   if (symbolUnit == GetProgramUnitContaining(currScope())) {
8281     return false;
8282   } else {
8283     Scope::Kind kind{symbolUnit.kind()};
8284     return kind == Scope::Kind::Subprogram || kind == Scope::Kind::MainProgram;
8285   }
8286 }
8287 
8288 // base is a part-ref of a derived type; find the named component in its type.
8289 // Also handles intrinsic type parameter inquiries (%kind, %len) and
8290 // COMPLEX component references (%re, %im).
8291 const parser::Name *DeclarationVisitor::FindComponent(
8292     const parser::Name *base, const parser::Name &component) {
8293   if (!base || !base->symbol) {
8294     return nullptr;
8295   }
8296   if (auto *misc{base->symbol->detailsIf<MiscDetails>()}) {
8297     if (component.source == "kind") {
8298       if (misc->kind() == MiscDetails::Kind::ComplexPartRe ||
8299           misc->kind() == MiscDetails::Kind::ComplexPartIm ||
8300           misc->kind() == MiscDetails::Kind::KindParamInquiry ||
8301           misc->kind() == MiscDetails::Kind::LenParamInquiry) {
8302         // x%{re,im,kind,len}%kind
8303         MakePlaceholder(component, MiscDetails::Kind::KindParamInquiry);
8304         return &component;
8305       }
8306     }
8307   }
8308   CheckEntryDummyUse(base->source, base->symbol);
8309   auto &symbol{base->symbol->GetUltimate()};
8310   if (!symbol.has<AssocEntityDetails>() && !ConvertToObjectEntity(symbol)) {
8311     SayWithDecl(*base, symbol,
8312         "'%s' is not an object and may not be used as the base of a component reference or type parameter inquiry"_err_en_US);
8313     return nullptr;
8314   }
8315   auto *type{symbol.GetType()};
8316   if (!type) {
8317     return nullptr; // should have already reported error
8318   }
8319   if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) {
8320     auto category{intrinsic->category()};
8321     MiscDetails::Kind miscKind{MiscDetails::Kind::None};
8322     if (component.source == "kind") {
8323       miscKind = MiscDetails::Kind::KindParamInquiry;
8324     } else if (category == TypeCategory::Character) {
8325       if (component.source == "len") {
8326         miscKind = MiscDetails::Kind::LenParamInquiry;
8327       }
8328     } else if (category == TypeCategory::Complex) {
8329       if (component.source == "re") {
8330         miscKind = MiscDetails::Kind::ComplexPartRe;
8331       } else if (component.source == "im") {
8332         miscKind = MiscDetails::Kind::ComplexPartIm;
8333       }
8334     }
8335     if (miscKind != MiscDetails::Kind::None) {
8336       MakePlaceholder(component, miscKind);
8337       return &component;
8338     }
8339   } else if (DerivedTypeSpec * derived{type->AsDerived()}) {
8340     derived->Instantiate(currScope()); // in case of forward referenced type
8341     if (const Scope * scope{derived->scope()}) {
8342       if (Resolve(component, scope->FindComponent(component.source))) {
8343         if (auto msg{CheckAccessibleSymbol(currScope(), *component.symbol)}) {
8344           context().Say(component.source, *msg);
8345         }
8346         return &component;
8347       } else {
8348         SayDerivedType(component.source,
8349             "Component '%s' not found in derived type '%s'"_err_en_US, *scope);
8350       }
8351     }
8352     return nullptr;
8353   }
8354   if (symbol.test(Symbol::Flag::Implicit)) {
8355     Say(*base,
8356         "'%s' is not an object of derived type; it is implicitly typed"_err_en_US);
8357   } else {
8358     SayWithDecl(
8359         *base, symbol, "'%s' is not an object of derived type"_err_en_US);
8360   }
8361   return nullptr;
8362 }
8363 
8364 bool DeclarationVisitor::FindAndMarkDeclareTargetSymbol(
8365     const parser::Name &name) {
8366   if (!specPartState_.declareTargetNames.empty()) {
8367     if (specPartState_.declareTargetNames.count(name.source)) {
8368       if (!currScope().IsTopLevel()) {
8369         // Search preceding scopes until we find a matching symbol or run out
8370         // of scopes to search, we skip the current scope as it's already been
8371         // designated as implicit here.
8372         for (auto *scope = &currScope().parent();; scope = &scope->parent()) {
8373           if (Symbol * symbol{scope->FindSymbol(name.source)}) {
8374             if (symbol->test(Symbol::Flag::Subroutine) ||
8375                 symbol->test(Symbol::Flag::Function)) {
8376               const auto [sym, success]{currScope().try_emplace(
8377                   symbol->name(), Attrs{}, HostAssocDetails{*symbol})};
8378               assert(success &&
8379                   "FindAndMarkDeclareTargetSymbol could not emplace new "
8380                   "subroutine/function symbol");
8381               name.symbol = &*sym->second;
8382               symbol->test(Symbol::Flag::Subroutine)
8383                   ? name.symbol->set(Symbol::Flag::Subroutine)
8384                   : name.symbol->set(Symbol::Flag::Function);
8385               return true;
8386             }
8387             // if we find a symbol that is not a function or subroutine, we
8388             // currently escape without doing anything.
8389             break;
8390           }
8391 
8392           // This is our loop exit condition, as parent() has an inbuilt assert
8393           // if you call it on a top level scope, rather than returning a null
8394           // value.
8395           if (scope->IsTopLevel()) {
8396             return false;
8397           }
8398         }
8399       }
8400     }
8401   }
8402   return false;
8403 }
8404 
8405 void DeclarationVisitor::Initialization(const parser::Name &name,
8406     const parser::Initialization &init, bool inComponentDecl) {
8407   // Traversal of the initializer was deferred to here so that the
8408   // symbol being declared can be available for use in the expression, e.g.:
8409   //   real, parameter :: x = tiny(x)
8410   if (!name.symbol) {
8411     return;
8412   }
8413   Symbol &ultimate{name.symbol->GetUltimate()};
8414   // TODO: check C762 - all bounds and type parameters of component
8415   // are colons or constant expressions if component is initialized
8416   common::visit(
8417       common::visitors{
8418           [&](const parser::ConstantExpr &expr) {
8419             Walk(expr);
8420             if (IsNamedConstant(ultimate) || inComponentDecl) {
8421               NonPointerInitialization(name, expr);
8422             } else {
8423               // Defer analysis so forward references to nested subprograms
8424               // can be properly resolved when they appear in structure
8425               // constructors.
8426               ultimate.set(Symbol::Flag::InDataStmt);
8427             }
8428           },
8429           [&](const parser::NullInit &null) { // => NULL()
8430             Walk(null);
8431             if (auto nullInit{EvaluateExpr(null)}) {
8432               if (!evaluate::IsNullPointer(*nullInit)) { // C813
8433                 Say(null.v.value().source,
8434                     "Pointer initializer must be intrinsic NULL()"_err_en_US);
8435               } else if (IsPointer(ultimate)) {
8436                 if (auto *object{ultimate.detailsIf<ObjectEntityDetails>()}) {
8437                   CHECK(!object->init());
8438                   object->set_init(std::move(*nullInit));
8439                 } else if (auto *procPtr{
8440                                ultimate.detailsIf<ProcEntityDetails>()}) {
8441                   CHECK(!procPtr->init());
8442                   procPtr->set_init(nullptr);
8443                 }
8444               } else {
8445                 Say(name,
8446                     "Non-pointer component '%s' initialized with null pointer"_err_en_US);
8447               }
8448             }
8449           },
8450           [&](const parser::InitialDataTarget &target) {
8451             // Defer analysis to the end of the specification part
8452             // so that forward references and attribute checks like SAVE
8453             // work better.
8454             auto restorer{common::ScopedSet(deferImplicitTyping_, true)};
8455             Walk(target);
8456             ultimate.set(Symbol::Flag::InDataStmt);
8457           },
8458           [&](const std::list<Indirection<parser::DataStmtValue>> &values) {
8459             // Handled later in data-to-inits conversion
8460             ultimate.set(Symbol::Flag::InDataStmt);
8461             Walk(values);
8462           },
8463       },
8464       init.u);
8465 }
8466 
8467 void DeclarationVisitor::PointerInitialization(
8468     const parser::Name &name, const parser::InitialDataTarget &target) {
8469   if (name.symbol) {
8470     Symbol &ultimate{name.symbol->GetUltimate()};
8471     if (!context().HasError(ultimate)) {
8472       if (IsPointer(ultimate)) {
8473         Walk(target);
8474         if (MaybeExpr expr{EvaluateExpr(target)}) {
8475           // Validation is done in declaration checking.
8476           if (auto *details{ultimate.detailsIf<ObjectEntityDetails>()}) {
8477             CHECK(!details->init());
8478             details->set_init(std::move(*expr));
8479             ultimate.set(Symbol::Flag::InDataStmt, false);
8480           } else if (auto *details{ultimate.detailsIf<ProcEntityDetails>()}) {
8481             // something like "REAL, EXTERNAL, POINTER :: p => t"
8482             if (evaluate::IsNullProcedurePointer(*expr)) {
8483               CHECK(!details->init());
8484               details->set_init(nullptr);
8485             } else if (const Symbol *
8486                 targetSymbol{evaluate::UnwrapWholeSymbolDataRef(*expr)}) {
8487               CHECK(!details->init());
8488               details->set_init(*targetSymbol);
8489             } else {
8490               Say(name,
8491                   "Procedure pointer '%s' must be initialized with a procedure name or NULL()"_err_en_US);
8492               context().SetError(ultimate);
8493             }
8494           }
8495         }
8496       } else {
8497         Say(name,
8498             "'%s' is not a pointer but is initialized like one"_err_en_US);
8499         context().SetError(ultimate);
8500       }
8501     }
8502   }
8503 }
8504 void DeclarationVisitor::PointerInitialization(
8505     const parser::Name &name, const parser::ProcPointerInit &target) {
8506   if (name.symbol) {
8507     Symbol &ultimate{name.symbol->GetUltimate()};
8508     if (!context().HasError(ultimate)) {
8509       if (IsProcedurePointer(ultimate)) {
8510         auto &details{ultimate.get<ProcEntityDetails>()};
8511         CHECK(!details.init());
8512         if (const auto *targetName{std::get_if<parser::Name>(&target.u)}) {
8513           Walk(target);
8514           if (!CheckUseError(*targetName) && targetName->symbol) {
8515             // Validation is done in declaration checking.
