1 //===-- lib/Semantics/resolve-names.cpp -----------------------------------===// 2 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 3 // See https://llvm.org/LICENSE.txt for license information. 4 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 5 // 6 //===----------------------------------------------------------------------===// 7 8 #include "resolve-names.h" 9 #include "assignment.h" 10 #include "definable.h" 11 #include "mod-file.h" 12 #include "pointer-assignment.h" 13 #include "program-tree.h" 14 #include "resolve-directives.h" 15 #include "resolve-names-utils.h" 16 #include "rewrite-parse-tree.h" 17 #include "flang/Common/Fortran.h" 18 #include "flang/Common/default-kinds.h" 19 #include "flang/Common/indirection.h" 20 #include "flang/Common/restorer.h" 21 #include "flang/Common/visit.h" 22 #include "flang/Evaluate/characteristics.h" 23 #include "flang/Evaluate/check-expression.h" 24 #include "flang/Evaluate/common.h" 25 #include "flang/Evaluate/fold-designator.h" 26 #include "flang/Evaluate/fold.h" 27 #include "flang/Evaluate/intrinsics.h" 28 #include "flang/Evaluate/tools.h" 29 #include "flang/Evaluate/type.h" 30 #include "flang/Parser/parse-tree-visitor.h" 31 #include "flang/Parser/parse-tree.h" 32 #include "flang/Parser/tools.h" 33 #include "flang/Semantics/attr.h" 34 #include "flang/Semantics/expression.h" 35 #include "flang/Semantics/scope.h" 36 #include "flang/Semantics/semantics.h" 37 #include "flang/Semantics/symbol.h" 38 #include "flang/Semantics/tools.h" 39 #include "flang/Semantics/type.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <list> 42 #include <map> 43 #include <set> 44 #include <stack> 45 46 namespace Fortran::semantics { 47 48 using namespace parser::literals; 49 50 template <typename T> using Indirection = common::Indirection<T>; 51 using Message = parser::Message; 52 using Messages = parser::Messages; 53 using MessageFixedText = parser::MessageFixedText; 54 using MessageFormattedText = parser::MessageFormattedText; 55 56 class ResolveNamesVisitor; 57 class ScopeHandler; 58 59 // ImplicitRules maps initial character of identifier to the DeclTypeSpec 60 // representing the implicit type; std::nullopt if none. 61 // It also records the presence of IMPLICIT NONE statements. 62 // When inheritFromParent is set, defaults come from the parent rules. 63 class ImplicitRules { 64 public: 65 ImplicitRules(SemanticsContext &context, const ImplicitRules *parent) 66 : parent_{parent}, context_{context}, 67 inheritFromParent_{parent != nullptr} {} 68 bool isImplicitNoneType() const; 69 bool isImplicitNoneExternal() const; 70 void set_isImplicitNoneType(bool x) { isImplicitNoneType_ = x; } 71 void set_isImplicitNoneExternal(bool x) { isImplicitNoneExternal_ = x; } 72 void set_inheritFromParent(bool x) { inheritFromParent_ = x; } 73 // Get the implicit type for this name. May be null. 74 const DeclTypeSpec *GetType( 75 SourceName, bool respectImplicitNone = true) const; 76 // Record the implicit type for the range of characters [fromLetter, 77 // toLetter]. 78 void SetTypeMapping(const DeclTypeSpec &type, parser::Location fromLetter, 79 parser::Location toLetter); 80 81 private: 82 static char Incr(char ch); 83 84 const ImplicitRules *parent_; 85 SemanticsContext &context_; 86 bool inheritFromParent_{false}; // look in parent if not specified here 87 bool isImplicitNoneType_{ 88 context_.IsEnabled(common::LanguageFeature::ImplicitNoneTypeAlways)}; 89 bool isImplicitNoneExternal_{false}; 90 // map_ contains the mapping between letters and types that were defined 91 // by the IMPLICIT statements of the related scope. It does not contain 92 // the default Fortran mappings nor the mapping defined in parents. 93 std::map<char, common::Reference<const DeclTypeSpec>> map_; 94 95 friend llvm::raw_ostream &operator<<( 96 llvm::raw_ostream &, const ImplicitRules &); 97 friend void ShowImplicitRule( 98 llvm::raw_ostream &, const ImplicitRules &, char); 99 }; 100 101 // scope -> implicit rules for that scope 102 using ImplicitRulesMap = std::map<const Scope *, ImplicitRules>; 103 104 // Track statement source locations and save messages. 105 class MessageHandler { 106 public: 107 MessageHandler() { DIE("MessageHandler: default-constructed"); } 108 explicit MessageHandler(SemanticsContext &c) : context_{&c} {} 109 Messages &messages() { return context_->messages(); }; 110 const std::optional<SourceName> &currStmtSource() { 111 return context_->location(); 112 } 113 void set_currStmtSource(const std::optional<SourceName> &source) { 114 context_->set_location(source); 115 } 116 117 // Emit a message associated with the current statement source. 118 Message &Say(MessageFixedText &&); 119 Message &Say(MessageFormattedText &&); 120 // Emit a message about a SourceName 121 Message &Say(const SourceName &, MessageFixedText &&); 122 // Emit a formatted message associated with a source location. 123 template <typename... A> 124 Message &Say(const SourceName &source, MessageFixedText &&msg, A &&...args) { 125 return context_->Say(source, std::move(msg), std::forward<A>(args)...); 126 } 127 128 private: 129 SemanticsContext *context_; 130 }; 131 132 // Inheritance graph for the parse tree visitation classes that follow: 133 // BaseVisitor 134 // + AttrsVisitor 135 // | + DeclTypeSpecVisitor 136 // | + ImplicitRulesVisitor 137 // | + ScopeHandler ------------------+ 138 // | + ModuleVisitor -------------+ | 139 // | + GenericHandler -------+ | | 140 // | | + InterfaceVisitor | | | 141 // | +-+ SubprogramVisitor ==|==+ | | 142 // + ArraySpecVisitor | | | | 143 // + DeclarationVisitor <--------+ | | | 144 // + ConstructVisitor | | | 145 // + ResolveNamesVisitor <------+-+-+ 146 147 class BaseVisitor { 148 public: 149 BaseVisitor() { DIE("BaseVisitor: default-constructed"); } 150 BaseVisitor( 151 SemanticsContext &c, ResolveNamesVisitor &v, ImplicitRulesMap &rules) 152 : implicitRulesMap_{&rules}, this_{&v}, context_{&c}, messageHandler_{c} { 153 } 154 template <typename T> void Walk(const T &); 155 156 MessageHandler &messageHandler() { return messageHandler_; } 157 const std::optional<SourceName> &currStmtSource() { 158 return context_->location(); 159 } 160 SemanticsContext &context() const { return *context_; } 161 evaluate::FoldingContext &GetFoldingContext() const { 162 return context_->foldingContext(); 163 } 164 bool IsIntrinsic( 165 const SourceName &name, std::optional<Symbol::Flag> flag) const { 166 if (!flag) { 167 return context_->intrinsics().IsIntrinsic(name.ToString()); 168 } else if (flag == Symbol::Flag::Function) { 169 return context_->intrinsics().IsIntrinsicFunction(name.ToString()); 170 } else if (flag == Symbol::Flag::Subroutine) { 171 return context_->intrinsics().IsIntrinsicSubroutine(name.ToString()); 172 } else { 173 DIE("expected Subroutine or Function flag"); 174 } 175 } 176 177 bool InModuleFile() const { 178 return GetFoldingContext().moduleFileName().has_value(); 179 } 180 181 // Make a placeholder symbol for a Name that otherwise wouldn't have one. 182 // It is not in any scope and always has MiscDetails. 183 void MakePlaceholder(const parser::Name &, MiscDetails::Kind); 184 185 template <typename T> common::IfNoLvalue<T, T> FoldExpr(T &&expr) { 186 return evaluate::Fold(GetFoldingContext(), std::move(expr)); 187 } 188 189 template <typename T> MaybeExpr EvaluateExpr(const T &expr) { 190 return FoldExpr(AnalyzeExpr(*context_, expr)); 191 } 192 193 template <typename T> 194 MaybeExpr EvaluateNonPointerInitializer( 195 const Symbol &symbol, const T &expr, parser::CharBlock source) { 196 if (!context().HasError(symbol)) { 197 if (auto maybeExpr{AnalyzeExpr(*context_, expr)}) { 198 auto restorer{GetFoldingContext().messages().SetLocation(source)}; 199 return evaluate::NonPointerInitializationExpr( 200 symbol, std::move(*maybeExpr), GetFoldingContext()); 201 } 202 } 203 return std::nullopt; 204 } 205 206 template <typename T> MaybeIntExpr EvaluateIntExpr(const T &expr) { 207 return semantics::EvaluateIntExpr(*context_, expr); 208 } 209 210 template <typename T> 211 MaybeSubscriptIntExpr EvaluateSubscriptIntExpr(const T &expr) { 212 if (MaybeIntExpr maybeIntExpr{EvaluateIntExpr(expr)}) { 213 return FoldExpr(evaluate::ConvertToType<evaluate::SubscriptInteger>( 214 std::move(*maybeIntExpr))); 215 } else { 216 return std::nullopt; 217 } 218 } 219 220 template <typename... A> Message &Say(A &&...args) { 221 return messageHandler_.Say(std::forward<A>(args)...); 222 } 223 template <typename... A> 224 Message &Say( 225 const parser::Name &name, MessageFixedText &&text, const A &...args) { 226 return messageHandler_.Say(name.source, std::move(text), args...); 227 } 228 229 protected: 230 ImplicitRulesMap *implicitRulesMap_{nullptr}; 231 232 private: 233 ResolveNamesVisitor *this_; 234 SemanticsContext *context_; 235 MessageHandler messageHandler_; 236 }; 237 238 // Provide Post methods to collect attributes into a member variable. 239 class AttrsVisitor : public virtual BaseVisitor { 240 public: 241 bool BeginAttrs(); // always returns true 242 Attrs GetAttrs(); 243 std::optional<common::CUDADataAttr> cudaDataAttr() { return cudaDataAttr_; } 244 Attrs EndAttrs(); 245 bool SetPassNameOn(Symbol &); 246 void SetBindNameOn(Symbol &); 247 void Post(const parser::LanguageBindingSpec &); 248 bool Pre(const parser::IntentSpec &); 249 bool Pre(const parser::Pass &); 250 251 bool CheckAndSet(Attr); 252 253 // Simple case: encountering CLASSNAME causes ATTRNAME to be set. 254 #define HANDLE_ATTR_CLASS(CLASSNAME, ATTRNAME) \ 255 bool Pre(const parser::CLASSNAME &) { \ 256 CheckAndSet(Attr::ATTRNAME); \ 257 return false; \ 258 } 259 HANDLE_ATTR_CLASS(PrefixSpec::Elemental, ELEMENTAL) 260 HANDLE_ATTR_CLASS(PrefixSpec::Impure, IMPURE) 261 HANDLE_ATTR_CLASS(PrefixSpec::Module, MODULE) 262 HANDLE_ATTR_CLASS(PrefixSpec::Non_Recursive, NON_RECURSIVE) 263 HANDLE_ATTR_CLASS(PrefixSpec::Pure, PURE) 264 HANDLE_ATTR_CLASS(PrefixSpec::Recursive, RECURSIVE) 265 HANDLE_ATTR_CLASS(TypeAttrSpec::BindC, BIND_C) 266 HANDLE_ATTR_CLASS(BindAttr::Deferred, DEFERRED) 267 HANDLE_ATTR_CLASS(BindAttr::Non_Overridable, NON_OVERRIDABLE) 268 HANDLE_ATTR_CLASS(Abstract, ABSTRACT) 269 HANDLE_ATTR_CLASS(Allocatable, ALLOCATABLE) 270 HANDLE_ATTR_CLASS(Asynchronous, ASYNCHRONOUS) 271 HANDLE_ATTR_CLASS(Contiguous, CONTIGUOUS) 272 HANDLE_ATTR_CLASS(External, EXTERNAL) 273 HANDLE_ATTR_CLASS(Intrinsic, INTRINSIC) 274 HANDLE_ATTR_CLASS(NoPass, NOPASS) 275 HANDLE_ATTR_CLASS(Optional, OPTIONAL) 276 HANDLE_ATTR_CLASS(Parameter, PARAMETER) 277 HANDLE_ATTR_CLASS(Pointer, POINTER) 278 HANDLE_ATTR_CLASS(Protected, PROTECTED) 279 HANDLE_ATTR_CLASS(Save, SAVE) 280 HANDLE_ATTR_CLASS(Target, TARGET) 281 HANDLE_ATTR_CLASS(Value, VALUE) 282 HANDLE_ATTR_CLASS(Volatile, VOLATILE) 283 #undef HANDLE_ATTR_CLASS 284 bool Pre(const common::CUDADataAttr); 285 286 protected: 287 std::optional<Attrs> attrs_; 288 std::optional<common::CUDADataAttr> cudaDataAttr_; 289 290 Attr AccessSpecToAttr(const parser::AccessSpec &x) { 291 switch (x.v) { 292 case parser::AccessSpec::Kind::Public: 293 return Attr::PUBLIC; 294 case parser::AccessSpec::Kind::Private: 295 return Attr::PRIVATE; 296 } 297 llvm_unreachable("Switch covers all cases"); // suppress g++ warning 298 } 299 Attr IntentSpecToAttr(const parser::IntentSpec &x) { 300 switch (x.v) { 301 case parser::IntentSpec::Intent::In: 302 return Attr::INTENT_IN; 303 case parser::IntentSpec::Intent::Out: 304 return Attr::INTENT_OUT; 305 case parser::IntentSpec::Intent::InOut: 306 return Attr::INTENT_INOUT; 307 } 308 llvm_unreachable("Switch covers all cases"); // suppress g++ warning 309 } 310 311 private: 312 bool IsDuplicateAttr(Attr); 313 bool HaveAttrConflict(Attr, Attr, Attr); 314 bool IsConflictingAttr(Attr); 315 316 MaybeExpr bindName_; // from BIND(C, NAME="...") 317 bool isCDefined_{false}; // BIND(C, NAME="...", CDEFINED) extension 318 std::optional<SourceName> passName_; // from PASS(...) 319 }; 320 321 // Find and create types from declaration-type-spec nodes. 322 class DeclTypeSpecVisitor : public AttrsVisitor { 323 public: 324 using AttrsVisitor::Post; 325 using AttrsVisitor::Pre; 326 void Post(const parser::IntrinsicTypeSpec::DoublePrecision &); 327 void Post(const parser::IntrinsicTypeSpec::DoubleComplex &); 328 void Post(const parser::DeclarationTypeSpec::ClassStar &); 329 void Post(const parser::DeclarationTypeSpec::TypeStar &); 330 bool Pre(const parser::TypeGuardStmt &); 331 void Post(const parser::TypeGuardStmt &); 332 void Post(const parser::TypeSpec &); 333 334 // Walk the parse tree of a type spec and return the DeclTypeSpec for it. 335 template <typename T> 336 const DeclTypeSpec *ProcessTypeSpec(const T &x, bool allowForward = false) { 337 auto restorer{common::ScopedSet(state_, State{})}; 338 set_allowForwardReferenceToDerivedType(allowForward); 339 BeginDeclTypeSpec(); 340 Walk(x); 341 const auto *type{GetDeclTypeSpec()}; 342 EndDeclTypeSpec(); 343 return type; 344 } 345 346 protected: 347 struct State { 348 bool expectDeclTypeSpec{false}; // should see decl-type-spec only when true 349 const DeclTypeSpec *declTypeSpec{nullptr}; 350 struct { 351 DerivedTypeSpec *type{nullptr}; 352 DeclTypeSpec::Category category{DeclTypeSpec::TypeDerived}; 353 } derived; 354 bool allowForwardReferenceToDerivedType{false}; 355 }; 356 357 bool allowForwardReferenceToDerivedType() const { 358 return state_.allowForwardReferenceToDerivedType; 359 } 360 void set_allowForwardReferenceToDerivedType(bool yes) { 361 state_.allowForwardReferenceToDerivedType = yes; 362 } 363 364 const DeclTypeSpec *GetDeclTypeSpec(); 365 void BeginDeclTypeSpec(); 366 void EndDeclTypeSpec(); 367 void SetDeclTypeSpec(const DeclTypeSpec &); 368 void SetDeclTypeSpecCategory(DeclTypeSpec::Category); 369 DeclTypeSpec::Category GetDeclTypeSpecCategory() const { 370 return state_.derived.category; 371 } 372 KindExpr GetKindParamExpr( 373 TypeCategory, const std::optional<parser::KindSelector> &); 374 void CheckForAbstractType(const Symbol &typeSymbol); 375 376 private: 377 State state_; 378 379 void MakeNumericType(TypeCategory, int kind); 380 }; 381 382 // Visit ImplicitStmt and related parse tree nodes and updates implicit rules. 383 class ImplicitRulesVisitor : public DeclTypeSpecVisitor { 384 public: 385 using DeclTypeSpecVisitor::Post; 386 using DeclTypeSpecVisitor::Pre; 387 using ImplicitNoneNameSpec = parser::ImplicitStmt::ImplicitNoneNameSpec; 388 389 void Post(const parser::ParameterStmt &); 390 bool Pre(const parser::ImplicitStmt &); 391 bool Pre(const parser::LetterSpec &); 392 bool Pre(const parser::ImplicitSpec &); 393 void Post(const parser::ImplicitSpec &); 394 395 const DeclTypeSpec *GetType( 396 SourceName name, bool respectImplicitNoneType = true) { 397 return implicitRules_->GetType(name, respectImplicitNoneType); 398 } 399 bool isImplicitNoneType() const { 400 return implicitRules_->isImplicitNoneType(); 401 } 402 bool isImplicitNoneType(const Scope &scope) const { 403 return implicitRulesMap_->at(&scope).isImplicitNoneType(); 404 } 405 bool isImplicitNoneExternal() const { 406 return implicitRules_->isImplicitNoneExternal(); 407 } 408 void set_inheritFromParent(bool x) { 409 implicitRules_->set_inheritFromParent(x); 410 } 411 412 protected: 413 void BeginScope(const Scope &); 414 void SetScope(const Scope &); 415 416 private: 417 // implicit rules in effect for current scope 418 ImplicitRules *implicitRules_{nullptr}; 419 std::optional<SourceName> prevImplicit_; 420 std::optional<SourceName> prevImplicitNone_; 421 std::optional<SourceName> prevImplicitNoneType_; 422 std::optional<SourceName> prevParameterStmt_; 423 424 bool HandleImplicitNone(const std::list<ImplicitNoneNameSpec> &nameSpecs); 425 }; 426 427 // Track array specifications. They can occur in AttrSpec, EntityDecl, 428 // ObjectDecl, DimensionStmt, CommonBlockObject, BasedPointer, and 429 // ComponentDecl. 430 // 1. INTEGER, DIMENSION(10) :: x 431 // 2. INTEGER :: x(10) 432 // 3. ALLOCATABLE :: x(:) 433 // 4. DIMENSION :: x(10) 434 // 5. COMMON x(10) 435 // 6. POINTER(p,x(10)) 436 class ArraySpecVisitor : public virtual BaseVisitor { 437 public: 438 void Post(const parser::ArraySpec &); 439 void Post(const parser::ComponentArraySpec &); 440 void Post(const parser::CoarraySpec &); 441 void Post(const parser::AttrSpec &) { PostAttrSpec(); } 442 void Post(const parser::ComponentAttrSpec &) { PostAttrSpec(); } 443 444 protected: 445 const ArraySpec &arraySpec(); 446 void set_arraySpec(const ArraySpec arraySpec) { arraySpec_ = arraySpec; } 447 const ArraySpec &coarraySpec(); 448 void BeginArraySpec(); 449 void EndArraySpec(); 450 void ClearArraySpec() { arraySpec_.clear(); } 451 void ClearCoarraySpec() { coarraySpec_.clear(); } 452 453 private: 454 // arraySpec_/coarraySpec_ are populated from any ArraySpec/CoarraySpec 455 ArraySpec arraySpec_; 456 ArraySpec coarraySpec_; 457 // When an ArraySpec is under an AttrSpec or ComponentAttrSpec, it is moved 458 // into attrArraySpec_ 459 ArraySpec attrArraySpec_; 460 ArraySpec attrCoarraySpec_; 461 462 void PostAttrSpec(); 463 }; 464 465 // Manages a stack of function result information. We defer the processing 466 // of a type specification that appears in the prefix of a FUNCTION statement 467 // until the function result variable appears in the specification part 468 // or the end of the specification part. This allows for forward references 469 // in the type specification to resolve to local names. 470 class FuncResultStack { 471 public: 472 explicit FuncResultStack(ScopeHandler &scopeHandler) 473 : scopeHandler_{scopeHandler} {} 474 ~FuncResultStack(); 475 476 struct FuncInfo { 477 FuncInfo(const Scope &s, SourceName at) : scope{s}, source{at} {} 478 const Scope &scope; 479 SourceName source; 480 // Parse tree of the type specification in the FUNCTION prefix 481 const parser::DeclarationTypeSpec *parsedType{nullptr}; 482 // Name of the function RESULT in the FUNCTION suffix, if any 483 const parser::Name *resultName{nullptr}; 484 // Result symbol 485 Symbol *resultSymbol{nullptr}; 486 bool inFunctionStmt{false}; // true between Pre/Post of FunctionStmt 487 }; 488 489 // Completes the definition of the top function's result. 490 void CompleteFunctionResultType(); 491 // Completes the definition of a symbol if it is the top function's result. 492 void CompleteTypeIfFunctionResult(Symbol &); 493 494 FuncInfo *Top() { return stack_.empty() ? nullptr : &stack_.back(); } 495 FuncInfo &Push(const Scope &scope, SourceName at) { 496 return stack_.emplace_back(scope, at); 497 } 498 void Pop(); 499 500 private: 501 ScopeHandler &scopeHandler_; 502 std::vector<FuncInfo> stack_; 503 }; 504 505 // Manage a stack of Scopes 506 class ScopeHandler : public ImplicitRulesVisitor { 507 public: 508 using ImplicitRulesVisitor::Post; 509 using ImplicitRulesVisitor::Pre; 510 511 Scope &currScope() { return DEREF(currScope_); } 512 // The enclosing host procedure if current scope is in an internal procedure 513 Scope *GetHostProcedure(); 514 // The innermost enclosing program unit scope, ignoring BLOCK and other 515 // construct scopes. 516 Scope &InclusiveScope(); 517 // The enclosing scope, skipping derived types. 518 Scope &NonDerivedTypeScope(); 519 520 // Create a new scope and push it on the scope stack. 521 void PushScope(Scope::Kind kind, Symbol *symbol); 522 void PushScope(Scope &scope); 523 void PopScope(); 524 void SetScope(Scope &); 525 526 template <typename T> bool Pre(const parser::Statement<T> &x) { 527 messageHandler().set_currStmtSource(x.source); 528 currScope_->AddSourceRange(x.source); 529 return true; 530 } 531 template <typename T> void Post(const parser::Statement<T> &) { 532 messageHandler().set_currStmtSource(std::nullopt); 533 } 534 535 // Special messages: already declared; referencing symbol's declaration; 536 // about a type; two names & locations 537 void SayAlreadyDeclared(const parser::Name &, Symbol &); 538 void SayAlreadyDeclared(const SourceName &, Symbol &); 539 void SayAlreadyDeclared(const SourceName &, const SourceName &); 540 void SayWithReason( 541 const parser::Name &, Symbol &, MessageFixedText &&, Message &&); 542 template <typename... A> 543 Message &SayWithDecl( 544 const parser::Name &, Symbol &, MessageFixedText &&, A &&...args); 545 void SayLocalMustBeVariable(const parser::Name &, Symbol &); 546 Message &SayDerivedType( 547 const SourceName &, MessageFixedText &&, const Scope &); 548 Message &Say2(const SourceName &, MessageFixedText &&, const SourceName &, 549 MessageFixedText &&); 550 Message &Say2( 551 const SourceName &, MessageFixedText &&, Symbol &, MessageFixedText &&); 552 Message &Say2( 553 const parser::Name &, MessageFixedText &&, Symbol &, MessageFixedText &&); 554 555 // Search for symbol by name in current, parent derived type, and 556 // containing scopes 557 Symbol *FindSymbol(const parser::Name &); 558 Symbol *FindSymbol(const Scope &, const parser::Name &); 559 // Search for name only in scope, not in enclosing scopes. 560 Symbol *FindInScope(const Scope &, const parser::Name &); 561 Symbol *FindInScope(const Scope &, const SourceName &); 562 template <typename T> Symbol *FindInScope(const T &name) { 563 return FindInScope(currScope(), name); 564 } 565 // Search for name in a derived type scope and its parents. 566 Symbol *FindInTypeOrParents(const Scope &, const parser::Name &); 567 Symbol *FindInTypeOrParents(const parser::Name &); 568 Symbol *FindInScopeOrBlockConstructs(const Scope &, SourceName); 569 Symbol *FindSeparateModuleProcedureInterface(const parser::Name &); 570 void EraseSymbol(const parser::Name &); 571 void EraseSymbol(const Symbol &symbol) { currScope().erase(symbol.name()); } 572 // Make a new symbol with the name and attrs of an existing one 573 Symbol &CopySymbol(const SourceName &, const Symbol &); 574 575 // Make symbols in the current or named scope 576 Symbol &MakeSymbol(Scope &, const SourceName &, Attrs); 577 Symbol &MakeSymbol(const SourceName &, Attrs = Attrs{}); 578 Symbol &MakeSymbol(const parser::Name &, Attrs = Attrs{}); 579 Symbol &MakeHostAssocSymbol(const parser::Name &, const Symbol &); 580 581 template <typename D> 582 common::IfNoLvalue<Symbol &, D> MakeSymbol( 583 const parser::Name &name, D &&details) { 584 return MakeSymbol(name, Attrs{}, std::move(details)); 585 } 586 587 template <typename D> 588 common::IfNoLvalue<Symbol &, D> MakeSymbol( 589 const parser::Name &name, const Attrs &attrs, D &&details) { 590 return Resolve(name, MakeSymbol(name.source, attrs, std::move(details))); 591 } 592 593 template <typename D> 594 common::IfNoLvalue<Symbol &, D> MakeSymbol( 595 const SourceName &name, const Attrs &attrs, D &&details) { 596 // Note: don't use FindSymbol here. If this is a derived type scope, 597 // we want to detect whether the name is already declared as a component. 598 auto *symbol{FindInScope(name)}; 599 if (!symbol) { 600 symbol = &MakeSymbol(name, attrs); 601 symbol->set_details(std::move(details)); 602 return *symbol; 603 } 604 if constexpr (std::is_same_v<DerivedTypeDetails, D>) { 605 if (auto *d{symbol->detailsIf<GenericDetails>()}) { 606 if (!d->specific()) { 607 // derived type with same name as a generic 608 auto *derivedType{d->derivedType()}; 609 if (!derivedType) { 610 derivedType = 611 &currScope().MakeSymbol(name, attrs, std::move(details)); 612 d->set_derivedType(*derivedType); 613 } else if (derivedType->CanReplaceDetails(details)) { 614 // was forward-referenced 615 CheckDuplicatedAttrs(name, *symbol, attrs); 616 SetExplicitAttrs(*derivedType, attrs); 617 derivedType->set_details(std::move(details)); 618 } else { 619 SayAlreadyDeclared(name, *derivedType); 620 } 621 return *derivedType; 622 } 623 } 624 } else if constexpr (std::is_same_v<ProcEntityDetails, D>) { 625 if (auto *d{symbol->detailsIf<GenericDetails>()}) { 626 if (!d->derivedType()) { 627 // procedure pointer with same name as a generic 628 auto *specific{d->specific()}; 629 if (!specific) { 630 specific = &currScope().MakeSymbol(name, attrs, std::move(details)); 631 d->set_specific(*specific); 632 } else { 633 SayAlreadyDeclared(name, *specific); 634 } 635 return *specific; 636 } 637 } 638 } 639 if (symbol->CanReplaceDetails(details)) { 640 // update the existing symbol 641 CheckDuplicatedAttrs(name, *symbol, attrs); 642 SetExplicitAttrs(*symbol, attrs); 643 if constexpr (std::is_same_v<SubprogramDetails, D>) { 644 // Dummy argument defined by explicit interface? 645 details.set_isDummy(IsDummy(*symbol)); 646 } 647 symbol->set_details(std::move(details)); 648 return *symbol; 649 } else if constexpr (std::is_same_v<UnknownDetails, D>) { 650 CheckDuplicatedAttrs(name, *symbol, attrs); 651 SetExplicitAttrs(*symbol, attrs); 652 return *symbol; 653 } else { 654 if (!CheckPossibleBadForwardRef(*symbol)) { 655 if (name.empty() && symbol->name().empty()) { 656 // report the error elsewhere 657 return *symbol; 658 } 659 Symbol &errSym{*symbol}; 660 if (auto *d{symbol->detailsIf<GenericDetails>()}) { 661 if (d->specific()) { 662 errSym = *d->specific(); 663 } else if (d->derivedType()) { 664 errSym = *d->derivedType(); 665 } 666 } 667 SayAlreadyDeclared(name, errSym); 668 } 669 // replace the old symbol with a new one with correct details 670 EraseSymbol(*symbol); 671 auto &result{MakeSymbol(name, attrs, std::move(details))}; 672 context().SetError(result); 673 return result; 674 } 675 } 676 677 void MakeExternal(Symbol &); 678 679 // C815 duplicated attribute checking; returns false on error 680 bool CheckDuplicatedAttr(SourceName, Symbol &, Attr); 681 bool CheckDuplicatedAttrs(SourceName, Symbol &, Attrs); 682 683 void SetExplicitAttr(Symbol &symbol, Attr attr) const { 684 symbol.attrs().set(attr); 685 symbol.implicitAttrs().reset(attr); 686 } 687 void SetExplicitAttrs(Symbol &symbol, Attrs attrs) const { 688 symbol.attrs() |= attrs; 689 symbol.implicitAttrs() &= ~attrs; 690 } 691 void SetImplicitAttr(Symbol &symbol, Attr attr) const { 692 symbol.attrs().set(attr); 693 symbol.implicitAttrs().set(attr); 694 } 695 void SetCUDADataAttr( 696 SourceName, Symbol &, std::optional<common::CUDADataAttr>); 697 698 protected: 699 FuncResultStack &funcResultStack() { return funcResultStack_; } 700 701 // Apply the implicit type rules to this symbol. 702 void ApplyImplicitRules(Symbol &, bool allowForwardReference = false); 703 bool ImplicitlyTypeForwardRef(Symbol &); 704 void AcquireIntrinsicProcedureFlags(Symbol &); 705 const DeclTypeSpec *GetImplicitType( 706 Symbol &, bool respectImplicitNoneType = true); 707 void CheckEntryDummyUse(SourceName, Symbol *); 708 bool ConvertToObjectEntity(Symbol &); 709 bool ConvertToProcEntity(Symbol &, std::optional<SourceName> = std::nullopt); 710 711 const DeclTypeSpec &MakeNumericType( 712 TypeCategory, const std::optional<parser::KindSelector> &); 713 const DeclTypeSpec &MakeNumericType(TypeCategory, int); 714 const DeclTypeSpec &MakeLogicalType( 715 const std::optional<parser::KindSelector> &); 716 const DeclTypeSpec &MakeLogicalType(int); 717 void NotePossibleBadForwardRef(const parser::Name &); 718 std::optional<SourceName> HadForwardRef(const Symbol &) const; 719 bool CheckPossibleBadForwardRef(const Symbol &); 720 721 bool inSpecificationPart_{false}; 722 bool deferImplicitTyping_{false}; 723 bool inEquivalenceStmt_{false}; 724 725 // Some information is collected from a specification part for deferred 726 // processing in DeclarationPartVisitor functions (e.g., CheckSaveStmts()) 727 // that are called by ResolveNamesVisitor::FinishSpecificationPart(). Since 728 // specification parts can nest (e.g., INTERFACE bodies), the collected 729 // information that is not contained in the scope needs to be packaged 730 // and restorable. 731 struct SpecificationPartState { 732 std::set<SourceName> forwardRefs; 733 // Collect equivalence sets and process at end of specification part 734 std::vector<const std::list<parser::EquivalenceObject> *> equivalenceSets; 735 // Names of all common block objects in the scope 736 std::set<SourceName> commonBlockObjects; 737 // Info about SAVE statements and attributes in current scope 738 struct { 739 std::optional<SourceName> saveAll; // "SAVE" without entity list 740 std::set<SourceName> entities; // names of entities with save attr 741 std::set<SourceName> commons; // names of common blocks with save attr 742 } saveInfo; 743 } specPartState_; 744 745 // Some declaration processing can and should be deferred to 746 // ResolveExecutionParts() to avoid prematurely creating implicitly-typed 747 // local symbols that should be host associations. 748 struct DeferredDeclarationState { 749 // The content of each namelist group 750 std::list<const parser::NamelistStmt::Group *> namelistGroups; 751 }; 752 DeferredDeclarationState *GetDeferredDeclarationState(bool add = false) { 753 if (!add && deferred_.find(&currScope()) == deferred_.end()) { 754 return nullptr; 755 } else { 756 return &deferred_.emplace(&currScope(), DeferredDeclarationState{}) 757 .first->second; 758 } 759 } 760 761 private: 762 Scope *currScope_{nullptr}; 763 FuncResultStack funcResultStack_{*this}; 764 std::map<Scope *, DeferredDeclarationState> deferred_; 765 }; 766 767 class ModuleVisitor : public virtual ScopeHandler { 768 public: 769 bool Pre(const parser::AccessStmt &); 770 bool Pre(const parser::Only &); 771 bool Pre(const parser::Rename::Names &); 772 bool Pre(const parser::Rename::Operators &); 773 bool Pre(const parser::UseStmt &); 774 void Post(const parser::UseStmt &); 775 776 void BeginModule(const parser::Name &, bool isSubmodule); 777 bool BeginSubmodule(const parser::Name &, const parser::ParentIdentifier &); 778 void ApplyDefaultAccess(); 779 Symbol &AddGenericUse(GenericDetails &, const SourceName &, const Symbol &); 780 void AddAndCheckModuleUse(SourceName, bool isIntrinsic); 781 void CollectUseRenames(const parser::UseStmt &); 782 void ClearUseRenames() { useRenames_.clear(); } 783 void ClearUseOnly() { useOnly_.clear(); } 784 void ClearModuleUses() { 785 intrinsicUses_.clear(); 786 nonIntrinsicUses_.clear(); 787 } 788 789 private: 790 // The location of the last AccessStmt without access-ids, if any. 791 std::optional<SourceName> prevAccessStmt_; 792 // The scope of the module during a UseStmt 793 Scope *useModuleScope_{nullptr}; 794 // Names that have appeared in a rename clause of USE statements 795 std::set<std::pair<SourceName, SourceName>> useRenames_; 796 // Names that have appeared in an ONLY clause of a USE statement 797 std::set<std::pair<SourceName, Scope *>> useOnly_; 798 // Intrinsic and non-intrinsic (explicit or not) module names that 799 // have appeared in USE statements; used for C1406 warnings. 800 std::set<SourceName> intrinsicUses_; 801 std::set<SourceName> nonIntrinsicUses_; 802 803 Symbol &SetAccess(const SourceName &, Attr attr, Symbol * = nullptr); 804 // A rename in a USE statement: local => use 805 struct SymbolRename { 806 Symbol *local{nullptr}; 807 Symbol *use{nullptr}; 808 }; 809 // Record a use from useModuleScope_ of use Name/Symbol as local Name/Symbol 810 SymbolRename AddUse(const SourceName &localName, const SourceName &useName); 811 SymbolRename AddUse(const SourceName &, const SourceName &, Symbol *); 812 void DoAddUse( 813 SourceName, SourceName, Symbol &localSymbol, const Symbol &useSymbol); 814 void AddUse(const GenericSpecInfo &); 815 // Record a name appearing as the target of a USE rename clause 816 void AddUseRename(SourceName name, SourceName moduleName) { 817 useRenames_.emplace(std::make_pair(name, moduleName)); 818 } 819 bool IsUseRenamed(const SourceName &name) const { 820 return useModuleScope_ && useModuleScope_->symbol() && 821 useRenames_.find({name, useModuleScope_->symbol()->name()}) != 822 useRenames_.end(); 823 } 824 // Record a name appearing in a USE ONLY clause 825 void AddUseOnly(const SourceName &name) { 826 useOnly_.emplace(std::make_pair(name, useModuleScope_)); 827 } 828 bool IsUseOnly(const SourceName &name) const { 829 return useOnly_.find({name, useModuleScope_}) != useOnly_.end(); 830 } 831 Scope *FindModule(const parser::Name &, std::optional<bool> isIntrinsic, 832 Scope *ancestor = nullptr); 833 }; 834 835 class GenericHandler : public virtual ScopeHandler { 836 protected: 837 using ProcedureKind = parser::ProcedureStmt::Kind; 838 void ResolveSpecificsInGeneric(Symbol &, bool isEndOfSpecificationPart); 839 void DeclaredPossibleSpecificProc(Symbol &); 840 841 // Mappings of generics to their as-yet specific proc names and kinds 842 using SpecificProcMapType = 843 std::multimap<Symbol *, std::pair<const parser::Name *, ProcedureKind>>; 844 SpecificProcMapType specificsForGenericProcs_; 845 // inversion of SpecificProcMapType: maps pending proc names to generics 846 using GenericProcMapType = std::multimap<SourceName, Symbol *>; 847 GenericProcMapType genericsForSpecificProcs_; 848 }; 849 850 class InterfaceVisitor : public virtual ScopeHandler, 851 public virtual GenericHandler { 852 public: 853 bool Pre(const parser::InterfaceStmt &); 854 void Post(const parser::InterfaceStmt &); 855 void Post(const parser::EndInterfaceStmt &); 856 bool Pre(const parser::GenericSpec &); 857 bool Pre(const parser::ProcedureStmt &); 858 bool Pre(const parser::GenericStmt &); 859 void Post(const parser::GenericStmt &); 860 861 bool inInterfaceBlock() const; 862 bool isGeneric() const; 863 bool isAbstract() const; 864 865 protected: 866 Symbol &GetGenericSymbol() { return DEREF(genericInfo_.top().symbol); } 867 // Add to generic the symbol for the subprogram with the same name 868 void CheckGenericProcedures(Symbol &); 869 870 private: 871 // A new GenericInfo is pushed for each interface block and generic stmt 872 struct GenericInfo { 873 GenericInfo(bool isInterface, bool isAbstract = false) 874 : isInterface{isInterface}, isAbstract{isAbstract} {} 875 bool isInterface; // in interface block 876 bool isAbstract; // in abstract interface block 877 Symbol *symbol{nullptr}; // the generic symbol being defined 878 }; 879 std::stack<GenericInfo> genericInfo_; 880 const GenericInfo &GetGenericInfo() const { return genericInfo_.top(); } 881 void SetGenericSymbol(Symbol &symbol) { genericInfo_.top().symbol = &symbol; } 882 void AddSpecificProcs(const std::list<parser::Name> &, ProcedureKind); 883 void ResolveNewSpecifics(); 884 }; 885 886 class SubprogramVisitor : public virtual ScopeHandler, public InterfaceVisitor { 887 public: 888 bool HandleStmtFunction(const parser::StmtFunctionStmt &); 889 bool Pre(const parser::SubroutineStmt &); 890 bool Pre(const parser::FunctionStmt &); 891 void Post(const parser::FunctionStmt &); 892 bool Pre(const parser::EntryStmt &); 893 void Post(const parser::EntryStmt &); 894 bool Pre(const parser::InterfaceBody::Subroutine &); 895 void Post(const parser::InterfaceBody::Subroutine &); 896 bool Pre(const parser::InterfaceBody::Function &); 897 void Post(const parser::InterfaceBody::Function &); 898 bool Pre(const parser::Suffix &); 899 bool Pre(const parser::PrefixSpec &); 900 bool Pre(const parser::PrefixSpec::Attributes &); 901 void Post(const parser::PrefixSpec::Launch_Bounds &); 902 void Post(const parser::PrefixSpec::Cluster_Dims &); 903 904 bool BeginSubprogram(const parser::Name &, Symbol::Flag, 905 bool hasModulePrefix = false, 906 const parser::LanguageBindingSpec * = nullptr, 907 const ProgramTree::EntryStmtList * = nullptr); 908 bool BeginMpSubprogram(const parser::Name &); 909 void PushBlockDataScope(const parser::Name &); 910 void EndSubprogram(std::optional<parser::CharBlock> stmtSource = std::nullopt, 911 const std::optional<parser::LanguageBindingSpec> * = nullptr, 912 const ProgramTree::EntryStmtList * = nullptr); 913 914 protected: 915 // Set when we see a stmt function that is really an array element assignment 916 bool misparsedStmtFuncFound_{false}; 917 918 private: 919 // Edits an existing symbol created for earlier calls to a subprogram or ENTRY 920 // so that it can be replaced by a later definition. 