8516             details.set_init(*targetName->symbol);
8517           }
8518         } else { // explicit NULL
8519           details.set_init(nullptr);
8520         }
8521       } else {
8522         Say(name,
8523             "'%s' is not a procedure pointer but is initialized "
8524             "like one"_err_en_US);
8525         context().SetError(ultimate);
8526       }
8527     }
8528   }
8529 }
8530 
8531 void DeclarationVisitor::NonPointerInitialization(
8532     const parser::Name &name, const parser::ConstantExpr &expr) {
8533   if (!context().HasError(name.symbol)) {
8534     Symbol &ultimate{name.symbol->GetUltimate()};
8535     if (!context().HasError(ultimate)) {
8536       if (IsPointer(ultimate)) {
8537         Say(name,
8538             "'%s' is a pointer but is not initialized like one"_err_en_US);
8539       } else if (auto *details{ultimate.detailsIf<ObjectEntityDetails>()}) {
8540         if (details->init()) {
8541           SayWithDecl(name, *name.symbol,
8542               "'%s' has already been initialized"_err_en_US);
8543         } else if (IsAllocatable(ultimate)) {
8544           Say(name, "Allocatable object '%s' cannot be initialized"_err_en_US);
8545         } else if (ultimate.owner().IsParameterizedDerivedType()) {
8546           // Save the expression for per-instantiation analysis.
8547           details->set_unanalyzedPDTComponentInit(&expr.thing.value());
8548         } else if (MaybeExpr folded{EvaluateNonPointerInitializer(
8549                        ultimate, expr, expr.thing.value().source)}) {
8550           details->set_init(std::move(*folded));
8551           ultimate.set(Symbol::Flag::InDataStmt, false);
8552         }
8553       } else {
8554         Say(name, "'%s' is not an object that can be initialized"_err_en_US);
8555       }
8556     }
8557   }
8558 }
8559 
8560 void ResolveNamesVisitor::HandleCall(
8561     Symbol::Flag procFlag, const parser::Call &call) {
8562   common::visit(
8563       common::visitors{
8564           [&](const parser::Name &x) { HandleProcedureName(procFlag, x); },
8565           [&](const parser::ProcComponentRef &x) {
8566             Walk(x);
8567             const parser::Name &name{x.v.thing.component};
8568             if (Symbol * symbol{name.symbol}) {
8569               if (IsProcedure(*symbol)) {
8570                 SetProcFlag(name, *symbol, procFlag);
8571               }
8572             }
8573           },
8574       },
8575       std::get<parser::ProcedureDesignator>(call.t).u);
8576   const auto &arguments{std::get<std::list<parser::ActualArgSpec>>(call.t)};
8577   Walk(arguments);
8578   // Once an object has appeared in a specification function reference as
8579   // a whole scalar actual argument, it cannot be (re)dimensioned later.
8580   // The fact that it appeared to be a scalar may determine the resolution
8581   // or the result of an inquiry intrinsic function or generic procedure.
8582   if (inSpecificationPart_) {
8583     for (const auto &argSpec : arguments) {
8584       const auto &actual{std::get<parser::ActualArg>(argSpec.t)};
8585       if (const auto *expr{
8586               std::get_if<common::Indirection<parser::Expr>>(&actual.u)}) {
8587         if (const auto *designator{
8588                 std::get_if<common::Indirection<parser::Designator>>(
8589                     &expr->value().u)}) {
8590           if (const auto *dataRef{
8591                   std::get_if<parser::DataRef>(&designator->value().u)}) {
8592             if (const auto *name{std::get_if<parser::Name>(&dataRef->u)};
8593                 name && name->symbol) {
8594               const Symbol &symbol{*name->symbol};
8595               const auto *object{symbol.detailsIf<ObjectEntityDetails>()};
8596               if (symbol.has<EntityDetails>() ||
8597                   (object && !object->IsArray())) {
8598                 NoteScalarSpecificationArgument(symbol);
8599               }
8600             }
8601           }
8602         }
8603       }
8604     }
8605   }
8606 }
8607 
8608 void ResolveNamesVisitor::HandleProcedureName(
8609     Symbol::Flag flag, const parser::Name &name) {
8610   CHECK(flag == Symbol::Flag::Function || flag == Symbol::Flag::Subroutine);
8611   auto *symbol{FindSymbol(NonDerivedTypeScope(), name)};
8612   if (!symbol) {
8613     if (IsIntrinsic(name.source, flag)) {
8614       symbol = &MakeSymbol(InclusiveScope(), name.source, Attrs{});
8615       SetImplicitAttr(*symbol, Attr::INTRINSIC);
8616     } else if (const auto ppcBuiltinScope =
8617                    currScope().context().GetPPCBuiltinsScope()) {
8618       // Check if it is a builtin from the predefined module
8619       symbol = FindSymbol(*ppcBuiltinScope, name);
8620       if (!symbol) {
8621         symbol = &MakeSymbol(context().globalScope(), name.source, Attrs{});
8622       }
8623     } else {
8624       symbol = &MakeSymbol(context().globalScope(), name.source, Attrs{});
8625     }
8626     Resolve(name, *symbol);
8627     ConvertToProcEntity(*symbol, name.source);
8628     if (!symbol->attrs().test(Attr::INTRINSIC)) {
8629       if (CheckImplicitNoneExternal(name.source, *symbol)) {
8630         MakeExternal(*symbol);
8631         // Create a place-holder HostAssocDetails symbol to preclude later
8632         // use of this name as a local symbol; but don't actually use this new
8633         // HostAssocDetails symbol in expressions.
8634         MakeHostAssocSymbol(name, *symbol);
8635         name.symbol = symbol;
8636       }
8637     }
8638     CheckEntryDummyUse(name.source, symbol);
8639     SetProcFlag(name, *symbol, flag);
8640   } else if (CheckUseError(name)) {
8641     // error was reported
8642   } else {
8643     symbol = &symbol->GetUltimate();
8644     if (!name.symbol ||
8645         (name.symbol->has<HostAssocDetails>() && symbol->owner().IsGlobal() &&
8646             (symbol->has<ProcEntityDetails>() ||
8647                 (symbol->has<SubprogramDetails>() &&
8648                     symbol->scope() /*not ENTRY*/)))) {
8649       name.symbol = symbol;
8650     }
8651     CheckEntryDummyUse(name.source, symbol);
8652     bool convertedToProcEntity{ConvertToProcEntity(*symbol, name.source)};
8653     if (convertedToProcEntity && !symbol->attrs().test(Attr::EXTERNAL) &&
8654         IsIntrinsic(symbol->name(), flag) && !IsDummy(*symbol)) {
8655       AcquireIntrinsicProcedureFlags(*symbol);
8656     }
8657     if (!SetProcFlag(name, *symbol, flag)) {
8658       return; // reported error
8659     }
8660     CheckImplicitNoneExternal(name.source, *symbol);
8661     if (IsProcedure(*symbol) || symbol->has<DerivedTypeDetails>() ||
8662         symbol->has<AssocEntityDetails>()) {
8663       // Symbols with DerivedTypeDetails and AssocEntityDetails are accepted
8664       // here as procedure-designators because this means the related
8665       // FunctionReference are mis-parsed structure constructors or array
8666       // references that will be fixed later when analyzing expressions.
8667     } else if (symbol->has<ObjectEntityDetails>()) {
8668       // Symbols with ObjectEntityDetails are also accepted because this can be
8669       // a mis-parsed array reference that will be fixed later. Ensure that if
8670       // this is a symbol from a host procedure, a symbol with HostAssocDetails
8671       // is created for the current scope.
8672       // Operate on non ultimate symbol so that HostAssocDetails are also
8673       // created for symbols used associated in the host procedure.
8674       ResolveName(name);
8675     } else if (symbol->test(Symbol::Flag::Implicit)) {
8676       Say(name,
8677           "Use of '%s' as a procedure conflicts with its implicit definition"_err_en_US);
8678     } else {
8679       SayWithDecl(name, *symbol,
8680           "Use of '%s' as a procedure conflicts with its declaration"_err_en_US);
8681     }
8682   }
8683 }
8684 
8685 bool ResolveNamesVisitor::CheckImplicitNoneExternal(
8686     const SourceName &name, const Symbol &symbol) {
8687   if (symbol.has<ProcEntityDetails>() && isImplicitNoneExternal() &&
8688       !symbol.attrs().test(Attr::EXTERNAL) &&
8689       !symbol.attrs().test(Attr::INTRINSIC) && !symbol.HasExplicitInterface()) {
8690     Say(name,
8691         "'%s' is an external procedure without the EXTERNAL attribute in a scope with IMPLICIT NONE(EXTERNAL)"_err_en_US);
8692     return false;
8693   }
8694   return true;
8695 }
8696 
8697 // Variant of HandleProcedureName() for use while skimming the executable
8698 // part of a subprogram to catch calls to dummy procedures that are part
8699 // of the subprogram's interface, and to mark as procedures any symbols
8700 // that might otherwise have been miscategorized as objects.