921 bool HandlePreviousCalls(const parser::Name &, Symbol &, Symbol::Flag); 922 void CheckExtantProc(const parser::Name &, Symbol::Flag); 923 // Create a subprogram symbol in the current scope and push a new scope. 924 Symbol &PushSubprogramScope(const parser::Name &, Symbol::Flag, 925 const parser::LanguageBindingSpec * = nullptr, 926 bool hasModulePrefix = false); 927 Symbol *GetSpecificFromGeneric(const parser::Name &); 928 Symbol &PostSubprogramStmt(); 929 void CreateDummyArgument(SubprogramDetails &, const parser::Name &); 930 void CreateEntry(const parser::EntryStmt &stmt, Symbol &subprogram); 931 void PostEntryStmt(const parser::EntryStmt &stmt); 932 void HandleLanguageBinding(Symbol *, 933 std::optional<parser::CharBlock> stmtSource, 934 const std::optional<parser::LanguageBindingSpec> *); 935 }; 936 937 class DeclarationVisitor : public ArraySpecVisitor, 938 public virtual GenericHandler { 939 public: 940 using ArraySpecVisitor::Post; 941 using ScopeHandler::Post; 942 using ScopeHandler::Pre; 943 944 bool Pre(const parser::Initialization &); 945 void Post(const parser::EntityDecl &); 946 void Post(const parser::ObjectDecl &); 947 void Post(const parser::PointerDecl &); 948 bool Pre(const parser::BindStmt &) { return BeginAttrs(); } 949 void Post(const parser::BindStmt &) { EndAttrs(); } 950 bool Pre(const parser::BindEntity &); 951 bool Pre(const parser::OldParameterStmt &); 952 bool Pre(const parser::NamedConstantDef &); 953 bool Pre(const parser::NamedConstant &); 954 void Post(const parser::EnumDef &); 955 bool Pre(const parser::Enumerator &); 956 bool Pre(const parser::AccessSpec &); 957 bool Pre(const parser::AsynchronousStmt &); 958 bool Pre(const parser::ContiguousStmt &); 959 bool Pre(const parser::ExternalStmt &); 960 bool Pre(const parser::IntentStmt &); 961 bool Pre(const parser::IntrinsicStmt &); 962 bool Pre(const parser::OptionalStmt &); 963 bool Pre(const parser::ProtectedStmt &); 964 bool Pre(const parser::ValueStmt &); 965 bool Pre(const parser::VolatileStmt &); 966 bool Pre(const parser::AllocatableStmt &) { 967 objectDeclAttr_ = Attr::ALLOCATABLE; 968 return true; 969 } 970 void Post(const parser::AllocatableStmt &) { objectDeclAttr_ = std::nullopt; } 971 bool Pre(const parser::TargetStmt &) { 972 objectDeclAttr_ = Attr::TARGET; 973 return true; 974 } 975 bool Pre(const parser::CUDAAttributesStmt &); 976 void Post(const parser::TargetStmt &) { objectDeclAttr_ = std::nullopt; } 977 void Post(const parser::DimensionStmt::Declaration &); 978 void Post(const parser::CodimensionDecl &); 979 bool Pre(const parser::TypeDeclarationStmt &); 980 void Post(const parser::TypeDeclarationStmt &); 981 void Post(const parser::IntegerTypeSpec &); 982 void Post(const parser::IntrinsicTypeSpec::Real &); 983 void Post(const parser::IntrinsicTypeSpec::Complex &); 984 void Post(const parser::IntrinsicTypeSpec::Logical &); 985 void Post(const parser::IntrinsicTypeSpec::Character &); 986 void Post(const parser::CharSelector::LengthAndKind &); 987 void Post(const parser::CharLength &); 988 void Post(const parser::LengthSelector &); 989 bool Pre(const parser::KindParam &); 990 bool Pre(const parser::VectorTypeSpec &); 991 void Post(const parser::VectorTypeSpec &); 992 bool Pre(const parser::DeclarationTypeSpec::Type &); 993 void Post(const parser::DeclarationTypeSpec::Type &); 994 bool Pre(const parser::DeclarationTypeSpec::Class &); 995 void Post(const parser::DeclarationTypeSpec::Class &); 996 void Post(const parser::DeclarationTypeSpec::Record &); 997 void Post(const parser::DerivedTypeSpec &); 998 bool Pre(const parser::DerivedTypeDef &); 999 bool Pre(const parser::DerivedTypeStmt &); 1000 void Post(const parser::DerivedTypeStmt &); 1001 bool Pre(const parser::TypeParamDefStmt &) { return BeginDecl(); } 1002 void Post(const parser::TypeParamDefStmt &); 1003 bool Pre(const parser::TypeAttrSpec::Extends &); 1004 bool Pre(const parser::PrivateStmt &); 1005 bool Pre(const parser::SequenceStmt &); 1006 bool Pre(const parser::ComponentDefStmt &) { return BeginDecl(); } 1007 void Post(const parser::ComponentDefStmt &) { EndDecl(); } 1008 void Post(const parser::ComponentDecl &); 1009 void Post(const parser::FillDecl &); 1010 bool Pre(const parser::ProcedureDeclarationStmt &); 1011 void Post(const parser::ProcedureDeclarationStmt &); 1012 bool Pre(const parser::DataComponentDefStmt &); // returns false 1013 bool Pre(const parser::ProcComponentDefStmt &); 1014 void Post(const parser::ProcComponentDefStmt &); 1015 bool Pre(const parser::ProcPointerInit &); 1016 void Post(const parser::ProcInterface &); 1017 void Post(const parser::ProcDecl &); 1018 bool Pre(const parser::TypeBoundProcedurePart &); 1019 void Post(const parser::TypeBoundProcedurePart &); 1020 void Post(const parser::ContainsStmt &); 1021 bool Pre(const parser::TypeBoundProcBinding &) { return BeginAttrs(); } 1022 void Post(const parser::TypeBoundProcBinding &) { EndAttrs(); } 1023 void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &); 1024 void Post(const parser::TypeBoundProcedureStmt::WithInterface &); 1025 bool Pre(const parser::FinalProcedureStmt &); 1026 bool Pre(const parser::TypeBoundGenericStmt &); 1027 bool Pre(const parser::StructureDef &); // returns false 1028 bool Pre(const parser::Union::UnionStmt &); 1029 bool Pre(const parser::StructureField &); 1030 void Post(const parser::StructureField &); 1031 bool Pre(const parser::AllocateStmt &); 1032 void Post(const parser::AllocateStmt &); 1033 bool Pre(const parser::StructureConstructor &); 1034 bool Pre(const parser::NamelistStmt::Group &); 1035 bool Pre(const parser::IoControlSpec &); 1036 bool Pre(const parser::CommonStmt::Block &); 1037 bool Pre(const parser::CommonBlockObject &); 1038 void Post(const parser::CommonBlockObject &); 1039 bool Pre(const parser::EquivalenceStmt &); 1040 bool Pre(const parser::SaveStmt &); 1041 bool Pre(const parser::BasedPointer &); 1042 void Post(const parser::BasedPointer &); 1043 1044 void PointerInitialization( 1045 const parser::Name &, const parser::InitialDataTarget &); 1046 void PointerInitialization( 1047 const parser::Name &, const parser::ProcPointerInit &); 1048 void NonPointerInitialization( 1049 const parser::Name &, const parser::ConstantExpr &); 1050 void CheckExplicitInterface(const parser::Name &); 1051 void CheckBindings(const parser::TypeBoundProcedureStmt::WithoutInterface &); 1052 1053 const parser::Name *ResolveDesignator(const parser::Designator &); 1054 int GetVectorElementKind( 1055 TypeCategory category, const std::optional<parser::KindSelector> &kind); 1056 1057 protected: 1058 bool BeginDecl(); 1059 void EndDecl(); 1060 Symbol &DeclareObjectEntity(const parser::Name &, Attrs = Attrs{}); 1061 // Make sure that there's an entity in an enclosing scope called Name 1062 Symbol &FindOrDeclareEnclosingEntity(const parser::Name &); 1063 // Declare a LOCAL/LOCAL_INIT/REDUCE entity while setting a locality flag. If 1064 // there isn't a type specified it comes from the entity in the containing 1065 // scope, or implicit rules. 1066 void DeclareLocalEntity(const parser::Name &, Symbol::Flag); 1067 // Declare a statement entity (i.e., an implied DO loop index for 1068 // a DATA statement or an array constructor). If there isn't an explict 1069 // type specified, implicit rules apply. Return pointer to the new symbol, 1070 // or nullptr on error. 1071 Symbol *DeclareStatementEntity(const parser::DoVariable &, 1072 const std::optional<parser::IntegerTypeSpec> &); 1073 Symbol &MakeCommonBlockSymbol(const parser::Name &); 1074 Symbol &MakeCommonBlockSymbol(const std::optional<parser::Name> &); 1075 bool CheckUseError(const parser::Name &); 1076 void CheckAccessibility(const SourceName &, bool, Symbol &); 1077 void CheckCommonBlocks(); 1078 void CheckSaveStmts(); 1079 void CheckEquivalenceSets(); 1080 bool CheckNotInBlock(const char *); 1081 bool NameIsKnownOrIntrinsic(const parser::Name &); 1082 void FinishNamelists(); 1083 1084 // Each of these returns a pointer to a resolved Name (i.e. with symbol) 1085 // or nullptr in case of error. 1086 const parser::Name *ResolveStructureComponent( 1087 const parser::StructureComponent &); 1088 const parser::Name *ResolveDataRef(const parser::DataRef &); 1089 const parser::Name *ResolveName(const parser::Name &); 1090 bool PassesSharedLocalityChecks(const parser::Name &name, Symbol &symbol); 1091 Symbol *NoteInterfaceName(const parser::Name &); 1092 bool IsUplevelReference(const Symbol &); 1093 1094 std::optional<SourceName> BeginCheckOnIndexUseInOwnBounds( 1095 const parser::DoVariable &name) { 1096 std::optional<SourceName> result{checkIndexUseInOwnBounds_}; 1097 checkIndexUseInOwnBounds_ = name.thing.thing.source; 1098 return result; 1099 } 1100 void EndCheckOnIndexUseInOwnBounds(const std::optional<SourceName> &restore) { 1101 checkIndexUseInOwnBounds_ = restore; 1102 } 1103 void NoteScalarSpecificationArgument(const Symbol &symbol) { 1104 mustBeScalar_.emplace(symbol); 1105 } 1106 // Declare an object or procedure entity. 1107 // T is one of: EntityDetails, ObjectEntityDetails, ProcEntityDetails 1108 template <typename T> 1109 Symbol &DeclareEntity(const parser::Name &name, Attrs attrs) { 1110 Symbol &symbol{MakeSymbol(name, attrs)}; 1111 if (context().HasError(symbol) || symbol.has<T>()) { 1112 return symbol; // OK or error already reported 1113 } else if (symbol.has<UnknownDetails>()) { 1114 symbol.set_details(T{}); 1115 return symbol; 1116 } else if (auto *details{symbol.detailsIf<EntityDetails>()}) { 1117 symbol.set_details(T{std::move(*details)}); 1118 return symbol; 1119 } else if (std::is_same_v<EntityDetails, T> && 1120 (symbol.has<ObjectEntityDetails>() || 1121 symbol.has<ProcEntityDetails>())) { 1122 return symbol; // OK 1123 } else if (auto *details{symbol.detailsIf<UseDetails>()}) { 1124 Say(name.source, 1125 "'%s' is use-associated from module '%s' and cannot be re-declared"_err_en_US, 1126 name.source, GetUsedModule(*details).name()); 1127 } else if (auto *details{symbol.detailsIf<SubprogramNameDetails>()}) { 1128 if (details->kind() == SubprogramKind::Module) { 1129 Say2(name, 1130 "Declaration of '%s' conflicts with its use as module procedure"_err_en_US, 1131 symbol, "Module procedure definition"_en_US); 1132 } else if (details->kind() == SubprogramKind::Internal) { 1133 Say2(name, 1134 "Declaration of '%s' conflicts with its use as internal procedure"_err_en_US, 1135 symbol, "Internal procedure definition"_en_US); 1136 } else { 1137 DIE("unexpected kind"); 1138 } 1139 } else if (std::is_same_v<ObjectEntityDetails, T> && 1140 symbol.has<ProcEntityDetails>()) { 1141 SayWithDecl( 1142 name, symbol, "'%s' is already declared as a procedure"_err_en_US); 1143 } else if (std::is_same_v<ProcEntityDetails, T> && 1144 symbol.has<ObjectEntityDetails>()) { 1145 if (FindCommonBlockContaining(symbol)) { 1146 SayWithDecl(name, symbol, 1147 "'%s' may not be a procedure as it is in a COMMON block"_err_en_US); 1148 } else { 1149 SayWithDecl( 1150 name, symbol, "'%s' is already declared as an object"_err_en_US); 1151 } 1152 } else if (!CheckPossibleBadForwardRef(symbol)) { 1153 SayAlreadyDeclared(name, symbol); 1154 } 1155 context().SetError(symbol); 1156 return symbol; 1157 } 1158 1159 private: 1160 // The attribute corresponding to the statement containing an ObjectDecl 1161 std::optional<Attr> objectDeclAttr_; 1162 // Info about current character type while walking DeclTypeSpec. 1163 // Also captures any "*length" specifier on an individual declaration. 1164 struct { 1165 std::optional<ParamValue> length; 1166 std::optional<KindExpr> kind; 1167 } charInfo_; 1168 // Info about current derived type or STRUCTURE while walking 1169 // DerivedTypeDef / StructureDef 1170 struct { 1171 const parser::Name *extends{nullptr}; // EXTENDS(name) 1172 bool privateComps{false}; // components are private by default 1173 bool privateBindings{false}; // bindings are private by default 1174 bool sawContains{false}; // currently processing bindings 1175 bool sequence{false}; // is a sequence type 1176 const Symbol *type{nullptr}; // derived type being defined 1177 bool isStructure{false}; // is a DEC STRUCTURE 1178 } derivedTypeInfo_; 1179 // In a ProcedureDeclarationStmt or ProcComponentDefStmt, this is 1180 // the interface name, if any. 1181 const parser::Name *interfaceName_{nullptr}; 1182 // Map type-bound generic to binding names of its specific bindings 1183 std::multimap<Symbol *, const parser::Name *> genericBindings_; 1184 // Info about current ENUM 1185 struct EnumeratorState { 1186 // Enum value must hold inside a C_INT (7.6.2). 1187 std::optional<int> value{0}; 1188 } enumerationState_; 1189 // Set for OldParameterStmt processing 1190 bool inOldStyleParameterStmt_{false}; 1191 // Set when walking DATA & array constructor implied DO loop bounds 1192 // to warn about use of the implied DO intex therein. 1193 std::optional<SourceName> checkIndexUseInOwnBounds_; 1194 bool isVectorType_{false}; 1195 UnorderedSymbolSet mustBeScalar_; 1196 1197 bool HandleAttributeStmt(Attr, const std::list<parser::Name> &); 1198 Symbol &HandleAttributeStmt(Attr, const parser::Name &); 1199 Symbol &DeclareUnknownEntity(const parser::Name &, Attrs); 1200 Symbol &DeclareProcEntity( 1201 const parser::Name &, Attrs, const Symbol *interface); 1202 void SetType(const parser::Name &, const DeclTypeSpec &); 1203 std::optional<DerivedTypeSpec> ResolveDerivedType(const parser::Name &); 1204 std::optional<DerivedTypeSpec> ResolveExtendsType( 1205 const parser::Name &, const parser::Name *); 1206 Symbol *MakeTypeSymbol(const SourceName &, Details &&); 1207 Symbol *MakeTypeSymbol(const parser::Name &, Details &&); 1208 bool OkToAddComponent(const parser::Name &, const Symbol *extends = nullptr); 1209 ParamValue GetParamValue( 1210 const parser::TypeParamValue &, common::TypeParamAttr attr); 1211 void CheckCommonBlockDerivedType( 1212 const SourceName &, const Symbol &, UnorderedSymbolSet &); 1213 Attrs HandleSaveName(const SourceName &, Attrs); 1214 void AddSaveName(std::set<SourceName> &, const SourceName &); 1215 bool HandleUnrestrictedSpecificIntrinsicFunction(const parser::Name &); 1216 const parser::Name *FindComponent(const parser::Name *, const parser::Name &); 1217 void Initialization(const parser::Name &, const parser::Initialization &, 1218 bool inComponentDecl); 1219 bool PassesLocalityChecks( 1220 const parser::Name &name, Symbol &symbol, Symbol::Flag flag); 1221 bool CheckForHostAssociatedImplicit(const parser::Name &); 1222 bool HasCycle(const Symbol &, const Symbol *interface); 1223 bool MustBeScalar(const Symbol &symbol) const { 1224 return mustBeScalar_.find(symbol) != mustBeScalar_.end(); 1225 } 1226 void DeclareIntrinsic(const parser::Name &); 1227 }; 1228 1229 // Resolve construct entities and statement entities. 1230 // Check that construct names don't conflict with other names. 1231 class ConstructVisitor : public virtual DeclarationVisitor { 1232 public: 1233 bool Pre(const parser::ConcurrentHeader &); 1234 bool Pre(const parser::LocalitySpec::Local &); 1235 bool Pre(const parser::LocalitySpec::LocalInit &); 1236 bool Pre(const parser::LocalitySpec::Reduce &); 1237 bool Pre(const parser::LocalitySpec::Shared &); 1238 bool Pre(const parser::AcSpec &); 1239 bool Pre(const parser::AcImpliedDo &); 1240 bool Pre(const parser::DataImpliedDo &); 1241 bool Pre(const parser::DataIDoObject &); 1242 bool Pre(const parser::DataStmtObject &); 1243 bool Pre(const parser::DataStmtValue &); 1244 bool Pre(const parser::DoConstruct &); 1245 void Post(const parser::DoConstruct &); 1246 bool Pre(const parser::ForallConstruct &); 1247 void Post(const parser::ForallConstruct &); 1248 bool Pre(const parser::ForallStmt &); 1249 void Post(const parser::ForallStmt &); 1250 bool Pre(const parser::BlockConstruct &); 1251 void Post(const parser::Selector &); 1252 void Post(const parser::AssociateStmt &); 1253 void Post(const parser::EndAssociateStmt &); 1254 bool Pre(const parser::Association &); 1255 void Post(const parser::SelectTypeStmt &); 1256 void Post(const parser::SelectRankStmt &); 1257 bool Pre(const parser::SelectTypeConstruct &); 1258 void Post(const parser::SelectTypeConstruct &); 1259 bool Pre(const parser::SelectTypeConstruct::TypeCase &); 1260 void Post(const parser::SelectTypeConstruct::TypeCase &); 1261 // Creates Block scopes with neither symbol name nor symbol details. 1262 bool Pre(const parser::SelectRankConstruct::RankCase &); 1263 void Post(const parser::SelectRankConstruct::RankCase &); 1264 bool Pre(const parser::TypeGuardStmt::Guard &); 1265 void Post(const parser::TypeGuardStmt::Guard &); 1266 void Post(const parser::SelectRankCaseStmt::Rank &); 1267 bool Pre(const parser::ChangeTeamStmt &); 1268 void Post(const parser::EndChangeTeamStmt &); 1269 void Post(const parser::CoarrayAssociation &); 1270 1271 // Definitions of construct names 1272 bool Pre(const parser::WhereConstructStmt &x) { return CheckDef(x.t); } 1273 bool Pre(const parser::ForallConstructStmt &x) { return CheckDef(x.t); } 1274 bool Pre(const parser::CriticalStmt &x) { return CheckDef(x.t); } 1275 bool Pre(const parser::LabelDoStmt &) { 1276 return false; // error recovery 1277 } 1278 bool Pre(const parser::NonLabelDoStmt &x) { return CheckDef(x.t); } 1279 bool Pre(const parser::IfThenStmt &x) { return CheckDef(x.t); } 1280 bool Pre(const parser::SelectCaseStmt &x) { return CheckDef(x.t); } 1281 bool Pre(const parser::SelectRankConstruct &); 1282 void Post(const parser::SelectRankConstruct &); 1283 bool Pre(const parser::SelectRankStmt &x) { 1284 return CheckDef(std::get<0>(x.t)); 1285 } 1286 bool Pre(const parser::SelectTypeStmt &x) { 1287 return CheckDef(std::get<0>(x.t)); 1288 } 1289 1290 // References to construct names 1291 void Post(const parser::MaskedElsewhereStmt &x) { CheckRef(x.t); } 1292 void Post(const parser::ElsewhereStmt &x) { CheckRef(x.v); } 1293 void Post(const parser::EndWhereStmt &x) { CheckRef(x.v); } 1294 void Post(const parser::EndForallStmt &x) { CheckRef(x.v); } 1295 void Post(const parser::EndCriticalStmt &x) { CheckRef(x.v); } 1296 void Post(const parser::EndDoStmt &x) { CheckRef(x.v); } 1297 void Post(const parser::ElseIfStmt &x) { CheckRef(x.t); } 1298 void Post(const parser::ElseStmt &x) { CheckRef(x.v); } 1299 void Post(const parser::EndIfStmt &x) { CheckRef(x.v); } 1300 void Post(const parser::CaseStmt &x) { CheckRef(x.t); } 1301 void Post(const parser::EndSelectStmt &x) { CheckRef(x.v); } 1302 void Post(const parser::SelectRankCaseStmt &x) { CheckRef(x.t); } 1303 void Post(const parser::TypeGuardStmt &x) { CheckRef(x.t); } 1304 void Post(const parser::CycleStmt &x) { CheckRef(x.v); } 1305 void Post(const parser::ExitStmt &x) { CheckRef(x.v); } 1306 1307 void HandleImpliedAsynchronousInScope(const parser::Block &); 1308 1309 private: 1310 // R1105 selector -> expr | variable 1311 // expr is set in either case unless there were errors 1312 struct Selector { 1313 Selector() {} 1314 Selector(const SourceName &source, MaybeExpr &&expr) 1315 : source{source}, expr{std::move(expr)} {} 1316 operator bool() const { return expr.has_value(); } 1317 parser::CharBlock source; 1318 MaybeExpr expr; 1319 }; 1320 // association -> [associate-name =>] selector 1321 struct Association { 1322 const parser::Name *name{nullptr}; 1323 Selector selector; 1324 }; 1325 std::vector<Association> associationStack_; 1326 Association *currentAssociation_{nullptr}; 1327 1328 template <typename T> bool CheckDef(const T &t) { 1329 return CheckDef(std::get<std::optional<parser::Name>>(t)); 1330 } 1331 template <typename T> void CheckRef(const T &t) { 1332 CheckRef(std::get<std::optional<parser::Name>>(t)); 1333 } 1334 bool CheckDef(const std::optional<parser::Name> &); 1335 void CheckRef(const std::optional<parser::Name> &); 1336 const DeclTypeSpec &ToDeclTypeSpec(evaluate::DynamicType &&); 1337 const DeclTypeSpec &ToDeclTypeSpec( 1338 evaluate::DynamicType &&, MaybeSubscriptIntExpr &&length); 1339 Symbol *MakeAssocEntity(); 1340 void SetTypeFromAssociation(Symbol &); 1341 void SetAttrsFromAssociation(Symbol &); 1342 Selector ResolveSelector(const parser::Selector &); 1343 void ResolveIndexName(const parser::ConcurrentControl &control); 1344 void SetCurrentAssociation(std::size_t n); 1345 Association &GetCurrentAssociation(); 1346 void PushAssociation(); 1347 void PopAssociation(std::size_t count = 1); 1348 }; 1349 1350 // Create scopes for OpenACC constructs 1351 class AccVisitor : public virtual DeclarationVisitor { 1352 public: 1353 void AddAccSourceRange(const parser::CharBlock &); 1354 1355 static bool NeedsScope(const parser::OpenACCBlockConstruct &); 1356 1357 bool Pre(const parser::OpenACCBlockConstruct &); 1358 void Post(const parser::OpenACCBlockConstruct &); 1359 bool Pre(const parser::OpenACCCombinedConstruct &); 1360 void Post(const parser::OpenACCCombinedConstruct &); 1361 bool Pre(const parser::AccBeginBlockDirective &x) { 1362 AddAccSourceRange(x.source); 1363 return true; 1364 } 1365 void Post(const parser::AccBeginBlockDirective &) { 1366 messageHandler().set_currStmtSource(std::nullopt); 1367 } 1368 bool Pre(const parser::AccEndBlockDirective &x) { 1369 AddAccSourceRange(x.source); 1370 return true; 1371 } 1372 void Post(const parser::AccEndBlockDirective &) { 1373 messageHandler().set_currStmtSource(std::nullopt); 1374 } 1375 bool Pre(const parser::AccBeginLoopDirective &x) { 1376 AddAccSourceRange(x.source); 1377 return true; 1378 } 1379 void Post(const parser::AccBeginLoopDirective &x) { 1380 messageHandler().set_currStmtSource(std::nullopt); 1381 } 1382 }; 1383 1384 bool AccVisitor::NeedsScope(const parser::OpenACCBlockConstruct &x) { 1385 const auto &beginBlockDir{std::get<parser::AccBeginBlockDirective>(x.t)}; 1386 const auto &beginDir{std::get<parser::AccBlockDirective>(beginBlockDir.t)}; 1387 switch (beginDir.v) { 1388 case llvm::acc::Directive::ACCD_data: 1389 case llvm::acc::Directive::ACCD_host_data: 1390 case llvm::acc::Directive::ACCD_kernels: 1391 case llvm::acc::Directive::ACCD_parallel: 1392 case llvm::acc::Directive::ACCD_serial: 1393 return true; 1394 default: 1395 return false; 1396 } 1397 } 1398 1399 void AccVisitor::AddAccSourceRange(const parser::CharBlock &source) { 1400 messageHandler().set_currStmtSource(source); 1401 currScope().AddSourceRange(source); 1402 } 1403 1404 bool AccVisitor::Pre(const parser::OpenACCBlockConstruct &x) { 1405 if (NeedsScope(x)) { 1406 PushScope(Scope::Kind::OpenACCConstruct, nullptr); 1407 } 1408 return true; 1409 } 1410 1411 void AccVisitor::Post(const parser::OpenACCBlockConstruct &x) { 1412 if (NeedsScope(x)) { 1413 PopScope(); 1414 } 1415 } 1416 1417 bool AccVisitor::Pre(const parser::OpenACCCombinedConstruct &x) { 1418 PushScope(Scope::Kind::OpenACCConstruct, nullptr); 1419 return true; 1420 } 1421 1422 void AccVisitor::Post(const parser::OpenACCCombinedConstruct &x) { PopScope(); } 1423 1424 // Create scopes for OpenMP constructs 1425 class OmpVisitor : public virtual DeclarationVisitor { 1426 public: 1427 void AddOmpSourceRange(const parser::CharBlock &); 1428 1429 static bool NeedsScope(const parser::OpenMPBlockConstruct &); 1430 1431 bool Pre(const parser::OpenMPRequiresConstruct &x) { 1432 AddOmpSourceRange(x.source); 1433 return true; 1434 } 1435 bool Pre(const parser::OmpSimpleStandaloneDirective &x) { 1436 AddOmpSourceRange(x.source); 1437 return true; 1438 } 1439 bool Pre(const parser::OpenMPBlockConstruct &); 1440 void Post(const parser::OpenMPBlockConstruct &); 1441 bool Pre(const parser::OmpBeginBlockDirective &x) { 1442 AddOmpSourceRange(x.source); 1443 return true; 1444 } 1445 void Post(const parser::OmpBeginBlockDirective &) { 1446 messageHandler().set_currStmtSource(std::nullopt); 1447 } 1448 bool Pre(const parser::OmpEndBlockDirective &x) { 1449 AddOmpSourceRange(x.source); 1450 return true; 1451 } 1452 void Post(const parser::OmpEndBlockDirective &) { 1453 messageHandler().set_currStmtSource(std::nullopt); 1454 } 1455 1456 bool Pre(const parser::OpenMPLoopConstruct &) { 1457 PushScope(Scope::Kind::OtherConstruct, nullptr); 1458 return true; 1459 } 1460 void Post(const parser::OpenMPLoopConstruct &) { PopScope(); } 1461 bool Pre(const parser::OmpBeginLoopDirective &x) { 1462 AddOmpSourceRange(x.source); 1463 return true; 1464 } 1465 void Post(const parser::OmpBeginLoopDirective &) { 1466 messageHandler().set_currStmtSource(std::nullopt); 1467 } 1468 bool Pre(const parser::OmpEndLoopDirective &x) { 1469 AddOmpSourceRange(x.source); 1470 return true; 1471 } 1472 void Post(const parser::OmpEndLoopDirective &) { 1473 messageHandler().set_currStmtSource(std::nullopt); 1474 } 1475 1476 bool Pre(const parser::OpenMPSectionsConstruct &) { 1477 PushScope(Scope::Kind::OtherConstruct, nullptr); 1478 return true; 1479 } 1480 void Post(const parser::OpenMPSectionsConstruct &) { PopScope(); } 1481 bool Pre(const parser::OmpBeginSectionsDirective &x) { 1482 AddOmpSourceRange(x.source); 1483 return true; 1484 } 1485 void Post(const parser::OmpBeginSectionsDirective &) { 1486 messageHandler().set_currStmtSource(std::nullopt); 1487 } 1488 bool Pre(const parser::OmpEndSectionsDirective &x) { 1489 AddOmpSourceRange(x.source); 1490 return true; 1491 } 1492 void Post(const parser::OmpEndSectionsDirective &) { 1493 messageHandler().set_currStmtSource(std::nullopt); 1494 } 1495 bool Pre(const parser::OmpCriticalDirective &x) { 1496 AddOmpSourceRange(x.source); 1497 return true; 1498 } 1499 void Post(const parser::OmpCriticalDirective &) { 1500 messageHandler().set_currStmtSource(std::nullopt); 1501 } 1502 bool Pre(const parser::OmpEndCriticalDirective &x) { 1503 AddOmpSourceRange(x.source); 1504 return true; 1505 } 1506 void Post(const parser::OmpEndCriticalDirective &) { 1507 messageHandler().set_currStmtSource(std::nullopt); 1508 } 1509 }; 1510 1511 bool OmpVisitor::NeedsScope(const parser::OpenMPBlockConstruct &x) { 1512 const auto &beginBlockDir{std::get<parser::OmpBeginBlockDirective>(x.t)}; 1513 const auto &beginDir{std::get<parser::OmpBlockDirective>(beginBlockDir.t)}; 1514 switch (beginDir.v) { 1515 case llvm::omp::Directive::OMPD_master: 1516 case llvm::omp::Directive::OMPD_ordered: 1517 case llvm::omp::Directive::OMPD_taskgroup: 1518 return false; 1519 default: 1520 return true; 1521 } 1522 } 1523 1524 void OmpVisitor::AddOmpSourceRange(const parser::CharBlock &source) { 1525 messageHandler().set_currStmtSource(source); 1526 currScope().AddSourceRange(source); 1527 } 1528 1529 bool OmpVisitor::Pre(const parser::OpenMPBlockConstruct &x) { 1530 if (NeedsScope(x)) { 1531 PushScope(Scope::Kind::OtherConstruct, nullptr); 1532 } 1533 return true; 1534 } 1535 1536 void OmpVisitor::Post(const parser::OpenMPBlockConstruct &x) { 1537 if (NeedsScope(x)) { 1538 PopScope(); 1539 } 1540 } 1541 1542 // Walk the parse tree and resolve names to symbols. 1543 class ResolveNamesVisitor : public virtual ScopeHandler, 1544 public ModuleVisitor, 1545 public SubprogramVisitor, 1546 public ConstructVisitor, 1547 public OmpVisitor, 1548 public AccVisitor { 1549 public: 1550 using AccVisitor::Post; 1551 using AccVisitor::Pre; 1552 using ArraySpecVisitor::Post; 1553 using ConstructVisitor::Post; 1554 using ConstructVisitor::Pre; 1555 using DeclarationVisitor::Post; 1556 using DeclarationVisitor::Pre; 1557 using ImplicitRulesVisitor::Post; 1558 using ImplicitRulesVisitor::Pre; 1559 using InterfaceVisitor::Post; 1560 using InterfaceVisitor::Pre; 1561 using ModuleVisitor::Post; 1562 using ModuleVisitor::Pre; 1563 using OmpVisitor::Post; 1564 using OmpVisitor::Pre; 1565 using ScopeHandler::Post; 1566 using ScopeHandler::Pre; 1567 using SubprogramVisitor::Post; 1568 using SubprogramVisitor::Pre; 1569 1570 ResolveNamesVisitor( 1571 SemanticsContext &context, ImplicitRulesMap &rules, Scope &top) 1572 : BaseVisitor{context, *this, rules}, topScope_{top} { 1573 PushScope(top); 1574 } 1575 1576 Scope &topScope() const { return topScope_; } 1577 1578 // Default action for a parse tree node is to visit children. 1579 template <typename T> bool Pre(const T &) { return true; } 1580 template <typename T> void Post(const T &) {} 1581 1582 bool Pre(const parser::SpecificationPart &); 1583 bool Pre(const parser::Program &); 1584 void Post(const parser::Program &); 1585 bool Pre(const parser::ImplicitStmt &); 1586 void Post(const parser::PointerObject &); 1587 void Post(const parser::AllocateObject &); 1588 bool Pre(const parser::PointerAssignmentStmt &); 1589 void Post(const parser::Designator &); 1590 void Post(const parser::SubstringInquiry &); 1591 template <typename A, typename B> 1592 void Post(const parser::LoopBounds<A, B> &x) { 1593 ResolveName(*parser::Unwrap<parser::Name>(x.name)); 1594 } 1595 void Post(const parser::ProcComponentRef &); 1596 bool Pre(const parser::FunctionReference &); 1597 bool Pre(const parser::CallStmt &); 1598 bool Pre(const parser::ImportStmt &); 1599 void Post(const parser::TypeGuardStmt &); 1600 bool Pre(const parser::StmtFunctionStmt &); 1601 bool Pre(const parser::DefinedOpName &); 1602 bool Pre(const parser::ProgramUnit &); 1603 void Post(const parser::AssignStmt &); 1604 void Post(const parser::AssignedGotoStmt &); 1605 void Post(const parser::CompilerDirective &); 1606 1607 // These nodes should never be reached: they are handled in ProgramUnit 1608 bool Pre(const parser::MainProgram &) { 1609 llvm_unreachable("This node is handled in ProgramUnit"); 1610 } 1611 bool Pre(const parser::FunctionSubprogram &) { 1612 llvm_unreachable("This node is handled in ProgramUnit"); 1613 } 1614 bool Pre(const parser::SubroutineSubprogram &) { 1615 llvm_unreachable("This node is handled in ProgramUnit"); 1616 } 1617 bool Pre(const parser::SeparateModuleSubprogram &) { 1618 llvm_unreachable("This node is handled in ProgramUnit"); 1619 } 1620 bool Pre(const parser::Module &) { 1621 llvm_unreachable("This node is handled in ProgramUnit"); 1622 } 1623 bool Pre(const parser::Submodule &) { 1624 llvm_unreachable("This node is handled in ProgramUnit"); 1625 } 1626 bool Pre(const parser::BlockData &) { 1627 llvm_unreachable("This node is handled in ProgramUnit"); 1628 } 1629 1630 void NoteExecutablePartCall(Symbol::Flag, SourceName, bool hasCUDAChevrons); 1631 1632 friend void ResolveSpecificationParts(SemanticsContext &, const Symbol &); 1633 1634 private: 1635 // Kind of procedure we are expecting to see in a ProcedureDesignator 1636 std::optional<Symbol::Flag> expectedProcFlag_; 1637 std::optional<SourceName> prevImportStmt_; 1638 Scope &topScope_; 1639 1640 void PreSpecificationConstruct(const parser::SpecificationConstruct &); 1641 void CreateCommonBlockSymbols(const parser::CommonStmt &); 1642 void CreateObjectSymbols(const std::list<parser::ObjectDecl> &, Attr); 1643 void CreateGeneric(const parser::GenericSpec &); 1644 void FinishSpecificationPart(const std::list<parser::DeclarationConstruct> &); 1645 void AnalyzeStmtFunctionStmt(const parser::StmtFunctionStmt &); 1646 void CheckImports(); 1647 void CheckImport(const SourceName &, const SourceName &); 1648 void HandleCall(Symbol::Flag, const parser::Call &); 1649 void HandleProcedureName(Symbol::Flag, const parser::Name &); 1650 bool CheckImplicitNoneExternal(const SourceName &, const Symbol &); 1651 bool SetProcFlag(const parser::Name &, Symbol &, Symbol::Flag); 1652 void ResolveSpecificationParts(ProgramTree &); 1653 void AddSubpNames(ProgramTree &); 1654 bool BeginScopeForNode(const ProgramTree &); 1655 void EndScopeForNode(const ProgramTree &); 1656 void FinishSpecificationParts(const ProgramTree &); 1657 void FinishExecutionParts(const ProgramTree &); 1658 void FinishDerivedTypeInstantiation(Scope &); 1659 void ResolveExecutionParts(const ProgramTree &); 1660 void UseCUDABuiltinNames(); 1661 void HandleDerivedTypesInImplicitStmts(const parser::ImplicitPart &, 1662 const std::list<parser::DeclarationConstruct> &); 1663 }; 1664 1665 // ImplicitRules implementation 1666 1667 bool ImplicitRules::isImplicitNoneType() const { 1668 if (isImplicitNoneType_) { 1669 return true; 1670 } else if (map_.empty() && inheritFromParent_) { 1671 return parent_->isImplicitNoneType(); 1672 } else { 1673 return false; // default if not specified 1674 } 1675 } 1676 1677 bool ImplicitRules::isImplicitNoneExternal() const { 1678 if (isImplicitNoneExternal_) { 1679 return true; 1680 } else if (inheritFromParent_) { 1681 return parent_->isImplicitNoneExternal(); 1682 } else { 1683 return false; // default if not specified 1684 } 1685 } 1686 1687 const DeclTypeSpec *ImplicitRules::GetType( 1688 SourceName name, bool respectImplicitNoneType) const { 1689 char ch{name.begin()[0]}; 1690 if (isImplicitNoneType_ && respectImplicitNoneType) { 1691 return nullptr; 1692 } else if (auto it{map_.find(ch)}; it != map_.end()) { 1693 return &*it->second; 1694 } else if (inheritFromParent_) { 1695 return parent_->GetType(name, respectImplicitNoneType); 1696 } else if (ch >= 'i' && ch <= 'n') { 1697 return &context_.MakeNumericType(TypeCategory::Integer); 1698 } else if (ch >= 'a' && ch <= 'z') { 1699 return &context_.MakeNumericType(TypeCategory::Real); 1700 } else { 1701 return nullptr; 1702 } 1703 } 1704 1705 void ImplicitRules::SetTypeMapping(const DeclTypeSpec &type, 1706 parser::Location fromLetter, parser::Location toLetter) { 1707 for (char ch = *fromLetter; ch; ch = ImplicitRules::Incr(ch)) { 1708 auto res{map_.emplace(ch, type)}; 1709 if (!res.second) { 1710 context_.Say(parser::CharBlock{fromLetter}, 1711 "More than one implicit type specified for '%c'"_err_en_US, ch); 1712 } 1713 if (ch == *toLetter) { 1714 break; 1715 } 1716 } 1717 } 1718 1719 // Return the next char after ch in a way that works for ASCII or EBCDIC. 1720 // Return '\0' for the char after 'z'. 1721 char ImplicitRules::Incr(char ch) { 1722 switch (ch) { 1723 case 'i': 1724 return 'j'; 1725 case 'r': 1726 return 's'; 1727 case 'z': 1728 return '\0'; 1729 default: 1730 return ch + 1; 1731 } 1732 } 1733 1734 llvm::raw_ostream &operator<<( 1735 llvm::raw_ostream &o, const ImplicitRules &implicitRules) { 1736 o << "ImplicitRules:\n"; 1737 for (char ch = 'a'; ch; ch = ImplicitRules::Incr(ch)) { 1738 ShowImplicitRule(o, implicitRules, ch); 1739 } 1740 ShowImplicitRule(o, implicitRules, '_'); 1741 ShowImplicitRule(o, implicitRules, '$'); 1742 ShowImplicitRule(o, implicitRules, '@'); 1743 return o; 1744 } 1745 void ShowImplicitRule( 1746 llvm::raw_ostream &o, const ImplicitRules &implicitRules, char ch) { 1747 auto it{implicitRules.map_.find(ch)}; 1748 if (it != implicitRules.map_.end()) { 1749 o << " " << ch << ": " << *it->second << '\n'; 1750 } 1751 } 1752 1753 template <typename T> void BaseVisitor::Walk(const T &x) { 1754 parser::Walk(x, *this_); 1755 } 1756 1757 void BaseVisitor::MakePlaceholder( 1758 const parser::Name &name, MiscDetails::Kind kind) { 1759 if (!name.symbol) { 1760 name.symbol = &context_->globalScope().MakeSymbol( 1761 name.source, Attrs{}, MiscDetails{kind}); 1762 } 1763 } 1764 1765 // AttrsVisitor implementation 1766 1767 bool AttrsVisitor::BeginAttrs() { 1768 CHECK(!attrs_ && !cudaDataAttr_); 1769 attrs_ = Attrs{}; 1770 return true; 1771 } 1772 Attrs AttrsVisitor::GetAttrs() { 1773 CHECK(attrs_); 1774 return *attrs_; 1775 } 1776 Attrs AttrsVisitor::EndAttrs() { 1777 Attrs result{GetAttrs()}; 1778 attrs_.reset(); 1779 cudaDataAttr_.reset(); 1780 passName_ = std::nullopt; 1781 bindName_.reset(); 1782 isCDefined_ = false; 1783 return result; 1784 } 1785 1786 bool AttrsVisitor::SetPassNameOn(Symbol &symbol) { 1787 if (!passName_) { 1788 return false; 1789 } 1790 common::visit(common::visitors{ 1791 [&](ProcEntityDetails &x) { x.set_passName(*passName_); }, 1792 [&](ProcBindingDetails &x) { x.set_passName(*passName_); }, 1793 [](auto &) { common::die("unexpected pass name"); }, 1794 }, 1795 symbol.details()); 1796 return true; 1797 } 1798 1799 void AttrsVisitor::SetBindNameOn(Symbol &symbol) { 1800 if ((!attrs_ || !attrs_->test(Attr::BIND_C)) && 1801 !symbol.attrs().test(Attr::BIND_C)) { 1802 return; 1803 } 1804 symbol.SetIsCDefined(isCDefined_); 1805 std::optional<std::string> label{ 1806 evaluate::GetScalarConstantValue<evaluate::Ascii>(bindName_)}; 1807 // 18.9.2(2): discard leading and trailing blanks 1808 if (label) { 1809 symbol.SetIsExplicitBindName(true); 1810 auto first{label->find_first_not_of(" ")}; 1811 if (first == std::string::npos) { 1812 // Empty NAME= means no binding at all (18.10.2p2) 1813 return; 1814 } 1815 auto last{label->find_last_not_of(" ")}; 1816 label = label->substr(first, last - first + 1); 1817 } else if (symbol.GetIsExplicitBindName()) { 1818 // don't try to override explicit binding name with default 1819 return; 1820 } else if (ClassifyProcedure(symbol) == ProcedureDefinitionClass::Internal) { 1821 // BIND(C) does not give an implicit binding label to internal procedures. 1822 return; 1823 } else { 1824 label = symbol.name().ToString(); 1825 } 1826 // Checks whether a symbol has two Bind names. 1827 std::string oldBindName; 1828 if (const auto *bindName{symbol.GetBindName()}) { 1829 oldBindName = *bindName; 1830 } 1831 symbol.SetBindName(std::move(*label)); 1832 if (!oldBindName.empty()) { 1833 if (const std::string * newBindName{symbol.GetBindName()}) { 1834 if (oldBindName != *newBindName) { 1835 Say(symbol.name(), 1836 "The entity '%s' has multiple BIND names ('%s' and '%s')"_err_en_US, 1837 symbol.name(), oldBindName, *newBindName); 1838 } 1839 } 1840 } 1841 } 1842 1843 void AttrsVisitor::Post(const parser::LanguageBindingSpec &x) { 1844 if (CheckAndSet(Attr::BIND_C)) { 1845 if (const auto &name{ 1846 std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>( 1847 x.t)}) { 1848 bindName_ = EvaluateExpr(*name); 1849 } 1850 isCDefined_ = std::get<bool>(x.t); 1851 } 1852 } 1853 bool AttrsVisitor::Pre(const parser::IntentSpec &x) { 1854 CheckAndSet(IntentSpecToAttr(x)); 1855 return false; 1856 } 1857 bool AttrsVisitor::Pre(const parser::Pass &x) { 1858 if (CheckAndSet(Attr::PASS)) { 1859 if (x.v) { 1860 passName_ = x.v->source; 1861 MakePlaceholder(*x.v, MiscDetails::Kind::PassName); 1862 } 1863 } 1864 return false; 1865 } 1866 1867 // C730, C743, C755, C778, C1543 say no attribute or prefix repetitions 1868 bool AttrsVisitor::IsDuplicateAttr(Attr attrName) { 1869 CHECK(attrs_); 1870 if (attrs_->test(attrName)) { 1871 context().Warn(common::LanguageFeature::RedundantAttribute, 1872 currStmtSource().value(), 1873 "Attribute '%s' cannot be used more than once"_warn_en_US, 1874 AttrToString(attrName)); 1875 return true; 1876 } 1877 return false; 1878 } 1879 1880 // See if attrName violates a constraint cause by a conflict. attr1 and attr2 1881 // name attributes that cannot be used on the same declaration 1882 bool AttrsVisitor::HaveAttrConflict(Attr attrName, Attr attr1, Attr attr2) { 1883 CHECK(attrs_); 1884 if ((attrName == attr1 && attrs_->test(attr2)) || 1885 (attrName == attr2 && attrs_->test(attr1))) { 1886 Say(currStmtSource().value(), 1887 "Attributes '%s' and '%s' conflict with each other"_err_en_US, 1888 AttrToString(attr1), AttrToString(attr2)); 1889 return true; 1890 } 1891 return false; 1892 } 1893 // C759, C1543 1894 bool AttrsVisitor::IsConflictingAttr(Attr attrName) { 1895 return HaveAttrConflict(attrName, Attr::INTENT_IN, Attr::INTENT_INOUT) || 1896 HaveAttrConflict(attrName, Attr::INTENT_IN, Attr::INTENT_OUT) || 1897 HaveAttrConflict(attrName, Attr::INTENT_INOUT, Attr::INTENT_OUT) || 1898 HaveAttrConflict(attrName, Attr::PASS, Attr::NOPASS) || // C781 1899 HaveAttrConflict(attrName, Attr::PURE, Attr::IMPURE) || 1900 HaveAttrConflict(attrName, Attr::PUBLIC, Attr::PRIVATE) || 1901 HaveAttrConflict(attrName, Attr::RECURSIVE, Attr::NON_RECURSIVE); 1902 } 1903 bool AttrsVisitor::CheckAndSet(Attr attrName) { 1904 if (IsConflictingAttr(attrName) || IsDuplicateAttr(attrName)) { 1905 return false; 1906 } 1907 attrs_->set(attrName); 1908 return true; 1909 } 1910 bool AttrsVisitor::Pre(const common::CUDADataAttr x) { 1911 if (cudaDataAttr_.value_or(x) != x) { 1912 Say(currStmtSource().value(), 1913 "CUDA data attributes '%s' and '%s' may not both be specified"_err_en_US, 1914 common::EnumToString(*cudaDataAttr_), common::EnumToString(x)); 1915 } 1916 cudaDataAttr_ = x; 1917 return false; 1918 } 1919 1920 // DeclTypeSpecVisitor implementation 1921 1922 const DeclTypeSpec *DeclTypeSpecVisitor::GetDeclTypeSpec() { 1923 return state_.declTypeSpec; 1924 } 1925 1926 void DeclTypeSpecVisitor::BeginDeclTypeSpec() { 1927 CHECK(!state_.expectDeclTypeSpec); 1928 CHECK(!state_.declTypeSpec); 1929 state_.expectDeclTypeSpec = true; 1930 } 1931 void DeclTypeSpecVisitor::EndDeclTypeSpec() { 1932 CHECK(state_.expectDeclTypeSpec); 1933 state_ = {}; 1934 } 1935 1936 void DeclTypeSpecVisitor::SetDeclTypeSpecCategory( 1937 DeclTypeSpec::Category category) { 1938 CHECK(state_.expectDeclTypeSpec); 1939 state_.derived.category = category; 1940 } 1941 1942 bool DeclTypeSpecVisitor::Pre(const parser::TypeGuardStmt &) { 1943 BeginDeclTypeSpec(); 1944 return true; 1945 } 1946 void DeclTypeSpecVisitor::Post(const parser::TypeGuardStmt &) { 1947 EndDeclTypeSpec(); 1948 } 1949 1950 void DeclTypeSpecVisitor::Post(const parser::TypeSpec &typeSpec) { 1951 // Record the resolved DeclTypeSpec in the parse tree for use by 1952 // expression semantics if the DeclTypeSpec is a valid TypeSpec. 1953 // The grammar ensures that it's an intrinsic or derived type spec, 1954 // not TYPE(*) or CLASS(*) or CLASS(T). 1955 if (const DeclTypeSpec * spec{state_.declTypeSpec}) { 1956 switch (spec->category()) { 1957 case DeclTypeSpec::Numeric: 1958 case DeclTypeSpec::Logical: 1959 case DeclTypeSpec::Character: 1960 typeSpec.declTypeSpec = spec; 1961 break; 1962 case DeclTypeSpec::TypeDerived: 1963 if (const DerivedTypeSpec * derived{spec->AsDerived()}) { 1964 CheckForAbstractType(derived->typeSymbol()); // C703 1965 typeSpec.declTypeSpec = spec; 1966 } 1967 break; 1968 default: 1969 CRASH_NO_CASE; 1970 } 1971 } 1972 } 1973 1974 void DeclTypeSpecVisitor::Post( 1975 const parser::IntrinsicTypeSpec::DoublePrecision &) { 1976 MakeNumericType(TypeCategory::Real, context().doublePrecisionKind()); 1977 } 1978 void DeclTypeSpecVisitor::Post( 1979 const parser::IntrinsicTypeSpec::DoubleComplex &) { 1980 MakeNumericType(TypeCategory::Complex, context().doublePrecisionKind()); 1981 } 1982 void DeclTypeSpecVisitor::MakeNumericType(TypeCategory category, int kind) { 1983 SetDeclTypeSpec(context().MakeNumericType(category, kind)); 1984 } 1985 1986 void DeclTypeSpecVisitor::CheckForAbstractType(const Symbol &typeSymbol) { 1987 if (typeSymbol.attrs().test(Attr::ABSTRACT)) { 1988 Say("ABSTRACT derived type may not be used here"_err_en_US); 1989 } 1990 } 1991 1992 void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::ClassStar &) { 1993 SetDeclTypeSpec(context().globalScope().MakeClassStarType()); 1994 } 1995 void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::TypeStar &) { 1996 SetDeclTypeSpec(context().globalScope().MakeTypeStarType()); 1997 } 1998 1999 // Check that we're expecting to see a DeclTypeSpec (and haven't seen one yet) 2000 // and save it in state_.declTypeSpec. 2001 void DeclTypeSpecVisitor::SetDeclTypeSpec(const DeclTypeSpec &declTypeSpec) { 2002 CHECK(state_.expectDeclTypeSpec); 2003 CHECK(!state_.declTypeSpec); 2004 state_.declTypeSpec = &declTypeSpec; 2005 } 2006 2007 KindExpr DeclTypeSpecVisitor::GetKindParamExpr( 2008 TypeCategory category, const std::optional<parser::KindSelector> &kind) { 2009 return AnalyzeKindSelector(context(), category, kind); 2010 } 2011 2012 // MessageHandler implementation 2013 2014 Message &MessageHandler::Say(MessageFixedText &&msg) { 2015 return context_->Say(currStmtSource().value(), std::move(msg)); 2016 } 2017 Message &MessageHandler::Say(MessageFormattedText &&msg) { 2018 return context_->Say(currStmtSource().value(), std::move(msg)); 2019 } 2020 Message &MessageHandler::Say(const SourceName &name, MessageFixedText &&msg) { 2021 return Say(name, std::move(msg), name); 2022 } 2023 2024 // ImplicitRulesVisitor implementation 2025 2026 void ImplicitRulesVisitor::Post(const parser::ParameterStmt &) { 2027 prevParameterStmt_ = currStmtSource(); 2028 } 2029 2030 bool ImplicitRulesVisitor::Pre(const parser::ImplicitStmt &x) { 2031 bool result{ 2032 common::visit(common::visitors{ 2033 [&](const std::list<ImplicitNoneNameSpec> &y) { 2034 return HandleImplicitNone(y); 2035 }, 2036 [&](const std::list<parser::ImplicitSpec> &) { 2037 if (prevImplicitNoneType_) { 2038 Say("IMPLICIT statement after IMPLICIT NONE or " 2039 "IMPLICIT NONE(TYPE) statement"_err_en_US); 2040 return false; 2041 } 2042 implicitRules_->set_isImplicitNoneType(false); 2043 return true; 2044 }, 2045 }, 2046 x.u)}; 2047 prevImplicit_ = currStmtSource(); 2048 return result; 2049 } 2050 2051 bool ImplicitRulesVisitor::Pre(const parser::LetterSpec &x) { 2052 auto loLoc{std::get<parser::Location>(x.t)}; 2053 auto hiLoc{loLoc}; 2054 if (auto hiLocOpt{std::get<std::optional<parser::Location>>(x.t)}) { 2055 hiLoc = *hiLocOpt; 2056 if (*hiLoc < *loLoc) { 2057 Say(hiLoc, "'%s' does not follow '%s' alphabetically"_err_en_US, 2058 std::string(hiLoc, 1), std::string(loLoc, 1)); 2059 return false; 2060 } 2061 } 2062 implicitRules_->SetTypeMapping(*GetDeclTypeSpec(), loLoc, hiLoc); 2063 return false; 2064 } 2065 2066 bool ImplicitRulesVisitor::Pre(const parser::ImplicitSpec &) { 2067 BeginDeclTypeSpec(); 2068 set_allowForwardReferenceToDerivedType(true); 2069 return true; 2070 } 2071 2072 void ImplicitRulesVisitor::Post(const parser::ImplicitSpec &) { 2073 set_allowForwardReferenceToDerivedType(false); 2074 EndDeclTypeSpec(); 2075 } 2076 2077 void ImplicitRulesVisitor::SetScope(const Scope &scope) { 2078 implicitRules_ = &DEREF(implicitRulesMap_).at(&scope); 2079 prevImplicit_ = std::nullopt; 2080 prevImplicitNone_ = std::nullopt; 2081 prevImplicitNoneType_ = std::nullopt; 2082 prevParameterStmt_ = std::nullopt; 2083 } 2084 void ImplicitRulesVisitor::BeginScope(const Scope &scope) { 2085 // find or create implicit rules for this scope 2086 DEREF(implicitRulesMap_).try_emplace(&scope, context(), implicitRules_); 2087 SetScope(scope); 2088 } 2089 2090 // TODO: for all of these errors, reference previous statement too 2091 bool ImplicitRulesVisitor::HandleImplicitNone( 2092 const std::list<ImplicitNoneNameSpec> &nameSpecs) { 2093 if (prevImplicitNone_) { 2094 Say("More than one IMPLICIT NONE statement"_err_en_US); 2095 Say(*prevImplicitNone_, "Previous IMPLICIT NONE statement"_en_US); 2096 return false; 2097 } 2098 if (prevParameterStmt_) { 2099 Say("IMPLICIT NONE statement after PARAMETER statement"_err_en_US); 2100 return false; 2101 } 2102 prevImplicitNone_ = currStmtSource(); 2103 bool implicitNoneTypeNever{ 2104 context().IsEnabled(common::LanguageFeature::ImplicitNoneTypeNever)}; 2105 if (nameSpecs.empty()) { 2106 if (!implicitNoneTypeNever) { 2107 prevImplicitNoneType_ = currStmtSource(); 2108 implicitRules_->set_isImplicitNoneType(true); 2109 if (prevImplicit_) { 2110 Say("IMPLICIT NONE statement after IMPLICIT statement"_err_en_US); 2111 return false; 2112 } 2113 } 2114 } else { 2115 int sawType{0}; 2116 int sawExternal{0}; 2117 for (const auto noneSpec : nameSpecs) { 2118 switch (noneSpec) { 2119 case ImplicitNoneNameSpec::External: 2120 implicitRules_->set_isImplicitNoneExternal(true); 2121 ++sawExternal; 2122 break; 2123 case ImplicitNoneNameSpec::Type: 2124 if (!implicitNoneTypeNever) { 2125 prevImplicitNoneType_ = currStmtSource(); 2126 implicitRules_->set_isImplicitNoneType(true); 2127 if (prevImplicit_) { 2128 Say("IMPLICIT NONE(TYPE) after IMPLICIT statement"_err_en_US); 2129 return false; 2130 } 2131 ++sawType; 2132 } 2133 break; 2134 } 2135 } 2136 if (sawType > 1) { 2137 Say("TYPE specified more than once in IMPLICIT NONE statement"_err_en_US); 2138 return false; 2139 } 2140 if (sawExternal > 1) { 2141 Say("EXTERNAL specified more than once in IMPLICIT NONE statement"_err_en_US); 2142 return false; 2143 } 2144 } 2145 return true; 2146 } 2147 2148 // ArraySpecVisitor implementation 2149 2150 void ArraySpecVisitor::Post(const parser::ArraySpec &x) { 2151 CHECK(arraySpec_.empty()); 2152 arraySpec_ = AnalyzeArraySpec(context(), x); 2153 } 2154 void ArraySpecVisitor::Post(const parser::ComponentArraySpec &x) { 2155 CHECK(arraySpec_.empty()); 2156 arraySpec_ = AnalyzeArraySpec(context(), x); 2157 } 2158 void ArraySpecVisitor::Post(const parser::CoarraySpec &x) { 2159 CHECK(coarraySpec_.empty()); 2160 coarraySpec_ = AnalyzeCoarraySpec(context(), x); 2161 } 2162 2163 const ArraySpec &ArraySpecVisitor::arraySpec() { 2164 return !arraySpec_.empty() ? arraySpec_ : attrArraySpec_; 2165 } 2166 const ArraySpec &ArraySpecVisitor::coarraySpec() { 2167 return !coarraySpec_.empty() ? coarraySpec_ : attrCoarraySpec_; 2168 } 2169 void ArraySpecVisitor::BeginArraySpec() { 2170 CHECK(arraySpec_.empty()); 2171 CHECK(coarraySpec_.empty()); 2172 CHECK(attrArraySpec_.empty()); 2173 CHECK(attrCoarraySpec_.empty()); 2174 } 2175 void ArraySpecVisitor::EndArraySpec() { 2176 CHECK(arraySpec_.empty()); 2177 CHECK(coarraySpec_.empty()); 2178 attrArraySpec_.clear(); 2179 attrCoarraySpec_.clear(); 2180 } 2181 void ArraySpecVisitor::PostAttrSpec() { 2182 // Save dimension/codimension from attrs so we can process array/coarray-spec 2183 // on the entity-decl 2184 if (!arraySpec_.empty()) { 2185 if (attrArraySpec_.empty()) { 2186 attrArraySpec_ = arraySpec_; 2187 arraySpec_.clear(); 2188 } else { 2189 Say(currStmtSource().value(), 2190 "Attribute 'DIMENSION' cannot be used more than once"_err_en_US); 2191 } 2192 } 2193 if (!coarraySpec_.empty()) { 2194 if (attrCoarraySpec_.empty()) { 2195 attrCoarraySpec_ = coarraySpec_; 2196 coarraySpec_.clear(); 2197 } else { 2198 Say(currStmtSource().value(), 2199 "Attribute 'CODIMENSION' cannot be used more than once"_err_en_US); 2200 } 2201 } 2202 } 2203 2204 // FuncResultStack implementation 2205 2206 FuncResultStack::~FuncResultStack() { CHECK(stack_.empty()); } 2207 2208 void FuncResultStack::CompleteFunctionResultType() { 2209 // If the function has a type in the prefix, process it now. 2210 FuncInfo *info{Top()}; 2211 if (info && &info->scope == &scopeHandler_.currScope()) { 2212 if (info->parsedType && info->resultSymbol) { 2213 scopeHandler_.messageHandler().set_currStmtSource(info->source); 2214 if (const auto *type{ 2215 scopeHandler_.ProcessTypeSpec(*info->parsedType, true)}) { 2216 Symbol &symbol{*info->resultSymbol}; 2217 if (!scopeHandler_.context().HasError(symbol)) { 2218 if (symbol.GetType()) { 2219 scopeHandler_.Say(symbol.name(), 2220 "Function cannot have both an explicit type prefix and a RESULT suffix"_err_en_US); 2221 scopeHandler_.context().SetError(symbol); 2222 } else { 2223 symbol.SetType(*type); 2224 } 2225 } 2226 } 2227 info->parsedType = nullptr; 2228 } 2229 } 2230 } 2231 2232 // Called from ConvertTo{Object/Proc}Entity to cope with any appearance 2233 // of the function result in a specification expression. 2234 void FuncResultStack::CompleteTypeIfFunctionResult(Symbol &symbol) { 2235 if (FuncInfo * info{Top()}) { 2236 if (info->resultSymbol == &symbol) { 2237 CompleteFunctionResultType(); 2238 } 2239 } 2240 } 2241 2242 void FuncResultStack::Pop() { 2243 if (!stack_.empty() && &stack_.back().scope == &scopeHandler_.currScope()) { 2244 stack_.pop_back(); 2245 } 2246 } 2247 2248 // ScopeHandler implementation 2249 2250 void ScopeHandler::SayAlreadyDeclared(const parser::Name &name, Symbol &prev) { 2251 SayAlreadyDeclared(name.source, prev); 2252 } 2253 void ScopeHandler::SayAlreadyDeclared(const SourceName &name, Symbol &prev) { 2254 if (context().HasError(prev)) { 2255 // don't report another error about prev 2256 } else { 2257 if (const auto *details{prev.detailsIf<UseDetails>()}) { 2258 Say(name, "'%s' is already declared in this scoping unit"_err_en_US) 2259 .Attach(details->location(), 2260 "It is use-associated with '%s' in module '%s'"_en_US, 2261 details->symbol().name(), GetUsedModule(*details).name()); 2262 } else { 2263 SayAlreadyDeclared(name, prev.name()); 2264 } 2265 context().SetError(prev); 2266 } 2267 } 2268 void ScopeHandler::SayAlreadyDeclared( 2269 const SourceName &name1, const SourceName &name2) { 2270 if (name1.begin() < name2.begin()) { 2271 SayAlreadyDeclared(name2, name1); 2272 } else { 2273 Say(name1, "'%s' is already declared in this scoping unit"_err_en_US) 2274 .Attach(name2, "Previous declaration of '%s'"_en_US, name2); 2275 } 2276 } 2277 2278 void ScopeHandler::SayWithReason(const parser::Name &name, Symbol &symbol, 2279 MessageFixedText &&msg1, Message &&msg2) { 2280 bool isFatal{msg1.IsFatal()}; 2281 Say(name, std::move(msg1), symbol.name()).Attach(std::move(msg2)); 2282 context().SetError(symbol, isFatal); 2283 } 2284 2285 template <typename... A> 2286 Message &ScopeHandler::SayWithDecl(const parser::Name &name, Symbol &symbol, 2287 MessageFixedText &&msg, A &&...args) { 2288 auto &message{ 2289 Say(name.source, std::move(msg), symbol.name(), std::forward<A>(args)...) 2290 .Attach(symbol.name(), 2291 symbol.test(Symbol::Flag::Implicit) 2292 ? "Implicit declaration of '%s'"_en_US 2293 : "Declaration of '%s'"_en_US, 2294 name.source)}; 2295 if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) { 2296 if (auto usedAsProc{proc->usedAsProcedureHere()}) { 2297 if (usedAsProc->begin() != symbol.name().begin()) { 2298 message.Attach(*usedAsProc, "Referenced as a procedure"_en_US); 2299 } 2300 } 2301 } 2302 return message; 2303 } 2304 2305 void ScopeHandler::SayLocalMustBeVariable( 2306 const parser::Name &name, Symbol &symbol) { 2307 SayWithDecl(name, symbol, 2308 "The name '%s' must be a variable to appear" 2309 " in a locality-spec"_err_en_US); 2310 } 2311 2312 Message &ScopeHandler::SayDerivedType( 2313 const SourceName &name, MessageFixedText &&msg, const Scope &type) { 2314 const Symbol &typeSymbol{DEREF(type.GetSymbol())}; 2315 return Say(name, std::move(msg), name, typeSymbol.name()) 2316 .Attach(typeSymbol.name(), "Declaration of derived type '%s'"_en_US, 2317 typeSymbol.name()); 2318 } 2319 Message &ScopeHandler::Say2(const SourceName &name1, MessageFixedText &&msg1, 2320 const SourceName &name2, MessageFixedText &&msg2) { 2321 return Say(name1, std::move(msg1)).Attach(name2, std::move(msg2), name2); 2322 } 2323 Message &ScopeHandler::Say2(const SourceName &name, MessageFixedText &&msg1, 2324 Symbol &symbol, MessageFixedText &&msg2) { 2325 bool isFatal{msg1.IsFatal()}; 2326 Message &result{Say2(name, std::move(msg1), symbol.name(), std::move(msg2))}; 2327 context().SetError(symbol, isFatal); 2328 return result; 2329 } 2330 Message &ScopeHandler::Say2(const parser::Name &name, MessageFixedText &&msg1, 2331 Symbol &symbol, MessageFixedText &&msg2) { 2332 bool isFatal{msg1.IsFatal()}; 2333 Message &result{ 2334 Say2(name.source, std::move(msg1), symbol.name(), std::move(msg2))}; 2335 context().SetError(symbol, isFatal); 2336 return result; 2337 } 2338 2339 // This is essentially GetProgramUnitContaining(), but it can return 2340 // a mutable Scope &, it ignores statement functions, and it fails 2341 // gracefully for error recovery (returning the original Scope). 2342 template <typename T> static T &GetInclusiveScope(T &scope) { 2343 for (T *s{&scope}; !s->IsGlobal(); s = &s->parent()) { 2344 switch (s->kind()) { 2345 case Scope::Kind::Module: 2346 case Scope::Kind::MainProgram: 2347 case Scope::Kind::Subprogram: 2348 case Scope::Kind::BlockData: 2349 if (!s->IsStmtFunction()) { 2350 return *s; 2351 } 2352 break; 2353 default:; 2354 } 2355 } 2356 return scope; 2357 } 2358 2359 Scope &ScopeHandler::InclusiveScope() { return GetInclusiveScope(currScope()); } 2360 2361 Scope *ScopeHandler::GetHostProcedure() { 2362 Scope &parent{InclusiveScope().parent()}; 2363 switch (parent.kind()) { 2364 case Scope::Kind::Subprogram: 2365 return &parent; 2366 case Scope::Kind::MainProgram: 2367 return &parent; 2368 default: 2369 return nullptr; 2370 } 2371 } 2372 2373 Scope &ScopeHandler::NonDerivedTypeScope() { 2374 return currScope_->IsDerivedType() ? currScope_->parent() : *currScope_; 2375 } 2376 2377 void ScopeHandler::PushScope(Scope::Kind kind, Symbol *symbol) { 2378 PushScope(currScope().MakeScope(kind, symbol)); 2379 } 2380 void ScopeHandler::PushScope(Scope &scope) { 2381 currScope_ = &scope; 2382 auto kind{currScope_->kind()}; 2383 if (kind != Scope::Kind::BlockConstruct && 2384 kind != Scope::Kind::OtherConstruct) { 2385 BeginScope(scope); 2386 } 2387 // The name of a module or submodule cannot be "used" in its scope, 2388 // as we read 19.3.1(2), so we allow the name to be used as a local 2389 // identifier in the module or submodule too. Same with programs 2390 // (14.1(3)) and BLOCK DATA. 2391 if (!currScope_->IsDerivedType() && kind != Scope::Kind::Module && 2392 kind != Scope::Kind::MainProgram && kind != Scope::Kind::BlockData) { 2393 if (auto *symbol{scope.symbol()}) { 2394 // Create a dummy symbol so we can't create another one with the same 2395 // name. It might already be there if we previously pushed the scope. 2396 SourceName name{symbol->name()}; 2397 if (!FindInScope(scope, name)) { 2398 auto &newSymbol{MakeSymbol(name)}; 2399 if (kind == Scope::Kind::Subprogram) { 2400 // Allow for recursive references. If this symbol is a function 2401 // without an explicit RESULT(), this new symbol will be discarded 2402 // and replaced with an object of the same name. 2403 newSymbol.set_details(HostAssocDetails{*symbol}); 2404 } else { 2405 newSymbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName}); 2406 } 2407 } 2408 } 2409 } 2410 } 2411 void ScopeHandler::PopScope() { 2412 CHECK(currScope_ && !currScope_->IsGlobal()); 2413 // Entities that are not yet classified as objects or procedures are now 2414 // assumed to be objects. 2415 // TODO: Statement functions 2416 for (auto &pair : currScope()) { 2417 ConvertToObjectEntity(*pair.second); 2418 } 2419 funcResultStack_.Pop(); 2420 // If popping back into a global scope, pop back to the main global scope. 2421 SetScope(currScope_->parent().IsGlobal() ? context().globalScope() 2422 : currScope_->parent()); 2423 } 2424 void ScopeHandler::SetScope(Scope &scope) { 2425 currScope_ = &scope; 2426 ImplicitRulesVisitor::SetScope(InclusiveScope()); 2427 } 2428 2429 Symbol *ScopeHandler::FindSymbol(const parser::Name &name) { 2430 return FindSymbol(currScope(), name); 2431 } 2432 Symbol *ScopeHandler::FindSymbol(const Scope &scope, const parser::Name &name) { 2433 if (scope.IsDerivedType()) { 2434 if (Symbol * symbol{scope.FindComponent(name.source)}) { 2435 if (symbol->has<TypeParamDetails>()) { 2436 return Resolve(name, symbol); 2437 } 2438 } 2439 return FindSymbol(scope.parent(), name); 2440 } else { 2441 // In EQUIVALENCE statements only resolve names in the local scope, see 2442 // 19.5.1.4, paragraph 2, item (10) 2443 return Resolve(name, 2444 inEquivalenceStmt_ ? FindInScope(scope, name) 2445 : scope.FindSymbol(name.source)); 2446 } 2447 } 2448 2449 Symbol &ScopeHandler::MakeSymbol( 2450 Scope &scope, const SourceName &name, Attrs attrs) { 2451 if (Symbol * symbol{FindInScope(scope, name)}) { 2452 CheckDuplicatedAttrs(name, *symbol, attrs); 2453 SetExplicitAttrs(*symbol, attrs); 2454 return *symbol; 2455 } else { 2456 const auto pair{scope.try_emplace(name, attrs, UnknownDetails{})}; 2457 CHECK(pair.second); // name was not found, so must be able to add 2458 return *pair.first->second; 2459 } 2460 } 2461 Symbol &ScopeHandler::MakeSymbol(const SourceName &name, Attrs attrs) { 2462 return MakeSymbol(currScope(), name, attrs); 2463 } 2464 Symbol &ScopeHandler::MakeSymbol(const parser::Name &name, Attrs attrs) { 2465 return Resolve(name, MakeSymbol(name.source, attrs)); 2466 } 2467 Symbol &ScopeHandler::MakeHostAssocSymbol( 2468 const parser::Name &name, const Symbol &hostSymbol) { 2469 Symbol &symbol{*NonDerivedTypeScope() 2470 .try_emplace(name.source, HostAssocDetails{hostSymbol}) 2471 .first->second}; 2472 name.symbol = &symbol; 2473 symbol.attrs() = hostSymbol.attrs(); // TODO: except PRIVATE, PUBLIC? 2474 // These attributes can be redundantly reapplied without error 2475 // on the host-associated name, at most once (C815). 2476 symbol.implicitAttrs() = 2477 symbol.attrs() & Attrs{Attr::ASYNCHRONOUS, Attr::VOLATILE}; 2478 // SAVE statement in the inner scope will create a new symbol. 2479 // If the host variable is used via host association, 2480 // we have to propagate whether SAVE is implicit in the host scope. 2481 // Otherwise, verifications that do not allow explicit SAVE 2482 // attribute would fail. 2483 symbol.implicitAttrs() |= hostSymbol.implicitAttrs() & Attrs{Attr::SAVE}; 2484 symbol.flags() = hostSymbol.flags(); 2485 return symbol; 2486 } 2487 Symbol &ScopeHandler::CopySymbol(const SourceName &name, const Symbol &symbol) { 2488 CHECK(!FindInScope(name)); 2489 return MakeSymbol(currScope(), name, symbol.attrs()); 2490 } 2491 2492 // Look for name only in scope, not in enclosing scopes. 2493 Symbol *ScopeHandler::FindInScope( 2494 const Scope &scope, const parser::Name &name) { 2495 return Resolve(name, FindInScope(scope, name.source)); 2496 } 2497 Symbol *ScopeHandler::FindInScope(const Scope &scope, const SourceName &name) { 2498 // all variants of names, e.g. "operator(.ne.)" for "operator(/=)" 2499 for (const std::string &n : GetAllNames(context(), name)) { 2500 auto it{scope.find(SourceName{n})}; 2501 if (it != scope.end()) { 2502 return &*it->second; 2503 } 2504 } 2505 return nullptr; 2506 } 2507 2508 // Find a component or type parameter by name in a derived type or its parents. 2509 Symbol *ScopeHandler::FindInTypeOrParents( 2510 const Scope &scope, const parser::Name &name) { 2511 return Resolve(name, scope.FindComponent(name.source)); 2512 } 2513 Symbol *ScopeHandler::FindInTypeOrParents(const parser::Name &name) { 2514 return FindInTypeOrParents(currScope(), name); 2515 } 2516 Symbol *ScopeHandler::FindInScopeOrBlockConstructs( 2517 const Scope &scope, SourceName name) { 2518 if (Symbol * symbol{FindInScope(scope, name)}) { 2519 return symbol; 2520 } 2521 for (const Scope &child : scope.children()) { 2522 if (child.kind() == Scope::Kind::BlockConstruct) { 2523 if (Symbol * symbol{FindInScopeOrBlockConstructs(child, name)}) { 2524 return symbol; 2525 } 2526 } 2527 } 2528 return nullptr; 2529 } 2530 2531 void ScopeHandler::EraseSymbol(const parser::Name &name) { 2532 currScope().erase(name.source); 2533 name.symbol = nullptr; 2534 } 2535 2536 static bool NeedsType(const Symbol &symbol) { 2537 return !symbol.GetType() && 2538 common::visit(common::visitors{ 2539 [](const EntityDetails &) { return true; }, 2540 [](const ObjectEntityDetails &) { return true; }, 2541 [](const AssocEntityDetails &) { return true; }, 2542 [&](const ProcEntityDetails &p) { 2543 return symbol.test(Symbol::Flag::Function) && 2544 !symbol.attrs().test(Attr::INTRINSIC) && 2545 !p.type() && !p.procInterface(); 2546 }, 2547 [](const auto &) { return false; }, 2548 }, 2549 symbol.details()); 2550 } 2551 2552 void ScopeHandler::ApplyImplicitRules( 2553 Symbol &symbol, bool allowForwardReference) { 2554 funcResultStack_.CompleteTypeIfFunctionResult(symbol); 2555 if (context().HasError(symbol) || !NeedsType(symbol)) { 2556 return; 2557 } 2558 if (const DeclTypeSpec * type{GetImplicitType(symbol)}) { 2559 symbol.set(Symbol::Flag::Implicit); 2560 symbol.SetType(*type); 2561 return; 2562 } 2563 if (symbol.has<ProcEntityDetails>() && !symbol.attrs().test(Attr::EXTERNAL)) { 2564 std::optional<Symbol::Flag> functionOrSubroutineFlag; 2565 if (symbol.test(Symbol::Flag::Function)) { 2566 functionOrSubroutineFlag = Symbol::Flag::Function; 2567 } else if (symbol.test(Symbol::Flag::Subroutine)) { 2568 functionOrSubroutineFlag = Symbol::Flag::Subroutine; 2569 } 2570 if (IsIntrinsic(symbol.name(), functionOrSubroutineFlag)) { 2571 // type will be determined in expression semantics 2572 AcquireIntrinsicProcedureFlags(symbol); 2573 return; 2574 } 2575 } 2576 if (allowForwardReference && ImplicitlyTypeForwardRef(symbol)) { 2577 return; 2578 } 2579 if (const auto *entity{symbol.detailsIf<EntityDetails>()}; 2580 entity && entity->isDummy()) { 2581 // Dummy argument, no declaration or reference; if it turns 2582 // out to be a subroutine, it's fine, and if it is a function 2583 // or object, it'll be caught later. 2584 return; 2585 } 2586 if (deferImplicitTyping_) { 2587 return; 2588 } 2589 if (!context().HasError(symbol)) { 2590 Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US); 2591 context().SetError(symbol); 2592 } 2593 } 2594 2595 // Extension: Allow forward references to scalar integer dummy arguments 2596 // or variables in COMMON to appear in specification expressions under 2597 // IMPLICIT NONE(TYPE) when what would otherwise have been their implicit 2598 // type is default INTEGER. 2599 bool ScopeHandler::ImplicitlyTypeForwardRef(Symbol &symbol) { 2600 if (!inSpecificationPart_ || context().HasError(symbol) || 2601 !(IsDummy(symbol) || FindCommonBlockContaining(symbol)) || 2602 symbol.Rank() != 0 || 2603 !context().languageFeatures().IsEnabled( 2604 common::LanguageFeature::ForwardRefImplicitNone)) { 2605 return false; 2606 } 2607 const DeclTypeSpec *type{ 2608 GetImplicitType(symbol, false /*ignore IMPLICIT NONE*/)}; 2609 if (!type || !type->IsNumeric(TypeCategory::Integer)) { 2610 return false; 2611 } 2612 auto kind{evaluate::ToInt64(type->numericTypeSpec().kind())}; 2613 if (!kind || *kind != context().GetDefaultKind(TypeCategory::Integer)) { 2614 return false; 2615 } 2616 if (!ConvertToObjectEntity(symbol)) { 2617 return false; 2618 } 2619 // TODO: check no INTENT(OUT) if dummy? 2620 context().Warn(common::LanguageFeature::ForwardRefImplicitNone, symbol.name(), 2621 "'%s' was used without (or before) being explicitly typed"_warn_en_US, 2622 symbol.name()); 2623 symbol.set(Symbol::Flag::Implicit); 2624 symbol.SetType(*type); 2625 return true; 2626 } 2627 2628 // Ensure that the symbol for an intrinsic procedure is marked with 2629 // the INTRINSIC attribute. Also set PURE &/or ELEMENTAL as 2630 // appropriate. 2631 void ScopeHandler::AcquireIntrinsicProcedureFlags(Symbol &symbol) { 2632 SetImplicitAttr(symbol, Attr::INTRINSIC); 2633 switch (context().intrinsics().GetIntrinsicClass(symbol.name().ToString())) { 2634 case evaluate::IntrinsicClass::elementalFunction: 2635 case evaluate::IntrinsicClass::elementalSubroutine: 2636 SetExplicitAttr(symbol, Attr::ELEMENTAL); 2637 SetExplicitAttr(symbol, Attr::PURE); 2638 break; 2639 case evaluate::IntrinsicClass::impureSubroutine: 2640 break; 2641 default: 2642 SetExplicitAttr(symbol, Attr::PURE); 2643 } 2644 } 2645 2646 const DeclTypeSpec *ScopeHandler::GetImplicitType( 2647 Symbol &symbol, bool respectImplicitNoneType) { 2648 const Scope *scope{&symbol.owner()}; 2649 if (scope->IsGlobal()) { 2650 scope = &currScope(); 2651 } 2652 scope = &GetInclusiveScope(*scope); 2653 const auto *type{implicitRulesMap_->at(scope).GetType( 2654 symbol.name(), respectImplicitNoneType)}; 2655 if (type) { 2656 if (const DerivedTypeSpec * derived{type->AsDerived()}) { 2657 // Resolve any forward-referenced derived type; a quick no-op else. 2658 auto &instantiatable{*const_cast<DerivedTypeSpec *>(derived)}; 2659 instantiatable.Instantiate(currScope()); 2660 } 2661 } 2662 return type; 2663 } 2664 2665 void ScopeHandler::CheckEntryDummyUse(SourceName source, Symbol *symbol) { 2666 if (!inSpecificationPart_ && symbol && 2667 symbol->test(Symbol::Flag::EntryDummyArgument)) { 2668 Say(source, 2669 "Dummy argument '%s' may not be used before its ENTRY statement"_err_en_US, 2670 symbol->name()); 2671 symbol->set(Symbol::Flag::EntryDummyArgument, false); 2672 } 2673 } 2674 2675 // Convert symbol to be a ObjectEntity or return false if it can't be. 2676 bool ScopeHandler::ConvertToObjectEntity(Symbol &symbol) { 2677 if (symbol.has<ObjectEntityDetails>()) { 2678 // nothing to do 2679 } else if (symbol.has<UnknownDetails>()) { 2680 // These are attributes that a name could have picked up from 2681 // an attribute statement or type declaration statement. 