8701 void ResolveNamesVisitor::NoteExecutablePartCall(
8702     Symbol::Flag flag, SourceName name, bool hasCUDAChevrons) {
8703   // Subtlety: The symbol pointers in the parse tree are not set, because
8704   // they might end up resolving elsewhere (e.g., construct entities in
8705   // SELECT TYPE).
8706   if (Symbol * symbol{currScope().FindSymbol(name)}) {
8707     Symbol::Flag other{flag == Symbol::Flag::Subroutine
8708             ? Symbol::Flag::Function
8709             : Symbol::Flag::Subroutine};
8710     if (!symbol->test(other)) {
8711       ConvertToProcEntity(*symbol, name);
8712       if (auto *details{symbol->detailsIf<ProcEntityDetails>()}) {
8713         symbol->set(flag);
8714         if (IsDummy(*symbol)) {
8715           SetImplicitAttr(*symbol, Attr::EXTERNAL);
8716         }
8717         ApplyImplicitRules(*symbol);
8718         if (hasCUDAChevrons) {
8719           details->set_isCUDAKernel();
8720         }
8721       }
8722     }
8723   }
8724 }
8725 
8726 static bool IsLocallyImplicitGlobalSymbol(
8727     const Symbol &symbol, const parser::Name &localName) {
8728   if (symbol.owner().IsGlobal()) {
8729     const auto *subp{symbol.detailsIf<SubprogramDetails>()};
8730     const Scope *scope{
8731         subp && subp->entryScope() ? subp->entryScope() : symbol.scope()};
8732     return !(scope && scope->sourceRange().Contains(localName.source));
8733   }
8734   return false;
8735 }
8736 
8737 static bool TypesMismatchIfNonNull(
8738     const DeclTypeSpec *type1, const DeclTypeSpec *type2) {
8739   return type1 && type2 && *type1 != *type2;
8740 }
8741 
8742 // Check and set the Function or Subroutine flag on symbol; false on error.
8743 bool ResolveNamesVisitor::SetProcFlag(
8744     const parser::Name &name, Symbol &symbol, Symbol::Flag flag) {
8745   if (symbol.test(Symbol::Flag::Function) && flag == Symbol::Flag::Subroutine) {
8746     SayWithDecl(
8747         name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US);
8748     context().SetError(symbol);
8749     return false;
8750   } else if (symbol.test(Symbol::Flag::Subroutine) &&
8751       flag == Symbol::Flag::Function) {
8752     SayWithDecl(
8753         name, symbol, "Cannot call subroutine '%s' like a function"_err_en_US);
8754     context().SetError(symbol);
8755     return false;
8756   } else if (flag == Symbol::Flag::Function &&
8757       IsLocallyImplicitGlobalSymbol(symbol, name) &&
8758       TypesMismatchIfNonNull(symbol.GetType(), GetImplicitType(symbol))) {
8759     SayWithDecl(name, symbol,
8760         "Implicit declaration of function '%s' has a different result type than in previous declaration"_err_en_US);
8761     return false;
8762   } else if (symbol.has<ProcEntityDetails>()) {
8763     symbol.set(flag); // in case it hasn't been set yet
8764     if (flag == Symbol::Flag::Function) {
8765       ApplyImplicitRules(symbol);
8766     }
8767     if (symbol.attrs().test(Attr::INTRINSIC)) {
8768       AcquireIntrinsicProcedureFlags(symbol);
8769     }
8770   } else if (symbol.GetType() && flag == Symbol::Flag::Subroutine) {
8771     SayWithDecl(
8772         name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US);
8773     context().SetError(symbol);
8774   } else if (symbol.attrs().test(Attr::INTRINSIC)) {
8775     AcquireIntrinsicProcedureFlags(symbol);
8776   }
8777   return true;
8778 }
8779 
8780 bool ModuleVisitor::Pre(const parser::AccessStmt &x) {
8781   Attr accessAttr{AccessSpecToAttr(std::get<parser::AccessSpec>(x.t))};
8782   if (!currScope().IsModule()) { // C869
8783     Say(currStmtSource().value(),
8784         "%s statement may only appear in the specification part of a module"_err_en_US,
8785         EnumToString(accessAttr));
8786     return false;
8787   }
8788   const auto &accessIds{std::get<std::list<parser::AccessId>>(x.t)};
8789   if (accessIds.empty()) {
8790     if (prevAccessStmt_) { // C869
8791       Say("The default accessibility of this module has already been declared"_err_en_US)
8792           .Attach(*prevAccessStmt_, "Previous declaration"_en_US);
8793     }
8794     prevAccessStmt_ = currStmtSource();
8795     auto *moduleDetails{DEREF(currScope().symbol()).detailsIf<ModuleDetails>()};
8796     DEREF(moduleDetails).set_isDefaultPrivate(accessAttr == Attr::PRIVATE);
8797   } else {
8798     for (const auto &accessId : accessIds) {
8799       GenericSpecInfo info{accessId.v.value()};
8800       auto *symbol{FindInScope(info.symbolName())};
8801       if (!symbol && !info.kind().IsName()) {
8802         symbol = &MakeSymbol(info.symbolName(), Attrs{}, GenericDetails{});
8803       }
8804       info.Resolve(&SetAccess(info.symbolName(), accessAttr, symbol));
8805     }
8806   }
8807   return false;
8808 }
8809 
8810 // Set the access specification for this symbol.
8811 Symbol &ModuleVisitor::SetAccess(
8812     const SourceName &name, Attr attr, Symbol *symbol) {
8813   if (!symbol) {
8814     symbol = &MakeSymbol(name);
8815   }
8816   Attrs &attrs{symbol->attrs()};
8817   if (attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
8818     // PUBLIC/PRIVATE already set: make it a fatal error if it changed
8819     Attr prev{attrs.test(Attr::PUBLIC) ? Attr::PUBLIC : Attr::PRIVATE};
8820     if (attr != prev) {
8821       Say(name,
8822           "The accessibility of '%s' has already been specified as %s"_err_en_US,
8823           MakeOpName(name), EnumToString(prev));
8824     } else {
8825       context().Warn(common::LanguageFeature::RedundantAttribute, name,
8826           "The accessibility of '%s' has already been specified as %s"_warn_en_US,
8827           MakeOpName(name), EnumToString(prev));
8828     }
8829   } else {
8830     attrs.set(attr);
8831   }
8832   return *symbol;
8833 }
8834 
8835 static bool NeedsExplicitType(const Symbol &symbol) {
8836   if (symbol.has<UnknownDetails>()) {
8837     return true;
8838   } else if (const auto *details{symbol.detailsIf<EntityDetails>()}) {
8839     return !details->type();
8840   } else if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
8841     return !details->type();
8842   } else if (const auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
8843     return !details->procInterface() && !details->type();
8844   } else {
8845     return false;
8846   }
8847 }
8848 
8849 void ResolveNamesVisitor::HandleDerivedTypesInImplicitStmts(
8850     const parser::ImplicitPart &implicitPart,
8851     const std::list<parser::DeclarationConstruct> &decls) {
8852   // Detect derived type definitions and create symbols for them now if
8853   // they appear in IMPLICIT statements so that these forward-looking
8854   // references will not be ambiguous with host associations.
8855   std::set<SourceName> implicitDerivedTypes;
8856   for (const auto &ipStmt : implicitPart.v) {
8857     if (const auto *impl{std::get_if<
8858             parser::Statement<common::Indirection<parser::ImplicitStmt>>>(
8859             &ipStmt.u)}) {
8860       if (const auto *specs{std::get_if<std::list<parser::ImplicitSpec>>(
8861               &impl->statement.value().u)}) {
8862         for (const auto &spec : *specs) {
8863           const auto &declTypeSpec{
8864               std::get<parser::DeclarationTypeSpec>(spec.t)};
8865           if (const auto *dtSpec{common::visit(
8866                   common::visitors{
8867                       [](const parser::DeclarationTypeSpec::Type &x) {
8868                         return &x.derived;
8869                       },
8870                       [](const parser::DeclarationTypeSpec::Class &x) {
8871                         return &x.derived;
8872                       },
8873                       [](const auto &) -> const parser::DerivedTypeSpec * {
8874                         return nullptr;
8875                       }},
8876                   declTypeSpec.u)}) {
8877             implicitDerivedTypes.emplace(
8878                 std::get<parser::Name>(dtSpec->t).source);
8879           }
8880         }
8881       }
8882     }
8883   }
8884   if (!implicitDerivedTypes.empty()) {
8885     for (const auto &decl : decls) {
8886       if (const auto *spec{
8887               std::get_if<parser::SpecificationConstruct>(&decl.u)}) {
8888         if (const auto *dtDef{
8889                 std::get_if<common::Indirection<parser::DerivedTypeDef>>(
8890                     &spec->u)}) {
8891           const parser::DerivedTypeStmt &dtStmt{
8892               std::get<parser::Statement<parser::DerivedTypeStmt>>(
8893                   dtDef->value().t)
8894                   .statement};
8895           const parser::Name &name{std::get<parser::Name>(dtStmt.t)};
8896           if (implicitDerivedTypes.find(name.source) !=
8897                   implicitDerivedTypes.end() &&
8898               !FindInScope(name)) {
8899             DerivedTypeDetails details;
8900             details.set_isForwardReferenced(true);
8901             Resolve(name, MakeSymbol(name, std::move(details)));
8902             implicitDerivedTypes.erase(name.source);
8903           }
8904         }
8905       }
8906     }
8907   }
8908 }
8909 
8910 bool ResolveNamesVisitor::Pre(const parser::SpecificationPart &x) {
8911   const auto &[accDecls, ompDecls, compilerDirectives, useStmts, importStmts,
8912       implicitPart, decls] = x.t;
8913   auto flagRestorer{common::ScopedSet(inSpecificationPart_, true)};
8914   auto stateRestorer{
8915       common::ScopedSet(specPartState_, SpecificationPartState{})};
8916   Walk(accDecls);
8917   Walk(ompDecls);
8918   Walk(compilerDirectives);
8919   for (const auto &useStmt : useStmts) {
8920     CollectUseRenames(useStmt.statement.value());
8921   }
8922   Walk(useStmts);
8923   UseCUDABuiltinNames();
8924   ClearUseRenames();
8925   ClearUseOnly();
8926   ClearModuleUses();
8927   Walk(importStmts);
8928   HandleDerivedTypesInImplicitStmts(implicitPart, decls);
8929   Walk(implicitPart);
8930   for (const auto &decl : decls) {
8931     if (const auto *spec{
8932             std::get_if<parser::SpecificationConstruct>(&decl.u)}) {
8933       PreSpecificationConstruct(*spec);
8934     }
8935   }
8936   Walk(decls);
8937   FinishSpecificationPart(decls);
8938   return false;
8939 }
8940 
8941 void ResolveNamesVisitor::UseCUDABuiltinNames() {
8942   if (FindCUDADeviceContext(&currScope())) {
8943     for (const auto &[name, symbol] : context().GetCUDABuiltinsScope()) {
8944       if (!FindInScope(name)) {
8945         auto &localSymbol{MakeSymbol(name)};
8946         localSymbol.set_details(UseDetails{name, *symbol});
8947         localSymbol.flags() = symbol->flags();
8948       }
8949     }
8950   }
8951 }
8952 
8953 // Initial processing on specification constructs, before visiting them.
8954 void ResolveNamesVisitor::PreSpecificationConstruct(
8955     const parser::SpecificationConstruct &spec) {
8956   common::visit(
8957       common::visitors{
8958           [&](const parser::Statement<Indirection<parser::GenericStmt>> &y) {
8959             CreateGeneric(std::get<parser::GenericSpec>(y.statement.value().t));
8960           },
8961           [&](const Indirection<parser::InterfaceBlock> &y) {
8962             const auto &stmt{std::get<parser::Statement<parser::InterfaceStmt>>(
8963                 y.value().t)};
8964             if (const auto *spec{parser::Unwrap<parser::GenericSpec>(stmt)}) {
8965               CreateGeneric(*spec);
8966             }
8967           },
8968           [&](const parser::Statement<parser::OtherSpecificationStmt> &y) {
8969             common::visit(
8970                 common::visitors{
8971                     [&](const common::Indirection<parser::CommonStmt> &z) {
8972                       CreateCommonBlockSymbols(z.value());
8973                     },
8974                     [&](const common::Indirection<parser::TargetStmt> &z) {
8975                       CreateObjectSymbols(z.value().v, Attr::TARGET);
8976                     },
8977                     [](const auto &) {},
8978                 },
8979                 y.statement.u);
8980           },
8981           [](const auto &) {},
8982       },
8983       spec.u);
8984 }
8985 
8986 void ResolveNamesVisitor::CreateCommonBlockSymbols(
8987     const parser::CommonStmt &commonStmt) {
8988   for (const parser::CommonStmt::Block &block : commonStmt.blocks) {
8989     const auto &[name, objects] = block.t;
8990     Symbol &commonBlock{MakeCommonBlockSymbol(name)};
8991     for (const auto &object : objects) {
8992       Symbol &obj{DeclareObjectEntity(std::get<parser::Name>(object.t))};
8993       if (auto *details{obj.detailsIf<ObjectEntityDetails>()}) {
8994         details->set_commonBlock(commonBlock);
8995         commonBlock.get<CommonBlockDetails>().add_object(obj);
8996       }
8997     }
8998   }
8999 }
9000 
9001 void ResolveNamesVisitor::CreateObjectSymbols(
9002     const std::list<parser::ObjectDecl> &decls, Attr attr) {
9003   for (const parser::ObjectDecl &decl : decls) {
9004     SetImplicitAttr(DeclareEntity<ObjectEntityDetails>(
9005                         std::get<parser::ObjectName>(decl.t), Attrs{}),
9006         attr);
9007   }
9008 }
9009 
9010 void ResolveNamesVisitor::CreateGeneric(const parser::GenericSpec &x) {
9011   auto info{GenericSpecInfo{x}};
9012   SourceName symbolName{info.symbolName()};
9013   if (IsLogicalConstant(context(), symbolName)) {
9014     Say(symbolName,
9015         "Logical constant '%s' may not be used as a defined operator"_err_en_US);
9016     return;
9017   }
9018   GenericDetails genericDetails;
9019   Symbol *existing{nullptr};
9020   // Check all variants of names, e.g. "operator(.ne.)" for "operator(/=)"
9021   for (const std::string &n : GetAllNames(context(), symbolName)) {
9022     existing = currScope().FindSymbol(SourceName{n});
9023     if (existing) {
9024       break;
9025     }
9026   }
9027   if (existing) {
9028     Symbol &ultimate{existing->GetUltimate()};
9029     if (auto *existingGeneric{ultimate.detailsIf<GenericDetails>()}) {
9030       if (&existing->owner() == &currScope()) {
9031         if (const auto *existingUse{existing->detailsIf<UseDetails>()}) {
9032           // Create a local copy of a use associated generic so that
9033           // it can be locally extended without corrupting the original.
9034           genericDetails.CopyFrom(*existingGeneric);
9035           if (existingGeneric->specific()) {
9036             genericDetails.set_specific(*existingGeneric->specific());
9037           }
9038           AddGenericUse(
9039               genericDetails, existing->name(), existingUse->symbol());
9040         } else if (existing == &ultimate) {
9041           // Extending an extant generic in the same scope
9042           info.Resolve(existing);
9043           return;
9044         } else {
9045           // Host association of a generic is handled elsewhere
9046           CHECK(existing->has<HostAssocDetails>());
9047         }
9048       } else {
9049         // Create a new generic for this scope.
9050       }
9051     } else if (ultimate.has<SubprogramDetails>() ||
9052         ultimate.has<SubprogramNameDetails>()) {
9053       genericDetails.set_specific(*existing);
9054     } else if (ultimate.has<ProcEntityDetails>()) {
9055       if (existing->name() != symbolName ||
9056           !ultimate.attrs().test(Attr::INTRINSIC)) {
9057         genericDetails.set_specific(*existing);
9058       }
9059     } else if (ultimate.has<DerivedTypeDetails>()) {
9060       genericDetails.set_derivedType(*existing);
9061     } else if (&existing->owner() == &currScope()) {
9062       SayAlreadyDeclared(symbolName, *existing);
9063       return;
9064     }
9065     if (&existing->owner() == &currScope()) {
9066       EraseSymbol(*existing);
9067     }
9068   }
9069   info.Resolve(&MakeSymbol(symbolName, Attrs{}, std::move(genericDetails)));
9070 }
9071 
9072 void ResolveNamesVisitor::FinishSpecificationPart(
9073     const std::list<parser::DeclarationConstruct> &decls) {
9074   misparsedStmtFuncFound_ = false;
9075   funcResultStack().CompleteFunctionResultType();
9076   CheckImports();
9077   for (auto &pair : currScope()) {
9078     auto &symbol{*pair.second};
9079     if (inInterfaceBlock()) {
9080       ConvertToObjectEntity(symbol);
9081     }
9082     if (NeedsExplicitType(symbol)) {
9083       ApplyImplicitRules(symbol);
9084     }
9085     if (IsDummy(symbol) && isImplicitNoneType() &&
9086         symbol.test(Symbol::Flag::Implicit) && !context().HasError(symbol)) {
9087       Say(symbol.name(),
9088           "No explicit type declared for dummy argument '%s'"_err_en_US);
9089       context().SetError(symbol);
9090     }
9091     if (symbol.has<GenericDetails>()) {
9092       CheckGenericProcedures(symbol);
9093     }
9094     if (!symbol.has<HostAssocDetails>()) {
9095       CheckPossibleBadForwardRef(symbol);
9096     }
9097     // Propagate BIND(C) attribute to procedure entities from their interfaces,
9098     // but not the NAME=, even if it is empty (which would be a reasonable
9099     // and useful behavior, actually).  This interpretation is not at all
9100     // clearly described in the standard, but matches the behavior of several
9101     // other compilers.
9102     if (auto *proc{symbol.detailsIf<ProcEntityDetails>()}; proc &&
9103         !proc->isDummy() && !IsPointer(symbol) &&
9104         !symbol.attrs().test(Attr::BIND_C)) {
9105       if (const Symbol * iface{proc->procInterface()};
9106           iface && IsBindCProcedure(*iface)) {
9107         SetImplicitAttr(symbol, Attr::BIND_C);
9108         SetBindNameOn(symbol);
9109       }
9110     }
9111   }
9112   currScope().InstantiateDerivedTypes();
9113   for (const auto &decl : decls) {
9114     if (const auto *statement{std::get_if<
9115             parser::Statement<common::Indirection<parser::StmtFunctionStmt>>>(
9116             &decl.u)}) {
9117       messageHandler().set_currStmtSource(statement->source);
9118       AnalyzeStmtFunctionStmt(statement->statement.value());
9119     }
9120   }
9121   // TODO: what about instantiations in BLOCK?