2682 if (symbol.attrs().HasAny({Attr::EXTERNAL, Attr::INTRINSIC})) { 2683 return false; 2684 } 2685 symbol.set_details(ObjectEntityDetails{}); 2686 } else if (auto *details{symbol.detailsIf<EntityDetails>()}) { 2687 if (symbol.attrs().HasAny({Attr::EXTERNAL, Attr::INTRINSIC})) { 2688 return false; 2689 } 2690 funcResultStack_.CompleteTypeIfFunctionResult(symbol); 2691 symbol.set_details(ObjectEntityDetails{std::move(*details)}); 2692 } else if (auto *useDetails{symbol.detailsIf<UseDetails>()}) { 2693 return useDetails->symbol().has<ObjectEntityDetails>(); 2694 } else if (auto *hostDetails{symbol.detailsIf<HostAssocDetails>()}) { 2695 return hostDetails->symbol().has<ObjectEntityDetails>(); 2696 } else { 2697 return false; 2698 } 2699 return true; 2700 } 2701 // Convert symbol to be a ProcEntity or return false if it can't be. 2702 bool ScopeHandler::ConvertToProcEntity( 2703 Symbol &symbol, std::optional<SourceName> usedHere) { 2704 if (symbol.has<ProcEntityDetails>()) { 2705 } else if (symbol.has<UnknownDetails>()) { 2706 symbol.set_details(ProcEntityDetails{}); 2707 } else if (auto *details{symbol.detailsIf<EntityDetails>()}) { 2708 if (IsFunctionResult(symbol) && 2709 !(IsPointer(symbol) && symbol.attrs().test(Attr::EXTERNAL))) { 2710 // Don't turn function result into a procedure pointer unless both 2711 // POINTER and EXTERNAL 2712 return false; 2713 } 2714 funcResultStack_.CompleteTypeIfFunctionResult(symbol); 2715 symbol.set_details(ProcEntityDetails{std::move(*details)}); 2716 if (symbol.GetType() && !symbol.test(Symbol::Flag::Implicit)) { 2717 CHECK(!symbol.test(Symbol::Flag::Subroutine)); 2718 symbol.set(Symbol::Flag::Function); 2719 } 2720 } else if (auto *useDetails{symbol.detailsIf<UseDetails>()}) { 2721 return useDetails->symbol().has<ProcEntityDetails>(); 2722 } else if (auto *hostDetails{symbol.detailsIf<HostAssocDetails>()}) { 2723 return hostDetails->symbol().has<ProcEntityDetails>(); 2724 } else { 2725 return false; 2726 } 2727 auto &proc{symbol.get<ProcEntityDetails>()}; 2728 if (usedHere && !proc.usedAsProcedureHere()) { 2729 proc.set_usedAsProcedureHere(*usedHere); 2730 } 2731 return true; 2732 } 2733 2734 const DeclTypeSpec &ScopeHandler::MakeNumericType( 2735 TypeCategory category, const std::optional<parser::KindSelector> &kind) { 2736 KindExpr value{GetKindParamExpr(category, kind)}; 2737 if (auto known{evaluate::ToInt64(value)}) { 2738 return MakeNumericType(category, static_cast<int>(*known)); 2739 } else { 2740 return currScope_->MakeNumericType(category, std::move(value)); 2741 } 2742 } 2743 2744 const DeclTypeSpec &ScopeHandler::MakeNumericType( 2745 TypeCategory category, int kind) { 2746 return context().MakeNumericType(category, kind); 2747 } 2748 2749 const DeclTypeSpec &ScopeHandler::MakeLogicalType( 2750 const std::optional<parser::KindSelector> &kind) { 2751 KindExpr value{GetKindParamExpr(TypeCategory::Logical, kind)}; 2752 if (auto known{evaluate::ToInt64(value)}) { 2753 return MakeLogicalType(static_cast<int>(*known)); 2754 } else { 2755 return currScope_->MakeLogicalType(std::move(value)); 2756 } 2757 } 2758 2759 const DeclTypeSpec &ScopeHandler::MakeLogicalType(int kind) { 2760 return context().MakeLogicalType(kind); 2761 } 2762 2763 void ScopeHandler::NotePossibleBadForwardRef(const parser::Name &name) { 2764 if (inSpecificationPart_ && !deferImplicitTyping_ && name.symbol) { 2765 auto kind{currScope().kind()}; 2766 if ((kind == Scope::Kind::Subprogram && !currScope().IsStmtFunction()) || 2767 kind == Scope::Kind::BlockConstruct) { 2768 bool isHostAssociated{&name.symbol->owner() == &currScope() 2769 ? name.symbol->has<HostAssocDetails>() 2770 : name.symbol->owner().Contains(currScope())}; 2771 if (isHostAssociated) { 2772 specPartState_.forwardRefs.insert(name.source); 2773 } 2774 } 2775 } 2776 } 2777 2778 std::optional<SourceName> ScopeHandler::HadForwardRef( 2779 const Symbol &symbol) const { 2780 auto iter{specPartState_.forwardRefs.find(symbol.name())}; 2781 if (iter != specPartState_.forwardRefs.end()) { 2782 return *iter; 2783 } 2784 return std::nullopt; 2785 } 2786 2787 bool ScopeHandler::CheckPossibleBadForwardRef(const Symbol &symbol) { 2788 if (!context().HasError(symbol)) { 2789 if (auto fwdRef{HadForwardRef(symbol)}) { 2790 const Symbol *outer{symbol.owner().FindSymbol(symbol.name())}; 2791 if (outer && symbol.has<UseDetails>() && 2792 &symbol.GetUltimate() == &outer->GetUltimate()) { 2793 // e.g. IMPORT of host's USE association 2794 return false; 2795 } 2796 Say(*fwdRef, 2797 "Forward reference to '%s' is not allowed in the same specification part"_err_en_US, 2798 *fwdRef) 2799 .Attach(symbol.name(), "Later declaration of '%s'"_en_US, *fwdRef); 2800 context().SetError(symbol); 2801 return true; 2802 } 2803 if ((IsDummy(symbol) || FindCommonBlockContaining(symbol)) && 2804 isImplicitNoneType() && symbol.test(Symbol::Flag::Implicit) && 2805 !context().HasError(symbol)) { 2806 // Dummy or COMMON was implicitly typed despite IMPLICIT NONE(TYPE) in 2807 // ApplyImplicitRules() due to use in a specification expression, 2808 // and no explicit type declaration appeared later. 2809 Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US); 2810 context().SetError(symbol); 2811 return true; 2812 } 2813 } 2814 return false; 2815 } 2816 2817 void ScopeHandler::MakeExternal(Symbol &symbol) { 2818 if (!symbol.attrs().test(Attr::EXTERNAL)) { 2819 SetImplicitAttr(symbol, Attr::EXTERNAL); 2820 if (symbol.attrs().test(Attr::INTRINSIC)) { // C840 2821 Say(symbol.name(), 2822 "Symbol '%s' cannot have both EXTERNAL and INTRINSIC attributes"_err_en_US, 2823 symbol.name()); 2824 } 2825 } 2826 } 2827 2828 bool ScopeHandler::CheckDuplicatedAttr( 2829 SourceName name, Symbol &symbol, Attr attr) { 2830 if (attr == Attr::SAVE) { 2831 // checked elsewhere 2832 } else if (symbol.attrs().test(attr)) { // C815 2833 if (symbol.implicitAttrs().test(attr)) { 2834 // Implied attribute is now confirmed explicitly 2835 symbol.implicitAttrs().reset(attr); 2836 } else { 2837 Say(name, "%s attribute was already specified on '%s'"_err_en_US, 2838 EnumToString(attr), name); 2839 return false; 2840 } 2841 } 2842 return true; 2843 } 2844 2845 bool ScopeHandler::CheckDuplicatedAttrs( 2846 SourceName name, Symbol &symbol, Attrs attrs) { 2847 bool ok{true}; 2848 attrs.IterateOverMembers( 2849 [&](Attr x) { ok &= CheckDuplicatedAttr(name, symbol, x); }); 2850 return ok; 2851 } 2852 2853 void ScopeHandler::SetCUDADataAttr(SourceName source, Symbol &symbol, 2854 std::optional<common::CUDADataAttr> attr) { 2855 if (attr) { 2856 ConvertToObjectEntity(symbol); 2857 if (auto *object{symbol.detailsIf<ObjectEntityDetails>()}) { 2858 if (*attr != object->cudaDataAttr().value_or(*attr)) { 2859 Say(source, 2860 "'%s' already has another CUDA data attribute ('%s')"_err_en_US, 2861 symbol.name(), 2862 std::string{common::EnumToString(*object->cudaDataAttr())}.c_str()); 2863 } else { 2864 object->set_cudaDataAttr(attr); 2865 } 2866 } else { 2867 Say(source, 2868 "'%s' is not an object and may not have a CUDA data attribute"_err_en_US, 2869 symbol.name()); 2870 } 2871 } 2872 } 2873 2874 // ModuleVisitor implementation 2875 2876 bool ModuleVisitor::Pre(const parser::Only &x) { 2877 common::visit(common::visitors{ 2878 [&](const Indirection<parser::GenericSpec> &generic) { 2879 GenericSpecInfo genericSpecInfo{generic.value()}; 2880 AddUseOnly(genericSpecInfo.symbolName()); 2881 AddUse(genericSpecInfo); 2882 }, 2883 [&](const parser::Name &name) { 2884 AddUseOnly(name.source); 2885 Resolve(name, AddUse(name.source, name.source).use); 2886 }, 2887 [&](const parser::Rename &rename) { Walk(rename); }, 2888 }, 2889 x.u); 2890 return false; 2891 } 2892 2893 void ModuleVisitor::CollectUseRenames(const parser::UseStmt &useStmt) { 2894 auto doRename{[&](const parser::Rename &rename) { 2895 if (const auto *names{std::get_if<parser::Rename::Names>(&rename.u)}) { 2896 AddUseRename(std::get<1>(names->t).source, useStmt.moduleName.source); 2897 } 2898 }}; 2899 common::visit( 2900 common::visitors{ 2901 [&](const std::list<parser::Rename> &renames) { 2902 for (const auto &rename : renames) { 2903 doRename(rename); 2904 } 2905 }, 2906 [&](const std::list<parser::Only> &onlys) { 2907 for (const auto &only : onlys) { 2908 if (const auto *rename{std::get_if<parser::Rename>(&only.u)}) { 2909 doRename(*rename); 2910 } 2911 } 2912 }, 2913 }, 2914 useStmt.u); 2915 } 2916 2917 bool ModuleVisitor::Pre(const parser::Rename::Names &x) { 2918 const auto &localName{std::get<0>(x.t)}; 2919 const auto &useName{std::get<1>(x.t)}; 2920 SymbolRename rename{AddUse(localName.source, useName.source)}; 2921 Resolve(useName, rename.use); 2922 Resolve(localName, rename.local); 2923 return false; 2924 } 2925 bool ModuleVisitor::Pre(const parser::Rename::Operators &x) { 2926 const parser::DefinedOpName &local{std::get<0>(x.t)}; 2927 const parser::DefinedOpName &use{std::get<1>(x.t)}; 2928 GenericSpecInfo localInfo{local}; 2929 GenericSpecInfo useInfo{use}; 2930 if (IsIntrinsicOperator(context(), local.v.source)) { 2931 Say(local.v, 2932 "Intrinsic operator '%s' may not be used as a defined operator"_err_en_US); 2933 } else if (IsLogicalConstant(context(), local.v.source)) { 2934 Say(local.v, 2935 "Logical constant '%s' may not be used as a defined operator"_err_en_US); 2936 } else { 2937 SymbolRename rename{AddUse(localInfo.symbolName(), useInfo.symbolName())}; 2938 useInfo.Resolve(rename.use); 2939 localInfo.Resolve(rename.local); 2940 } 2941 return false; 2942 } 2943 2944 // Set useModuleScope_ to the Scope of the module being used. 2945 bool ModuleVisitor::Pre(const parser::UseStmt &x) { 2946 std::optional<bool> isIntrinsic; 2947 if (x.nature) { 2948 isIntrinsic = *x.nature == parser::UseStmt::ModuleNature::Intrinsic; 2949 } else if (currScope().IsModule() && currScope().symbol() && 2950 currScope().symbol()->attrs().test(Attr::INTRINSIC)) { 2951 // Intrinsic modules USE only other intrinsic modules 2952 isIntrinsic = true; 2953 } 2954 useModuleScope_ = FindModule(x.moduleName, isIntrinsic); 2955 if (!useModuleScope_) { 2956 return false; 2957 } 2958 AddAndCheckModuleUse(x.moduleName.source, 2959 useModuleScope_->parent().kind() == Scope::Kind::IntrinsicModules); 2960 // use the name from this source file 2961 useModuleScope_->symbol()->ReplaceName(x.moduleName.source); 2962 return true; 2963 } 2964 2965 void ModuleVisitor::Post(const parser::UseStmt &x) { 2966 if (const auto *list{std::get_if<std::list<parser::Rename>>(&x.u)}) { 2967 // Not a use-only: collect the names that were used in renames, 2968 // then add a use for each public name that was not renamed. 2969 std::set<SourceName> useNames; 2970 for (const auto &rename : *list) { 2971 common::visit(common::visitors{ 2972 [&](const parser::Rename::Names &names) { 2973 useNames.insert(std::get<1>(names.t).source); 2974 }, 2975 [&](const parser::Rename::Operators &ops) { 2976 useNames.insert(std::get<1>(ops.t).v.source); 2977 }, 2978 }, 2979 rename.u); 2980 } 2981 for (const auto &[name, symbol] : *useModuleScope_) { 2982 if (symbol->attrs().test(Attr::PUBLIC) && !IsUseRenamed(symbol->name()) && 2983 (!symbol->implicitAttrs().test(Attr::INTRINSIC) || 2984 symbol->has<UseDetails>()) && 2985 !symbol->has<MiscDetails>() && useNames.count(name) == 0) { 2986 SourceName location{x.moduleName.source}; 2987 if (auto *localSymbol{FindInScope(name)}) { 2988 DoAddUse(location, localSymbol->name(), *localSymbol, *symbol); 2989 } else { 2990 DoAddUse(location, location, CopySymbol(name, *symbol), *symbol); 2991 } 2992 } 2993 } 2994 } 2995 useModuleScope_ = nullptr; 2996 } 2997 2998 ModuleVisitor::SymbolRename ModuleVisitor::AddUse( 2999 const SourceName &localName, const SourceName &useName) { 3000 return AddUse(localName, useName, FindInScope(*useModuleScope_, useName)); 3001 } 3002 3003 ModuleVisitor::SymbolRename ModuleVisitor::AddUse( 3004 const SourceName &localName, const SourceName &useName, Symbol *useSymbol) { 3005 if (!useModuleScope_) { 3006 return {}; // error occurred finding module 3007 } 3008 if (!useSymbol) { 3009 Say(useName, "'%s' not found in module '%s'"_err_en_US, MakeOpName(useName), 3010 useModuleScope_->GetName().value()); 3011 return {}; 3012 } 3013 if (useSymbol->attrs().test(Attr::PRIVATE) && 3014 !FindModuleFileContaining(currScope())) { 3015 // Privacy is not enforced in module files so that generic interfaces 3016 // can be resolved to private specific procedures in specification 3017 // expressions. 3018 Say(useName, "'%s' is PRIVATE in '%s'"_err_en_US, MakeOpName(useName), 3019 useModuleScope_->GetName().value()); 3020 return {}; 3021 } 3022 auto &localSymbol{MakeSymbol(localName)}; 3023 DoAddUse(useName, localName, localSymbol, *useSymbol); 3024 return {&localSymbol, useSymbol}; 3025 } 3026 3027 // symbol must be either a Use or a Generic formed by merging two uses. 3028 // Convert it to a UseError with this additional location. 3029 static bool ConvertToUseError( 3030 Symbol &symbol, const SourceName &location, const Scope &module) { 3031 const auto *useDetails{symbol.detailsIf<UseDetails>()}; 3032 if (!useDetails) { 3033 if (auto *genericDetails{symbol.detailsIf<GenericDetails>()}) { 3034 if (!genericDetails->uses().empty()) { 3035 useDetails = &genericDetails->uses().at(0)->get<UseDetails>(); 3036 } 3037 } 3038 } 3039 if (useDetails) { 3040 symbol.set_details( 3041 UseErrorDetails{*useDetails}.add_occurrence(location, module)); 3042 return true; 3043 } else { 3044 return false; 3045 } 3046 } 3047 3048 void ModuleVisitor::DoAddUse(SourceName location, SourceName localName, 3049 Symbol &originalLocal, const Symbol &useSymbol) { 3050 Symbol *localSymbol{&originalLocal}; 3051 if (auto *details{localSymbol->detailsIf<UseErrorDetails>()}) { 3052 details->add_occurrence(location, *useModuleScope_); 3053 return; 3054 } 3055 const Symbol &useUltimate{useSymbol.GetUltimate()}; 3056 const auto *useGeneric{useUltimate.detailsIf<GenericDetails>()}; 3057 if (localSymbol->has<UnknownDetails>()) { 3058 if (useGeneric && 3059 ((useGeneric->specific() && 3060 IsProcedurePointer(*useGeneric->specific())) || 3061 (useGeneric->derivedType() && 3062 useUltimate.name() != localSymbol->name()))) { 3063 // We are use-associating a generic that either shadows a procedure 3064 // pointer or shadows a derived type with a distinct name. 3065 // Local references that might be made to the procedure pointer should 3066 // use a UseDetails symbol for proper data addressing, and a derived 3067 // type needs to be in scope with its local name. So create an 3068 // empty local generic now into which the use-associated generic may 3069 // be copied. 3070 localSymbol->set_details(GenericDetails{}); 3071 localSymbol->get<GenericDetails>().set_kind(useGeneric->kind()); 3072 } else { // just create UseDetails 3073 localSymbol->set_details(UseDetails{localName, useSymbol}); 3074 localSymbol->attrs() = 3075 useSymbol.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE, Attr::SAVE}; 3076 localSymbol->implicitAttrs() = 3077 localSymbol->attrs() & Attrs{Attr::ASYNCHRONOUS, Attr::VOLATILE}; 3078 localSymbol->flags() = useSymbol.flags(); 3079 return; 3080 } 3081 } 3082 3083 Symbol &localUltimate{localSymbol->GetUltimate()}; 3084 if (&localUltimate == &useUltimate) { 3085 // use-associating the same symbol again -- ok 3086 return; 3087 } 3088 3089 // There are many possible combinations of symbol types that could arrive 3090 // with the same (local) name vie USE association from distinct modules. 3091 // Fortran allows a generic interface to share its name with a derived type, 3092 // or with the name of a non-generic procedure (which should be one of the 3093 // generic's specific procedures). Implementing all these possibilities is 3094 // complicated. 3095 // Error cases are converted into UseErrorDetails symbols to trigger error 3096 // messages when/if bad combinations are actually used later in the program. 3097 // The error cases are: 3098 // - two distinct derived types 3099 // - two distinct non-generic procedures 3100 // - a generic and a non-generic that is not already one of its specifics 3101 // - anything other than a derived type, non-generic procedure, or 3102 // generic procedure being combined with something other than an 3103 // prior USE association of itself 3104 auto *localGeneric{localUltimate.detailsIf<GenericDetails>()}; 3105 Symbol *localDerivedType{nullptr}; 3106 if (localUltimate.has<DerivedTypeDetails>()) { 3107 localDerivedType = &localUltimate; 3108 } else if (localGeneric) { 3109 if (auto *dt{localGeneric->derivedType()}; 3110 dt && !dt->attrs().test(Attr::PRIVATE)) { 3111 localDerivedType = dt; 3112 } 3113 } 3114 const Symbol *useDerivedType{nullptr}; 3115 if (useUltimate.has<DerivedTypeDetails>()) { 3116 useDerivedType = &useUltimate; 3117 } else if (useGeneric) { 3118 if (const auto *dt{useGeneric->derivedType()}; 3119 dt && !dt->attrs().test(Attr::PRIVATE)) { 3120 useDerivedType = dt; 3121 } 3122 } 3123 3124 Symbol *localProcedure{nullptr}; 3125 if (localGeneric) { 3126 if (localGeneric->specific() && 3127 !localGeneric->specific()->attrs().test(Attr::PRIVATE)) { 3128 localProcedure = localGeneric->specific(); 3129 } 3130 } else if (IsProcedure(localUltimate)) { 3131 localProcedure = &localUltimate; 3132 } 3133 const Symbol *useProcedure{nullptr}; 3134 if (useGeneric) { 3135 if (useGeneric->specific() && 3136 !useGeneric->specific()->attrs().test(Attr::PRIVATE)) { 3137 useProcedure = useGeneric->specific(); 3138 } 3139 } else if (IsProcedure(useUltimate)) { 3140 useProcedure = &useUltimate; 3141 } 3142 3143 // Creates a UseErrorDetails symbol in the current scope for a 3144 // current UseDetails symbol, but leaves the UseDetails in the 3145 // scope's name map. 3146 auto CreateLocalUseError{[&]() { 3147 EraseSymbol(*localSymbol); 3148 CHECK(localSymbol->has<UseDetails>()); 3149 UseErrorDetails details{localSymbol->get<UseDetails>()}; 3150 details.add_occurrence(location, *useModuleScope_); 3151 Symbol *newSymbol{&MakeSymbol(localName, Attrs{}, std::move(details))}; 3152 // Restore *localSymbol in currScope 3153 auto iter{currScope().find(localName)}; 3154 CHECK(iter != currScope().end() && &*iter->second == newSymbol); 3155 iter->second = MutableSymbolRef{*localSymbol}; 3156 return newSymbol; 3157 }}; 3158 3159 // When two derived types arrived, try to combine them. 3160 const Symbol *combinedDerivedType{nullptr}; 3161 if (!useDerivedType) { 3162 combinedDerivedType = localDerivedType; 3163 } else if (!localDerivedType) { 3164 if (useDerivedType->name() == localName) { 3165 combinedDerivedType = useDerivedType; 3166 } else { 3167 combinedDerivedType = 3168 &currScope().MakeSymbol(localSymbol->name(), useDerivedType->attrs(), 3169 UseDetails{localSymbol->name(), *useDerivedType}); 3170 } 3171 } else if (&localDerivedType->GetUltimate() == 3172 &useDerivedType->GetUltimate()) { 3173 combinedDerivedType = localDerivedType; 3174 } else { 3175 const Scope *localScope{localDerivedType->GetUltimate().scope()}; 3176 const Scope *useScope{useDerivedType->GetUltimate().scope()}; 3177 if (localScope && useScope && localScope->derivedTypeSpec() && 3178 useScope->derivedTypeSpec() && 3179 evaluate::AreSameDerivedType( 3180 *localScope->derivedTypeSpec(), *useScope->derivedTypeSpec())) { 3181 combinedDerivedType = localDerivedType; 3182 } else { 3183 // Create a local UseErrorDetails for the ambiguous derived type 3184 if (localGeneric) { 3185 combinedDerivedType = CreateLocalUseError(); 3186 } else { 3187 ConvertToUseError(*localSymbol, location, *useModuleScope_); 3188 combinedDerivedType = localSymbol; 3189 } 3190 } 3191 if (!localGeneric && !useGeneric) { 3192 return; // both symbols are derived types; done 3193 } 3194 } 3195 3196 auto AreSameProcedure{[&](const Symbol &p1, const Symbol &p2) { 3197 if (&p1 == &p2) { 3198 return true; 3199 } else if (p1.name() != p2.name()) { 3200 return false; 3201 } else if (p1.attrs().test(Attr::INTRINSIC) || 3202 p2.attrs().test(Attr::INTRINSIC)) { 3203 return p1.attrs().test(Attr::INTRINSIC) && 3204 p2.attrs().test(Attr::INTRINSIC); 3205 } else if (!IsProcedure(p1) || !IsProcedure(p2)) { 3206 return false; 3207 } else if (IsPointer(p1) || IsPointer(p2)) { 3208 return false; 3209 } else if (const auto *subp{p1.detailsIf<SubprogramDetails>()}; 3210 subp && !subp->isInterface()) { 3211 return false; // defined in module, not an external 3212 } else if (const auto *subp{p2.detailsIf<SubprogramDetails>()}; 3213 subp && !subp->isInterface()) { 3214 return false; // defined in module, not an external 3215 } else { 3216 // Both are external interfaces, perhaps to the same procedure 3217 auto class1{ClassifyProcedure(p1)}; 3218 auto class2{ClassifyProcedure(p2)}; 3219 if (class1 == ProcedureDefinitionClass::External && 3220 class2 == ProcedureDefinitionClass::External) { 3221 auto chars1{evaluate::characteristics::Procedure::Characterize( 3222 p1, GetFoldingContext())}; 3223 auto chars2{evaluate::characteristics::Procedure::Characterize( 3224 p2, GetFoldingContext())}; 3225 // same procedure interface defined identically in two modules? 3226 return chars1 && chars2 && *chars1 == *chars2; 3227 } else { 3228 return false; 3229 } 3230 } 3231 }}; 3232 3233 // When two non-generic procedures arrived, try to combine them. 3234 const Symbol *combinedProcedure{nullptr}; 3235 if (!localProcedure) { 3236 combinedProcedure = useProcedure; 3237 } else if (!useProcedure) { 3238 combinedProcedure = localProcedure; 3239 } else { 3240 if (AreSameProcedure( 3241 localProcedure->GetUltimate(), useProcedure->GetUltimate())) { 3242 if (!localGeneric && !useGeneric) { 3243 return; // both symbols are non-generic procedures 3244 } 3245 combinedProcedure = localProcedure; 3246 } 3247 } 3248 3249 // Prepare to merge generics 3250 bool cantCombine{false}; 3251 if (localGeneric) { 3252 if (useGeneric || useDerivedType) { 3253 } else if (&useUltimate == &BypassGeneric(localUltimate).GetUltimate()) { 3254 return; // nothing to do; used subprogram is local's specific 3255 } else if (useUltimate.attrs().test(Attr::INTRINSIC) && 3256 useUltimate.name() == localSymbol->name()) { 3257 return; // local generic can extend intrinsic 3258 } else { 3259 for (const auto &ref : localGeneric->specificProcs()) { 3260 if (&ref->GetUltimate() == &useUltimate) { 3261 return; // used non-generic is already a specific of local generic 3262 } 3263 } 3264 cantCombine = true; 3265 } 3266 } else if (useGeneric) { 3267 if (localDerivedType) { 3268 } else if (&localUltimate == &BypassGeneric(useUltimate).GetUltimate() || 3269 (localSymbol->attrs().test(Attr::INTRINSIC) && 3270 localUltimate.name() == useUltimate.name())) { 3271 // Local is the specific of the used generic or an intrinsic with the 3272 // same name; replace it. 3273 EraseSymbol(*localSymbol); 3274 Symbol &newSymbol{MakeSymbol(localName, 3275 useUltimate.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE}, 3276 UseDetails{localName, useUltimate})}; 3277 newSymbol.flags() = useSymbol.flags(); 3278 return; 3279 } else { 3280 for (const auto &ref : useGeneric->specificProcs()) { 3281 if (&ref->GetUltimate() == &localUltimate) { 3282 return; // local non-generic is already a specific of used generic 3283 } 3284 } 3285 cantCombine = true; 3286 } 3287 } else { 3288 cantCombine = true; 3289 } 3290 3291 // If symbols are not combinable, create a use error. 3292 if (cantCombine) { 3293 if (!ConvertToUseError(*localSymbol, location, *useModuleScope_)) { 3294 Say(location, 3295 "Cannot use-associate '%s'; it is already declared in this scope"_err_en_US, 3296 localName) 3297 .Attach(localSymbol->name(), "Previous declaration of '%s'"_en_US, 3298 localName); 3299 } 3300 return; 3301 } 3302 3303 // At this point, there must be at least one generic interface. 3304 CHECK(localGeneric || (useGeneric && (localDerivedType || localProcedure))); 3305 3306 // Ensure that a use-associated specific procedure that is a procedure 3307 // pointer is properly represented as a USE association of an entity. 3308 if (IsProcedurePointer(useProcedure)) { 3309 Symbol &combined{currScope().MakeSymbol(localSymbol->name(), 3310 useProcedure->attrs(), UseDetails{localName, *useProcedure})}; 3311 combined.flags() |= useProcedure->flags(); 3312 combinedProcedure = &combined; 3313 } 3314 3315 if (localGeneric) { 3316 // Create a local copy of a previously use-associated generic so that 3317 // it can be locally extended without corrupting the original. 3318 if (localSymbol->has<UseDetails>()) { 3319 GenericDetails generic; 3320 generic.CopyFrom(DEREF(localGeneric)); 3321 EraseSymbol(*localSymbol); 3322 Symbol &newSymbol{MakeSymbol( 3323 localSymbol->name(), localSymbol->attrs(), std::move(generic))}; 3324 newSymbol.flags() = localSymbol->flags(); 3325 localGeneric = &newSymbol.get<GenericDetails>(); 3326 localGeneric->AddUse(*localSymbol); 3327 localSymbol = &newSymbol; 3328 } 3329 if (useGeneric) { 3330 // Combine two use-associated generics 3331 localSymbol->attrs() = 3332 useSymbol.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE}; 3333 localSymbol->flags() = useSymbol.flags(); 3334 AddGenericUse(*localGeneric, localName, useUltimate); 3335 localGeneric->clear_derivedType(); 3336 localGeneric->CopyFrom(*useGeneric); 3337 } 3338 localGeneric->clear_derivedType(); 3339 if (combinedDerivedType) { 3340 localGeneric->set_derivedType(*const_cast<Symbol *>(combinedDerivedType)); 3341 } 3342 localGeneric->clear_specific(); 3343 if (combinedProcedure) { 3344 localGeneric->set_specific(*const_cast<Symbol *>(combinedProcedure)); 3345 } 3346 } else { 3347 CHECK(localSymbol->has<UseDetails>()); 3348 // Create a local copy of the use-associated generic, then extend it 3349 // with the combined derived type &/or non-generic procedure. 3350 GenericDetails generic; 3351 generic.CopyFrom(*useGeneric); 3352 EraseSymbol(*localSymbol); 3353 Symbol &newSymbol{MakeSymbol(localName, 3354 useUltimate.attrs() & ~Attrs{Attr::PUBLIC, Attr::PRIVATE}, 3355 std::move(generic))}; 3356 newSymbol.flags() = useUltimate.flags(); 3357 auto &newUseGeneric{newSymbol.get<GenericDetails>()}; 3358 AddGenericUse(newUseGeneric, localName, useUltimate); 3359 newUseGeneric.AddUse(*localSymbol); 3360 if (combinedDerivedType) { 3361 if (const auto *oldDT{newUseGeneric.derivedType()}) { 3362 CHECK(&oldDT->GetUltimate() == &combinedDerivedType->GetUltimate()); 3363 } else { 3364 newUseGeneric.set_derivedType( 3365 *const_cast<Symbol *>(combinedDerivedType)); 3366 } 3367 } 3368 if (combinedProcedure) { 3369 newUseGeneric.set_specific(*const_cast<Symbol *>(combinedProcedure)); 3370 } 3371 } 3372 } 3373 3374 void ModuleVisitor::AddUse(const GenericSpecInfo &info) { 3375 if (useModuleScope_) { 3376 const auto &name{info.symbolName()}; 3377 auto rename{AddUse(name, name, FindInScope(*useModuleScope_, name))}; 3378 info.Resolve(rename.use); 3379 } 3380 } 3381 3382 // Create a UseDetails symbol for this USE and add it to generic 3383 Symbol &ModuleVisitor::AddGenericUse( 3384 GenericDetails &generic, const SourceName &name, const Symbol &useSymbol) { 3385 Symbol &newSymbol{ 3386 currScope().MakeSymbol(name, {}, UseDetails{name, useSymbol})}; 3387 generic.AddUse(newSymbol); 3388 return newSymbol; 3389 } 3390 3391 // Enforce F'2023 C1406 as a warning 3392 void ModuleVisitor::AddAndCheckModuleUse(SourceName name, bool isIntrinsic) { 3393 if (isIntrinsic) { 3394 if (auto iter{nonIntrinsicUses_.find(name)}; 3395 iter != nonIntrinsicUses_.end()) { 3396 if (auto *msg{context().Warn(common::LanguageFeature::MiscUseExtensions, 3397 name, 3398 "Should not USE the intrinsic module '%s' in the same scope as a USE of the non-intrinsic module"_port_en_US, 3399 name)}) { 3400 msg->Attach(*iter, "Previous USE of '%s'"_en_US, *iter); 3401 } 3402 } 3403 intrinsicUses_.insert(name); 3404 } else { 3405 if (auto iter{intrinsicUses_.find(name)}; iter != intrinsicUses_.end()) { 3406 if (auto *msg{context().Warn(common::LanguageFeature::MiscUseExtensions, 3407 name, 3408 "Should not USE the non-intrinsic module '%s' in the same scope as a USE of the intrinsic module"_port_en_US, 3409 name)}) { 3410 msg->Attach(*iter, "Previous USE of '%s'"_en_US, *iter); 3411 } 3412 } 3413 nonIntrinsicUses_.insert(name); 3414 } 3415 } 3416 3417 bool ModuleVisitor::BeginSubmodule( 3418 const parser::Name &name, const parser::ParentIdentifier &parentId) { 3419 const auto &ancestorName{std::get<parser::Name>(parentId.t)}; 3420 Scope *parentScope{nullptr}; 3421 Scope *ancestor{FindModule(ancestorName, false /*not intrinsic*/)}; 3422 if (ancestor) { 3423 if (const auto &parentName{ 3424 std::get<std::optional<parser::Name>>(parentId.t)}) { 3425 parentScope = FindModule(*parentName, false /*not intrinsic*/, ancestor); 3426 } else { 3427 parentScope = ancestor; 3428 } 3429 } 3430 if (parentScope) { 3431 PushScope(*parentScope); 3432 } else { 3433 // Error recovery: there's no ancestor scope, so create a dummy one to 3434 // hold the submodule's scope. 3435 SourceName dummyName{context().GetTempName(currScope())}; 3436 Symbol &dummySymbol{MakeSymbol(dummyName, Attrs{}, ModuleDetails{false})}; 3437 PushScope(Scope::Kind::Module, &dummySymbol); 3438 parentScope = &currScope(); 3439 } 3440 BeginModule(name, true); 3441 set_inheritFromParent(false); // submodules don't inherit parents' implicits 3442 if (ancestor && !ancestor->AddSubmodule(name.source, currScope())) { 3443 Say(name, "Module '%s' already has a submodule named '%s'"_err_en_US, 3444 ancestorName.source, name.source); 3445 } 3446 return true; 3447 } 3448 3449 void ModuleVisitor::BeginModule(const parser::Name &name, bool isSubmodule) { 3450 // Submodule symbols are not visible in their parents' scopes. 3451 Symbol &symbol{isSubmodule ? Resolve(name, 3452 currScope().MakeSymbol(name.source, Attrs{}, 3453 ModuleDetails{true})) 3454 : MakeSymbol(name, ModuleDetails{false})}; 3455 auto &details{symbol.get<ModuleDetails>()}; 3456 PushScope(Scope::Kind::Module, &symbol); 3457 details.set_scope(&currScope()); 3458 prevAccessStmt_ = std::nullopt; 3459 } 3460 3461 // Find a module or submodule by name and return its scope. 3462 // If ancestor is present, look for a submodule of that ancestor module. 3463 // May have to read a .mod file to find it. 3464 // If an error occurs, report it and return nullptr. 3465 Scope *ModuleVisitor::FindModule(const parser::Name &name, 3466 std::optional<bool> isIntrinsic, Scope *ancestor) { 3467 ModFileReader reader{context()}; 3468 Scope *scope{ 3469 reader.Read(name.source, isIntrinsic, ancestor, /*silent=*/false)}; 3470 if (!scope) { 3471 return nullptr; 3472 } 3473 if (DoesScopeContain(scope, currScope())) { // 14.2.2(1) 3474 Say(name, "Module '%s' cannot USE itself"_err_en_US); 3475 } 3476 Resolve(name, scope->symbol()); 3477 return scope; 3478 } 3479 3480 void ModuleVisitor::ApplyDefaultAccess() { 3481 const auto *moduleDetails{ 3482 DEREF(currScope().symbol()).detailsIf<ModuleDetails>()}; 3483 CHECK(moduleDetails); 3484 Attr defaultAttr{ 3485 DEREF(moduleDetails).isDefaultPrivate() ? Attr::PRIVATE : Attr::PUBLIC}; 3486 for (auto &pair : currScope()) { 3487 Symbol &symbol{*pair.second}; 3488 if (!symbol.attrs().HasAny({Attr::PUBLIC, Attr::PRIVATE})) { 3489 Attr attr{defaultAttr}; 3490 if (auto *generic{symbol.detailsIf<GenericDetails>()}) { 3491 if (generic->derivedType()) { 3492 // If a generic interface has a derived type of the same 3493 // name that has an explicit accessibility attribute, then 3494 // the generic must have the same accessibility. 3495 if (generic->derivedType()->attrs().test(Attr::PUBLIC)) { 3496 attr = Attr::PUBLIC; 3497 } else if (generic->derivedType()->attrs().test(Attr::PRIVATE)) { 3498 attr = Attr::PRIVATE; 3499 } 3500 } 3501 } 3502 SetImplicitAttr(symbol, attr); 3503 } 3504 } 3505 } 3506 3507 // InterfaceVistor implementation 3508 3509 bool InterfaceVisitor::Pre(const parser::InterfaceStmt &x) { 3510 bool isAbstract{std::holds_alternative<parser::Abstract>(x.u)}; 3511 genericInfo_.emplace(/*isInterface*/ true, isAbstract); 3512 return BeginAttrs(); 3513 } 3514 3515 void InterfaceVisitor::Post(const parser::InterfaceStmt &) { EndAttrs(); } 3516 3517 void InterfaceVisitor::Post(const parser::EndInterfaceStmt &) { 3518 ResolveNewSpecifics(); 3519 genericInfo_.pop(); 3520 } 3521 3522 // Create a symbol in genericSymbol_ for this GenericSpec. 3523 bool InterfaceVisitor::Pre(const parser::GenericSpec &x) { 3524 if (auto *symbol{FindInScope(GenericSpecInfo{x}.symbolName())}) { 3525 SetGenericSymbol(*symbol); 3526 } 3527 return false; 3528 } 3529 3530 bool InterfaceVisitor::Pre(const parser::ProcedureStmt &x) { 3531 if (!isGeneric()) { 3532 Say("A PROCEDURE statement is only allowed in a generic interface block"_err_en_US); 3533 } else { 3534 auto kind{std::get<parser::ProcedureStmt::Kind>(x.t)}; 3535 const auto &names{std::get<std::list<parser::Name>>(x.t)}; 3536 AddSpecificProcs(names, kind); 3537 } 3538 return false; 3539 } 3540 3541 bool InterfaceVisitor::Pre(const parser::GenericStmt &) { 3542 genericInfo_.emplace(/*isInterface*/ false); 3543 return BeginAttrs(); 3544 } 3545 void InterfaceVisitor::Post(const parser::GenericStmt &x) { 3546 auto attrs{EndAttrs()}; 3547 if (Symbol * symbol{GetGenericInfo().symbol}) { 3548 SetExplicitAttrs(*symbol, attrs); 3549 } 3550 const auto &names{std::get<std::list<parser::Name>>(x.t)}; 3551 AddSpecificProcs(names, ProcedureKind::Procedure); 3552 ResolveNewSpecifics(); 3553 genericInfo_.pop(); 3554 } 3555 3556 bool InterfaceVisitor::inInterfaceBlock() const { 3557 return !genericInfo_.empty() && GetGenericInfo().isInterface; 3558 } 3559 bool InterfaceVisitor::isGeneric() const { 3560 return !genericInfo_.empty() && GetGenericInfo().symbol; 3561 } 3562 bool InterfaceVisitor::isAbstract() const { 3563 return !genericInfo_.empty() && GetGenericInfo().isAbstract; 3564 } 3565 3566 void InterfaceVisitor::AddSpecificProcs( 3567 const std::list<parser::Name> &names, ProcedureKind kind) { 3568 if (Symbol * symbol{GetGenericInfo().symbol}; 3569 symbol && symbol->has<GenericDetails>()) { 3570 for (const auto &name : names) { 3571 specificsForGenericProcs_.emplace(symbol, std::make_pair(&name, kind)); 3572 genericsForSpecificProcs_.emplace(name.source, symbol); 3573 } 3574 } 3575 } 3576 3577 // By now we should have seen all specific procedures referenced by name in 3578 // this generic interface. Resolve those names to symbols. 3579 void GenericHandler::ResolveSpecificsInGeneric( 3580 Symbol &generic, bool isEndOfSpecificationPart) { 3581 auto &details{generic.get<GenericDetails>()}; 3582 UnorderedSymbolSet symbolsSeen; 3583 for (const Symbol &symbol : details.specificProcs()) { 3584 symbolsSeen.insert(symbol.GetUltimate()); 3585 } 3586 auto range{specificsForGenericProcs_.equal_range(&generic)}; 3587 SpecificProcMapType retain; 3588 for (auto it{range.first}; it != range.second; ++it) { 3589 const parser::Name *name{it->second.first}; 3590 auto kind{it->second.second}; 3591 const Symbol *symbol{isEndOfSpecificationPart 3592 ? FindSymbol(*name) 3593 : FindInScope(generic.owner(), *name)}; 3594 ProcedureDefinitionClass defClass{ProcedureDefinitionClass::None}; 3595 const Symbol *specific{symbol}; 3596 const Symbol *ultimate{nullptr}; 3597 if (symbol) { 3598 // Subtlety: when *symbol is a use- or host-association, the specific 3599 // procedure that is recorded in the GenericDetails below must be *symbol, 3600 // not the specific procedure shadowed by a generic, because that specific 3601 // procedure may be a symbol from another module and its name unavailable 3602 // to emit to a module file. 3603 const Symbol &bypassed{BypassGeneric(*symbol)}; 3604 if (symbol == &symbol->GetUltimate()) { 3605 specific = &bypassed; 3606 } 3607 ultimate = &bypassed.GetUltimate(); 3608 defClass = ClassifyProcedure(*ultimate); 3609 } 3610 std::optional<MessageFixedText> error; 3611 if (defClass == ProcedureDefinitionClass::Module) { 3612 // ok 3613 } else if (kind == ProcedureKind::ModuleProcedure) { 3614 error = "'%s' is not a module procedure"_err_en_US; 3615 } else { 3616 switch (defClass) { 3617 case ProcedureDefinitionClass::Intrinsic: 3618 case ProcedureDefinitionClass::External: 3619 case ProcedureDefinitionClass::Internal: 3620 case ProcedureDefinitionClass::Dummy: 3621 case ProcedureDefinitionClass::Pointer: 3622 break; 3623 case ProcedureDefinitionClass::None: 3624 error = "'%s' is not a procedure"_err_en_US; 3625 break; 3626 default: 3627 error = 3628 "'%s' is not a procedure that can appear in a generic interface"_err_en_US; 3629 break; 3630 } 3631 } 3632 if (error) { 3633 if (isEndOfSpecificationPart) { 3634 Say(*name, std::move(*error)); 3635 } else { 3636 // possible forward reference, catch it later 3637 retain.emplace(&generic, std::make_pair(name, kind)); 3638 } 3639 } else if (!ultimate) { 3640 } else if (symbolsSeen.insert(*ultimate).second /*true if added*/) { 3641 // When a specific procedure is a USE association, that association 3642 // is saved in the generic's specifics, not its ultimate symbol, 3643 // so that module file output of interfaces can distinguish them. 3644 details.AddSpecificProc(*specific, name->source); 3645 } else if (specific == ultimate) { 3646 Say(name->source, 3647 "Procedure '%s' is already specified in generic '%s'"_err_en_US, 3648 name->source, MakeOpName(generic.name())); 3649 } else { 3650 Say(name->source, 3651 "Procedure '%s' from module '%s' is already specified in generic '%s'"_err_en_US, 3652 ultimate->name(), ultimate->owner().GetName().value(), 3653 MakeOpName(generic.name())); 3654 } 3655 } 3656 specificsForGenericProcs_.erase(range.first, range.second); 3657 specificsForGenericProcs_.merge(std::move(retain)); 3658 } 3659 3660 void GenericHandler::DeclaredPossibleSpecificProc(Symbol &proc) { 3661 auto range{genericsForSpecificProcs_.equal_range(proc.name())}; 3662 for (auto iter{range.first}; iter != range.second; ++iter) { 3663 ResolveSpecificsInGeneric(*iter->second, false); 3664 } 3665 } 3666 3667 void InterfaceVisitor::ResolveNewSpecifics() { 3668 if (Symbol * generic{genericInfo_.top().symbol}; 3669 generic && generic->has<GenericDetails>()) { 3670 ResolveSpecificsInGeneric(*generic, false); 3671 } 3672 } 3673 3674 // Mixed interfaces are allowed by the standard. 3675 // If there is a derived type with the same name, they must all be functions. 3676 void InterfaceVisitor::CheckGenericProcedures(Symbol &generic) { 3677 ResolveSpecificsInGeneric(generic, true); 3678 auto &details{generic.get<GenericDetails>()}; 3679 if (auto *proc{details.CheckSpecific()}) { 3680 context().Warn(common::UsageWarning::HomonymousSpecific, 3681 proc->name().begin() > generic.name().begin() ? proc->name() 3682 : generic.name(), 3683 "'%s' should not be the name of both a generic interface and a procedure unless it is a specific procedure of the generic"_warn_en_US, 3684 generic.name()); 3685 } 3686 auto &specifics{details.specificProcs()}; 3687 if (specifics.empty()) { 3688 if (details.derivedType()) { 3689 generic.set(Symbol::Flag::Function); 3690 } 3691 return; 3692 } 3693 const Symbol *function{nullptr}; 3694 const Symbol *subroutine{nullptr}; 3695 for (const Symbol &specific : specifics) { 3696 if (!function && specific.test(Symbol::Flag::Function)) { 3697 function = &specific; 3698 } else if (!subroutine && specific.test(Symbol::Flag::Subroutine)) { 3699 subroutine = &specific; 3700 if (details.derivedType() && 3701 context().ShouldWarn( 3702 common::LanguageFeature::SubroutineAndFunctionSpecifics) && 3703 !InModuleFile()) { 3704 SayDerivedType(generic.name(), 3705 "Generic interface '%s' should only contain functions due to derived type with same name"_warn_en_US, 3706 *details.derivedType()->GetUltimate().scope()) 3707 .set_languageFeature( 3708 common::LanguageFeature::SubroutineAndFunctionSpecifics); 3709 } 3710 } 3711 if (function && subroutine) { // F'2023 C1514 3712 if (auto *msg{context().Warn( 3713 common::LanguageFeature::SubroutineAndFunctionSpecifics, 3714 generic.name(), 3715 "Generic interface '%s' has both a function and a subroutine"_warn_en_US, 3716 generic.name())}) { 3717 msg->Attach(function->name(), "Function declaration"_en_US) 3718 .Attach(subroutine->name(), "Subroutine declaration"_en_US); 3719 } 3720 break; 3721 } 3722 } 3723 if (function && !subroutine) { 3724 generic.set(Symbol::Flag::Function); 3725 } else if (subroutine && !function) { 3726 generic.set(Symbol::Flag::Subroutine); 3727 } 3728 } 3729 3730 // SubprogramVisitor implementation 3731 3732 // Return false if it is actually an assignment statement. 3733 bool SubprogramVisitor::HandleStmtFunction(const parser::StmtFunctionStmt &x) { 3734 const auto &name{std::get<parser::Name>(x.t)}; 3735 const DeclTypeSpec *resultType{nullptr}; 3736 // Look up name: provides return type or tells us if it's an array 3737 if (auto *symbol{FindSymbol(name)}) { 3738 Symbol &ultimate{symbol->GetUltimate()}; 3739 if (ultimate.has<ObjectEntityDetails>() || 3740 ultimate.has<AssocEntityDetails>() || 3741 CouldBeDataPointerValuedFunction(&ultimate) || 3742 (&symbol->owner() == &currScope() && IsFunctionResult(*symbol))) { 3743 misparsedStmtFuncFound_ = true; 3744 return false; 3745 } 3746 if (IsHostAssociated(*symbol, currScope())) { 3747 context().Warn(common::LanguageFeature::StatementFunctionExtensions, 3748 name.source, 3749 "Name '%s' from host scope should have a type declaration before its local statement function definition"_port_en_US, 3750 name.source); 3751 MakeSymbol(name, Attrs{}, UnknownDetails{}); 3752 } else if (auto *entity{ultimate.detailsIf<EntityDetails>()}; 3753 entity && !ultimate.has<ProcEntityDetails>()) { 3754 resultType = entity->type(); 3755 ultimate.details() = UnknownDetails{}; // will be replaced below 3756 } else { 3757 misparsedStmtFuncFound_ = true; 3758 } 3759 } 3760 if (misparsedStmtFuncFound_) { 3761 Say(name, 3762 "'%s' has not been declared as an array or pointer-valued function"_err_en_US); 3763 return false; 3764 } 3765 auto &symbol{PushSubprogramScope(name, Symbol::Flag::Function)}; 3766 symbol.set(Symbol::Flag::StmtFunction); 3767 EraseSymbol(symbol); // removes symbol added by PushSubprogramScope 3768 auto &details{symbol.get<SubprogramDetails>()}; 3769 for (const auto &dummyName : std::get<std::list<parser::Name>>(x.t)) { 3770 ObjectEntityDetails dummyDetails{true}; 3771 if (auto *dummySymbol{FindInScope(currScope().parent(), dummyName)}) { 3772 if (auto *d{dummySymbol->GetType()}) { 3773 dummyDetails.set_type(*d); 3774 } 3775 } 3776 Symbol &dummy{MakeSymbol(dummyName, std::move(dummyDetails))}; 3777 ApplyImplicitRules(dummy); 3778 details.add_dummyArg(dummy); 3779 } 3780 ObjectEntityDetails resultDetails; 3781 if (resultType) { 3782 resultDetails.set_type(*resultType); 3783 } 3784 resultDetails.set_funcResult(true); 3785 Symbol &result{MakeSymbol(name, std::move(resultDetails))}; 3786 result.flags().set(Symbol::Flag::StmtFunction); 3787 ApplyImplicitRules(result); 3788 details.set_result(result); 3789 // The analysis of the expression that constitutes the body of the 3790 // statement function is deferred to FinishSpecificationPart() so that 3791 // all declarations and implicit typing are complete. 3792 PopScope(); 3793 return true; 3794 } 3795 3796 bool SubprogramVisitor::Pre(const parser::Suffix &suffix) { 3797 if (suffix.resultName) { 3798 if (IsFunction(currScope())) { 3799 if (FuncResultStack::FuncInfo * info{funcResultStack().Top()}) { 3800 if (info->inFunctionStmt) { 3801 info->resultName = &suffix.resultName.value(); 3802 } else { 3803 // will check the result name in Post(EntryStmt) 3804 } 3805 } 3806 } else { 3807 Message &msg{Say(*suffix.resultName, 3808 "RESULT(%s) may appear only in a function"_err_en_US)}; 3809 if (const Symbol * subprogram{InclusiveScope().symbol()}) { 3810 msg.Attach(subprogram->name(), "Containing subprogram"_en_US); 3811 } 3812 } 3813 } 3814 // LanguageBindingSpec deferred to Post(EntryStmt) or, for FunctionStmt, 3815 // all the way to EndSubprogram(). 3816 return false; 3817 } 3818 3819 bool SubprogramVisitor::Pre(const parser::PrefixSpec &x) { 3820 // Save this to process after UseStmt and ImplicitPart 3821 if (const auto *parsedType{std::get_if<parser::DeclarationTypeSpec>(&x.u)}) { 3822 if (FuncResultStack::FuncInfo * info{funcResultStack().Top()}) { 3823 if (info->parsedType) { // C1543 3824 Say(currStmtSource().value_or(info->source), 3825 "FUNCTION prefix cannot specify the type more than once"_err_en_US); 3826 } else { 3827 info->parsedType = parsedType; 3828 if (auto at{currStmtSource()}) { 3829 info->source = *at; 3830 } 3831 } 3832 } else { 3833 Say(currStmtSource().value(), 3834 "SUBROUTINE prefix cannot specify a type"_err_en_US); 3835 } 3836 return false; 3837 } else { 3838 return true; 3839 } 3840 } 3841 3842 bool SubprogramVisitor::Pre(const parser::PrefixSpec::Attributes &attrs) { 3843 if (auto *subp{currScope().symbol() 3844 ? currScope().symbol()->detailsIf<SubprogramDetails>() 3845 : nullptr}) { 3846 for (auto attr : attrs.v) { 3847 if (auto current{subp->cudaSubprogramAttrs()}) { 3848 if (attr == *current || 3849 (*current == common::CUDASubprogramAttrs::HostDevice && 3850 (attr == common::CUDASubprogramAttrs::Host || 3851 attr == common::CUDASubprogramAttrs::Device))) { 3852 context().Warn(common::LanguageFeature::RedundantAttribute, 3853 currStmtSource().value(), 3854 "ATTRIBUTES(%s) appears more than once"_warn_en_US, 3855 common::EnumToString(attr)); 3856 } else if ((attr == common::CUDASubprogramAttrs::Host || 3857 attr == common::CUDASubprogramAttrs::Device) && 3858 (*current == common::CUDASubprogramAttrs::Host || 3859 *current == common::CUDASubprogramAttrs::Device || 3860 *current == common::CUDASubprogramAttrs::HostDevice)) { 3861 // HOST,DEVICE or DEVICE,HOST -> HostDevice 3862 subp->set_cudaSubprogramAttrs( 3863 common::CUDASubprogramAttrs::HostDevice); 3864 } else { 3865 Say(currStmtSource().value(), 3866 "ATTRIBUTES(%s) conflicts with earlier ATTRIBUTES(%s)"_err_en_US, 3867 common::EnumToString(attr), common::EnumToString(*current)); 3868 } 3869 } else { 3870 subp->set_cudaSubprogramAttrs(attr); 3871 } 3872 } 3873 if (auto attrs{subp->cudaSubprogramAttrs()}) { 3874 if (*attrs == common::CUDASubprogramAttrs::Global || 3875 *attrs == common::CUDASubprogramAttrs::Device) { 3876 const Scope &scope{currScope()}; 3877 const Scope *mod{FindModuleContaining(scope)}; 3878 if (mod && mod->GetName().value() == "cudadevice") { 3879 return false; 3880 } 3881 // Implicitly USE the cudadevice module by copying its symbols in the 3882 // current scope. 3883 const Scope &cudaDeviceScope{context().GetCUDADeviceScope()}; 3884 for (auto sym : cudaDeviceScope.GetSymbols()) { 3885 if (!currScope().FindSymbol(sym->name())) { 3886 auto &localSymbol{MakeSymbol( 3887 sym->name(), Attrs{}, UseDetails{sym->name(), *sym})}; 3888 localSymbol.flags() = sym->flags(); 3889 } 3890 } 3891 } 3892 } 3893 } 3894 return false; 3895 } 3896 3897 void SubprogramVisitor::Post(const parser::PrefixSpec::Launch_Bounds &x) { 3898 std::vector<std::int64_t> bounds; 3899 bool ok{true}; 3900 for (const auto &sicx : x.v) { 3901 if (auto value{evaluate::ToInt64(EvaluateExpr(sicx))}) { 3902 bounds.push_back(*value); 3903 } else { 3904 ok = false; 3905 } 3906 } 3907 if (!ok || bounds.size() < 2 || bounds.size() > 3) { 3908 Say(currStmtSource().value(), 3909 "Operands of LAUNCH_BOUNDS() must be 2 or 3 integer constants"_err_en_US); 3910 } else if (auto *subp{currScope().symbol() 3911 ? currScope().symbol()->detailsIf<SubprogramDetails>() 3912 : nullptr}) { 3913 if (subp->cudaLaunchBounds().empty()) { 3914 subp->set_cudaLaunchBounds(std::move(bounds)); 3915 } else { 3916 Say(currStmtSource().value(), 3917 "LAUNCH_BOUNDS() may only appear once"_err_en_US); 3918 } 3919 } 3920 } 3921 3922 void SubprogramVisitor::Post(const parser::PrefixSpec::Cluster_Dims &x) { 3923 std::vector<std::int64_t> dims; 3924 bool ok{true}; 3925 for (const auto &sicx : x.v) { 3926 if (auto value{evaluate::ToInt64(EvaluateExpr(sicx))}) { 3927 dims.push_back(*value); 3928 } else { 3929 ok = false; 3930 } 3931 } 3932 if (!ok || dims.size() != 3) { 3933 Say(currStmtSource().value(), 3934 "Operands of CLUSTER_DIMS() must be three integer constants"_err_en_US); 3935 } else if (auto *subp{currScope().symbol() 3936 ? currScope().symbol()->detailsIf<SubprogramDetails>() 3937 : nullptr}) { 3938 if (subp->cudaClusterDims().empty()) { 3939 subp->set_cudaClusterDims(std::move(dims)); 3940 } else { 3941 Say(currStmtSource().value(), 3942 "CLUSTER_DIMS() may only appear once"_err_en_US); 3943 } 3944 } 3945 } 3946 3947 static bool HasModulePrefix(const std::list<parser::PrefixSpec> &prefixes) { 3948 for (const auto &prefix : prefixes) { 3949 if (std::holds_alternative<parser::PrefixSpec::Module>(prefix.u)) { 3950 return true; 3951 } 3952 } 3953 return false; 3954 } 3955 3956 bool SubprogramVisitor::Pre(const parser::InterfaceBody::Subroutine &x) { 3957 const auto &stmtTuple{ 3958 std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t}; 3959 return BeginSubprogram(std::get<parser::Name>(stmtTuple), 3960 Symbol::Flag::Subroutine, 3961 HasModulePrefix(std::get<std::list<parser::PrefixSpec>>(stmtTuple))); 3962 } 3963 void SubprogramVisitor::Post(const parser::InterfaceBody::Subroutine &x) { 3964 const auto &stmt{std::get<parser::Statement<parser::SubroutineStmt>>(x.t)}; 3965 EndSubprogram(stmt.source, 3966 &std::get<std::optional<parser::LanguageBindingSpec>>(stmt.statement.t)); 3967 } 3968 bool SubprogramVisitor::Pre(const parser::InterfaceBody::Function &x) { 3969 const auto &stmtTuple{ 3970 std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t}; 3971 return BeginSubprogram(std::get<parser::Name>(stmtTuple), 3972 Symbol::Flag::Function, 3973 HasModulePrefix(std::get<std::list<parser::PrefixSpec>>(stmtTuple))); 3974 } 3975 void SubprogramVisitor::Post(const parser::InterfaceBody::Function &x) { 3976 const auto &stmt{std::get<parser::Statement<parser::FunctionStmt>>(x.t)}; 3977 const auto &maybeSuffix{ 3978 std::get<std::optional<parser::Suffix>>(stmt.statement.t)}; 3979 EndSubprogram(stmt.source, maybeSuffix ? &maybeSuffix->binding : nullptr); 3980 } 3981 3982 bool SubprogramVisitor::Pre(const parser::SubroutineStmt &stmt) { 3983 BeginAttrs(); 3984 Walk(std::get<std::list<parser::PrefixSpec>>(stmt.t)); 3985 Walk(std::get<parser::Name>(stmt.t)); 3986 Walk(std::get<std::list<parser::DummyArg>>(stmt.t)); 3987 // Don't traverse the LanguageBindingSpec now; it's deferred to EndSubprogram. 3988 Symbol &symbol{PostSubprogramStmt()}; 3989 SubprogramDetails &details{symbol.get<SubprogramDetails>()}; 3990 for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) { 3991 if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) { 3992 CreateDummyArgument(details, *dummyName); 3993 } else { 3994 details.add_alternateReturn(); 3995 } 3996 } 3997 return false; 3998 } 3999 bool SubprogramVisitor::Pre(const parser::FunctionStmt &) { 4000 FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())}; 4001 CHECK(!info.inFunctionStmt); 4002 info.inFunctionStmt = true; 4003 if (auto at{currStmtSource()}) { 4004 info.source = *at; 4005 } 4006 return BeginAttrs(); 4007 } 4008 bool SubprogramVisitor::Pre(const parser::EntryStmt &) { return BeginAttrs(); } 4009 4010 void SubprogramVisitor::Post(const parser::FunctionStmt &stmt) { 4011 const auto &name{std::get<parser::Name>(stmt.t)}; 4012 Symbol &symbol{PostSubprogramStmt()}; 4013 SubprogramDetails &details{symbol.get<SubprogramDetails>()}; 4014 for (const auto &dummyName : std::get<std::list<parser::Name>>(stmt.t)) { 4015 CreateDummyArgument(details, dummyName); 4016 } 4017 const parser::Name *funcResultName; 4018 FuncResultStack::FuncInfo &info{DEREF(funcResultStack().Top())}; 4019 CHECK(info.inFunctionStmt); 4020 info.inFunctionStmt = false; 4021 bool distinctResultName{ 4022 info.resultName && info.resultName->source != name.source}; 4023 if (distinctResultName) { 4024 // Note that RESULT is ignored if it has the same name as the function. 4025 // The symbol created by PushScope() is retained as a place-holder 4026 // for error detection. 4027 funcResultName = info.resultName; 4028 } else { 4029 EraseSymbol(name); // was added by PushScope() 4030 funcResultName = &name; 4031 } 4032 if (details.isFunction()) { 4033 CHECK(context().HasError(currScope().symbol())); 4034 } else { 4035 // RESULT(x) can be the same explicitly-named RESULT(x) as an ENTRY 4036 // statement. 4037 Symbol *result{nullptr}; 4038 if (distinctResultName) { 4039 if (auto iter{currScope().find(funcResultName->source)}; 4040 iter != currScope().end()) { 4041 Symbol &entryResult{*iter->second}; 4042 if (IsFunctionResult(entryResult)) { 4043 result = &entryResult; 4044 } 4045 } 4046 } 4047 if (result) { 4048 Resolve(*funcResultName, *result); 4049 } else { 4050 // add function result to function scope 4051 EntityDetails funcResultDetails; 4052 funcResultDetails.set_funcResult(true); 4053 result = &MakeSymbol(*funcResultName, std::move(funcResultDetails)); 4054 } 4055 info.resultSymbol = result; 4056 details.set_result(*result); 4057 } 4058 // C1560. 4059 if (info.resultName && !distinctResultName) { 4060 context().Warn(common::UsageWarning::HomonymousResult, 4061 info.resultName->source, 4062 "The function name should not appear in RESULT; references to '%s' " 4063 "inside the function will be considered as references to the " 4064 "result only"_warn_en_US, 4065 name.source); 4066 // RESULT name was ignored above, the only side effect from doing so will be 4067 // the inability to make recursive calls. The related parser::Name is still 4068 // resolved to the created function result symbol because every parser::Name 4069 // should be resolved to avoid internal errors. 4070 Resolve(*info.resultName, info.resultSymbol); 4071 } 4072 name.symbol = &symbol; // must not be function result symbol 4073 // Clear the RESULT() name now in case an ENTRY statement in the implicit-part 4074 // has a RESULT() suffix. 4075 info.resultName = nullptr; 4076 } 4077 4078 Symbol &SubprogramVisitor::PostSubprogramStmt() { 4079 Symbol &symbol{*currScope().symbol()}; 4080 SetExplicitAttrs(symbol, EndAttrs()); 4081 if (symbol.attrs().test(Attr::MODULE)) { 4082 symbol.attrs().set(Attr::EXTERNAL, false); 4083 symbol.implicitAttrs().set(Attr::EXTERNAL, false); 4084 } 4085 return symbol; 4086 } 4087 4088 void SubprogramVisitor::Post(const parser::EntryStmt &stmt) { 4089 if (const auto &suffix{std::get<std::optional<parser::Suffix>>(stmt.t)}) { 4090 Walk(suffix->binding); 4091 } 4092 PostEntryStmt(stmt); 4093 EndAttrs(); 4094 } 4095 4096 void SubprogramVisitor::CreateDummyArgument( 4097 SubprogramDetails &details, const parser::Name &name) { 4098 Symbol *dummy{FindInScope(name)}; 4099 if (dummy) { 4100 if (IsDummy(*dummy)) { 4101 if (dummy->test(Symbol::Flag::EntryDummyArgument)) { 4102 dummy->set(Symbol::Flag::EntryDummyArgument, false); 4103 } else { 4104 Say(name, 4105 "'%s' appears more than once as a dummy argument name in this subprogram"_err_en_US, 4106 name.source); 4107 return; 4108 } 4109 } else { 4110 SayWithDecl(name, *dummy, 4111 "'%s' may not appear as a dummy argument name in this subprogram"_err_en_US); 4112 return; 4113 } 4114 } else { 4115 dummy = &MakeSymbol(name, EntityDetails{true}); 4116 } 4117 details.add_dummyArg(DEREF(dummy)); 4118 } 4119 4120 void SubprogramVisitor::CreateEntry( 4121 const parser::EntryStmt &stmt, Symbol &subprogram) { 4122 const auto &entryName{std::get<parser::Name>(stmt.t)}; 4123 Scope &outer{currScope().parent()}; 4124 Symbol::Flag subpFlag{subprogram.test(Symbol::Flag::Function) 4125 ? Symbol::Flag::Function 4126 : Symbol::Flag::Subroutine}; 4127 Attrs attrs; 4128 const auto &suffix{std::get<std::optional<parser::Suffix>>(stmt.t)}; 4129 bool hasGlobalBindingName{outer.IsGlobal() && suffix && suffix->binding && 4130 std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>( 4131 suffix->binding->t) 4132 .has_value()}; 4133 if (!hasGlobalBindingName) { 4134 if (Symbol * extant{FindSymbol(outer, entryName)}) { 4135 if (!HandlePreviousCalls(entryName, *extant, subpFlag)) { 4136 if (outer.IsTopLevel()) { 4137 Say2(entryName, 4138 "'%s' is already defined as a global identifier"_err_en_US, 4139 *extant, "Previous definition of '%s'"_en_US); 4140 } else { 4141 SayAlreadyDeclared(entryName, *extant); 4142 } 4143 return; 4144 } 4145 attrs = extant->attrs(); 4146 } 4147 } 4148 std::optional<SourceName> distinctResultName; 4149 if (suffix && suffix->resultName && 4150 suffix->resultName->source != entryName.source) { 4151 distinctResultName = suffix->resultName->source; 4152 } 4153 if (outer.IsModule() && !attrs.test(Attr::PRIVATE)) { 4154 attrs.set(Attr::PUBLIC); 4155 } 4156 Symbol *entrySymbol{nullptr}; 4157 if (hasGlobalBindingName) { 4158 // Hide the entry's symbol in a new anonymous global scope so 4159 // that its name doesn't clash with anything. 4160 Symbol &symbol{MakeSymbol(outer, context().GetTempName(outer), Attrs{})}; 4161 symbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName}); 4162 Scope &hidden{outer.MakeScope(Scope::Kind::Global, &symbol)}; 4163 entrySymbol = &MakeSymbol(hidden, entryName.source, attrs); 4164 } else { 4165 entrySymbol = FindInScope(outer, entryName.source); 4166 if (entrySymbol) { 4167 if (auto *generic{entrySymbol->detailsIf<GenericDetails>()}) { 4168 if (auto *specific{generic->specific()}) { 4169 // Forward reference to ENTRY from a generic interface 4170 entrySymbol = specific; 4171 CheckDuplicatedAttrs(entryName.source, *entrySymbol, attrs); 4172 SetExplicitAttrs(*entrySymbol, attrs); 4173 } 4174 } 4175 } else { 4176 entrySymbol = &MakeSymbol(outer, entryName.source, attrs); 4177 } 4178 } 4179 SubprogramDetails entryDetails; 4180 entryDetails.set_entryScope(currScope()); 4181 entrySymbol->set(subpFlag); 4182 if (subpFlag == Symbol::Flag::Function) { 4183 Symbol *result{nullptr}; 4184 EntityDetails resultDetails; 4185 resultDetails.set_funcResult(true); 4186 if (distinctResultName) { 4187 // An explicit RESULT() can also be an explicit RESULT() 4188 // of the function or another ENTRY. 4189 if (auto iter{currScope().find(suffix->resultName->source)}; 4190 iter != currScope().end()) { 4191 result = &*iter->second; 4192 } 4193 if (!result) { 4194 result = 4195 &MakeSymbol(*distinctResultName, Attrs{}, std::move(resultDetails)); 4196 } else if (!result->has<EntityDetails>()) { 4197 Say(*distinctResultName, 4198 "ENTRY cannot have RESULT(%s) that is not a variable"_err_en_US, 4199 *distinctResultName) 4200 .Attach(result->name(), "Existing declaration of '%s'"_en_US, 4201 result->name()); 4202 result = nullptr; 4203 } 4204 if (result) { 4205 Resolve(*suffix->resultName, *result); 4206 } 4207 } else { 4208 result = &MakeSymbol(entryName.source, Attrs{}, std::move(resultDetails)); 4209 } 4210 if (result) { 4211 entryDetails.set_result(*result); 4212 } 4213 } 4214 if (subpFlag == Symbol::Flag::Subroutine || distinctResultName) { 4215 Symbol &assoc{MakeSymbol(entryName.source)}; 4216 assoc.set_details(HostAssocDetails{*entrySymbol}); 4217 assoc.set(Symbol::Flag::Subroutine); 4218 } 4219 Resolve(entryName, *entrySymbol); 4220 std::set<SourceName> dummies; 4221 for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) { 4222 if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) { 4223 auto pair{dummies.insert(dummyName->source)}; 4224 if (!pair.second) { 4225 Say(*dummyName, 4226 "'%s' appears more than once as a dummy argument name in this ENTRY statement"_err_en_US, 4227 dummyName->source); 4228 continue; 4229 } 4230 Symbol *dummy{FindInScope(*dummyName)}; 4231 if (dummy) { 4232 if (!IsDummy(*dummy)) { 4233 evaluate::AttachDeclaration( 4234 Say(*dummyName, 4235 "'%s' may not appear as a dummy argument name in this ENTRY statement"_err_en_US, 4236 dummyName->source), 4237 *dummy); 4238 continue; 4239 } 4240 } else { 4241 dummy = &MakeSymbol(*dummyName, EntityDetails{true}); 4242 dummy->set(Symbol::Flag::EntryDummyArgument); 4243 } 4244 entryDetails.add_dummyArg(DEREF(dummy)); 4245 } else if (subpFlag == Symbol::Flag::Function) { // C1573 4246 Say(entryName, 4247 "ENTRY in a function may not have an alternate return dummy argument"_err_en_US); 4248 break; 4249 } else { 4250 entryDetails.add_alternateReturn(); 4251 } 4252 } 4253 entrySymbol->set_details(std::move(entryDetails)); 4254 } 4255 4256 void SubprogramVisitor::PostEntryStmt(const parser::EntryStmt &stmt) { 4257 // The entry symbol should have already been created and resolved 4258 // in CreateEntry(), called by BeginSubprogram(), with one exception (below). 4259 const auto &name{std::get<parser::Name>(stmt.t)}; 4260 Scope &inclusiveScope{InclusiveScope()}; 4261 if (!name.symbol) { 4262 if (inclusiveScope.kind() != Scope::Kind::Subprogram) { 4263 Say(name.source, 4264 "ENTRY '%s' may appear only in a subroutine or function"_err_en_US, 4265 name.source); 4266 } else if (FindSeparateModuleSubprogramInterface(inclusiveScope.symbol())) { 4267 Say(name.source, 4268 "ENTRY '%s' may not appear in a separate module procedure"_err_en_US, 4269 name.source); 4270 } else { 4271 // C1571 - entry is nested, so was not put into the program tree; error 4272 // is emitted from MiscChecker in semantics.cpp. 4273 } 4274 return; 4275 } 4276 Symbol &entrySymbol{*name.symbol}; 4277 if (context().HasError(entrySymbol)) { 4278 return; 4279 } 4280 if (!entrySymbol.has<SubprogramDetails>()) { 4281 SayAlreadyDeclared(name, entrySymbol); 4282 return; 4283 } 4284 SubprogramDetails &entryDetails{entrySymbol.get<SubprogramDetails>()}; 4285 CHECK(entryDetails.entryScope() == &inclusiveScope); 4286 SetCUDADataAttr(name.source, entrySymbol, cudaDataAttr()); 4287 entrySymbol.attrs() |= GetAttrs(); 4288 SetBindNameOn(entrySymbol); 4289 for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) { 4290 if (const auto *dummyName{std::get_if<parser::Name>(&dummyArg.u)}) { 4291 if (Symbol * dummy{FindInScope(*dummyName)}) { 4292 if (dummy->test(Symbol::Flag::EntryDummyArgument)) { 4293 const auto *subp{dummy->detailsIf<SubprogramDetails>()}; 4294 if (subp && subp->isInterface()) { // ok 4295 } else if (!dummy->has<EntityDetails>() && 4296 !dummy->has<ObjectEntityDetails>() && 4297 !dummy->has<ProcEntityDetails>()) { 4298 SayWithDecl(*dummyName, *dummy, 4299 "ENTRY dummy argument '%s' was previously declared as an item that may not be used as a dummy argument"_err_en_US); 4300 } 4301 dummy->set(Symbol::Flag::EntryDummyArgument, false); 4302 } 4303 } 4304 } 4305 } 4306 } 4307 4308 Symbol *ScopeHandler::FindSeparateModuleProcedureInterface( 4309 const parser::Name &name) { 4310 auto *symbol{FindSymbol(name)}; 4311 if (symbol && symbol->has<SubprogramNameDetails>()) { 4312 const Scope *parent{nullptr}; 4313 if (currScope().IsSubmodule()) { 4314 parent = currScope().symbol()->get<ModuleDetails>().parent(); 4315 } 4316 symbol = parent ? FindSymbol(*parent, name) : nullptr; 4317 } 4318 if (symbol) { 4319 if (auto *generic{symbol->detailsIf<GenericDetails>()}) { 4320 symbol = generic->specific(); 4321 } 4322 } 4323 if (const Symbol * defnIface{FindSeparateModuleSubprogramInterface(symbol)}) { 4324 // Error recovery in case of multiple definitions 4325 symbol = const_cast<Symbol *>(defnIface); 4326 } 4327 if (!IsSeparateModuleProcedureInterface(symbol)) { 4328 Say(name, "'%s' was not declared a separate module procedure"_err_en_US); 4329 symbol = nullptr; 4330 } 4331 return symbol; 4332 } 4333 4334 // A subprogram declared with MODULE PROCEDURE 4335 bool SubprogramVisitor::BeginMpSubprogram(const parser::Name &name) { 4336 Symbol *symbol{FindSeparateModuleProcedureInterface(name)}; 4337 if (!symbol) { 4338 return false; 4339 } 4340 if (symbol->owner() == currScope() && symbol->scope()) { 4341 // This is a MODULE PROCEDURE whose interface appears in its host. 4342 // Convert the module procedure's interface into a subprogram. 4343 SetScope(DEREF(symbol->scope())); 4344 symbol->get<SubprogramDetails>().set_isInterface(false); 4345 name.symbol = symbol; 4346 } else { 4347 // Copy the interface into a new subprogram scope. 4348 EraseSymbol(name); 4349 Symbol &newSymbol{MakeSymbol(name, SubprogramDetails{})}; 4350 PushScope(Scope::Kind::Subprogram, &newSymbol); 4351 auto &newSubprogram{newSymbol.get<SubprogramDetails>()}; 4352 newSubprogram.set_moduleInterface(*symbol); 4353 auto &subprogram{symbol->get<SubprogramDetails>()}; 4354 if (const auto *name{subprogram.bindName()}) { 4355 newSubprogram.set_bindName(std::string{*name}); 4356 } 4357 newSymbol.attrs() |= symbol->attrs(); 4358 newSymbol.set(symbol->test(Symbol::Flag::Subroutine) 4359 ? Symbol::Flag::Subroutine 4360 : Symbol::Flag::Function); 4361 MapSubprogramToNewSymbols(*symbol, newSymbol, currScope()); 4362 } 4363 return true; 4364 } 4365 4366 // A subprogram or interface declared with SUBROUTINE or FUNCTION 4367 bool SubprogramVisitor::BeginSubprogram(const parser::Name &name, 4368 Symbol::Flag subpFlag, bool hasModulePrefix, 4369 const parser::LanguageBindingSpec *bindingSpec, 4370 const ProgramTree::EntryStmtList *entryStmts) { 4371 bool isValid{true}; 4372 if (hasModulePrefix && !currScope().IsModule() && 4373 !currScope().IsSubmodule()) { // C1547 4374 Say(name, 4375 "'%s' is a MODULE procedure which must be declared within a " 4376 "MODULE or SUBMODULE"_err_en_US); 4377 // Don't return here because it can be useful to have the scope set for 4378 // other semantic checks run before we print the errors 4379 isValid = false; 4380 } 4381 Symbol *moduleInterface{nullptr}; 4382 if (isValid && hasModulePrefix && !inInterfaceBlock()) { 4383 moduleInterface = FindSeparateModuleProcedureInterface(name); 4384 if (moduleInterface && &moduleInterface->owner() == &currScope()) { 4385 // Subprogram is MODULE FUNCTION or MODULE SUBROUTINE with an interface 4386 // previously defined in the same scope. 4387 if (GenericDetails * 4388 generic{DEREF(FindSymbol(name)).detailsIf<GenericDetails>()}) { 4389 generic->clear_specific(); 4390 name.symbol = nullptr; 4391 } else { 4392 EraseSymbol(name); 4393 } 4394 } 4395 } 4396 Symbol &newSymbol{ 4397 PushSubprogramScope(name, subpFlag, bindingSpec, hasModulePrefix)}; 4398 if (moduleInterface) { 4399 newSymbol.get<SubprogramDetails>().set_moduleInterface(*moduleInterface); 4400 if (moduleInterface->attrs().test(Attr::PRIVATE)) { 4401 SetImplicitAttr(newSymbol, Attr::PRIVATE); 4402 } else if (moduleInterface->attrs().test(Attr::PUBLIC)) { 4403 SetImplicitAttr(newSymbol, Attr::PUBLIC); 4404 } 4405 } 4406 if (entryStmts) { 4407 for (const auto &ref : *entryStmts) { 4408 CreateEntry(*ref, newSymbol); 4409 } 4410 } 4411 return true; 4412 } 4413 4414 void SubprogramVisitor::HandleLanguageBinding(Symbol *symbol, 4415 std::optional<parser::CharBlock> stmtSource, 4416 const std::optional<parser::LanguageBindingSpec> *binding) { 4417 if (binding && *binding && symbol) { 4418 // Finally process the BIND(C,NAME=name) now that symbols in the name 4419 // expression will resolve to local names if needed. 4420 auto flagRestorer{common::ScopedSet(inSpecificationPart_, false)}; 4421 auto originalStmtSource{messageHandler().currStmtSource()}; 4422 messageHandler().set_currStmtSource(stmtSource); 4423 BeginAttrs(); 4424 Walk(**binding); 4425 SetBindNameOn(*symbol); 4426 symbol->attrs() |= EndAttrs(); 4427 messageHandler().set_currStmtSource(originalStmtSource); 4428 } 4429 } 4430 4431 void SubprogramVisitor::EndSubprogram( 4432 std::optional<parser::CharBlock> stmtSource, 4433 const std::optional<parser::LanguageBindingSpec> *binding, 4434 const ProgramTree::EntryStmtList *entryStmts) { 4435 HandleLanguageBinding(currScope().symbol(), stmtSource, binding); 4436 if (entryStmts) { 4437 for (const auto &ref : *entryStmts) { 4438 const parser::EntryStmt &entryStmt{*ref}; 4439 if (const auto &suffix{ 4440 std::get<std::optional<parser::Suffix>>(entryStmt.t)}) { 4441 const auto &name{std::get<parser::Name>(entryStmt.t)}; 4442 HandleLanguageBinding(name.symbol, name.source, &suffix->binding); 4443 } 4444 } 4445 } 4446 if (inInterfaceBlock() && currScope().symbol()) { 4447 DeclaredPossibleSpecificProc(*currScope().symbol()); 4448 } 4449 PopScope(); 4450 } 4451 4452 bool SubprogramVisitor::HandlePreviousCalls( 4453 const parser::Name &name, Symbol &symbol, Symbol::Flag subpFlag) { 4454 // If the extant symbol is a generic, check its homonymous specific 4455 // procedure instead if it has one. 4456 if (auto *generic{symbol.detailsIf<GenericDetails>()}) { 4457 return generic->specific() && 4458 HandlePreviousCalls(name, *generic->specific(), subpFlag); 4459 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}; proc && 4460 !proc->isDummy() && 4461 !symbol.attrs().HasAny(Attrs{Attr::INTRINSIC, Attr::POINTER})) { 4462 // There's a symbol created for previous calls to this subprogram or 4463 // ENTRY's name. We have to replace that symbol in situ to avoid the 4464 // obligation to rewrite symbol pointers in the parse tree. 4465 if (!symbol.test(subpFlag)) { 4466 auto other{subpFlag == Symbol::Flag::Subroutine 4467 ? Symbol::Flag::Function 4468 : Symbol::Flag::Subroutine}; 4469 // External statements issue an explicit EXTERNAL attribute. 4470 if (symbol.attrs().test(Attr::EXTERNAL) && 4471 !symbol.implicitAttrs().test(Attr::EXTERNAL)) { 4472 // Warn if external statement previously declared. 