9122   CheckSaveStmts();
9123   CheckCommonBlocks();
9124   if (!inInterfaceBlock()) {
9125     // TODO: warn for the case where the EQUIVALENCE statement is in a
9126     // procedure declaration in an interface block
9127     CheckEquivalenceSets();
9128   }
9129 }
9130 
9131 // Analyze the bodies of statement functions now that the symbols in this
9132 // specification part have been fully declared and implicitly typed.
9133 // (Statement function references are not allowed in specification
9134 // expressions, so it's safe to defer processing their definitions.)
9135 void ResolveNamesVisitor::AnalyzeStmtFunctionStmt(
9136     const parser::StmtFunctionStmt &stmtFunc) {
9137   const auto &name{std::get<parser::Name>(stmtFunc.t)};
9138   Symbol *symbol{name.symbol};
9139   auto *details{symbol ? symbol->detailsIf<SubprogramDetails>() : nullptr};
9140   if (!details || !symbol->scope() ||
9141       &symbol->scope()->parent() != &currScope() || details->isInterface() ||
9142       details->isDummy() || details->entryScope() ||
9143       details->moduleInterface() || symbol->test(Symbol::Flag::Subroutine)) {
9144     return; // error recovery
9145   }
9146   // Resolve the symbols on the RHS of the statement function.
9147   PushScope(*symbol->scope());
9148   const auto &parsedExpr{std::get<parser::Scalar<parser::Expr>>(stmtFunc.t)};
9149   Walk(parsedExpr);
9150   PopScope();
9151   if (auto expr{AnalyzeExpr(context(), stmtFunc)}) {
9152     if (auto type{evaluate::DynamicType::From(*symbol)}) {
9153       if (auto converted{evaluate::ConvertToType(*type, std::move(*expr))}) {
9154         details->set_stmtFunction(std::move(*converted));
9155       } else {
9156         Say(name.source,
9157             "Defining expression of statement function '%s' cannot be converted to its result type %s"_err_en_US,
9158             name.source, type->AsFortran());
9159       }
9160     } else {
9161       details->set_stmtFunction(std::move(*expr));
9162     }
9163   }
9164   if (!details->stmtFunction()) {
9165     context().SetError(*symbol);
9166   }
9167 }
9168 
9169 void ResolveNamesVisitor::CheckImports() {
9170   auto &scope{currScope()};
9171   switch (scope.GetImportKind()) {
9172   case common::ImportKind::None:
9173     break;
9174   case common::ImportKind::All:
9175     // C8102: all entities in host must not be hidden
9176     for (const auto &pair : scope.parent()) {
9177       auto &name{pair.first};
9178       std::optional<SourceName> scopeName{scope.GetName()};
9179       if (!scopeName || name != *scopeName) {
9180         CheckImport(prevImportStmt_.value(), name);
9181       }
9182     }
9183     break;
9184   case common::ImportKind::Default:
9185   case common::ImportKind::Only:
9186     // C8102: entities named in IMPORT must not be hidden
9187     for (auto &name : scope.importNames()) {
9188       CheckImport(name, name);
9189     }
9190     break;
9191   }
9192 }
9193 
9194 void ResolveNamesVisitor::CheckImport(
9195     const SourceName &location, const SourceName &name) {
9196   if (auto *symbol{FindInScope(name)}) {
9197     const Symbol &ultimate{symbol->GetUltimate()};
9198     if (&ultimate.owner() == &currScope()) {
9199       Say(location, "'%s' from host is not accessible"_err_en_US, name)
9200           .Attach(symbol->name(), "'%s' is hidden by this entity"_because_en_US,
9201               symbol->name());
9202     }
9203   }
9204 }
9205 
9206 bool ResolveNamesVisitor::Pre(const parser::ImplicitStmt &x) {
9207   return CheckNotInBlock("IMPLICIT") && // C1107
9208       ImplicitRulesVisitor::Pre(x);
9209 }
9210 
9211 void ResolveNamesVisitor::Post(const parser::PointerObject &x) {
9212   common::visit(common::visitors{
9213                     [&](const parser::Name &x) { ResolveName(x); },
9214                     [&](const parser::StructureComponent &x) {
9215                       ResolveStructureComponent(x);
9216                     },
9217                 },
9218       x.u);
9219 }
9220 void ResolveNamesVisitor::Post(const parser::AllocateObject &x) {
9221   common::visit(common::visitors{
9222                     [&](const parser::Name &x) { ResolveName(x); },
9223                     [&](const parser::StructureComponent &x) {
9224                       ResolveStructureComponent(x);
9225                     },
9226                 },
9227       x.u);
9228 }
9229 
9230 bool ResolveNamesVisitor::Pre(const parser::PointerAssignmentStmt &x) {
9231   const auto &dataRef{std::get<parser::DataRef>(x.t)};
9232   const auto &bounds{std::get<parser::PointerAssignmentStmt::Bounds>(x.t)};
9233   const auto &expr{std::get<parser::Expr>(x.t)};
9234   ResolveDataRef(dataRef);
9235   Symbol *ptrSymbol{parser::GetLastName(dataRef).symbol};
9236   Walk(bounds);
9237   // Resolve unrestricted specific intrinsic procedures as in "p => cos".
9238   if (const parser::Name * name{parser::Unwrap<parser::Name>(expr)}) {
9239     if (NameIsKnownOrIntrinsic(*name)) {
9240       if (Symbol * symbol{name->symbol}) {
9241         if (IsProcedurePointer(ptrSymbol) &&
9242             !ptrSymbol->test(Symbol::Flag::Function) &&
9243             !ptrSymbol->test(Symbol::Flag::Subroutine)) {
9244           if (symbol->test(Symbol::Flag::Function)) {
9245             ApplyImplicitRules(*ptrSymbol);
9246           }
9247         }
9248         // If the name is known because it is an object entity from a host
9249         // procedure, create a host associated symbol.
9250         if (symbol->GetUltimate().has<ObjectEntityDetails>() &&
9251             IsUplevelReference(*symbol)) {
9252           MakeHostAssocSymbol(*name, *symbol);
9253         }
9254       }
9255       return false;
9256     }
9257     // Can also reference a global external procedure here
9258     if (auto it{context().globalScope().find(name->source)};
9259         it != context().globalScope().end()) {
9260       Symbol &global{*it->second};
9261       if (IsProcedure(global)) {
9262         Resolve(*name, global);
9263         return false;
9264       }
9265     }
9266     if (IsProcedurePointer(parser::GetLastName(dataRef).symbol) &&
9267         !FindSymbol(*name)) {
9268       // Unknown target of procedure pointer must be an external procedure
9269       Symbol &symbol{MakeSymbol(
9270           context().globalScope(), name->source, Attrs{Attr::EXTERNAL})};
9271       symbol.implicitAttrs().set(Attr::EXTERNAL);
9272       Resolve(*name, symbol);
9273       ConvertToProcEntity(symbol, name->source);
9274       return false;
9275     }
9276   }
9277   Walk(expr);
9278   return false;
9279 }
9280 void ResolveNamesVisitor::Post(const parser::Designator &x) {
9281   ResolveDesignator(x);
9282 }
9283 void ResolveNamesVisitor::Post(const parser::SubstringInquiry &x) {
9284   Walk(std::get<parser::SubstringRange>(x.v.t).t);
9285   ResolveDataRef(std::get<parser::DataRef>(x.v.t));
9286 }
9287 
9288 void ResolveNamesVisitor::Post(const parser::ProcComponentRef &x) {
9289   ResolveStructureComponent(x.v.thing);
9290 }
9291 void ResolveNamesVisitor::Post(const parser::TypeGuardStmt &x) {
9292   DeclTypeSpecVisitor::Post(x);
9293   ConstructVisitor::Post(x);
9294 }
9295 bool ResolveNamesVisitor::Pre(const parser::StmtFunctionStmt &x) {
9296   if (HandleStmtFunction(x)) {
9297     return false;
9298   } else {
9299     // This is an array element or pointer-valued function assignment:
9300     // resolve the names of indices/arguments
9301     const auto &names{std::get<std::list<parser::Name>>(x.t)};
9302     for (auto &name : names) {
9303       ResolveName(name);
9304     }
9305     return true;
9306   }
9307 }
9308 
9309 bool ResolveNamesVisitor::Pre(const parser::DefinedOpName &x) {
9310   const parser::Name &name{x.v};
9311   if (FindSymbol(name)) {
9312     // OK
9313   } else if (IsLogicalConstant(context(), name.source)) {
9314     Say(name,
9315         "Logical constant '%s' may not be used as a defined operator"_err_en_US);
9316   } else {
9317     // Resolved later in expression semantics
9318     MakePlaceholder(name, MiscDetails::Kind::TypeBoundDefinedOp);
9319   }
9320   return false;
9321 }
9322 
9323 void ResolveNamesVisitor::Post(const parser::AssignStmt &x) {
9324   if (auto *name{ResolveName(std::get<parser::Name>(x.t))}) {
9325     CheckEntryDummyUse(name->source, name->symbol);
9326     ConvertToObjectEntity(DEREF(name->symbol));
9327   }
9328 }
9329 void ResolveNamesVisitor::Post(const parser::AssignedGotoStmt &x) {
9330   if (auto *name{ResolveName(std::get<parser::Name>(x.t))}) {
9331     CheckEntryDummyUse(name->source, name->symbol);
9332     ConvertToObjectEntity(DEREF(name->symbol));
9333   }
9334 }
9335 
9336 void ResolveNamesVisitor::Post(const parser::CompilerDirective &x) {
9337   if (std::holds_alternative<parser::CompilerDirective::VectorAlways>(x.u)) {
9338     return;
9339   }
9340   if (const auto *tkr{
9341           std::get_if<std::list<parser::CompilerDirective::IgnoreTKR>>(&x.u)}) {
9342     if (currScope().IsTopLevel() ||
9343         GetProgramUnitContaining(currScope()).kind() !=
9344             Scope::Kind::Subprogram) {
9345       Say(x.source,
9346           "!DIR$ IGNORE_TKR directive must appear in a subroutine or function"_err_en_US);
9347       return;
9348     }
9349     if (!inSpecificationPart_) {
9350       Say(x.source,
9351           "!DIR$ IGNORE_TKR directive must appear in the specification part"_err_en_US);
9352       return;
9353     }
9354     if (tkr->empty()) {
9355       Symbol *symbol{currScope().symbol()};
9356       if (SubprogramDetails *
9357           subp{symbol ? symbol->detailsIf<SubprogramDetails>() : nullptr}) {
9358         subp->set_defaultIgnoreTKR(true);
9359       }
9360     } else {
9361       for (const parser::CompilerDirective::IgnoreTKR &item : *tkr) {
9362         common::IgnoreTKRSet set;
9363         if (const auto &maybeList{
9364                 std::get<std::optional<std::list<const char *>>>(item.t)}) {
9365           for (const char *p : *maybeList) {
9366             if (p) {
9367               switch (*p) {
9368               case 't':
9369                 set.set(common::IgnoreTKR::Type);
9370                 break;
9371               case 'k':
9372                 set.set(common::IgnoreTKR::Kind);
9373                 break;
9374               case 'r':
9375                 set.set(common::IgnoreTKR::Rank);
9376                 break;
9377               case 'd':
9378                 set.set(common::IgnoreTKR::Device);
9379                 break;
9380               case 'm':
9381                 set.set(common::IgnoreTKR::Managed);
9382                 break;
9383               case 'c':
9384                 set.set(common::IgnoreTKR::Contiguous);
9385                 break;
9386               case 'a':
9387                 set = common::ignoreTKRAll;
9388                 break;
9389               default:
9390                 Say(x.source,
9391                     "'%c' is not a valid letter for !DIR$ IGNORE_TKR directive"_err_en_US,
9392                     *p);
9393                 set = common::ignoreTKRAll;
9394                 break;
9395               }
9396             }
9397           }
9398           if (set.empty()) {
9399             Say(x.source,
9400                 "!DIR$ IGNORE_TKR directive may not have an empty parenthesized list of letters"_err_en_US);
9401           }
9402         } else { // no (list)
9403           set = common::ignoreTKRAll;
9404           ;
9405         }
9406         const auto &name{std::get<parser::Name>(item.t)};
9407         Symbol *symbol{FindSymbol(name)};
9408         if (!symbol) {
9409           symbol = &MakeSymbol(name, Attrs{}, ObjectEntityDetails{});
9410         }
9411         if (symbol->owner() != currScope()) {
9412           SayWithDecl(
9413               name, *symbol, "'%s' must be local to this subprogram"_err_en_US);
9414         } else {
9415           ConvertToObjectEntity(*symbol);
9416           if (auto *object{symbol->detailsIf<ObjectEntityDetails>()}) {
9417             object->set_ignoreTKR(set);
9418           } else {
9419             SayWithDecl(name, *symbol, "'%s' must be an object"_err_en_US);
9420           }
9421         }
9422       }
9423     }
9424   } else if (context().ShouldWarn(common::UsageWarning::IgnoredDirective)) {
9425     Say(x.source, "Unrecognized compiler directive was ignored"_warn_en_US)
9426         .set_usageWarning(common::UsageWarning::IgnoredDirective);
9427   }
9428 }
9429 
9430 bool ResolveNamesVisitor::Pre(const parser::ProgramUnit &x) {
9431   if (std::holds_alternative<common::Indirection<parser::CompilerDirective>>(
9432           x.u)) {
9433     // TODO: global directives
9434     return true;
9435   }
9436   if (std::holds_alternative<
9437           common::Indirection<parser::OpenACCRoutineConstruct>>(x.u)) {
9438     ResolveAccParts(context(), x, &topScope_);
9439     return false;
9440   }
9441   ProgramTree &root{ProgramTree::Build(x, context())};
9442   SetScope(topScope_);
9443   ResolveSpecificationParts(root);
9444   FinishSpecificationParts(root);
9445   ResolveExecutionParts(root);
9446   FinishExecutionParts(root);
9447   ResolveAccParts(context(), x, /*topScope=*/nullptr);
9448   ResolveOmpParts(context(), x);
9449   return false;
9450 }
9451 
9452 template <typename A> std::set<SourceName> GetUses(const A &x) {
9453   std::set<SourceName> uses;
9454   if constexpr (!std::is_same_v<A, parser::CompilerDirective> &&
9455       !std::is_same_v<A, parser::OpenACCRoutineConstruct>) {
9456     const auto &spec{std::get<parser::SpecificationPart>(x.t)};
9457     const auto &unitUses{std::get<
9458         std::list<parser::Statement<common::Indirection<parser::UseStmt>>>>(
9459         spec.t)};
9460     for (const auto &u : unitUses) {
9461       uses.insert(u.statement.value().moduleName.source);
9462     }
9463   }
9464   return uses;
9465 }
9466 
9467 bool ResolveNamesVisitor::Pre(const parser::Program &x) {
9468   std::map<SourceName, const parser::ProgramUnit *> modules;
9469   std::set<SourceName> uses;
9470   bool disordered{false};
9471   for (const auto &progUnit : x.v) {
9472     if (const auto *indMod{
9473             std::get_if<common::Indirection<parser::Module>>(&progUnit.u)}) {
9474       const parser::Module &mod{indMod->value()};
9475       const auto &moduleStmt{
9476           std::get<parser::Statement<parser::ModuleStmt>>(mod.t)};
9477       const SourceName &name{moduleStmt.statement.v.source};
9478       if (auto iter{modules.find(name)}; iter != modules.end()) {
9479         Say(name,
9480             "Module '%s' appears multiple times in a compilation unit"_err_en_US)
9481             .Attach(iter->first, "First definition of module"_en_US);
9482         return true;
9483       }
9484       modules.emplace(name, &progUnit);
9485       if (auto iter{uses.find(name)}; iter != uses.end()) {
9486         if (context().ShouldWarn(common::LanguageFeature::MiscUseExtensions)) {
9487           Say(name,
9488               "A USE statement referencing module '%s' appears earlier in this compilation unit"_port_en_US,
9489               name)
9490               .Attach(*iter, "First USE of module"_en_US);
9491         }
9492         disordered = true;
9493       }
9494     }
9495     for (SourceName used : common::visit(
9496              [](const auto &indUnit) { return GetUses(indUnit.value()); },
9497              progUnit.u)) {
9498       uses.insert(used);
9499     }
9500   }
9501   if (!disordered) {
9502     return true;
9503   }
9504   // Process modules in topological order
9505   std::vector<const parser::ProgramUnit *> moduleOrder;
9506   while (!modules.empty()) {
9507     bool ok;
9508     for (const auto &pair : modules) {
9509       const SourceName &name{pair.first};
9510       const parser::ProgramUnit &progUnit{*pair.second};
9511       const parser::Module &m{
9512           std::get<common::Indirection<parser::Module>>(progUnit.u).value()};
9513       ok = true;
9514       for (const SourceName &use : GetUses(m)) {
9515         if (modules.find(use) != modules.end()) {
9516           ok = false;
9517           break;
9518         }
9519       }
9520       if (ok) {
9521         moduleOrder.push_back(&progUnit);
9522         modules.erase(name);
9523         break;
9524       }
9525     }
9526     if (!ok) {
9527       Message *msg{nullptr};
9528       for (const auto &pair : modules) {
9529         if (msg) {
9530           msg->Attach(pair.first, "Module in a cycle"_en_US);
9531         } else {
9532           msg = &Say(pair.first,
9533               "Some modules in this compilation unit form one or more cycles of dependence"_err_en_US);
9534         }
9535       }
9536       return false;
9537     }
9538   }
9539   // Modules can be ordered.  Process them first, and then all of the other
9540   // program units.
9541   for (const parser::ProgramUnit *progUnit : moduleOrder) {
9542     Walk(*progUnit);
9543   }
9544   for (const auto &progUnit : x.v) {
9545     if (!std::get_if<common::Indirection<parser::Module>>(&progUnit.u)) {
9546       Walk(progUnit);
9547     }
9548   }
9549   return false;
9550 }
9551 
9552 // References to procedures need to record that their symbols are known
9553 // to be procedures, so that they don't get converted to objects by default.