4473 context().Warn(common::LanguageFeature::RedundantAttribute, name.source, 4474 "EXTERNAL attribute was already specified on '%s'"_warn_en_US, 4475 name.source); 4476 } else if (symbol.test(other)) { 4477 Say2(name, 4478 subpFlag == Symbol::Flag::Function 4479 ? "'%s' was previously called as a subroutine"_err_en_US 4480 : "'%s' was previously called as a function"_err_en_US, 4481 symbol, "Previous call of '%s'"_en_US); 4482 } else { 4483 symbol.set(subpFlag); 4484 } 4485 } 4486 EntityDetails entity; 4487 if (proc->type()) { 4488 entity.set_type(*proc->type()); 4489 } 4490 symbol.details() = std::move(entity); 4491 return true; 4492 } else { 4493 return symbol.has<UnknownDetails>() || symbol.has<SubprogramNameDetails>(); 4494 } 4495 } 4496 4497 void SubprogramVisitor::CheckExtantProc( 4498 const parser::Name &name, Symbol::Flag subpFlag) { 4499 if (auto *prev{FindSymbol(name)}) { 4500 if (IsDummy(*prev)) { 4501 } else if (auto *entity{prev->detailsIf<EntityDetails>()}; 4502 IsPointer(*prev) && entity && !entity->type()) { 4503 // POINTER attribute set before interface 4504 } else if (inInterfaceBlock() && currScope() != prev->owner()) { 4505 // Procedures in an INTERFACE block do not resolve to symbols 4506 // in scopes between the global scope and the current scope. 4507 } else if (!HandlePreviousCalls(name, *prev, subpFlag)) { 4508 SayAlreadyDeclared(name, *prev); 4509 } 4510 } 4511 } 4512 4513 Symbol &SubprogramVisitor::PushSubprogramScope(const parser::Name &name, 4514 Symbol::Flag subpFlag, const parser::LanguageBindingSpec *bindingSpec, 4515 bool hasModulePrefix) { 4516 Symbol *symbol{GetSpecificFromGeneric(name)}; 4517 if (!symbol) { 4518 if (bindingSpec && currScope().IsGlobal() && 4519 std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>( 4520 bindingSpec->t) 4521 .has_value()) { 4522 // Create this new top-level subprogram with a binding label 4523 // in a new global scope, so that its symbol's name won't clash 4524 // with another symbol that has a distinct binding label. 4525 PushScope(Scope::Kind::Global, 4526 &MakeSymbol(context().GetTempName(currScope()), Attrs{}, 4527 MiscDetails{MiscDetails::Kind::ScopeName})); 4528 } 4529 CheckExtantProc(name, subpFlag); 4530 symbol = &MakeSymbol(name, SubprogramDetails{}); 4531 } 4532 symbol->ReplaceName(name.source); 4533 symbol->set(subpFlag); 4534 PushScope(Scope::Kind::Subprogram, symbol); 4535 if (subpFlag == Symbol::Flag::Function) { 4536 funcResultStack().Push(currScope(), name.source); 4537 } 4538 if (inInterfaceBlock()) { 4539 auto &details{symbol->get<SubprogramDetails>()}; 4540 details.set_isInterface(); 4541 if (isAbstract()) { 4542 SetExplicitAttr(*symbol, Attr::ABSTRACT); 4543 } else if (hasModulePrefix) { 4544 SetExplicitAttr(*symbol, Attr::MODULE); 4545 } else { 4546 MakeExternal(*symbol); 4547 } 4548 if (isGeneric()) { 4549 Symbol &genericSymbol{GetGenericSymbol()}; 4550 if (auto *details{genericSymbol.detailsIf<GenericDetails>()}) { 4551 details->AddSpecificProc(*symbol, name.source); 4552 } else { 4553 CHECK(context().HasError(genericSymbol)); 4554 } 4555 } 4556 set_inheritFromParent(false); // interfaces don't inherit, even if MODULE 4557 } 4558 if (Symbol * found{FindSymbol(name)}; 4559 found && found->has<HostAssocDetails>()) { 4560 found->set(subpFlag); // PushScope() created symbol 4561 } 4562 return *symbol; 4563 } 4564 4565 void SubprogramVisitor::PushBlockDataScope(const parser::Name &name) { 4566 if (auto *prev{FindSymbol(name)}) { 4567 if (prev->attrs().test(Attr::EXTERNAL) && prev->has<ProcEntityDetails>()) { 4568 if (prev->test(Symbol::Flag::Subroutine) || 4569 prev->test(Symbol::Flag::Function)) { 4570 Say2(name, "BLOCK DATA '%s' has been called"_err_en_US, *prev, 4571 "Previous call of '%s'"_en_US); 4572 } 4573 EraseSymbol(name); 4574 } 4575 } 4576 if (name.source.empty()) { 4577 // Don't let unnamed BLOCK DATA conflict with unnamed PROGRAM 4578 PushScope(Scope::Kind::BlockData, nullptr); 4579 } else { 4580 PushScope(Scope::Kind::BlockData, &MakeSymbol(name, SubprogramDetails{})); 4581 } 4582 } 4583 4584 // If name is a generic, return specific subprogram with the same name. 4585 Symbol *SubprogramVisitor::GetSpecificFromGeneric(const parser::Name &name) { 4586 // Search for the name but don't resolve it 4587 if (auto *symbol{currScope().FindSymbol(name.source)}) { 4588 if (symbol->has<SubprogramNameDetails>()) { 4589 if (inInterfaceBlock()) { 4590 // Subtle: clear any MODULE flag so that the new interface 4591 // symbol doesn't inherit it and ruin the ability to check it. 4592 symbol->attrs().reset(Attr::MODULE); 4593 } 4594 } else if (auto *details{symbol->detailsIf<GenericDetails>()}) { 4595 // found generic, want specific procedure 4596 auto *specific{details->specific()}; 4597 Attrs moduleAttr; 4598 if (inInterfaceBlock()) { 4599 if (specific) { 4600 // Defining an interface in a generic of the same name which is 4601 // already shadowing another procedure. In some cases, the shadowed 4602 // procedure is about to be replaced. 4603 if (specific->has<SubprogramNameDetails>() && 4604 specific->attrs().test(Attr::MODULE)) { 4605 // The shadowed procedure is a separate module procedure that is 4606 // actually defined later in this (sub)module. 4607 // Define its interface now as a new symbol. 4608 moduleAttr.set(Attr::MODULE); 4609 specific = nullptr; 4610 } else if (&specific->owner() != &symbol->owner()) { 4611 // The shadowed procedure was from an enclosing scope and will be 4612 // overridden by this interface definition. 4613 specific = nullptr; 4614 } 4615 if (!specific) { 4616 details->clear_specific(); 4617 } 4618 } else if (const auto *dType{details->derivedType()}) { 4619 if (&dType->owner() != &symbol->owner()) { 4620 // The shadowed derived type was from an enclosing scope and 4621 // will be overridden by this interface definition. 4622 details->clear_derivedType(); 4623 } 4624 } 4625 } 4626 if (!specific) { 4627 specific = &currScope().MakeSymbol( 4628 name.source, std::move(moduleAttr), SubprogramDetails{}); 4629 if (details->derivedType()) { 4630 // A specific procedure with the same name as a derived type 4631 SayAlreadyDeclared(name, *details->derivedType()); 4632 } else { 4633 details->set_specific(Resolve(name, *specific)); 4634 } 4635 } else if (isGeneric()) { 4636 SayAlreadyDeclared(name, *specific); 4637 } 4638 if (specific->has<SubprogramNameDetails>()) { 4639 specific->set_details(Details{SubprogramDetails{}}); 4640 } 4641 return specific; 4642 } 4643 } 4644 return nullptr; 4645 } 4646 4647 // DeclarationVisitor implementation 4648 4649 bool DeclarationVisitor::BeginDecl() { 4650 BeginDeclTypeSpec(); 4651 BeginArraySpec(); 4652 return BeginAttrs(); 4653 } 4654 void DeclarationVisitor::EndDecl() { 4655 EndDeclTypeSpec(); 4656 EndArraySpec(); 4657 EndAttrs(); 4658 } 4659 4660 bool DeclarationVisitor::CheckUseError(const parser::Name &name) { 4661 return HadUseError(context(), name.source, name.symbol); 4662 } 4663 4664 // Report error if accessibility of symbol doesn't match isPrivate. 4665 void DeclarationVisitor::CheckAccessibility( 4666 const SourceName &name, bool isPrivate, Symbol &symbol) { 4667 if (symbol.attrs().test(Attr::PRIVATE) != isPrivate) { 4668 Say2(name, 4669 "'%s' does not have the same accessibility as its previous declaration"_err_en_US, 4670 symbol, "Previous declaration of '%s'"_en_US); 4671 } 4672 } 4673 4674 bool DeclarationVisitor::Pre(const parser::TypeDeclarationStmt &x) { 4675 BeginDecl(); 4676 // If INTRINSIC appears as an attr-spec, handle it now as if the 4677 // names had appeared on an INTRINSIC attribute statement beforehand. 4678 for (const auto &attr : std::get<std::list<parser::AttrSpec>>(x.t)) { 4679 if (std::holds_alternative<parser::Intrinsic>(attr.u)) { 4680 for (const auto &decl : std::get<std::list<parser::EntityDecl>>(x.t)) { 4681 DeclareIntrinsic(parser::GetFirstName(decl)); 4682 } 4683 break; 4684 } 4685 } 4686 return true; 4687 } 4688 void DeclarationVisitor::Post(const parser::TypeDeclarationStmt &) { 4689 EndDecl(); 4690 } 4691 4692 void DeclarationVisitor::Post(const parser::DimensionStmt::Declaration &x) { 4693 DeclareObjectEntity(std::get<parser::Name>(x.t)); 4694 } 4695 void DeclarationVisitor::Post(const parser::CodimensionDecl &x) { 4696 DeclareObjectEntity(std::get<parser::Name>(x.t)); 4697 } 4698 4699 bool DeclarationVisitor::Pre(const parser::Initialization &) { 4700 // Defer inspection of initializers to Initialization() so that the 4701 // symbol being initialized will be available within the initialization 4702 // expression. 4703 return false; 4704 } 4705 4706 void DeclarationVisitor::Post(const parser::EntityDecl &x) { 4707 const auto &name{std::get<parser::ObjectName>(x.t)}; 4708 Attrs attrs{attrs_ ? HandleSaveName(name.source, *attrs_) : Attrs{}}; 4709 attrs.set(Attr::INTRINSIC, false); // dealt with in Pre(TypeDeclarationStmt) 4710 Symbol &symbol{DeclareUnknownEntity(name, attrs)}; 4711 symbol.ReplaceName(name.source); 4712 SetCUDADataAttr(name.source, symbol, cudaDataAttr()); 4713 if (const auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) { 4714 ConvertToObjectEntity(symbol) || ConvertToProcEntity(symbol); 4715 symbol.set( 4716 Symbol::Flag::EntryDummyArgument, false); // forestall excessive errors 4717 Initialization(name, *init, false); 4718 } else if (attrs.test(Attr::PARAMETER)) { // C882, C883 4719 Say(name, "Missing initialization for parameter '%s'"_err_en_US); 4720 } 4721 if (auto *scopeSymbol{currScope().symbol()}) 4722 if (auto *details{scopeSymbol->detailsIf<DerivedTypeDetails>()}) 4723 if (details->isDECStructure()) 4724 details->add_component(symbol); 4725 } 4726 4727 void DeclarationVisitor::Post(const parser::PointerDecl &x) { 4728 const auto &name{std::get<parser::Name>(x.t)}; 4729 if (const auto &deferredShapeSpecs{ 4730 std::get<std::optional<parser::DeferredShapeSpecList>>(x.t)}) { 4731 CHECK(arraySpec().empty()); 4732 BeginArraySpec(); 4733 set_arraySpec(AnalyzeDeferredShapeSpecList(context(), *deferredShapeSpecs)); 4734 Symbol &symbol{DeclareObjectEntity(name, Attrs{Attr::POINTER})}; 4735 symbol.ReplaceName(name.source); 4736 EndArraySpec(); 4737 } else { 4738 if (const auto *symbol{FindInScope(name)}) { 4739 const auto *subp{symbol->detailsIf<SubprogramDetails>()}; 4740 if (!symbol->has<UseDetails>() && // error caught elsewhere 4741 !symbol->has<ObjectEntityDetails>() && 4742 !symbol->has<ProcEntityDetails>() && 4743 !symbol->CanReplaceDetails(ObjectEntityDetails{}) && 4744 !symbol->CanReplaceDetails(ProcEntityDetails{}) && 4745 !(subp && subp->isInterface())) { 4746 Say(name, "'%s' cannot have the POINTER attribute"_err_en_US); 4747 } 4748 } 4749 HandleAttributeStmt(Attr::POINTER, std::get<parser::Name>(x.t)); 4750 } 4751 } 4752 4753 bool DeclarationVisitor::Pre(const parser::BindEntity &x) { 4754 auto kind{std::get<parser::BindEntity::Kind>(x.t)}; 4755 auto &name{std::get<parser::Name>(x.t)}; 4756 Symbol *symbol; 4757 if (kind == parser::BindEntity::Kind::Object) { 4758 symbol = &HandleAttributeStmt(Attr::BIND_C, name); 4759 } else { 4760 symbol = &MakeCommonBlockSymbol(name); 4761 SetExplicitAttr(*symbol, Attr::BIND_C); 4762 } 4763 // 8.6.4(1) 4764 // Some entities such as named constant or module name need to checked 4765 // elsewhere. This is to skip the ICE caused by setting Bind name for non-name 4766 // things such as data type and also checks for procedures. 4767 if (symbol->has<CommonBlockDetails>() || symbol->has<ObjectEntityDetails>() || 4768 symbol->has<EntityDetails>()) { 4769 SetBindNameOn(*symbol); 4770 } else { 4771 Say(name, 4772 "Only variable and named common block can be in BIND statement"_err_en_US); 4773 } 4774 return false; 4775 } 4776 bool DeclarationVisitor::Pre(const parser::OldParameterStmt &x) { 4777 inOldStyleParameterStmt_ = true; 4778 Walk(x.v); 4779 inOldStyleParameterStmt_ = false; 4780 return false; 4781 } 4782 bool DeclarationVisitor::Pre(const parser::NamedConstantDef &x) { 4783 auto &name{std::get<parser::NamedConstant>(x.t).v}; 4784 auto &symbol{HandleAttributeStmt(Attr::PARAMETER, name)}; 4785 ConvertToObjectEntity(symbol); 4786 auto *details{symbol.detailsIf<ObjectEntityDetails>()}; 4787 if (!details || symbol.test(Symbol::Flag::CrayPointer) || 4788 symbol.test(Symbol::Flag::CrayPointee)) { 4789 SayWithDecl( 4790 name, symbol, "PARAMETER attribute not allowed on '%s'"_err_en_US); 4791 return false; 4792 } 4793 const auto &expr{std::get<parser::ConstantExpr>(x.t)}; 4794 if (details->init() || symbol.test(Symbol::Flag::InDataStmt)) { 4795 Say(name, "Named constant '%s' already has a value"_err_en_US); 4796 } 4797 if (inOldStyleParameterStmt_) { 4798 // non-standard extension PARAMETER statement (no parentheses) 4799 Walk(expr); 4800 auto folded{EvaluateExpr(expr)}; 4801 if (details->type()) { 4802 SayWithDecl(name, symbol, 4803 "Alternative style PARAMETER '%s' must not already have an explicit type"_err_en_US); 4804 } else if (folded) { 4805 auto at{expr.thing.value().source}; 4806 if (evaluate::IsActuallyConstant(*folded)) { 4807 if (const auto *type{currScope().GetType(*folded)}) { 4808 if (type->IsPolymorphic()) { 4809 Say(at, "The expression must not be polymorphic"_err_en_US); 4810 } else if (auto shape{ToArraySpec( 4811 GetFoldingContext(), evaluate::GetShape(*folded))}) { 4812 // The type of the named constant is assumed from the expression. 4813 details->set_type(*type); 4814 details->set_init(std::move(*folded)); 4815 details->set_shape(std::move(*shape)); 4816 } else { 4817 Say(at, "The expression must have constant shape"_err_en_US); 4818 } 4819 } else { 4820 Say(at, "The expression must have a known type"_err_en_US); 4821 } 4822 } else { 4823 Say(at, "The expression must be a constant of known type"_err_en_US); 4824 } 4825 } 4826 } else { 4827 // standard-conforming PARAMETER statement (with parentheses) 4828 ApplyImplicitRules(symbol); 4829 Walk(expr); 4830 if (auto converted{EvaluateNonPointerInitializer( 4831 symbol, expr, expr.thing.value().source)}) { 4832 details->set_init(std::move(*converted)); 4833 } 4834 } 4835 return false; 4836 } 4837 bool DeclarationVisitor::Pre(const parser::NamedConstant &x) { 4838 const parser::Name &name{x.v}; 4839 if (!FindSymbol(name)) { 4840 Say(name, "Named constant '%s' not found"_err_en_US); 4841 } else { 4842 CheckUseError(name); 4843 } 4844 return false; 4845 } 4846 4847 bool DeclarationVisitor::Pre(const parser::Enumerator &enumerator) { 4848 const parser::Name &name{std::get<parser::NamedConstant>(enumerator.t).v}; 4849 Symbol *symbol{FindInScope(name)}; 4850 if (symbol && !symbol->has<UnknownDetails>()) { 4851 // Contrary to named constants appearing in a PARAMETER statement, 4852 // enumerator names should not have their type, dimension or any other 4853 // attributes defined before they are declared in the enumerator statement, 4854 // with the exception of accessibility. 4855 // This is not explicitly forbidden by the standard, but they are scalars 4856 // which type is left for the compiler to chose, so do not let users try to 4857 // tamper with that. 4858 SayAlreadyDeclared(name, *symbol); 4859 symbol = nullptr; 4860 } else { 4861 // Enumerators are treated as PARAMETER (section 7.6 paragraph (4)) 4862 symbol = &MakeSymbol(name, Attrs{Attr::PARAMETER}, ObjectEntityDetails{}); 4863 symbol->SetType(context().MakeNumericType( 4864 TypeCategory::Integer, evaluate::CInteger::kind)); 4865 } 4866 4867 if (auto &init{std::get<std::optional<parser::ScalarIntConstantExpr>>( 4868 enumerator.t)}) { 4869 Walk(*init); // Resolve names in expression before evaluation. 4870 if (auto value{EvaluateInt64(context(), *init)}) { 4871 // Cast all init expressions to C_INT so that they can then be 4872 // safely incremented (see 7.6 Note 2). 4873 enumerationState_.value = static_cast<int>(*value); 4874 } else { 4875 Say(name, 4876 "Enumerator value could not be computed " 4877 "from the given expression"_err_en_US); 4878 // Prevent resolution of next enumerators value 4879 enumerationState_.value = std::nullopt; 4880 } 4881 } 4882 4883 if (symbol) { 4884 if (enumerationState_.value) { 4885 symbol->get<ObjectEntityDetails>().set_init(SomeExpr{ 4886 evaluate::Expr<evaluate::CInteger>{*enumerationState_.value}}); 4887 } else { 4888 context().SetError(*symbol); 4889 } 4890 } 4891 4892 if (enumerationState_.value) { 4893 (*enumerationState_.value)++; 4894 } 4895 return false; 4896 } 4897 4898 void DeclarationVisitor::Post(const parser::EnumDef &) { 4899 enumerationState_ = EnumeratorState{}; 4900 } 4901 4902 bool DeclarationVisitor::Pre(const parser::AccessSpec &x) { 4903 Attr attr{AccessSpecToAttr(x)}; 4904 if (!NonDerivedTypeScope().IsModule()) { // C817 4905 Say(currStmtSource().value(), 4906 "%s attribute may only appear in the specification part of a module"_err_en_US, 4907 EnumToString(attr)); 4908 } 4909 CheckAndSet(attr); 4910 return false; 4911 } 4912 4913 bool DeclarationVisitor::Pre(const parser::AsynchronousStmt &x) { 4914 return HandleAttributeStmt(Attr::ASYNCHRONOUS, x.v); 4915 } 4916 bool DeclarationVisitor::Pre(const parser::ContiguousStmt &x) { 4917 return HandleAttributeStmt(Attr::CONTIGUOUS, x.v); 4918 } 4919 bool DeclarationVisitor::Pre(const parser::ExternalStmt &x) { 4920 HandleAttributeStmt(Attr::EXTERNAL, x.v); 4921 for (const auto &name : x.v) { 4922 auto *symbol{FindSymbol(name)}; 4923 if (!ConvertToProcEntity(DEREF(symbol), name.source)) { 4924 // Check if previous symbol is an interface. 4925 if (auto *details{symbol->detailsIf<SubprogramDetails>()}) { 4926 if (details->isInterface()) { 4927 // Warn if interface previously declared. 4928 context().Warn(common::LanguageFeature::RedundantAttribute, 4929 name.source, 4930 "EXTERNAL attribute was already specified on '%s'"_warn_en_US, 4931 name.source); 4932 } 4933 } else { 4934 SayWithDecl( 4935 name, *symbol, "EXTERNAL attribute not allowed on '%s'"_err_en_US); 4936 } 4937 } else if (symbol->attrs().test(Attr::INTRINSIC)) { // C840 4938 Say(symbol->name(), 4939 "Symbol '%s' cannot have both INTRINSIC and EXTERNAL attributes"_err_en_US, 4940 symbol->name()); 4941 } 4942 } 4943 return false; 4944 } 4945 bool DeclarationVisitor::Pre(const parser::IntentStmt &x) { 4946 auto &intentSpec{std::get<parser::IntentSpec>(x.t)}; 4947 auto &names{std::get<std::list<parser::Name>>(x.t)}; 4948 return CheckNotInBlock("INTENT") && // C1107 4949 HandleAttributeStmt(IntentSpecToAttr(intentSpec), names); 4950 } 4951 bool DeclarationVisitor::Pre(const parser::IntrinsicStmt &x) { 4952 for (const auto &name : x.v) { 4953 DeclareIntrinsic(name); 4954 } 4955 return false; 4956 } 4957 void DeclarationVisitor::DeclareIntrinsic(const parser::Name &name) { 4958 HandleAttributeStmt(Attr::INTRINSIC, name); 4959 if (!IsIntrinsic(name.source, std::nullopt)) { 4960 Say(name.source, "'%s' is not a known intrinsic procedure"_err_en_US); 4961 } 4962 auto &symbol{DEREF(FindSymbol(name))}; 4963 if (symbol.has<GenericDetails>()) { 4964 // Generic interface is extending intrinsic; ok 4965 } else if (!ConvertToProcEntity(symbol, name.source)) { 4966 SayWithDecl( 4967 name, symbol, "INTRINSIC attribute not allowed on '%s'"_err_en_US); 4968 } else if (symbol.attrs().test(Attr::EXTERNAL)) { // C840 4969 Say(symbol.name(), 4970 "Symbol '%s' cannot have both EXTERNAL and INTRINSIC attributes"_err_en_US, 4971 symbol.name()); 4972 } else { 4973 if (symbol.GetType()) { 4974 // These warnings are worded so that they should make sense in either 4975 // order. 4976 if (auto *msg{context().Warn( 4977 common::UsageWarning::IgnoredIntrinsicFunctionType, symbol.name(), 4978 "Explicit type declaration ignored for intrinsic function '%s'"_warn_en_US, 4979 symbol.name())}) { 4980 msg->Attach(name.source, 4981 "INTRINSIC statement for explicitly-typed '%s'"_en_US, name.source); 4982 } 4983 } 4984 if (!symbol.test(Symbol::Flag::Function) && 4985 !symbol.test(Symbol::Flag::Subroutine)) { 4986 if (context().intrinsics().IsIntrinsicFunction(name.source.ToString())) { 4987 symbol.set(Symbol::Flag::Function); 4988 } else if (context().intrinsics().IsIntrinsicSubroutine( 4989 name.source.ToString())) { 4990 symbol.set(Symbol::Flag::Subroutine); 4991 } 4992 } 4993 } 4994 } 4995 bool DeclarationVisitor::Pre(const parser::OptionalStmt &x) { 4996 return CheckNotInBlock("OPTIONAL") && // C1107 4997 HandleAttributeStmt(Attr::OPTIONAL, x.v); 4998 } 4999 bool DeclarationVisitor::Pre(const parser::ProtectedStmt &x) { 5000 return HandleAttributeStmt(Attr::PROTECTED, x.v); 5001 } 5002 bool DeclarationVisitor::Pre(const parser::ValueStmt &x) { 5003 return CheckNotInBlock("VALUE") && // C1107 5004 HandleAttributeStmt(Attr::VALUE, x.v); 5005 } 5006 bool DeclarationVisitor::Pre(const parser::VolatileStmt &x) { 5007 return HandleAttributeStmt(Attr::VOLATILE, x.v); 5008 } 5009 bool DeclarationVisitor::Pre(const parser::CUDAAttributesStmt &x) { 5010 auto attr{std::get<common::CUDADataAttr>(x.t)}; 5011 for (const auto &name : std::get<std::list<parser::Name>>(x.t)) { 5012 auto *symbol{FindInScope(name)}; 5013 if (symbol && symbol->has<UseDetails>()) { 5014 Say(currStmtSource().value(), 5015 "Cannot apply CUDA data attribute to use-associated '%s'"_err_en_US, 5016 name.source); 5017 } else { 5018 if (!symbol) { 5019 symbol = &MakeSymbol(name, ObjectEntityDetails{}); 5020 } 5021 SetCUDADataAttr(name.source, *symbol, attr); 5022 } 5023 } 5024 return false; 5025 } 5026 // Handle a statement that sets an attribute on a list of names. 5027 bool DeclarationVisitor::HandleAttributeStmt( 5028 Attr attr, const std::list<parser::Name> &names) { 5029 for (const auto &name : names) { 5030 HandleAttributeStmt(attr, name); 5031 } 5032 return false; 5033 } 5034 Symbol &DeclarationVisitor::HandleAttributeStmt( 5035 Attr attr, const parser::Name &name) { 5036 auto *symbol{FindInScope(name)}; 5037 if (attr == Attr::ASYNCHRONOUS || attr == Attr::VOLATILE) { 5038 // these can be set on a symbol that is host-assoc or use-assoc 5039 if (!symbol && 5040 (currScope().kind() == Scope::Kind::Subprogram || 5041 currScope().kind() == Scope::Kind::BlockConstruct)) { 5042 if (auto *hostSymbol{FindSymbol(name)}) { 5043 symbol = &MakeHostAssocSymbol(name, *hostSymbol); 5044 } 5045 } 5046 } else if (symbol && symbol->has<UseDetails>()) { 5047 if (symbol->GetUltimate().attrs().test(attr)) { 5048 context().Warn(common::LanguageFeature::RedundantAttribute, 5049 currStmtSource().value(), 5050 "Use-associated '%s' already has '%s' attribute"_warn_en_US, 5051 name.source, EnumToString(attr)); 5052 } else { 5053 Say(currStmtSource().value(), 5054 "Cannot change %s attribute on use-associated '%s'"_err_en_US, 5055 EnumToString(attr), name.source); 5056 } 5057 return *symbol; 5058 } 5059 if (!symbol) { 5060 symbol = &MakeSymbol(name, EntityDetails{}); 5061 } 5062 if (CheckDuplicatedAttr(name.source, *symbol, attr)) { 5063 HandleSaveName(name.source, Attrs{attr}); 5064 SetExplicitAttr(*symbol, attr); 5065 } 5066 return *symbol; 5067 } 5068 // C1107 5069 bool DeclarationVisitor::CheckNotInBlock(const char *stmt) { 5070 if (currScope().kind() == Scope::Kind::BlockConstruct) { 5071 Say(MessageFormattedText{ 5072 "%s statement is not allowed in a BLOCK construct"_err_en_US, stmt}); 5073 return false; 5074 } else { 5075 return true; 5076 } 5077 } 5078 5079 void DeclarationVisitor::Post(const parser::ObjectDecl &x) { 5080 CHECK(objectDeclAttr_); 5081 const auto &name{std::get<parser::ObjectName>(x.t)}; 5082 DeclareObjectEntity(name, Attrs{*objectDeclAttr_}); 5083 } 5084 5085 // Declare an entity not yet known to be an object or proc. 5086 Symbol &DeclarationVisitor::DeclareUnknownEntity( 5087 const parser::Name &name, Attrs attrs) { 5088 if (!arraySpec().empty() || !coarraySpec().empty()) { 5089 return DeclareObjectEntity(name, attrs); 5090 } else { 5091 Symbol &symbol{DeclareEntity<EntityDetails>(name, attrs)}; 5092 if (auto *type{GetDeclTypeSpec()}) { 5093 SetType(name, *type); 5094 } 5095 charInfo_.length.reset(); 5096 if (symbol.attrs().test(Attr::EXTERNAL)) { 5097 ConvertToProcEntity(symbol); 5098 } else if (symbol.attrs().HasAny(Attrs{Attr::ALLOCATABLE, 5099 Attr::ASYNCHRONOUS, Attr::CONTIGUOUS, Attr::PARAMETER, 5100 Attr::SAVE, Attr::TARGET, Attr::VALUE, Attr::VOLATILE})) { 5101 ConvertToObjectEntity(symbol); 5102 } 5103 if (attrs.test(Attr::BIND_C)) { 5104 SetBindNameOn(symbol); 5105 } 5106 return symbol; 5107 } 5108 } 5109 5110 bool DeclarationVisitor::HasCycle( 5111 const Symbol &procSymbol, const Symbol *interface) { 5112 SourceOrderedSymbolSet procsInCycle; 5113 procsInCycle.insert(procSymbol); 5114 while (interface) { 5115 if (procsInCycle.count(*interface) > 0) { 5116 for (const auto &procInCycle : procsInCycle) { 5117 Say(procInCycle->name(), 5118 "The interface for procedure '%s' is recursively defined"_err_en_US, 5119 procInCycle->name()); 5120 context().SetError(*procInCycle); 5121 } 5122 return true; 5123 } else if (const auto *procDetails{ 5124 interface->detailsIf<ProcEntityDetails>()}) { 5125 procsInCycle.insert(*interface); 5126 interface = procDetails->procInterface(); 5127 } else { 5128 break; 5129 } 5130 } 5131 return false; 5132 } 5133 5134 Symbol &DeclarationVisitor::DeclareProcEntity( 5135 const parser::Name &name, Attrs attrs, const Symbol *interface) { 5136 Symbol *proc{nullptr}; 5137 if (auto *extant{FindInScope(name)}) { 5138 if (auto *d{extant->detailsIf<GenericDetails>()}; d && !d->derivedType()) { 5139 // procedure pointer with same name as a generic 5140 if (auto *specific{d->specific()}) { 5141 SayAlreadyDeclared(name, *specific); 5142 } else { 5143 // Create the ProcEntityDetails symbol in the scope as the "specific()" 5144 // symbol behind an existing GenericDetails symbol of the same name. 5145 proc = &Resolve(name, 5146 currScope().MakeSymbol(name.source, attrs, ProcEntityDetails{})); 5147 d->set_specific(*proc); 5148 } 5149 } 5150 } 5151 Symbol &symbol{proc ? *proc : DeclareEntity<ProcEntityDetails>(name, attrs)}; 5152 if (auto *details{symbol.detailsIf<ProcEntityDetails>()}) { 5153 if (context().HasError(symbol)) { 5154 } else if (HasCycle(symbol, interface)) { 5155 return symbol; 5156 } else if (interface && (details->procInterface() || details->type())) { 5157 SayWithDecl(name, symbol, 5158 "The interface for procedure '%s' has already been declared"_err_en_US); 5159 context().SetError(symbol); 5160 } else if (interface) { 5161 details->set_procInterfaces( 5162 *interface, BypassGeneric(interface->GetUltimate())); 5163 if (interface->test(Symbol::Flag::Function)) { 5164 symbol.set(Symbol::Flag::Function); 5165 } else if (interface->test(Symbol::Flag::Subroutine)) { 5166 symbol.set(Symbol::Flag::Subroutine); 5167 } 5168 } else if (auto *type{GetDeclTypeSpec()}) { 5169 SetType(name, *type); 5170 symbol.set(Symbol::Flag::Function); 5171 } 5172 SetBindNameOn(symbol); 5173 SetPassNameOn(symbol); 5174 } 5175 return symbol; 5176 } 5177 5178 Symbol &DeclarationVisitor::DeclareObjectEntity( 5179 const parser::Name &name, Attrs attrs) { 5180 Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, attrs)}; 5181 if (auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 5182 if (auto *type{GetDeclTypeSpec()}) { 5183 SetType(name, *type); 5184 } 5185 if (!arraySpec().empty()) { 5186 if (details->IsArray()) { 5187 if (!context().HasError(symbol)) { 5188 Say(name, 5189 "The dimensions of '%s' have already been declared"_err_en_US); 5190 context().SetError(symbol); 5191 } 5192 } else if (MustBeScalar(symbol)) { 5193 context().Warn(common::UsageWarning::PreviousScalarUse, name.source, 5194 "'%s' appeared earlier as a scalar actual argument to a specification function"_warn_en_US, 5195 name.source); 5196 } else if (details->init() || symbol.test(Symbol::Flag::InDataStmt)) { 5197 Say(name, "'%s' was initialized earlier as a scalar"_err_en_US); 5198 } else { 5199 details->set_shape(arraySpec()); 5200 } 5201 } 5202 if (!coarraySpec().empty()) { 5203 if (details->IsCoarray()) { 5204 if (!context().HasError(symbol)) { 5205 Say(name, 5206 "The codimensions of '%s' have already been declared"_err_en_US); 5207 context().SetError(symbol); 5208 } 5209 } else { 5210 details->set_coshape(coarraySpec()); 5211 } 5212 } 5213 SetBindNameOn(symbol); 5214 } 5215 ClearArraySpec(); 5216 ClearCoarraySpec(); 5217 charInfo_.length.reset(); 5218 return symbol; 5219 } 5220 5221 void DeclarationVisitor::Post(const parser::IntegerTypeSpec &x) { 5222 if (!isVectorType_) { 5223 SetDeclTypeSpec(MakeNumericType(TypeCategory::Integer, x.v)); 5224 } 5225 } 5226 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Real &x) { 5227 if (!isVectorType_) { 5228 SetDeclTypeSpec(MakeNumericType(TypeCategory::Real, x.kind)); 5229 } 5230 } 5231 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Complex &x) { 5232 SetDeclTypeSpec(MakeNumericType(TypeCategory::Complex, x.kind)); 5233 } 5234 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Logical &x) { 5235 SetDeclTypeSpec(MakeLogicalType(x.kind)); 5236 } 5237 void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Character &) { 5238 if (!charInfo_.length) { 5239 charInfo_.length = ParamValue{1, common::TypeParamAttr::Len}; 5240 } 5241 if (!charInfo_.kind) { 5242 charInfo_.kind = 5243 KindExpr{context().GetDefaultKind(TypeCategory::Character)}; 5244 } 5245 SetDeclTypeSpec(currScope().MakeCharacterType( 5246 std::move(*charInfo_.length), std::move(*charInfo_.kind))); 5247 charInfo_ = {}; 5248 } 5249 void DeclarationVisitor::Post(const parser::CharSelector::LengthAndKind &x) { 5250 charInfo_.kind = EvaluateSubscriptIntExpr(x.kind); 5251 std::optional<std::int64_t> intKind{ToInt64(charInfo_.kind)}; 5252 if (intKind && 5253 !context().targetCharacteristics().IsTypeEnabled( 5254 TypeCategory::Character, *intKind)) { // C715, C719 5255 Say(currStmtSource().value(), 5256 "KIND value (%jd) not valid for CHARACTER"_err_en_US, *intKind); 5257 charInfo_.kind = std::nullopt; // prevent further errors 5258 } 5259 if (x.length) { 5260 charInfo_.length = GetParamValue(*x.length, common::TypeParamAttr::Len); 5261 } 5262 } 5263 void DeclarationVisitor::Post(const parser::CharLength &x) { 5264 if (const auto *length{std::get_if<std::uint64_t>(&x.u)}) { 5265 charInfo_.length = ParamValue{ 5266 static_cast<ConstantSubscript>(*length), common::TypeParamAttr::Len}; 5267 } else { 5268 charInfo_.length = GetParamValue( 5269 std::get<parser::TypeParamValue>(x.u), common::TypeParamAttr::Len); 5270 } 5271 } 5272 void DeclarationVisitor::Post(const parser::LengthSelector &x) { 5273 if (const auto *param{std::get_if<parser::TypeParamValue>(&x.u)}) { 5274 charInfo_.length = GetParamValue(*param, common::TypeParamAttr::Len); 5275 } 5276 } 5277 5278 bool DeclarationVisitor::Pre(const parser::KindParam &x) { 5279 if (const auto *kind{std::get_if< 5280 parser::Scalar<parser::Integer<parser::Constant<parser::Name>>>>( 5281 &x.u)}) { 5282 const parser::Name &name{kind->thing.thing.thing}; 5283 if (!FindSymbol(name)) { 5284 Say(name, "Parameter '%s' not found"_err_en_US); 5285 } 5286 } 5287 return false; 5288 } 5289 5290 int DeclarationVisitor::GetVectorElementKind( 5291 TypeCategory category, const std::optional<parser::KindSelector> &kind) { 5292 KindExpr value{GetKindParamExpr(category, kind)}; 5293 if (auto known{evaluate::ToInt64(value)}) { 5294 return static_cast<int>(*known); 5295 } 5296 common::die("Vector element kind must be known at compile-time"); 5297 } 5298 5299 bool DeclarationVisitor::Pre(const parser::VectorTypeSpec &) { 5300 // PowerPC vector types are allowed only on Power architectures. 5301 if (!currScope().context().targetCharacteristics().isPPC()) { 5302 Say(currStmtSource().value(), 5303 "Vector type is only supported for PowerPC"_err_en_US); 5304 isVectorType_ = false; 5305 return false; 5306 } 5307 isVectorType_ = true; 5308 return true; 5309 } 5310 // Create semantic::DerivedTypeSpec for Vector types here. 5311 void DeclarationVisitor::Post(const parser::VectorTypeSpec &x) { 5312 llvm::StringRef typeName; 5313 llvm::SmallVector<ParamValue> typeParams; 5314 DerivedTypeSpec::Category vectorCategory; 5315 5316 isVectorType_ = false; 5317 common::visit( 5318 common::visitors{ 5319 [&](const parser::IntrinsicVectorTypeSpec &y) { 5320 vectorCategory = DerivedTypeSpec::Category::IntrinsicVector; 5321 int vecElemKind = 0; 5322 typeName = "__builtin_ppc_intrinsic_vector"; 5323 common::visit( 5324 common::visitors{ 5325 [&](const parser::IntegerTypeSpec &z) { 5326 vecElemKind = GetVectorElementKind( 5327 TypeCategory::Integer, std::move(z.v)); 5328 typeParams.push_back(ParamValue( 5329 static_cast<common::ConstantSubscript>( 5330 common::VectorElementCategory::Integer), 5331 common::TypeParamAttr::Kind)); 5332 }, 5333 [&](const parser::IntrinsicTypeSpec::Real &z) { 5334 vecElemKind = GetVectorElementKind( 5335 TypeCategory::Real, std::move(z.kind)); 5336 typeParams.push_back( 5337 ParamValue(static_cast<common::ConstantSubscript>( 5338 common::VectorElementCategory::Real), 5339 common::TypeParamAttr::Kind)); 5340 }, 5341 [&](const parser::UnsignedTypeSpec &z) { 5342 vecElemKind = GetVectorElementKind( 5343 TypeCategory::Integer, std::move(z.v)); 5344 typeParams.push_back(ParamValue( 5345 static_cast<common::ConstantSubscript>( 5346 common::VectorElementCategory::Unsigned), 5347 common::TypeParamAttr::Kind)); 5348 }, 5349 }, 5350 y.v.u); 5351 typeParams.push_back( 5352 ParamValue(static_cast<common::ConstantSubscript>(vecElemKind), 5353 common::TypeParamAttr::Kind)); 5354 }, 5355 [&](const parser::VectorTypeSpec::PairVectorTypeSpec &y) { 5356 vectorCategory = DerivedTypeSpec::Category::PairVector; 5357 typeName = "__builtin_ppc_pair_vector"; 5358 }, 5359 [&](const parser::VectorTypeSpec::QuadVectorTypeSpec &y) { 5360 vectorCategory = DerivedTypeSpec::Category::QuadVector; 5361 typeName = "__builtin_ppc_quad_vector"; 5362 }, 5363 }, 5364 x.u); 5365 5366 auto ppcBuiltinTypesScope = currScope().context().GetPPCBuiltinTypesScope(); 5367 if (!ppcBuiltinTypesScope) { 5368 common::die("INTERNAL: The __ppc_types module was not found "); 5369 } 5370 5371 auto iter{ppcBuiltinTypesScope->find( 5372 semantics::SourceName{typeName.data(), typeName.size()})}; 5373 if (iter == ppcBuiltinTypesScope->cend()) { 5374 common::die("INTERNAL: The __ppc_types module does not define " 5375 "the type '%s'", 5376 typeName.data()); 5377 } 5378 5379 const semantics::Symbol &typeSymbol{*iter->second}; 5380 DerivedTypeSpec vectorDerivedType{typeName.data(), typeSymbol}; 5381 vectorDerivedType.set_category(vectorCategory); 5382 if (typeParams.size()) { 5383 vectorDerivedType.AddRawParamValue(nullptr, std::move(typeParams[0])); 5384 vectorDerivedType.AddRawParamValue(nullptr, std::move(typeParams[1])); 5385 vectorDerivedType.CookParameters(GetFoldingContext()); 5386 } 5387 5388 if (const DeclTypeSpec * 5389 extant{ppcBuiltinTypesScope->FindInstantiatedDerivedType( 5390 vectorDerivedType, DeclTypeSpec::Category::TypeDerived)}) { 5391 // This derived type and parameter expressions (if any) are already present 5392 // in the __ppc_intrinsics scope. 