9554 class ExecutionPartCallSkimmer : public ExecutionPartSkimmerBase {
9555 public:
9556   explicit ExecutionPartCallSkimmer(ResolveNamesVisitor &resolver)
9557       : resolver_{resolver} {}
9558 
9559   void Walk(const parser::ExecutionPart &exec) {
9560     parser::Walk(exec, *this);
9561     EndWalk();
9562   }
9563 
9564   using ExecutionPartSkimmerBase::Post;
9565   using ExecutionPartSkimmerBase::Pre;
9566 
9567   void Post(const parser::FunctionReference &fr) {
9568     NoteCall(Symbol::Flag::Function, fr.v, false);
9569   }
9570   void Post(const parser::CallStmt &cs) {
9571     NoteCall(Symbol::Flag::Subroutine, cs.call, cs.chevrons.has_value());
9572   }
9573 
9574 private:
9575   void NoteCall(
9576       Symbol::Flag flag, const parser::Call &call, bool hasCUDAChevrons) {
9577     auto &designator{std::get<parser::ProcedureDesignator>(call.t)};
9578     if (const auto *name{std::get_if<parser::Name>(&designator.u)}) {
9579       if (!IsHidden(name->source)) {
9580         resolver_.NoteExecutablePartCall(flag, name->source, hasCUDAChevrons);
9581       }
9582     }
9583   }
9584 
9585   ResolveNamesVisitor &resolver_;
9586 };
9587 
9588 // Build the scope tree and resolve names in the specification parts of this
9589 // node and its children
9590 void ResolveNamesVisitor::ResolveSpecificationParts(ProgramTree &node) {
9591   if (node.isSpecificationPartResolved()) {
9592     return; // been here already
9593   }
9594   node.set_isSpecificationPartResolved();
9595   if (!BeginScopeForNode(node)) {
9596     return; // an error prevented scope from being created
9597   }
9598   Scope &scope{currScope()};
9599   node.set_scope(scope);
9600   AddSubpNames(node);
9601   common::visit(
9602       [&](const auto *x) {
9603         if (x) {
9604           Walk(*x);
9605         }
9606       },
9607       node.stmt());
9608   Walk(node.spec());
9609   bool inDeviceSubprogram = false;
9610   // If this is a function, convert result to an object. This is to prevent the
9611   // result from being converted later to a function symbol if it is called
9612   // inside the function.
9613   // If the result is function pointer, then ConvertToObjectEntity will not
9614   // convert the result to an object, and calling the symbol inside the function
9615   // will result in calls to the result pointer.
9616   // A function cannot be called recursively if RESULT was not used to define a
9617   // distinct result name (15.6.2.2 point 4.).
9618   if (Symbol * symbol{scope.symbol()}) {
9619     if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
9620       if (details->isFunction()) {
9621         ConvertToObjectEntity(const_cast<Symbol &>(details->result()));
9622       }
9623       // Check the current procedure is a device procedure to apply implicit
9624       // attribute at the end.
9625       if (auto attrs{details->cudaSubprogramAttrs()}) {
9626         if (*attrs == common::CUDASubprogramAttrs::Device ||
9627             *attrs == common::CUDASubprogramAttrs::Global ||
9628             *attrs == common::CUDASubprogramAttrs::Grid_Global) {
9629           inDeviceSubprogram = true;
9630         }
9631       }
9632     }
9633   }
9634   if (node.IsModule()) {
9635     ApplyDefaultAccess();
9636   }
9637   for (auto &child : node.children()) {
9638     ResolveSpecificationParts(child);
9639   }
9640   if (node.exec()) {
9641     ExecutionPartCallSkimmer{*this}.Walk(*node.exec());
9642     HandleImpliedAsynchronousInScope(node.exec()->v);
9643   }
9644   EndScopeForNode(node);
9645   // Ensure that every object entity has a type.
9646   bool inModule{node.GetKind() == ProgramTree::Kind::Module ||
9647       node.GetKind() == ProgramTree::Kind::Submodule};
9648   for (auto &pair : *node.scope()) {
9649     Symbol &symbol{*pair.second};
9650     if (inModule && symbol.attrs().test(Attr::EXTERNAL) && !IsPointer(symbol) &&
9651         !symbol.test(Symbol::Flag::Function) &&
9652         !symbol.test(Symbol::Flag::Subroutine)) {
9653       // in a module, external proc without return type is subroutine
9654       symbol.set(
9655           symbol.GetType() ? Symbol::Flag::Function : Symbol::Flag::Subroutine);
9656     }
9657     ApplyImplicitRules(symbol);
9658     // Apply CUDA implicit attributes if needed.
9659     if (inDeviceSubprogram && symbol.has<ObjectEntityDetails>()) {
9660       auto *object{symbol.detailsIf<ObjectEntityDetails>()};
9661       if (!object->cudaDataAttr() && !IsValue(symbol) &&
9662           (IsDummy(symbol) || object->IsArray())) {
9663         // Implicitly set device attribute if none is set in device context.
9664         object->set_cudaDataAttr(common::CUDADataAttr::Device);
9665       }
9666     }
9667   }
9668 }
9669 
9670 // Add SubprogramNameDetails symbols for module and internal subprograms and
9671 // their ENTRY statements.
9672 void ResolveNamesVisitor::AddSubpNames(ProgramTree &node) {
9673   auto kind{
9674       node.IsModule() ? SubprogramKind::Module : SubprogramKind::Internal};
9675   for (auto &child : node.children()) {
9676     auto &symbol{MakeSymbol(child.name(), SubprogramNameDetails{kind, child})};
9677     if (child.HasModulePrefix()) {
9678       SetExplicitAttr(symbol, Attr::MODULE);
9679     }
9680     if (child.bindingSpec()) {
9681       SetExplicitAttr(symbol, Attr::BIND_C);
9682     }
9683     auto childKind{child.GetKind()};
9684     if (childKind == ProgramTree::Kind::Function) {
9685       symbol.set(Symbol::Flag::Function);
9686     } else if (childKind == ProgramTree::Kind::Subroutine) {
9687       symbol.set(Symbol::Flag::Subroutine);
9688     } else {
9689       continue; // make ENTRY symbols only where valid
9690     }
9691     for (const auto &entryStmt : child.entryStmts()) {
9692       SubprogramNameDetails details{kind, child};
9693       auto &symbol{
9694           MakeSymbol(std::get<parser::Name>(entryStmt->t), std::move(details))};
9695       symbol.set(child.GetSubpFlag());
9696       if (child.HasModulePrefix()) {
9697         SetExplicitAttr(symbol, Attr::MODULE);
9698       }
9699       if (child.bindingSpec()) {
9700         SetExplicitAttr(symbol, Attr::BIND_C);
9701       }
9702     }
9703   }
9704   for (const auto &generic : node.genericSpecs()) {
9705     if (const auto *name{std::get_if<parser::Name>(&generic->u)}) {
9706       if (currScope().find(name->source) != currScope().end()) {
9707         // If this scope has both a generic interface and a contained
9708         // subprogram with the same name, create the generic's symbol
9709         // now so that any other generics of the same name that are pulled
9710         // into scope later via USE association will properly merge instead
9711         // of raising a bogus error due a conflict with the subprogram.
9712         CreateGeneric(*generic);
9713       }
9714     }
9715   }
9716 }
9717 
9718 // Push a new scope for this node or return false on error.
9719 bool ResolveNamesVisitor::BeginScopeForNode(const ProgramTree &node) {
9720   switch (node.GetKind()) {
9721     SWITCH_COVERS_ALL_CASES
9722   case ProgramTree::Kind::Program:
9723     PushScope(Scope::Kind::MainProgram,
9724         &MakeSymbol(node.name(), MainProgramDetails{}));
9725     return true;
9726   case ProgramTree::Kind::Function:
9727   case ProgramTree::Kind::Subroutine:
9728     return BeginSubprogram(node.name(), node.GetSubpFlag(),
9729         node.HasModulePrefix(), node.bindingSpec(), &node.entryStmts());
9730   case ProgramTree::Kind::MpSubprogram:
9731     return BeginMpSubprogram(node.name());
9732   case ProgramTree::Kind::Module:
9733     BeginModule(node.name(), false);
9734     return true;
9735   case ProgramTree::Kind::Submodule:
9736     return BeginSubmodule(node.name(), node.GetParentId());
9737   case ProgramTree::Kind::BlockData:
9738     PushBlockDataScope(node.name());
9739     return true;
9740   }
9741 }
9742 
9743 void ResolveNamesVisitor::EndScopeForNode(const ProgramTree &node) {
9744   std::optional<parser::CharBlock> stmtSource;
9745   const std::optional<parser::LanguageBindingSpec> *binding{nullptr};
9746   common::visit(
9747       common::visitors{
9748           [&](const parser::Statement<parser::FunctionStmt> *stmt) {
9749             if (stmt) {
9750               stmtSource = stmt->source;
9751               if (const auto &maybeSuffix{
9752                       std::get<std::optional<parser::Suffix>>(
9753                           stmt->statement.t)}) {
9754                 binding = &maybeSuffix->binding;
9755               }
9756             }
9757           },
9758           [&](const parser::Statement<parser::SubroutineStmt> *stmt) {
9759             if (stmt) {
9760               stmtSource = stmt->source;
9761               binding = &std::get<std::optional<parser::LanguageBindingSpec>>(
9762                   stmt->statement.t);
9763             }
9764           },
9765           [](const auto *) {},
9766       },
9767       node.stmt());
9768   EndSubprogram(stmtSource, binding, &node.entryStmts());
9769 }
9770 
9771 // Some analyses and checks, such as the processing of initializers of
9772 // pointers, are deferred until all of the pertinent specification parts
9773 // have been visited.  This deferred processing enables the use of forward
9774 // references in these circumstances.
9775 // Data statement objects with implicit derived types are finally
9776 // resolved here.
9777 class DeferredCheckVisitor {
9778 public:
9779   explicit DeferredCheckVisitor(ResolveNamesVisitor &resolver)
9780       : resolver_{resolver} {}
9781 
9782   template <typename A> void Walk(const A &x) { parser::Walk(x, *this); }
9783 
9784   template <typename A> bool Pre(const A &) { return true; }
9785   template <typename A> void Post(const A &) {}
9786 
9787   void Post(const parser::DerivedTypeStmt &x) {
9788     const auto &name{std::get<parser::Name>(x.t)};
9789     if (Symbol * symbol{name.symbol}) {
9790       if (Scope * scope{symbol->scope()}) {
9791         if (scope->IsDerivedType()) {
9792           CHECK(outerScope_ == nullptr);
9793           outerScope_ = &resolver_.currScope();
9794           resolver_.SetScope(*scope);
9795         }
9796       }
9797     }
9798   }
9799   void Post(const parser::EndTypeStmt &) {
9800     if (outerScope_) {
9801       resolver_.SetScope(*outerScope_);
9802       outerScope_ = nullptr;
9803     }
9804   }
9805 
9806   void Post(const parser::ProcInterface &pi) {
9807     if (const auto *name{std::get_if<parser::Name>(&pi.u)}) {
9808       resolver_.CheckExplicitInterface(*name);
9809     }
9810   }
9811   bool Pre(const parser::EntityDecl &decl) {
9812     Init(std::get<parser::Name>(decl.t),
9813         std::get<std::optional<parser::Initialization>>(decl.t));
9814     return false;
9815   }
9816   bool Pre(const parser::ComponentDecl &decl) {
9817     Init(std::get<parser::Name>(decl.t),
9818         std::get<std::optional<parser::Initialization>>(decl.t));
9819     return false;
9820   }
9821   bool Pre(const parser::ProcDecl &decl) {
9822     if (const auto &init{
9823             std::get<std::optional<parser::ProcPointerInit>>(decl.t)}) {
9824       resolver_.PointerInitialization(std::get<parser::Name>(decl.t), *init);
9825     }
9826     return false;
9827   }
9828   void Post(const parser::TypeBoundProcedureStmt::WithInterface &tbps) {
9829     resolver_.CheckExplicitInterface(tbps.interfaceName);
9830   }
9831   void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &tbps) {
9832     if (outerScope_) {
9833       resolver_.CheckBindings(tbps);
9834     }
9835   }
9836   bool Pre(const parser::DataStmtObject &) {
9837     ++dataStmtObjectNesting_;
9838     return true;
9839   }
9840   void Post(const parser::DataStmtObject &) { --dataStmtObjectNesting_; }
9841   void Post(const parser::Designator &x) {
9842     if (dataStmtObjectNesting_ > 0) {
9843       resolver_.ResolveDesignator(x);
9844     }
9845   }
9846 
9847 private:
9848   void Init(const parser::Name &name,
9849       const std::optional<parser::Initialization> &init) {
9850     if (init) {
9851       if (const auto *target{
9852               std::get_if<parser::InitialDataTarget>(&init->u)}) {
9853         resolver_.PointerInitialization(name, *target);
9854       } else if (const auto *expr{
9855                      std::get_if<parser::ConstantExpr>(&init->u)}) {
9856         if (name.symbol) {
9857           if (const auto *object{name.symbol->detailsIf<ObjectEntityDetails>()};
9858               !object || !object->init()) {
9859             resolver_.NonPointerInitialization(name, *expr);
9860           }
9861         }
9862       }
9863     }
9864   }
9865 
9866   ResolveNamesVisitor &resolver_;
9867   Scope *outerScope_{nullptr};
9868   int dataStmtObjectNesting_{0};
9869 };
9870 
9871 // Perform checks and completions that need to happen after all of
9872 // the specification parts but before any of the execution parts.
9873 void ResolveNamesVisitor::FinishSpecificationParts(const ProgramTree &node) {
9874   if (!node.scope()) {
9875     return; // error occurred creating scope
9876   }
9877   auto flagRestorer{common::ScopedSet(inSpecificationPart_, true)};
9878   SetScope(*node.scope());
9879   // The initializers of pointers and non-PARAMETER objects, the default
9880   // initializers of components, and non-deferred type-bound procedure
9881   // bindings have not yet been traversed.
9882   // We do that now, when any forward references that appeared
9883   // in those initializers will resolve to the right symbols without
9884   // incurring spurious errors with IMPLICIT NONE or forward references
9885   // to nested subprograms.
9886   DeferredCheckVisitor{*this}.Walk(node.spec());
9887   for (Scope &childScope : currScope().children()) {
9888     if (childScope.IsParameterizedDerivedTypeInstantiation()) {
9889       FinishDerivedTypeInstantiation(childScope);
9890     }
9891   }
9892   for (const auto &child : node.children()) {
9893     FinishSpecificationParts(child);
9894   }
9895 }
9896 
9897 void ResolveNamesVisitor::FinishExecutionParts(const ProgramTree &node) {
9898   if (node.scope()) {
9899     SetScope(*node.scope());
9900     if (node.exec()) {
9901       DeferredCheckVisitor{*this}.Walk(*node.exec());
9902     }
9903     for (const auto &child : node.children()) {
9904       FinishExecutionParts(child);
9905     }
9906   }
9907 }
9908 
9909 // Duplicate and fold component object pointer default initializer designators
9910 // using the actual type parameter values of each particular instantiation.
9911 // Validation is done later in declaration checking.
9912 void ResolveNamesVisitor::FinishDerivedTypeInstantiation(Scope &scope) {
9913   CHECK(scope.IsDerivedType() && !scope.symbol());
9914   if (DerivedTypeSpec * spec{scope.derivedTypeSpec()}) {
9915     spec->Instantiate(currScope());
9916     const Symbol &origTypeSymbol{spec->typeSymbol()};
9917     if (const Scope * origTypeScope{origTypeSymbol.scope()}) {
9918       CHECK(origTypeScope->IsDerivedType() &&
9919           origTypeScope->symbol() == &origTypeSymbol);
9920       auto &foldingContext{GetFoldingContext()};
9921       auto restorer{foldingContext.WithPDTInstance(*spec)};
9922       for (auto &pair : scope) {
9923         Symbol &comp{*pair.second};
9924         const Symbol &origComp{DEREF(FindInScope(*origTypeScope, comp.name()))};
9925         if (IsPointer(comp)) {
9926           if (auto *details{comp.detailsIf<ObjectEntityDetails>()}) {
9927             auto origDetails{origComp.get<ObjectEntityDetails>()};
9928             if (const MaybeExpr & init{origDetails.init()}) {
9929               SomeExpr newInit{*init};
9930               MaybeExpr folded{FoldExpr(std::move(newInit))};
9931               details->set_init(std::move(folded));
9932             }
9933           }
9934         }
9935       }
9936     }
9937   }
9938 }
9939 
9940 // Resolve names in the execution part of this node and its children
9941 void ResolveNamesVisitor::ResolveExecutionParts(const ProgramTree &node) {
9942   if (!node.scope()) {
9943     return; // error occurred creating scope
9944   }
9945   SetScope(*node.scope());
9946   if (const auto *exec{node.exec()}) {
9947     Walk(*exec);
9948   }
9949   FinishNamelists();
9950   if (node.IsModule()) {
9951     // A second final pass to catch new symbols added from implicitly
9952     // typed names in NAMELIST groups or the specification parts of
9953     // module subprograms.
9954     ApplyDefaultAccess();
9955   }
9956   PopScope(); // converts unclassified entities into objects
9957   for (const auto &child : node.children()) {
9958     ResolveExecutionParts(child);
9959   }
9960 }
9961 
9962 void ResolveNamesVisitor::Post(const parser::Program &x) {
9963   // ensure that all temps were deallocated
9964   CHECK(!attrs_);
9965   CHECK(!cudaDataAttr_);
9966   CHECK(!GetDeclTypeSpec());
9967   // Top-level resolution to propagate information across program units after
9968   // each of them has been resolved separately.
9969   ResolveOmpTopLevelParts(context(), x);
9970 }
9971 
9972 // A singleton instance of the scope -> IMPLICIT rules mapping is
9973 // shared by all instances of ResolveNamesVisitor and accessed by this
9974 // pointer when the visitors (other than the top-level original) are
9975 // constructed.
9976 static ImplicitRulesMap *sharedImplicitRulesMap{nullptr};
9977 
9978 bool ResolveNames(
9979     SemanticsContext &context, const parser::Program &program, Scope &top) {
9980   ImplicitRulesMap implicitRulesMap;
9981   auto restorer{common::ScopedSet(sharedImplicitRulesMap, &implicitRulesMap)};
9982   ResolveNamesVisitor{context, implicitRulesMap, top}.Walk(program);
9983   return !context.AnyFatalError();
9984 }
9985 
9986 // Processes a module (but not internal) function when it is referenced
9987 // in a specification expression in a sibling procedure.
9988 void ResolveSpecificationParts(
9989     SemanticsContext &context, const Symbol &subprogram) {
9990   auto originalLocation{context.location()};
9991   ImplicitRulesMap implicitRulesMap;
9992   bool localImplicitRulesMap{false};
9993   if (!sharedImplicitRulesMap) {
9994     sharedImplicitRulesMap = &implicitRulesMap;
9995     localImplicitRulesMap = true;
9996   }
9997   ResolveNamesVisitor visitor{
9998       context, *sharedImplicitRulesMap, context.globalScope()};
9999   const auto &details{subprogram.get<SubprogramNameDetails>()};
10000   ProgramTree &node{details.node()};
10001   const Scope &moduleScope{subprogram.owner()};
10002   if (localImplicitRulesMap) {
10003     visitor.BeginScope(const_cast<Scope &>(moduleScope));
10004   } else {
10005     visitor.SetScope(const_cast<Scope &>(moduleScope));
10006   }
10007   visitor.ResolveSpecificationParts(node);
10008   context.set_location(std::move(originalLocation));
10009   if (localImplicitRulesMap) {
10010     sharedImplicitRulesMap = nullptr;
10011   }
10012 }
10013 
10014 } // namespace Fortran::semantics
10015