5393 SetDeclTypeSpec(*extant); 5394 } else { 5395 DeclTypeSpec &type{ppcBuiltinTypesScope->MakeDerivedType( 5396 DeclTypeSpec::Category::TypeDerived, std::move(vectorDerivedType))}; 5397 DerivedTypeSpec &derived{type.derivedTypeSpec()}; 5398 auto restorer{ 5399 GetFoldingContext().messages().SetLocation(currStmtSource().value())}; 5400 derived.Instantiate(*ppcBuiltinTypesScope); 5401 SetDeclTypeSpec(type); 5402 } 5403 } 5404 5405 bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Type &) { 5406 CHECK(GetDeclTypeSpecCategory() == DeclTypeSpec::Category::TypeDerived); 5407 return true; 5408 } 5409 5410 void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Type &type) { 5411 const parser::Name &derivedName{std::get<parser::Name>(type.derived.t)}; 5412 if (const Symbol * derivedSymbol{derivedName.symbol}) { 5413 CheckForAbstractType(*derivedSymbol); // C706 5414 } 5415 } 5416 5417 bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Class &) { 5418 SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived); 5419 return true; 5420 } 5421 5422 void DeclarationVisitor::Post( 5423 const parser::DeclarationTypeSpec::Class &parsedClass) { 5424 const auto &typeName{std::get<parser::Name>(parsedClass.derived.t)}; 5425 if (auto spec{ResolveDerivedType(typeName)}; 5426 spec && !IsExtensibleType(&*spec)) { // C705 5427 SayWithDecl(typeName, *typeName.symbol, 5428 "Non-extensible derived type '%s' may not be used with CLASS" 5429 " keyword"_err_en_US); 5430 } 5431 } 5432 5433 void DeclarationVisitor::Post(const parser::DerivedTypeSpec &x) { 5434 const auto &typeName{std::get<parser::Name>(x.t)}; 5435 auto spec{ResolveDerivedType(typeName)}; 5436 if (!spec) { 5437 return; 5438 } 5439 bool seenAnyName{false}; 5440 for (const auto &typeParamSpec : 5441 std::get<std::list<parser::TypeParamSpec>>(x.t)) { 5442 const auto &optKeyword{ 5443 std::get<std::optional<parser::Keyword>>(typeParamSpec.t)}; 5444 std::optional<SourceName> name; 5445 if (optKeyword) { 5446 seenAnyName = true; 5447 name = optKeyword->v.source; 5448 } else if (seenAnyName) { 5449 Say(typeName.source, "Type parameter value must have a name"_err_en_US); 5450 continue; 5451 } 5452 const auto &value{std::get<parser::TypeParamValue>(typeParamSpec.t)}; 5453 // The expressions in a derived type specifier whose values define 5454 // non-defaulted type parameters are evaluated (folded) in the enclosing 5455 // scope. The KIND/LEN distinction is resolved later in 5456 // DerivedTypeSpec::CookParameters(). 5457 ParamValue param{GetParamValue(value, common::TypeParamAttr::Kind)}; 5458 if (!param.isExplicit() || param.GetExplicit()) { 5459 spec->AddRawParamValue( 5460 common::GetPtrFromOptional(optKeyword), std::move(param)); 5461 } 5462 } 5463 // The DerivedTypeSpec *spec is used initially as a search key. 5464 // If it turns out to have the same name and actual parameter 5465 // value expressions as another DerivedTypeSpec in the current 5466 // scope does, then we'll use that extant spec; otherwise, when this 5467 // spec is distinct from all derived types previously instantiated 5468 // in the current scope, this spec will be moved into that collection. 5469 const auto &dtDetails{spec->typeSymbol().get<DerivedTypeDetails>()}; 5470 auto category{GetDeclTypeSpecCategory()}; 5471 if (dtDetails.isForwardReferenced()) { 5472 DeclTypeSpec &type{currScope().MakeDerivedType(category, std::move(*spec))}; 5473 SetDeclTypeSpec(type); 5474 return; 5475 } 5476 // Normalize parameters to produce a better search key. 5477 spec->CookParameters(GetFoldingContext()); 5478 if (!spec->MightBeParameterized()) { 5479 spec->EvaluateParameters(context()); 5480 } 5481 if (const DeclTypeSpec * 5482 extant{currScope().FindInstantiatedDerivedType(*spec, category)}) { 5483 // This derived type and parameter expressions (if any) are already present 5484 // in this scope. 5485 SetDeclTypeSpec(*extant); 5486 } else { 5487 DeclTypeSpec &type{currScope().MakeDerivedType(category, std::move(*spec))}; 5488 DerivedTypeSpec &derived{type.derivedTypeSpec()}; 5489 if (derived.MightBeParameterized() && 5490 currScope().IsParameterizedDerivedType()) { 5491 // Defer instantiation; use the derived type's definition's scope. 5492 derived.set_scope(DEREF(spec->typeSymbol().scope())); 5493 } else if (&currScope() == spec->typeSymbol().scope()) { 5494 // Direct recursive use of a type in the definition of one of its 5495 // components: defer instantiation 5496 } else { 5497 auto restorer{ 5498 GetFoldingContext().messages().SetLocation(currStmtSource().value())}; 5499 derived.Instantiate(currScope()); 5500 } 5501 SetDeclTypeSpec(type); 5502 } 5503 // Capture the DerivedTypeSpec in the parse tree for use in building 5504 // structure constructor expressions. 5505 x.derivedTypeSpec = &GetDeclTypeSpec()->derivedTypeSpec(); 5506 } 5507 5508 void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Record &rec) { 5509 const auto &typeName{rec.v}; 5510 if (auto spec{ResolveDerivedType(typeName)}) { 5511 spec->CookParameters(GetFoldingContext()); 5512 spec->EvaluateParameters(context()); 5513 if (const DeclTypeSpec * 5514 extant{currScope().FindInstantiatedDerivedType( 5515 *spec, DeclTypeSpec::TypeDerived)}) { 5516 SetDeclTypeSpec(*extant); 5517 } else { 5518 Say(typeName.source, "%s is not a known STRUCTURE"_err_en_US, 5519 typeName.source); 5520 } 5521 } 5522 } 5523 5524 // The descendents of DerivedTypeDef in the parse tree are visited directly 5525 // in this Pre() routine so that recursive use of the derived type can be 5526 // supported in the components. 5527 bool DeclarationVisitor::Pre(const parser::DerivedTypeDef &x) { 5528 auto &stmt{std::get<parser::Statement<parser::DerivedTypeStmt>>(x.t)}; 5529 Walk(stmt); 5530 Walk(std::get<std::list<parser::Statement<parser::TypeParamDefStmt>>>(x.t)); 5531 auto &scope{currScope()}; 5532 CHECK(scope.symbol()); 5533 CHECK(scope.symbol()->scope() == &scope); 5534 auto &details{scope.symbol()->get<DerivedTypeDetails>()}; 5535 for (auto ¶mName : std::get<std::list<parser::Name>>(stmt.statement.t)) { 5536 if (auto *symbol{FindInScope(scope, paramName)}) { 5537 if (auto *details{symbol->detailsIf<TypeParamDetails>()}) { 5538 if (!details->attr()) { 5539 Say(paramName, 5540 "No definition found for type parameter '%s'"_err_en_US); // C742 5541 } 5542 } 5543 } 5544 } 5545 Walk(std::get<std::list<parser::Statement<parser::PrivateOrSequence>>>(x.t)); 5546 const auto &componentDefs{ 5547 std::get<std::list<parser::Statement<parser::ComponentDefStmt>>>(x.t)}; 5548 Walk(componentDefs); 5549 if (derivedTypeInfo_.sequence) { 5550 details.set_sequence(true); 5551 if (componentDefs.empty()) { 5552 // F'2023 C745 - not enforced by any compiler 5553 context().Warn(common::LanguageFeature::EmptySequenceType, stmt.source, 5554 "A sequence type should have at least one component"_warn_en_US); 5555 } 5556 if (!details.paramDeclOrder().empty()) { // C740 5557 Say(stmt.source, 5558 "A sequence type may not have type parameters"_err_en_US); 5559 } 5560 if (derivedTypeInfo_.extends) { // C735 5561 Say(stmt.source, 5562 "A sequence type may not have the EXTENDS attribute"_err_en_US); 5563 } 5564 } 5565 Walk(std::get<std::optional<parser::TypeBoundProcedurePart>>(x.t)); 5566 Walk(std::get<parser::Statement<parser::EndTypeStmt>>(x.t)); 5567 details.set_isForwardReferenced(false); 5568 derivedTypeInfo_ = {}; 5569 PopScope(); 5570 return false; 5571 } 5572 5573 bool DeclarationVisitor::Pre(const parser::DerivedTypeStmt &) { 5574 return BeginAttrs(); 5575 } 5576 void DeclarationVisitor::Post(const parser::DerivedTypeStmt &x) { 5577 auto &name{std::get<parser::Name>(x.t)}; 5578 // Resolve the EXTENDS() clause before creating the derived 5579 // type's symbol to foil attempts to recursively extend a type. 5580 auto *extendsName{derivedTypeInfo_.extends}; 5581 std::optional<DerivedTypeSpec> extendsType{ 5582 ResolveExtendsType(name, extendsName)}; 5583 DerivedTypeDetails derivedTypeDetails; 5584 // Catch any premature structure constructors within the definition 5585 derivedTypeDetails.set_isForwardReferenced(true); 5586 auto &symbol{MakeSymbol(name, GetAttrs(), std::move(derivedTypeDetails))}; 5587 symbol.ReplaceName(name.source); 5588 derivedTypeInfo_.type = &symbol; 5589 PushScope(Scope::Kind::DerivedType, &symbol); 5590 if (extendsType) { 5591 // Declare the "parent component"; private if the type is. 5592 // Any symbol stored in the EXTENDS() clause is temporarily 5593 // hidden so that a new symbol can be created for the parent 5594 // component without producing spurious errors about already 5595 // existing. 5596 const Symbol &extendsSymbol{extendsType->typeSymbol()}; 5597 auto restorer{common::ScopedSet(extendsName->symbol, nullptr)}; 5598 if (OkToAddComponent(*extendsName, &extendsSymbol)) { 5599 auto &comp{DeclareEntity<ObjectEntityDetails>(*extendsName, Attrs{})}; 5600 comp.attrs().set( 5601 Attr::PRIVATE, extendsSymbol.attrs().test(Attr::PRIVATE)); 5602 comp.implicitAttrs().set( 5603 Attr::PRIVATE, extendsSymbol.implicitAttrs().test(Attr::PRIVATE)); 5604 comp.set(Symbol::Flag::ParentComp); 5605 DeclTypeSpec &type{currScope().MakeDerivedType( 5606 DeclTypeSpec::TypeDerived, std::move(*extendsType))}; 5607 type.derivedTypeSpec().set_scope(DEREF(extendsSymbol.scope())); 5608 comp.SetType(type); 5609 DerivedTypeDetails &details{symbol.get<DerivedTypeDetails>()}; 5610 details.add_component(comp); 5611 } 5612 } 5613 // Create symbols now for type parameters so that they shadow names 5614 // from the enclosing specification part. 5615 if (auto *details{symbol.detailsIf<DerivedTypeDetails>()}) { 5616 for (const auto &name : std::get<std::list<parser::Name>>(x.t)) { 5617 if (Symbol * symbol{MakeTypeSymbol(name, TypeParamDetails{})}) { 5618 details->add_paramNameOrder(*symbol); 5619 } 5620 } 5621 } 5622 EndAttrs(); 5623 } 5624 5625 void DeclarationVisitor::Post(const parser::TypeParamDefStmt &x) { 5626 auto *type{GetDeclTypeSpec()}; 5627 DerivedTypeDetails *derivedDetails{nullptr}; 5628 if (Symbol * dtSym{currScope().symbol()}) { 5629 derivedDetails = dtSym->detailsIf<DerivedTypeDetails>(); 5630 } 5631 auto attr{std::get<common::TypeParamAttr>(x.t)}; 5632 for (auto &decl : std::get<std::list<parser::TypeParamDecl>>(x.t)) { 5633 auto &name{std::get<parser::Name>(decl.t)}; 5634 if (Symbol * symbol{FindInScope(currScope(), name)}) { 5635 if (auto *paramDetails{symbol->detailsIf<TypeParamDetails>()}) { 5636 if (!paramDetails->attr()) { 5637 paramDetails->set_attr(attr); 5638 SetType(name, *type); 5639 if (auto &init{std::get<std::optional<parser::ScalarIntConstantExpr>>( 5640 decl.t)}) { 5641 if (auto maybeExpr{AnalyzeExpr(context(), *init)}) { 5642 if (auto *intExpr{std::get_if<SomeIntExpr>(&maybeExpr->u)}) { 5643 paramDetails->set_init(std::move(*intExpr)); 5644 } 5645 } 5646 } 5647 if (derivedDetails) { 5648 derivedDetails->add_paramDeclOrder(*symbol); 5649 } 5650 } else { 5651 Say(name, 5652 "Type parameter '%s' was already declared in this derived type"_err_en_US); 5653 } 5654 } 5655 } else { 5656 Say(name, "'%s' is not a parameter of this derived type"_err_en_US); 5657 } 5658 } 5659 EndDecl(); 5660 } 5661 bool DeclarationVisitor::Pre(const parser::TypeAttrSpec::Extends &x) { 5662 if (derivedTypeInfo_.extends) { 5663 Say(currStmtSource().value(), 5664 "Attribute 'EXTENDS' cannot be used more than once"_err_en_US); 5665 } else { 5666 derivedTypeInfo_.extends = &x.v; 5667 } 5668 return false; 5669 } 5670 5671 bool DeclarationVisitor::Pre(const parser::PrivateStmt &) { 5672 if (!currScope().parent().IsModule()) { 5673 Say("PRIVATE is only allowed in a derived type that is" 5674 " in a module"_err_en_US); // C766 5675 } else if (derivedTypeInfo_.sawContains) { 5676 derivedTypeInfo_.privateBindings = true; 5677 } else if (!derivedTypeInfo_.privateComps) { 5678 derivedTypeInfo_.privateComps = true; 5679 } else { // C738 5680 context().Warn(common::LanguageFeature::RedundantAttribute, 5681 "PRIVATE should not appear more than once in derived type components"_warn_en_US); 5682 } 5683 return false; 5684 } 5685 bool DeclarationVisitor::Pre(const parser::SequenceStmt &) { 5686 if (derivedTypeInfo_.sequence) { // C738 5687 context().Warn(common::LanguageFeature::RedundantAttribute, 5688 "SEQUENCE should not appear more than once in derived type components"_warn_en_US); 5689 } 5690 derivedTypeInfo_.sequence = true; 5691 return false; 5692 } 5693 void DeclarationVisitor::Post(const parser::ComponentDecl &x) { 5694 const auto &name{std::get<parser::Name>(x.t)}; 5695 auto attrs{GetAttrs()}; 5696 if (derivedTypeInfo_.privateComps && 5697 !attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) { 5698 attrs.set(Attr::PRIVATE); 5699 } 5700 if (const auto *declType{GetDeclTypeSpec()}) { 5701 if (const auto *derived{declType->AsDerived()}) { 5702 if (!attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) { 5703 if (derivedTypeInfo_.type == &derived->typeSymbol()) { // C744 5704 Say("Recursive use of the derived type requires " 5705 "POINTER or ALLOCATABLE"_err_en_US); 5706 } 5707 } 5708 // TODO: This would be more appropriate in CheckDerivedType() 5709 if (auto it{FindCoarrayUltimateComponent(*derived)}) { // C748 5710 std::string ultimateName{it.BuildResultDesignatorName()}; 5711 // Strip off the leading "%" 5712 if (ultimateName.length() > 1) { 5713 ultimateName.erase(0, 1); 5714 if (attrs.HasAny({Attr::POINTER, Attr::ALLOCATABLE})) { 5715 evaluate::AttachDeclaration( 5716 Say(name.source, 5717 "A component with a POINTER or ALLOCATABLE attribute may " 5718 "not " 5719 "be of a type with a coarray ultimate component (named " 5720 "'%s')"_err_en_US, 5721 ultimateName), 5722 derived->typeSymbol()); 5723 } 5724 if (!arraySpec().empty() || !coarraySpec().empty()) { 5725 evaluate::AttachDeclaration( 5726 Say(name.source, 5727 "An array or coarray component may not be of a type with a " 5728 "coarray ultimate component (named '%s')"_err_en_US, 5729 ultimateName), 5730 derived->typeSymbol()); 5731 } 5732 } 5733 } 5734 } 5735 } 5736 if (OkToAddComponent(name)) { 5737 auto &symbol{DeclareObjectEntity(name, attrs)}; 5738 SetCUDADataAttr(name.source, symbol, cudaDataAttr()); 5739 if (symbol.has<ObjectEntityDetails>()) { 5740 if (auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) { 5741 Initialization(name, *init, true); 5742 } 5743 } 5744 currScope().symbol()->get<DerivedTypeDetails>().add_component(symbol); 5745 } 5746 ClearArraySpec(); 5747 ClearCoarraySpec(); 5748 } 5749 void DeclarationVisitor::Post(const parser::FillDecl &x) { 5750 // Replace "%FILL" with a distinct generated name 5751 const auto &name{std::get<parser::Name>(x.t)}; 5752 const_cast<SourceName &>(name.source) = context().GetTempName(currScope()); 5753 if (OkToAddComponent(name)) { 5754 auto &symbol{DeclareObjectEntity(name, GetAttrs())}; 5755 currScope().symbol()->get<DerivedTypeDetails>().add_component(symbol); 5756 } 5757 ClearArraySpec(); 5758 } 5759 bool DeclarationVisitor::Pre(const parser::ProcedureDeclarationStmt &x) { 5760 CHECK(!interfaceName_); 5761 const auto &procAttrSpec{std::get<std::list<parser::ProcAttrSpec>>(x.t)}; 5762 for (const parser::ProcAttrSpec &procAttr : procAttrSpec) { 5763 if (auto *bindC{std::get_if<parser::LanguageBindingSpec>(&procAttr.u)}) { 5764 if (std::get<std::optional<parser::ScalarDefaultCharConstantExpr>>( 5765 bindC->t) 5766 .has_value()) { 5767 if (std::get<std::list<parser::ProcDecl>>(x.t).size() > 1) { 5768 Say(context().location().value(), 5769 "A procedure declaration statement with a binding name may not declare multiple procedures"_err_en_US); 5770 } 5771 break; 5772 } 5773 } 5774 } 5775 return BeginDecl(); 5776 } 5777 void DeclarationVisitor::Post(const parser::ProcedureDeclarationStmt &) { 5778 interfaceName_ = nullptr; 5779 EndDecl(); 5780 } 5781 bool DeclarationVisitor::Pre(const parser::DataComponentDefStmt &x) { 5782 // Overrides parse tree traversal so as to handle attributes first, 5783 // so POINTER & ALLOCATABLE enable forward references to derived types. 5784 Walk(std::get<std::list<parser::ComponentAttrSpec>>(x.t)); 5785 set_allowForwardReferenceToDerivedType( 5786 GetAttrs().HasAny({Attr::POINTER, Attr::ALLOCATABLE})); 5787 Walk(std::get<parser::DeclarationTypeSpec>(x.t)); 5788 set_allowForwardReferenceToDerivedType(false); 5789 if (derivedTypeInfo_.sequence) { // C740 5790 if (const auto *declType{GetDeclTypeSpec()}) { 5791 if (!declType->AsIntrinsic() && !declType->IsSequenceType() && 5792 !InModuleFile()) { 5793 if (GetAttrs().test(Attr::POINTER) && 5794 context().IsEnabled(common::LanguageFeature::PointerInSeqType)) { 5795 context().Warn(common::LanguageFeature::PointerInSeqType, 5796 "A sequence type data component that is a pointer to a non-sequence type is not standard"_port_en_US); 5797 } else { 5798 Say("A sequence type data component must either be of an intrinsic type or a derived sequence type"_err_en_US); 5799 } 5800 } 5801 } 5802 } 5803 Walk(std::get<std::list<parser::ComponentOrFill>>(x.t)); 5804 return false; 5805 } 5806 bool DeclarationVisitor::Pre(const parser::ProcComponentDefStmt &) { 5807 CHECK(!interfaceName_); 5808 return true; 5809 } 5810 void DeclarationVisitor::Post(const parser::ProcComponentDefStmt &) { 5811 interfaceName_ = nullptr; 5812 } 5813 bool DeclarationVisitor::Pre(const parser::ProcPointerInit &x) { 5814 if (auto *name{std::get_if<parser::Name>(&x.u)}) { 5815 return !NameIsKnownOrIntrinsic(*name) && !CheckUseError(*name); 5816 } else { 5817 const auto &null{DEREF(std::get_if<parser::NullInit>(&x.u))}; 5818 Walk(null); 5819 if (auto nullInit{EvaluateExpr(null)}) { 5820 if (!evaluate::IsNullPointer(*nullInit)) { 5821 Say(null.v.value().source, 5822 "Procedure pointer initializer must be a name or intrinsic NULL()"_err_en_US); 5823 } 5824 } 5825 return false; 5826 } 5827 } 5828 void DeclarationVisitor::Post(const parser::ProcInterface &x) { 5829 if (auto *name{std::get_if<parser::Name>(&x.u)}) { 5830 interfaceName_ = name; 5831 NoteInterfaceName(*name); 5832 } 5833 } 5834 void DeclarationVisitor::Post(const parser::ProcDecl &x) { 5835 const auto &name{std::get<parser::Name>(x.t)}; 5836 // Don't use BypassGeneric or GetUltimate on this symbol, they can 5837 // lead to unusable names in module files. 5838 const Symbol *procInterface{ 5839 interfaceName_ ? interfaceName_->symbol : nullptr}; 5840 auto attrs{HandleSaveName(name.source, GetAttrs())}; 5841 DerivedTypeDetails *dtDetails{nullptr}; 5842 if (Symbol * symbol{currScope().symbol()}) { 5843 dtDetails = symbol->detailsIf<DerivedTypeDetails>(); 5844 } 5845 if (!dtDetails) { 5846 attrs.set(Attr::EXTERNAL); 5847 } 5848 Symbol &symbol{DeclareProcEntity(name, attrs, procInterface)}; 5849 SetCUDADataAttr(name.source, symbol, cudaDataAttr()); // for error 5850 symbol.ReplaceName(name.source); 5851 if (dtDetails) { 5852 dtDetails->add_component(symbol); 5853 } 5854 DeclaredPossibleSpecificProc(symbol); 5855 } 5856 5857 bool DeclarationVisitor::Pre(const parser::TypeBoundProcedurePart &) { 5858 derivedTypeInfo_.sawContains = true; 5859 return true; 5860 } 5861 5862 // Resolve binding names from type-bound generics, saved in genericBindings_. 5863 void DeclarationVisitor::Post(const parser::TypeBoundProcedurePart &) { 5864 // track specifics seen for the current generic to detect duplicates: 5865 const Symbol *currGeneric{nullptr}; 5866 std::set<SourceName> specifics; 5867 for (const auto &[generic, bindingName] : genericBindings_) { 5868 if (generic != currGeneric) { 5869 currGeneric = generic; 5870 specifics.clear(); 5871 } 5872 auto [it, inserted]{specifics.insert(bindingName->source)}; 5873 if (!inserted) { 5874 Say(*bindingName, // C773 5875 "Binding name '%s' was already specified for generic '%s'"_err_en_US, 5876 bindingName->source, generic->name()) 5877 .Attach(*it, "Previous specification of '%s'"_en_US, *it); 5878 continue; 5879 } 5880 auto *symbol{FindInTypeOrParents(*bindingName)}; 5881 if (!symbol) { 5882 Say(*bindingName, // C772 5883 "Binding name '%s' not found in this derived type"_err_en_US); 5884 } else if (!symbol->has<ProcBindingDetails>()) { 5885 SayWithDecl(*bindingName, *symbol, // C772 5886 "'%s' is not the name of a specific binding of this type"_err_en_US); 5887 } else { 5888 generic->get<GenericDetails>().AddSpecificProc( 5889 *symbol, bindingName->source); 5890 } 5891 } 5892 genericBindings_.clear(); 5893 } 5894 5895 void DeclarationVisitor::Post(const parser::ContainsStmt &) { 5896 if (derivedTypeInfo_.sequence) { 5897 Say("A sequence type may not have a CONTAINS statement"_err_en_US); // C740 5898 } 5899 } 5900 5901 void DeclarationVisitor::Post( 5902 const parser::TypeBoundProcedureStmt::WithoutInterface &x) { 5903 if (GetAttrs().test(Attr::DEFERRED)) { // C783 5904 Say("DEFERRED is only allowed when an interface-name is provided"_err_en_US); 5905 } 5906 for (auto &declaration : x.declarations) { 5907 auto &bindingName{std::get<parser::Name>(declaration.t)}; 5908 auto &optName{std::get<std::optional<parser::Name>>(declaration.t)}; 5909 const parser::Name &procedureName{optName ? *optName : bindingName}; 5910 Symbol *procedure{FindSymbol(procedureName)}; 5911 if (!procedure) { 5912 procedure = NoteInterfaceName(procedureName); 5913 } 5914 if (procedure) { 5915 const Symbol &bindTo{BypassGeneric(*procedure)}; 5916 if (auto *s{MakeTypeSymbol(bindingName, ProcBindingDetails{bindTo})}) { 5917 SetPassNameOn(*s); 5918 if (GetAttrs().test(Attr::DEFERRED)) { 5919 context().SetError(*s); 5920 } 5921 } 5922 } 5923 } 5924 } 5925 5926 void DeclarationVisitor::CheckBindings( 5927 const parser::TypeBoundProcedureStmt::WithoutInterface &tbps) { 5928 CHECK(currScope().IsDerivedType()); 5929 for (auto &declaration : tbps.declarations) { 5930 auto &bindingName{std::get<parser::Name>(declaration.t)}; 5931 if (Symbol * binding{FindInScope(bindingName)}) { 5932 if (auto *details{binding->detailsIf<ProcBindingDetails>()}) { 5933 const Symbol &ultimate{details->symbol().GetUltimate()}; 5934 const Symbol &procedure{BypassGeneric(ultimate)}; 5935 if (&procedure != &ultimate) { 5936 details->ReplaceSymbol(procedure); 5937 } 5938 if (!CanBeTypeBoundProc(procedure)) { 5939 if (details->symbol().name() != binding->name()) { 5940 Say(binding->name(), 5941 "The binding of '%s' ('%s') must be either an accessible " 5942 "module procedure or an external procedure with " 5943 "an explicit interface"_err_en_US, 5944 binding->name(), details->symbol().name()); 5945 } else { 5946 Say(binding->name(), 5947 "'%s' must be either an accessible module procedure " 5948 "or an external procedure with an explicit interface"_err_en_US, 5949 binding->name()); 5950 } 5951 context().SetError(*binding); 5952 } 5953 } 5954 } 5955 } 5956 } 5957 5958 void DeclarationVisitor::Post( 5959 const parser::TypeBoundProcedureStmt::WithInterface &x) { 5960 if (!GetAttrs().test(Attr::DEFERRED)) { // C783 5961 Say("DEFERRED is required when an interface-name is provided"_err_en_US); 5962 } 5963 if (Symbol * interface{NoteInterfaceName(x.interfaceName)}) { 5964 for (auto &bindingName : x.bindingNames) { 5965 if (auto *s{ 5966 MakeTypeSymbol(bindingName, ProcBindingDetails{*interface})}) { 5967 SetPassNameOn(*s); 5968 if (!GetAttrs().test(Attr::DEFERRED)) { 5969 context().SetError(*s); 5970 } 5971 } 5972 } 5973 } 5974 } 5975 5976 bool DeclarationVisitor::Pre(const parser::FinalProcedureStmt &x) { 5977 if (currScope().IsDerivedType() && currScope().symbol()) { 5978 if (auto *details{currScope().symbol()->detailsIf<DerivedTypeDetails>()}) { 5979 for (const auto &subrName : x.v) { 5980 Symbol *symbol{FindSymbol(subrName)}; 5981 if (!symbol) { 5982 // FINAL procedures must be module subroutines 5983 symbol = &MakeSymbol( 5984 currScope().parent(), subrName.source, Attrs{Attr::MODULE}); 5985 Resolve(subrName, symbol); 5986 symbol->set_details(ProcEntityDetails{}); 5987 symbol->set(Symbol::Flag::Subroutine); 5988 } 5989 if (auto pair{details->finals().emplace(subrName.source, *symbol)}; 5990 !pair.second) { // C787 5991 Say(subrName.source, 5992 "FINAL subroutine '%s' already appeared in this derived type"_err_en_US, 5993 subrName.source) 5994 .Attach(pair.first->first, 5995 "earlier appearance of this FINAL subroutine"_en_US); 5996 } 5997 } 5998 } 5999 } 6000 return false; 6001 } 6002 6003 bool DeclarationVisitor::Pre(const parser::TypeBoundGenericStmt &x) { 6004 const auto &accessSpec{std::get<std::optional<parser::AccessSpec>>(x.t)}; 6005 const auto &genericSpec{std::get<Indirection<parser::GenericSpec>>(x.t)}; 6006 const auto &bindingNames{std::get<std::list<parser::Name>>(x.t)}; 6007 GenericSpecInfo info{genericSpec.value()}; 6008 SourceName symbolName{info.symbolName()}; 6009 bool isPrivate{accessSpec ? accessSpec->v == parser::AccessSpec::Kind::Private 6010 : derivedTypeInfo_.privateBindings}; 6011 auto *genericSymbol{FindInScope(symbolName)}; 6012 if (genericSymbol) { 6013 if (!genericSymbol->has<GenericDetails>()) { 6014 genericSymbol = nullptr; // MakeTypeSymbol will report the error below 6015 } 6016 } else { 6017 // look in ancestor types for a generic of the same name 6018 for (const auto &name : GetAllNames(context(), symbolName)) { 6019 if (Symbol * inherited{currScope().FindComponent(SourceName{name})}) { 6020 if (inherited->has<GenericDetails>()) { 6021 CheckAccessibility(symbolName, isPrivate, *inherited); // C771 6022 } else { 6023 Say(symbolName, 6024 "Type bound generic procedure '%s' may not have the same name as a non-generic symbol inherited from an ancestor type"_err_en_US) 6025 .Attach(inherited->name(), "Inherited symbol"_en_US); 6026 } 6027 break; 6028 } 6029 } 6030 } 6031 if (genericSymbol) { 6032 CheckAccessibility(symbolName, isPrivate, *genericSymbol); // C771 6033 } else { 6034 genericSymbol = MakeTypeSymbol(symbolName, GenericDetails{}); 6035 if (!genericSymbol) { 6036 return false; 6037 } 6038 if (isPrivate) { 6039 SetExplicitAttr(*genericSymbol, Attr::PRIVATE); 6040 } 6041 } 6042 for (const parser::Name &bindingName : bindingNames) { 6043 genericBindings_.emplace(genericSymbol, &bindingName); 6044 } 6045 info.Resolve(genericSymbol); 6046 return false; 6047 } 6048 6049 // DEC STRUCTUREs are handled thus to allow for nested definitions. 6050 bool DeclarationVisitor::Pre(const parser::StructureDef &def) { 6051 const auto &structureStatement{ 6052 std::get<parser::Statement<parser::StructureStmt>>(def.t)}; 6053 auto saveDerivedTypeInfo{derivedTypeInfo_}; 6054 derivedTypeInfo_ = {}; 6055 derivedTypeInfo_.isStructure = true; 6056 derivedTypeInfo_.sequence = true; 6057 Scope *previousStructure{nullptr}; 6058 if (saveDerivedTypeInfo.isStructure) { 6059 previousStructure = &currScope(); 6060 PopScope(); 6061 } 6062 const parser::StructureStmt &structStmt{structureStatement.statement}; 6063 const auto &name{std::get<std::optional<parser::Name>>(structStmt.t)}; 6064 if (!name) { 6065 // Construct a distinct generated name for an anonymous structure 6066 auto &mutableName{const_cast<std::optional<parser::Name> &>(name)}; 6067 mutableName.emplace( 6068 parser::Name{context().GetTempName(currScope()), nullptr}); 6069 } 6070 auto &symbol{MakeSymbol(*name, DerivedTypeDetails{})}; 6071 symbol.ReplaceName(name->source); 6072 symbol.get<DerivedTypeDetails>().set_sequence(true); 6073 symbol.get<DerivedTypeDetails>().set_isDECStructure(true); 6074 derivedTypeInfo_.type = &symbol; 6075 PushScope(Scope::Kind::DerivedType, &symbol); 6076 const auto &fields{std::get<std::list<parser::StructureField>>(def.t)}; 6077 Walk(fields); 6078 PopScope(); 6079 // Complete the definition 6080 DerivedTypeSpec derivedTypeSpec{symbol.name(), symbol}; 6081 derivedTypeSpec.set_scope(DEREF(symbol.scope())); 6082 derivedTypeSpec.CookParameters(GetFoldingContext()); 6083 derivedTypeSpec.EvaluateParameters(context()); 6084 DeclTypeSpec &type{currScope().MakeDerivedType( 6085 DeclTypeSpec::TypeDerived, std::move(derivedTypeSpec))}; 6086 type.derivedTypeSpec().Instantiate(currScope()); 6087 // Restore previous structure definition context, if any 6088 derivedTypeInfo_ = saveDerivedTypeInfo; 6089 if (previousStructure) { 6090 PushScope(*previousStructure); 6091 } 6092 // Handle any entity declarations on the STRUCTURE statement 6093 const auto &decls{std::get<std::list<parser::EntityDecl>>(structStmt.t)}; 6094 if (!decls.empty()) { 6095 BeginDecl(); 6096 SetDeclTypeSpec(type); 6097 Walk(decls); 6098 EndDecl(); 6099 } 6100 return false; 6101 } 6102 6103 bool DeclarationVisitor::Pre(const parser::Union::UnionStmt &) { 6104 Say("support for UNION"_todo_en_US); // TODO 6105 return true; 6106 } 6107 6108 bool DeclarationVisitor::Pre(const parser::StructureField &x) { 6109 if (std::holds_alternative<parser::Statement<parser::DataComponentDefStmt>>( 6110 x.u)) { 6111 BeginDecl(); 6112 } 6113 return true; 6114 } 6115 6116 void DeclarationVisitor::Post(const parser::StructureField &x) { 6117 if (std::holds_alternative<parser::Statement<parser::DataComponentDefStmt>>( 6118 x.u)) { 6119 EndDecl(); 6120 } 6121 } 6122 6123 bool DeclarationVisitor::Pre(const parser::AllocateStmt &) { 6124 BeginDeclTypeSpec(); 6125 return true; 6126 } 6127 void DeclarationVisitor::Post(const parser::AllocateStmt &) { 6128 EndDeclTypeSpec(); 6129 } 6130 6131 bool DeclarationVisitor::Pre(const parser::StructureConstructor &x) { 6132 auto &parsedType{std::get<parser::DerivedTypeSpec>(x.t)}; 6133 const DeclTypeSpec *type{ProcessTypeSpec(parsedType)}; 6134 if (!type) { 6135 return false; 6136 } 6137 const DerivedTypeSpec *spec{type->AsDerived()}; 6138 const Scope *typeScope{spec ? spec->scope() : nullptr}; 6139 if (!typeScope) { 6140 return false; 6141 } 6142 6143 // N.B C7102 is implicitly enforced by having inaccessible types not 6144 // being found in resolution. 6145 // More constraints are enforced in expression.cpp so that they 6146 // can apply to structure constructors that have been converted 6147 // from misparsed function references. 6148 for (const auto &component : 6149 std::get<std::list<parser::ComponentSpec>>(x.t)) { 6150 // Visit the component spec expression, but not the keyword, since 6151 // we need to resolve its symbol in the scope of the derived type. 6152 Walk(std::get<parser::ComponentDataSource>(component.t)); 6153 if (const auto &kw{std::get<std::optional<parser::Keyword>>(component.t)}) { 6154 FindInTypeOrParents(*typeScope, kw->v); 6155 } 6156 } 6157 return false; 6158 } 6159 6160 bool DeclarationVisitor::Pre(const parser::BasedPointer &) { 6161 BeginArraySpec(); 6162 return true; 6163 } 6164 6165 void DeclarationVisitor::Post(const parser::BasedPointer &bp) { 6166 const parser::ObjectName &pointerName{std::get<0>(bp.t)}; 6167 auto *pointer{FindSymbol(pointerName)}; 6168 if (!pointer) { 6169 pointer = &MakeSymbol(pointerName, ObjectEntityDetails{}); 6170 } else if (!ConvertToObjectEntity(*pointer)) { 6171 SayWithDecl(pointerName, *pointer, "'%s' is not a variable"_err_en_US); 6172 } else if (IsNamedConstant(*pointer)) { 6173 SayWithDecl(pointerName, *pointer, 6174 "'%s' is a named constant and may not be a Cray pointer"_err_en_US); 6175 } else if (pointer->Rank() > 0) { 6176 SayWithDecl( 6177 pointerName, *pointer, "Cray pointer '%s' must be a scalar"_err_en_US); 6178 } else if (pointer->test(Symbol::Flag::CrayPointee)) { 6179 Say(pointerName, 6180 "'%s' cannot be a Cray pointer as it is already a Cray pointee"_err_en_US); 6181 } 6182 pointer->set(Symbol::Flag::CrayPointer); 6183 const DeclTypeSpec &pointerType{MakeNumericType( 6184 TypeCategory::Integer, context().defaultKinds().subscriptIntegerKind())}; 6185 const auto *type{pointer->GetType()}; 6186 if (!type) { 6187 pointer->SetType(pointerType); 6188 } else if (*type != pointerType) { 6189 Say(pointerName.source, "Cray pointer '%s' must have type %s"_err_en_US, 6190 pointerName.source, pointerType.AsFortran()); 6191 } 6192 const parser::ObjectName &pointeeName{std::get<1>(bp.t)}; 6193 DeclareObjectEntity(pointeeName); 6194 if (Symbol * pointee{pointeeName.symbol}) { 6195 if (!ConvertToObjectEntity(*pointee)) { 6196 return; 6197 } 6198 if (IsNamedConstant(*pointee)) { 6199 Say(pointeeName, 6200 "'%s' is a named constant and may not be a Cray pointee"_err_en_US); 6201 return; 6202 } 6203 if (pointee->test(Symbol::Flag::CrayPointer)) { 6204 Say(pointeeName, 6205 "'%s' cannot be a Cray pointee as it is already a Cray pointer"_err_en_US); 6206 } else if (pointee->test(Symbol::Flag::CrayPointee)) { 6207 Say(pointeeName, "'%s' was already declared as a Cray pointee"_err_en_US); 6208 } else { 6209 pointee->set(Symbol::Flag::CrayPointee); 6210 } 6211 if (const auto *pointeeType{pointee->GetType()}) { 6212 if (const auto *derived{pointeeType->AsDerived()}) { 6213 if (!IsSequenceOrBindCType(derived)) { 6214 context().Warn(common::LanguageFeature::NonSequenceCrayPointee, 6215 pointeeName.source, 6216 "Type of Cray pointee '%s' is a derived type that is neither SEQUENCE nor BIND(C)"_warn_en_US, 6217 pointeeName.source); 6218 } 6219 } 6220 } 6221 currScope().add_crayPointer(pointeeName.source, *pointer); 6222 } 6223 } 6224 6225 bool DeclarationVisitor::Pre(const parser::NamelistStmt::Group &x) { 6226 if (!CheckNotInBlock("NAMELIST")) { // C1107 6227 return false; 6228 } 6229 const auto &groupName{std::get<parser::Name>(x.t)}; 6230 auto *groupSymbol{FindInScope(groupName)}; 6231 if (!groupSymbol || !groupSymbol->has<NamelistDetails>()) { 6232 groupSymbol = &MakeSymbol(groupName, NamelistDetails{}); 6233 groupSymbol->ReplaceName(groupName.source); 6234 } 6235 // Name resolution of group items is deferred to FinishNamelists() 6236 // so that host association is handled correctly. 6237 GetDeferredDeclarationState(true)->namelistGroups.emplace_back(&x); 6238 return false; 6239 } 6240 6241 void DeclarationVisitor::FinishNamelists() { 6242 if (auto *deferred{GetDeferredDeclarationState()}) { 6243 for (const parser::NamelistStmt::Group *group : deferred->namelistGroups) { 6244 if (auto *groupSymbol{FindInScope(std::get<parser::Name>(group->t))}) { 6245 if (auto *details{groupSymbol->detailsIf<NamelistDetails>()}) { 6246 for (const auto &name : std::get<std::list<parser::Name>>(group->t)) { 6247 auto *symbol{FindSymbol(name)}; 6248 if (!symbol) { 6249 symbol = &MakeSymbol(name, ObjectEntityDetails{}); 6250 ApplyImplicitRules(*symbol); 6251 } else if (!ConvertToObjectEntity(symbol->GetUltimate())) { 6252 SayWithDecl(name, *symbol, "'%s' is not a variable"_err_en_US); 6253 context().SetError(*groupSymbol); 6254 } 6255 symbol->GetUltimate().set(Symbol::Flag::InNamelist); 6256 details->add_object(*symbol); 6257 } 6258 } 6259 } 6260 } 6261 deferred->namelistGroups.clear(); 6262 } 6263 } 6264 6265 bool DeclarationVisitor::Pre(const parser::IoControlSpec &x) { 6266 if (const auto *name{std::get_if<parser::Name>(&x.u)}) { 6267 auto *symbol{FindSymbol(*name)}; 6268 if (!symbol) { 6269 Say(*name, "Namelist group '%s' not found"_err_en_US); 6270 } else if (!symbol->GetUltimate().has<NamelistDetails>()) { 6271 SayWithDecl( 6272 *name, *symbol, "'%s' is not the name of a namelist group"_err_en_US); 6273 } 6274 } 6275 return true; 6276 } 6277 6278 bool DeclarationVisitor::Pre(const parser::CommonStmt::Block &x) { 6279 CheckNotInBlock("COMMON"); // C1107 6280 return true; 6281 } 6282 6283 bool DeclarationVisitor::Pre(const parser::CommonBlockObject &) { 6284 BeginArraySpec(); 6285 return true; 6286 } 6287 6288 void DeclarationVisitor::Post(const parser::CommonBlockObject &x) { 6289 const auto &name{std::get<parser::Name>(x.t)}; 6290 DeclareObjectEntity(name); 6291 auto pair{specPartState_.commonBlockObjects.insert(name.source)}; 6292 if (!pair.second) { 6293 const SourceName &prev{*pair.first}; 6294 Say2(name.source, "'%s' is already in a COMMON block"_err_en_US, prev, 6295 "Previous occurrence of '%s' in a COMMON block"_en_US); 6296 } 6297 } 6298 6299 bool DeclarationVisitor::Pre(const parser::EquivalenceStmt &x) { 6300 // save equivalence sets to be processed after specification part 6301 if (CheckNotInBlock("EQUIVALENCE")) { // C1107 6302 for (const std::list<parser::EquivalenceObject> &set : x.v) { 6303 specPartState_.equivalenceSets.push_back(&set); 6304 } 6305 } 6306 return false; // don't implicitly declare names yet 6307 } 6308 6309 void DeclarationVisitor::CheckEquivalenceSets() { 6310 EquivalenceSets equivSets{context()}; 6311 inEquivalenceStmt_ = true; 6312 for (const auto *set : specPartState_.equivalenceSets) { 6313 const auto &source{set->front().v.value().source}; 6314 if (set->size() <= 1) { // R871 6315 Say(source, "Equivalence set must have more than one object"_err_en_US); 6316 } 6317 for (const parser::EquivalenceObject &object : *set) { 6318 const auto &designator{object.v.value()}; 6319 // The designator was not resolved when it was encountered, so do it now. 6320 // AnalyzeExpr causes array sections to be changed to substrings as needed 6321 Walk(designator); 6322 if (AnalyzeExpr(context(), designator)) { 6323 equivSets.AddToSet(designator); 6324 } 6325 } 6326 equivSets.FinishSet(source); 6327 } 6328 inEquivalenceStmt_ = false; 6329 for (auto &set : equivSets.sets()) { 6330 if (!set.empty()) { 6331 currScope().add_equivalenceSet(std::move(set)); 6332 } 6333 } 6334 specPartState_.equivalenceSets.clear(); 6335 } 6336 6337 bool DeclarationVisitor::Pre(const parser::SaveStmt &x) { 6338 if (x.v.empty()) { 6339 specPartState_.saveInfo.saveAll = currStmtSource(); 6340 currScope().set_hasSAVE(); 6341 } else { 6342 for (const parser::SavedEntity &y : x.v) { 6343 auto kind{std::get<parser::SavedEntity::Kind>(y.t)}; 6344 const auto &name{std::get<parser::Name>(y.t)}; 6345 if (kind == parser::SavedEntity::Kind::Common) { 6346 MakeCommonBlockSymbol(name); 6347 AddSaveName(specPartState_.saveInfo.commons, name.source); 6348 } else { 6349 HandleAttributeStmt(Attr::SAVE, name); 6350 } 6351 } 6352 } 6353 return false; 6354 } 6355 6356 void DeclarationVisitor::CheckSaveStmts() { 6357 for (const SourceName &name : specPartState_.saveInfo.entities) { 6358 auto *symbol{FindInScope(name)}; 6359 if (!symbol) { 6360 // error was reported 6361 } else if (specPartState_.saveInfo.saveAll) { 6362 // C889 - note that pgi, ifort, xlf do not enforce this constraint 6363 if (context().ShouldWarn(common::LanguageFeature::RedundantAttribute)) { 6364 Say2(name, 6365 "Explicit SAVE of '%s' is redundant due to global SAVE statement"_warn_en_US, 6366 *specPartState_.saveInfo.saveAll, "Global SAVE statement"_en_US) 6367 .set_languageFeature(common::LanguageFeature::RedundantAttribute); 6368 } 6369 } else if (!IsSaved(*symbol)) { 6370 SetExplicitAttr(*symbol, Attr::SAVE); 6371 } 6372 } 6373 for (const SourceName &name : specPartState_.saveInfo.commons) { 6374 if (auto *symbol{currScope().FindCommonBlock(name)}) { 6375 auto &objects{symbol->get<CommonBlockDetails>().objects()}; 6376 if (objects.empty()) { 6377 if (currScope().kind() != Scope::Kind::BlockConstruct) { 6378 Say(name, 6379 "'%s' appears as a COMMON block in a SAVE statement but not in" 6380 " a COMMON statement"_err_en_US); 6381 } else { // C1108 6382 Say(name, 6383 "SAVE statement in BLOCK construct may not contain a" 6384 " common block name '%s'"_err_en_US); 6385 } 6386 } else { 6387 for (auto &object : symbol->get<CommonBlockDetails>().objects()) { 6388 if (!IsSaved(*object)) { 6389 SetImplicitAttr(*object, Attr::SAVE); 6390 } 6391 } 6392 } 6393 } 6394 } 6395 specPartState_.saveInfo = {}; 6396 } 6397 6398 // Record SAVEd names in specPartState_.saveInfo.entities. 6399 Attrs DeclarationVisitor::HandleSaveName(const SourceName &name, Attrs attrs) { 6400 if (attrs.test(Attr::SAVE)) { 6401 AddSaveName(specPartState_.saveInfo.entities, name); 6402 } 6403 return attrs; 6404 } 6405 6406 // Record a name in a set of those to be saved. 6407 void DeclarationVisitor::AddSaveName( 6408 std::set<SourceName> &set, const SourceName &name) { 6409 auto pair{set.insert(name)}; 6410 if (!pair.second && 6411 context().ShouldWarn(common::LanguageFeature::RedundantAttribute)) { 6412 Say2(name, "SAVE attribute was already specified on '%s'"_warn_en_US, 6413 *pair.first, "Previous specification of SAVE attribute"_en_US) 6414 .set_languageFeature(common::LanguageFeature::RedundantAttribute); 6415 } 6416 } 6417 6418 // Check types of common block objects, now that they are known. 6419 void DeclarationVisitor::CheckCommonBlocks() { 6420 // check for empty common blocks 6421 for (const auto &pair : currScope().commonBlocks()) { 6422 const auto &symbol{*pair.second}; 6423 if (symbol.get<CommonBlockDetails>().objects().empty() && 6424 symbol.attrs().test(Attr::BIND_C)) { 6425 Say(symbol.name(), 6426 "'%s' appears as a COMMON block in a BIND statement but not in" 6427 " a COMMON statement"_err_en_US); 6428 } 6429 } 6430 // check objects in common blocks 6431 for (const auto &name : specPartState_.commonBlockObjects) { 6432 const auto *symbol{currScope().FindSymbol(name)}; 6433 if (!symbol) { 6434 continue; 6435 } 6436 const auto &attrs{symbol->attrs()}; 6437 if (attrs.test(Attr::ALLOCATABLE)) { 6438 Say(name, 6439 "ALLOCATABLE object '%s' may not appear in a COMMON block"_err_en_US); 6440 } else if (attrs.test(Attr::BIND_C)) { 6441 Say(name, 6442 "Variable '%s' with BIND attribute may not appear in a COMMON block"_err_en_US); 6443 } else if (IsNamedConstant(*symbol)) { 6444 Say(name, 6445 "A named constant '%s' may not appear in a COMMON block"_err_en_US); 6446 } else if (IsDummy(*symbol)) { 6447 Say(name, 6448 "Dummy argument '%s' may not appear in a COMMON block"_err_en_US); 6449 } else if (symbol->IsFuncResult()) { 6450 Say(name, 6451 "Function result '%s' may not appear in a COMMON block"_err_en_US); 6452 } else if (const DeclTypeSpec * type{symbol->GetType()}) { 6453 if (type->category() == DeclTypeSpec::ClassStar) { 6454 Say(name, 6455 "Unlimited polymorphic pointer '%s' may not appear in a COMMON block"_err_en_US); 6456 } else if (const auto *derived{type->AsDerived()}) { 6457 if (!IsSequenceOrBindCType(derived)) { 6458 Say(name, 6459 "Derived type '%s' in COMMON block must have the BIND or" 6460 " SEQUENCE attribute"_err_en_US); 6461 } 6462 UnorderedSymbolSet typeSet; 6463 CheckCommonBlockDerivedType(name, derived->typeSymbol(), typeSet); 6464 } 6465 } 6466 } 6467 specPartState_.commonBlockObjects = {}; 6468 } 6469 6470 Symbol &DeclarationVisitor::MakeCommonBlockSymbol(const parser::Name &name) { 6471 return Resolve(name, currScope().MakeCommonBlock(name.source)); 6472 } 6473 Symbol &DeclarationVisitor::MakeCommonBlockSymbol( 6474 const std::optional<parser::Name> &name) { 6475 if (name) { 6476 return MakeCommonBlockSymbol(*name); 6477 } else { 6478 return MakeCommonBlockSymbol(parser::Name{}); 6479 } 6480 } 6481 6482 bool DeclarationVisitor::NameIsKnownOrIntrinsic(const parser::Name &name) { 6483 return FindSymbol(name) || HandleUnrestrictedSpecificIntrinsicFunction(name); 6484 } 6485 6486 // Check if this derived type can be in a COMMON block. 6487 void DeclarationVisitor::CheckCommonBlockDerivedType(const SourceName &name, 6488 const Symbol &typeSymbol, UnorderedSymbolSet &typeSet) { 6489 if (auto iter{typeSet.find(SymbolRef{typeSymbol})}; iter != typeSet.end()) { 6490 return; 6491 } 6492 typeSet.emplace(typeSymbol); 6493 if (const auto *scope{typeSymbol.scope()}) { 6494 for (const auto &pair : *scope) { 6495 const Symbol &component{*pair.second}; 6496 if (component.attrs().test(Attr::ALLOCATABLE)) { 6497 Say2(name, 6498 "Derived type variable '%s' may not appear in a COMMON block" 6499 " due to ALLOCATABLE component"_err_en_US, 6500 component.name(), "Component with ALLOCATABLE attribute"_en_US); 6501 return; 6502 } 6503 const auto *details{component.detailsIf<ObjectEntityDetails>()}; 6504 if (component.test(Symbol::Flag::InDataStmt) || 6505 (details && details->init())) { 6506 Say2(name, 6507 "Derived type variable '%s' may not appear in a COMMON block due to component with default initialization"_err_en_US, 6508 component.name(), "Component with default initialization"_en_US); 6509 return; 6510 } 6511 if (details) { 6512 if (const auto *type{details->type()}) { 6513 if (const auto *derived{type->AsDerived()}) { 6514 const Symbol &derivedTypeSymbol{derived->typeSymbol()}; 6515 CheckCommonBlockDerivedType(name, derivedTypeSymbol, typeSet); 6516 } 6517 } 6518 } 6519 } 6520 } 6521 } 6522 6523 bool DeclarationVisitor::HandleUnrestrictedSpecificIntrinsicFunction( 6524 const parser::Name &name) { 6525 if (auto interface{context().intrinsics().IsSpecificIntrinsicFunction( 6526 name.source.ToString())}) { 6527 // Unrestricted specific intrinsic function names (e.g., "cos") 6528 // are acceptable as procedure interfaces. The presence of the 6529 // INTRINSIC flag will cause this symbol to have a complete interface 6530 // recreated for it later on demand, but capturing its result type here 6531 // will make GetType() return a correct result without having to 6532 // probe the intrinsics table again. 6533 Symbol &symbol{MakeSymbol(InclusiveScope(), name.source, Attrs{})}; 6534 SetImplicitAttr(symbol, Attr::INTRINSIC); 6535 CHECK(interface->functionResult.has_value()); 6536 evaluate::DynamicType dyType{ 6537 DEREF(interface->functionResult->GetTypeAndShape()).type()}; 6538 CHECK(common::IsNumericTypeCategory(dyType.category())); 6539 const DeclTypeSpec &typeSpec{ 6540 MakeNumericType(dyType.category(), dyType.kind())}; 6541 ProcEntityDetails details; 6542 details.set_type(typeSpec); 6543 symbol.set_details(std::move(details)); 6544 symbol.set(Symbol::Flag::Function); 6545 if (interface->IsElemental()) { 6546 SetExplicitAttr(symbol, Attr::ELEMENTAL); 6547 } 6548 if (interface->IsPure()) { 6549 SetExplicitAttr(symbol, Attr::PURE); 6550 } 6551 Resolve(name, symbol); 6552 return true; 6553 } else { 6554 return false; 6555 } 6556 } 6557 6558 // Checks for all locality-specs: LOCAL, LOCAL_INIT, and SHARED 6559 bool DeclarationVisitor::PassesSharedLocalityChecks( 6560 const parser::Name &name, Symbol &symbol) { 6561 if (!IsVariableName(symbol)) { 6562 SayLocalMustBeVariable(name, symbol); // C1124 6563 return false; 6564 } 6565 if (symbol.owner() == currScope()) { // C1125 and C1126 6566 SayAlreadyDeclared(name, symbol); 6567 return false; 6568 } 6569 return true; 6570 } 6571 6572 // Checks for locality-specs LOCAL, LOCAL_INIT, and REDUCE 6573 bool DeclarationVisitor::PassesLocalityChecks( 6574 const parser::Name &name, Symbol &symbol, Symbol::Flag flag) { 6575 bool isReduce{flag == Symbol::Flag::LocalityReduce}; 6576 const char *specName{ 6577 flag == Symbol::Flag::LocalityLocalInit ? "LOCAL_INIT" : "LOCAL"}; 6578 if (IsAllocatable(symbol) && !isReduce) { // F'2023 C1130 6579 SayWithDecl(name, symbol, 6580 "ALLOCATABLE variable '%s' not allowed in a %s locality-spec"_err_en_US, 6581 specName); 6582 return false; 6583 } 6584 if (IsOptional(symbol)) { // F'2023 C1130-C1131 6585 SayWithDecl(name, symbol, 6586 "OPTIONAL argument '%s' not allowed in a locality-spec"_err_en_US); 6587 return false; 6588 } 6589 if (IsIntentIn(symbol)) { // F'2023 C1130-C1131 6590 SayWithDecl(name, symbol, 6591 "INTENT IN argument '%s' not allowed in a locality-spec"_err_en_US); 6592 return false; 6593 } 6594 if (IsFinalizable(symbol) && !isReduce) { // F'2023 C1130 6595 SayWithDecl(name, symbol, 6596 "Finalizable variable '%s' not allowed in a %s locality-spec"_err_en_US, 6597 specName); 6598 return false; 6599 } 6600 if (evaluate::IsCoarray(symbol) && !isReduce) { // F'2023 C1130 6601 SayWithDecl(name, symbol, 6602 "Coarray '%s' not allowed in a %s locality-spec"_err_en_US, specName); 6603 return false; 6604 } 6605 if (const DeclTypeSpec * type{symbol.GetType()}) { 6606 if (type->IsPolymorphic() && IsDummy(symbol) && !IsPointer(symbol) && 6607 !isReduce) { // F'2023 C1130 6608 SayWithDecl(name, symbol, 6609 "Nonpointer polymorphic argument '%s' not allowed in a %s locality-spec"_err_en_US, 6610 specName); 6611 return false; 6612 } 6613 } 6614 if (symbol.attrs().test(Attr::ASYNCHRONOUS) && isReduce) { // F'2023 C1131 6615 SayWithDecl(name, symbol, 6616 "ASYNCHRONOUS variable '%s' not allowed in a REDUCE locality-spec"_err_en_US); 6617 return false; 6618 } 6619 if (symbol.attrs().test(Attr::VOLATILE) && isReduce) { // F'2023 C1131 6620 SayWithDecl(name, symbol, 6621 "VOLATILE variable '%s' not allowed in a REDUCE locality-spec"_err_en_US); 6622 return false; 6623 } 6624 if (IsAssumedSizeArray(symbol)) { // F'2023 C1130-C1131 6625 SayWithDecl(name, symbol, 6626 "Assumed size array '%s' not allowed in a locality-spec"_err_en_US); 6627 return false; 6628 } 6629 if (std::optional<Message> whyNot{WhyNotDefinable( 6630 name.source, currScope(), DefinabilityFlags{}, symbol)}) { 6631 SayWithReason(name, symbol, 6632 "'%s' may not appear in a locality-spec because it is not definable"_err_en_US, 6633 std::move(whyNot->set_severity(parser::Severity::Because))); 6634 return false; 6635 } 6636 return PassesSharedLocalityChecks(name, symbol); 6637 } 6638 6639 Symbol &DeclarationVisitor::FindOrDeclareEnclosingEntity( 6640 const parser::Name &name) { 6641 Symbol *prev{FindSymbol(name)}; 6642 if (!prev) { 6643 // Declare the name as an object in the enclosing scope so that 6644 // the name can't be repurposed there later as something else. 6645 prev = &MakeSymbol(InclusiveScope(), name.source, Attrs{}); 6646 ConvertToObjectEntity(*prev); 6647 ApplyImplicitRules(*prev); 6648 } 6649 return *prev; 6650 } 6651 6652 void DeclarationVisitor::DeclareLocalEntity( 6653 const parser::Name &name, Symbol::Flag flag) { 6654 Symbol &prev{FindOrDeclareEnclosingEntity(name)}; 6655 if (PassesLocalityChecks(name, prev, flag)) { 6656 if (auto *symbol{&MakeHostAssocSymbol(name, prev)}) { 6657 symbol->set(flag); 6658 } 6659 } 6660 } 6661 6662 Symbol *DeclarationVisitor::DeclareStatementEntity( 6663 const parser::DoVariable &doVar, 6664 const std::optional<parser::IntegerTypeSpec> &type) { 6665 const parser::Name &name{doVar.thing.thing}; 6666 const DeclTypeSpec *declTypeSpec{nullptr}; 6667 if (auto *prev{FindSymbol(name)}) { 6668 if (prev->owner() == currScope()) { 6669 SayAlreadyDeclared(name, *prev); 6670 return nullptr; 6671 } 6672 name.symbol = nullptr; 6673 // F'2023 19.4 p5 ambiguous rule about outer declarations 6674 declTypeSpec = prev->GetType(); 6675 } 6676 Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, {})}; 6677 if (!symbol.has<ObjectEntityDetails>()) { 6678 return nullptr; // error was reported in DeclareEntity 6679 } 6680 if (type) { 6681 declTypeSpec = ProcessTypeSpec(*type); 6682 } 6683 if (declTypeSpec) { 6684 // Subtlety: Don't let a "*length" specifier (if any is pending) affect the 6685 // declaration of this implied DO loop control variable. 6686 auto restorer{ 6687 common::ScopedSet(charInfo_.length, std::optional<ParamValue>{})}; 6688 SetType(name, *declTypeSpec); 6689 } else { 6690 ApplyImplicitRules(symbol); 6691 } 6692 return Resolve(name, &symbol); 6693 } 6694 6695 // Set the type of an entity or report an error. 6696 void DeclarationVisitor::SetType( 6697 const parser::Name &name, const DeclTypeSpec &type) { 6698 CHECK(name.symbol); 6699 auto &symbol{*name.symbol}; 6700 if (charInfo_.length) { // Declaration has "*length" (R723) 6701 auto length{std::move(*charInfo_.length)}; 6702 charInfo_.length.reset(); 6703 if (type.category() == DeclTypeSpec::Character) { 6704 auto kind{type.characterTypeSpec().kind()}; 6705 // Recurse with correct type. 6706 SetType(name, 6707 currScope().MakeCharacterType(std::move(length), std::move(kind))); 6708 return; 6709 } else { // C753 6710 Say(name, 6711 "A length specifier cannot be used to declare the non-character entity '%s'"_err_en_US); 6712 } 6713 } 6714 if (auto *proc{symbol.detailsIf<ProcEntityDetails>()}) { 6715 if (proc->procInterface()) { 6716 Say(name, 6717 "'%s' has an explicit interface and may not also have a type"_err_en_US); 6718 context().SetError(symbol); 6719 return; 6720 } 6721 } 6722 auto *prevType{symbol.GetType()}; 6723 if (!prevType) { 6724 if (symbol.test(Symbol::Flag::InDataStmt) && isImplicitNoneType()) { 6725 context().Warn(common::LanguageFeature::ForwardRefImplicitNoneData, 6726 name.source, 6727 "'%s' appeared in a DATA statement before its type was declared under IMPLICIT NONE(TYPE)"_port_en_US, 6728 name.source); 6729 } 6730 symbol.SetType(type); 6731 } else if (symbol.has<UseDetails>()) { 6732 // error recovery case, redeclaration of use-associated name 6733 } else if (HadForwardRef(symbol)) { 6734 // error recovery after use of host-associated name 6735 } else if (!symbol.test(Symbol::Flag::Implicit)) { 6736 SayWithDecl( 6737 name, symbol, "The type of '%s' has already been declared"_err_en_US); 6738 context().SetError(symbol); 6739 } else if (type != *prevType) { 6740 SayWithDecl(name, symbol, 6741 "The type of '%s' has already been implicitly declared"_err_en_US); 6742 context().SetError(symbol); 6743 } else { 6744 symbol.set(Symbol::Flag::Implicit, false); 6745 } 6746 } 6747 6748 std::optional<DerivedTypeSpec> DeclarationVisitor::ResolveDerivedType( 6749 const parser::Name &name) { 6750 Scope &outer{NonDerivedTypeScope()}; 6751 Symbol *symbol{FindSymbol(outer, name)}; 6752 Symbol *ultimate{symbol ? &symbol->GetUltimate() : nullptr}; 6753 auto *generic{ultimate ? ultimate->detailsIf<GenericDetails>() : nullptr}; 6754 if (generic) { 6755 if (Symbol * genDT{generic->derivedType()}) { 6756 symbol = genDT; 6757 generic = nullptr; 6758 } 6759 } 6760 if (!symbol || symbol->has<UnknownDetails>() || 6761 (generic && &ultimate->owner() == &outer)) { 6762 if (allowForwardReferenceToDerivedType()) { 6763 if (!symbol) { 6764 symbol = &MakeSymbol(outer, name.source, Attrs{}); 6765 Resolve(name, *symbol); 6766 } else if (generic) { 6767 // forward ref to type with later homonymous generic 6768 symbol = &outer.MakeSymbol(name.source, Attrs{}, UnknownDetails{}); 6769 generic->set_derivedType(*symbol); 6770 name.symbol = symbol; 6771 } 6772 DerivedTypeDetails details; 6773 details.set_isForwardReferenced(true); 6774 symbol->set_details(std::move(details)); 6775 } else { // C732 6776 Say(name, "Derived type '%s' not found"_err_en_US); 6777 return std::nullopt; 6778 } 6779 } else if (&DEREF(symbol).owner() != &outer && 6780 !ultimate->has<GenericDetails>()) { 6781 // Prevent a later declaration in this scope of a host-associated 6782 // type name. 6783 outer.add_importName(name.source); 6784 } 6785 if (CheckUseError(name)) { 6786 return std::nullopt; 6787 } else if (symbol->GetUltimate().has<DerivedTypeDetails>()) { 6788 return DerivedTypeSpec{name.source, *symbol}; 6789 } else { 6790 Say(name, "'%s' is not a derived type"_err_en_US); 6791 return std::nullopt; 6792 } 6793 } 6794 6795 std::optional<DerivedTypeSpec> DeclarationVisitor::ResolveExtendsType( 6796 const parser::Name &typeName, const parser::Name *extendsName) { 6797 if (extendsName) { 6798 if (typeName.source == extendsName->source) { 6799 Say(extendsName->source, 6800 "Derived type '%s' cannot extend itself"_err_en_US); 6801 } else if (auto dtSpec{ResolveDerivedType(*extendsName)}) { 6802 if (!dtSpec->IsForwardReferenced()) { 6803 return dtSpec; 6804 } 6805 Say(typeName.source, 6806 "Derived type '%s' cannot extend type '%s' that has not yet been defined"_err_en_US, 6807 typeName.source, extendsName->source); 6808 } 6809 } 6810 return std::nullopt; 6811 } 6812 6813 Symbol *DeclarationVisitor::NoteInterfaceName(const parser::Name &name) { 6814 // The symbol is checked later by CheckExplicitInterface() and 6815 // CheckBindings(). It can be a forward reference. 6816 if (!NameIsKnownOrIntrinsic(name)) { 6817 Symbol &symbol{MakeSymbol(InclusiveScope(), name.source, Attrs{})}; 6818 Resolve(name, symbol); 6819 } 6820 return name.symbol; 6821 } 6822 6823 void DeclarationVisitor::CheckExplicitInterface(const parser::Name &name) { 6824 if (const Symbol * symbol{name.symbol}) { 6825 const Symbol &ultimate{symbol->GetUltimate()}; 6826 if (!context().HasError(*symbol) && !context().HasError(ultimate) && 6827 !BypassGeneric(ultimate).HasExplicitInterface()) { 6828 Say(name, 6829 "'%s' must be an abstract interface or a procedure with an explicit interface"_err_en_US, 6830 symbol->name()); 6831 } 6832 } 6833 } 6834 6835 // Create a symbol for a type parameter, component, or procedure binding in 6836 // the current derived type scope. Return false on error. 6837 Symbol *DeclarationVisitor::MakeTypeSymbol( 6838 const parser::Name &name, Details &&details) { 6839 return Resolve(name, MakeTypeSymbol(name.source, std::move(details))); 6840 } 6841 Symbol *DeclarationVisitor::MakeTypeSymbol( 6842 const SourceName &name, Details &&details) { 6843 Scope &derivedType{currScope()}; 6844 CHECK(derivedType.IsDerivedType()); 6845 if (auto *symbol{FindInScope(derivedType, name)}) { // C742 6846 Say2(name, 6847 "Type parameter, component, or procedure binding '%s'" 6848 " already defined in this type"_err_en_US, 6849 *symbol, "Previous definition of '%s'"_en_US); 6850 return nullptr; 6851 } else { 6852 auto attrs{GetAttrs()}; 6853 // Apply binding-private-stmt if present and this is a procedure binding 6854 if (derivedTypeInfo_.privateBindings && 6855 !attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE}) && 6856 std::holds_alternative<ProcBindingDetails>(details)) { 6857 attrs.set(Attr::PRIVATE); 6858 } 6859 Symbol &result{MakeSymbol(name, attrs, std::move(details))}; 6860 SetCUDADataAttr(name, result, cudaDataAttr()); 6861 return &result; 6862 } 6863 } 6864 6865 // Return true if it is ok to declare this component in the current scope. 6866 // Otherwise, emit an error and return false. 6867 bool DeclarationVisitor::OkToAddComponent( 6868 const parser::Name &name, const Symbol *extends) { 6869 for (const Scope *scope{&currScope()}; scope;) { 6870 CHECK(scope->IsDerivedType()); 6871 if (auto *prev{FindInScope(*scope, name.source)}) { 6872 std::optional<parser::MessageFixedText> msg; 6873 std::optional<common::UsageWarning> warning; 6874 if (context().HasError(*prev)) { // don't pile on 6875 } else if (extends) { 6876 msg = "Type cannot be extended as it has a component named" 6877 " '%s'"_err_en_US; 6878 } else if (CheckAccessibleSymbol(currScope(), *prev)) { 6879 // inaccessible component -- redeclaration is ok 6880 if (context().ShouldWarn( 6881 common::UsageWarning::RedeclaredInaccessibleComponent)) { 6882 msg = 6883 "Component '%s' is inaccessibly declared in or as a parent of this derived type"_warn_en_US; 6884 warning = common::UsageWarning::RedeclaredInaccessibleComponent; 6885 } 6886 } else if (prev->test(Symbol::Flag::ParentComp)) { 6887 msg = 6888 "'%s' is a parent type of this type and so cannot be a component"_err_en_US; 6889 } else if (scope == &currScope()) { 6890 msg = 6891 "Component '%s' is already declared in this derived type"_err_en_US; 6892 } else { 6893 msg = 6894 "Component '%s' is already declared in a parent of this derived type"_err_en_US; 6895 } 6896 if (msg) { 6897 auto &said{Say2(name, std::move(*msg), *prev, 6898 "Previous declaration of '%s'"_en_US)}; 6899 if (msg->severity() == parser::Severity::Error) { 6900 Resolve(name, *prev); 6901 return false; 6902 } 6903 if (warning) { 6904 said.set_usageWarning(*warning); 6905 } 6906 } 6907 } 6908 if (scope == &currScope() && extends) { 6909 // The parent component has not yet been added to the scope. 6910 scope = extends->scope(); 6911 } else { 6912 scope = scope->GetDerivedTypeParent(); 6913 } 6914 } 6915 return true; 6916 } 6917 6918 ParamValue DeclarationVisitor::GetParamValue( 6919 const parser::TypeParamValue &x, common::TypeParamAttr attr) { 6920 return common::visit( 6921 common::visitors{ 6922 [=](const parser::ScalarIntExpr &x) { // C704 6923 return ParamValue{EvaluateIntExpr(x), attr}; 6924 }, 6925 [=](const parser::Star &) { return ParamValue::Assumed(attr); }, 6926 [=](const parser::TypeParamValue::Deferred &) { 6927 return ParamValue::Deferred(attr); 6928 }, 6929 }, 6930 x.u); 6931 } 6932 6933 // ConstructVisitor implementation 6934 6935 void ConstructVisitor::ResolveIndexName( 6936 const parser::ConcurrentControl &control) { 6937 const parser::Name &name{std::get<parser::Name>(control.t)}; 6938 auto *prev{FindSymbol(name)}; 6939 if (prev) { 6940 if (prev->owner() == currScope()) { 6941 SayAlreadyDeclared(name, *prev); 6942 return; 6943 } else if (prev->owner().kind() == Scope::Kind::Forall && 6944 context().ShouldWarn( 6945 common::LanguageFeature::OddIndexVariableRestrictions)) { 6946 SayWithDecl(name, *prev, 6947 "Index variable '%s' should not also be an index in an enclosing FORALL or DO CONCURRENT"_port_en_US) 6948 .set_languageFeature( 6949 common::LanguageFeature::OddIndexVariableRestrictions); 6950 } 6951 name.symbol = nullptr; 6952 } 6953 auto &symbol{DeclareObjectEntity(name)}; 6954 if (symbol.GetType()) { 6955 // type came from explicit type-spec 6956 } else if (!prev) { 6957 ApplyImplicitRules(symbol); 6958 } else { 6959 // Odd rules in F'2023 19.4 paras 6 & 8. 6960 Symbol &prevRoot{prev->GetUltimate()}; 6961 if (const auto *type{prevRoot.GetType()}) { 6962 symbol.SetType(*type); 6963 } else { 6964 ApplyImplicitRules(symbol); 6965 } 6966 if (prevRoot.has<ObjectEntityDetails>() || 6967 ConvertToObjectEntity(prevRoot)) { 6968 if (prevRoot.IsObjectArray() && 6969 context().ShouldWarn( 6970 common::LanguageFeature::OddIndexVariableRestrictions)) { 6971 SayWithDecl(name, *prev, 6972 "Index variable '%s' should be scalar in the enclosing scope"_port_en_US) 6973 .set_languageFeature( 6974 common::LanguageFeature::OddIndexVariableRestrictions); 6975 } 6976 } else if (!prevRoot.has<CommonBlockDetails>() && 6977 context().ShouldWarn( 6978 common::LanguageFeature::OddIndexVariableRestrictions)) { 6979 SayWithDecl(name, *prev, 6980 "Index variable '%s' should be a scalar object or common block if it is present in the enclosing scope"_port_en_US) 6981 .set_languageFeature( 6982 common::LanguageFeature::OddIndexVariableRestrictions); 6983 } 6984 } 6985 EvaluateExpr(parser::Scalar{parser::Integer{common::Clone(name)}}); 6986 } 6987 6988 // We need to make sure that all of the index-names get declared before the 6989 // expressions in the loop control are evaluated so that references to the 6990 // index-names in the expressions are correctly detected. 6991 bool ConstructVisitor::Pre(const parser::ConcurrentHeader &header) { 6992 BeginDeclTypeSpec(); 6993 Walk(std::get<std::optional<parser::IntegerTypeSpec>>(header.t)); 6994 const auto &controls{ 6995 std::get<std::list<parser::ConcurrentControl>>(header.t)}; 6996 for (const auto &control : controls) { 6997 ResolveIndexName(control); 6998 } 6999 Walk(controls); 7000 Walk(std::get<std::optional<parser::ScalarLogicalExpr>>(header.t)); 7001 EndDeclTypeSpec(); 7002 return false; 7003 } 7004 7005 bool ConstructVisitor::Pre(const parser::LocalitySpec::Local &x) { 7006 for (auto &name : x.v) { 7007 DeclareLocalEntity(name, Symbol::Flag::LocalityLocal); 7008 } 7009 return false; 7010 } 7011 7012 bool ConstructVisitor::Pre(const parser::LocalitySpec::LocalInit &x) { 7013 for (auto &name : x.v) { 7014 DeclareLocalEntity(name, Symbol::Flag::LocalityLocalInit); 7015 } 7016 return false; 7017 } 7018 7019 bool ConstructVisitor::Pre(const parser::LocalitySpec::Reduce &x) { 7020 for (const auto &name : std::get<std::list<parser::Name>>(x.t)) { 7021 DeclareLocalEntity(name, Symbol::Flag::LocalityReduce); 7022 } 7023 return false; 7024 } 7025 7026 bool ConstructVisitor::Pre(const parser::LocalitySpec::Shared &x) { 7027 for (const auto &name : x.v) { 7028 if (!FindSymbol(name)) { 7029 context().Warn(common::UsageWarning::ImplicitShared, name.source, 7030 "Variable '%s' with SHARED locality implicitly declared"_warn_en_US, 7031 name.source); 7032 } 7033 Symbol &prev{FindOrDeclareEnclosingEntity(name)}; 7034 if (PassesSharedLocalityChecks(name, prev)) { 7035 MakeHostAssocSymbol(name, prev).set(Symbol::Flag::LocalityShared); 7036 } 7037 } 7038 return false; 7039 } 7040 7041 bool ConstructVisitor::Pre(const parser::AcSpec &x) { 7042 ProcessTypeSpec(x.type); 7043 Walk(x.values); 7044 return false; 7045 } 7046 7047 // Section 19.4, paragraph 5 says that each ac-do-variable has the scope of the 7048 // enclosing ac-implied-do 7049 bool ConstructVisitor::Pre(const parser::AcImpliedDo &x) { 7050 auto &values{std::get<std::list<parser::AcValue>>(x.t)}; 7051 auto &control{std::get<parser::AcImpliedDoControl>(x.t)}; 7052 auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(control.t)}; 7053 auto &bounds{std::get<parser::AcImpliedDoControl::Bounds>(control.t)}; 7054 // F'2018 has the scope of the implied DO variable covering the entire 7055 // implied DO production (19.4(5)), which seems wrong in cases where the name 7056 // of the implied DO variable appears in one of the bound expressions. Thus 7057 // this extension, which shrinks the scope of the variable to exclude the 7058 // expressions in the bounds. 7059 auto restore{BeginCheckOnIndexUseInOwnBounds(bounds.name)}; 7060 Walk(bounds.lower); 7061 Walk(bounds.upper); 7062 Walk(bounds.step); 7063 EndCheckOnIndexUseInOwnBounds(restore); 7064 PushScope(Scope::Kind::ImpliedDos, nullptr); 7065 DeclareStatementEntity(bounds.name, type); 7066 Walk(values); 7067 PopScope(); 7068 return false; 7069 } 7070 7071 bool ConstructVisitor::Pre(const parser::DataImpliedDo &x) { 7072 auto &objects{std::get<std::list<parser::DataIDoObject>>(x.t)}; 7073 auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(x.t)}; 7074 auto &bounds{std::get<parser::DataImpliedDo::Bounds>(x.t)}; 7075 // See comment in Pre(AcImpliedDo) above. 7076 auto restore{BeginCheckOnIndexUseInOwnBounds(bounds.name)}; 7077 Walk(bounds.lower); 7078 Walk(bounds.upper); 7079 Walk(bounds.step); 7080 EndCheckOnIndexUseInOwnBounds(restore); 7081 bool pushScope{currScope().kind() != Scope::Kind::ImpliedDos}; 7082 if (pushScope) { 7083 PushScope(Scope::Kind::ImpliedDos, nullptr); 7084 } 7085 DeclareStatementEntity(bounds.name, type); 7086 Walk(objects); 7087 if (pushScope) { 7088 PopScope(); 7089 } 7090 return false; 7091 } 7092 7093 // Sets InDataStmt flag on a variable (or misidentified function) in a DATA 7094 // statement so that the predicate IsInitialized() will be true 7095 // during semantic analysis before the symbol's initializer is constructed. 7096 bool ConstructVisitor::Pre(const parser::DataIDoObject &x) { 7097 common::visit( 7098 common::visitors{ 7099 [&](const parser::Scalar<Indirection<parser::Designator>> &y) { 7100 Walk(y.thing.value()); 7101 const parser::Name &first{parser::GetFirstName(y.thing.value())}; 7102 if (first.symbol) { 7103 first.symbol->set(Symbol::Flag::InDataStmt); 7104 } 7105 }, 7106 [&](const Indirection<parser::DataImpliedDo> &y) { Walk(y.value()); }, 7107 }, 7108 x.u); 7109 return false; 7110 } 7111 7112 bool ConstructVisitor::Pre(const parser::DataStmtObject &x) { 7113 // Subtle: DATA statements may appear in both the specification and 7114 // execution parts, but should be treated as if in the execution part 7115 // for purposes of implicit variable declaration vs. host association. 7116 // When a name first appears as an object in a DATA statement, it should 7117 // be implicitly declared locally as if it had been assigned. 7118 auto flagRestorer{common::ScopedSet(inSpecificationPart_, false)}; 7119 common::visit( 7120 common::visitors{ 7121 [&](const Indirection<parser::Variable> &y) { 7122 auto restorer{common::ScopedSet(deferImplicitTyping_, true)}; 7123 Walk(y.value()); 7124 const parser::Name &first{parser::GetFirstName(y.value())}; 7125 if (first.symbol) { 7126 first.symbol->set(Symbol::Flag::InDataStmt); 7127 } 7128 }, 7129 [&](const parser::DataImpliedDo &y) { 7130 PushScope(Scope::Kind::ImpliedDos, nullptr); 7131 Walk(y); 7132 PopScope(); 7133 }, 7134 }, 7135 x.u); 7136 return false; 7137 } 7138 7139 bool ConstructVisitor::Pre(const parser::DataStmtValue &x) { 7140 const auto &data{std::get<parser::DataStmtConstant>(x.t)}; 7141 auto &mutableData{const_cast<parser::DataStmtConstant &>(data)}; 7142 if (auto *elem{parser::Unwrap<parser::ArrayElement>(mutableData)}) { 7143 if (const auto *name{std::get_if<parser::Name>(&elem->base.u)}) { 7144 if (const Symbol * symbol{FindSymbol(*name)}; 7145 symbol && symbol->GetUltimate().has<DerivedTypeDetails>()) { 7146 mutableData.u = elem->ConvertToStructureConstructor( 7147 DerivedTypeSpec{name->source, *symbol}); 7148 } 7149 } 7150 } 7151 return true; 7152 } 7153 7154 bool ConstructVisitor::Pre(const parser::DoConstruct &x) { 7155 if (x.IsDoConcurrent()) { 7156 // The new scope has Kind::Forall for index variable name conflict 7157 // detection with nested FORALL/DO CONCURRENT constructs in 7158 // ResolveIndexName(). 7159 PushScope(Scope::Kind::Forall, nullptr); 7160 } 7161 return true; 7162 } 7163 void ConstructVisitor::Post(const parser::DoConstruct &x) { 7164 if (x.IsDoConcurrent()) { 7165 PopScope(); 7166 } 7167 } 7168 7169 bool ConstructVisitor::Pre(const parser::ForallConstruct &) { 7170 PushScope(Scope::Kind::Forall, nullptr); 7171 return true; 7172 } 7173 void ConstructVisitor::Post(const parser::ForallConstruct &) { PopScope(); } 7174 bool ConstructVisitor::Pre(const parser::ForallStmt &) { 7175 PushScope(Scope::Kind::Forall, nullptr); 7176 return true; 7177 } 7178 void ConstructVisitor::Post(const parser::ForallStmt &) { PopScope(); } 7179 7180 bool ConstructVisitor::Pre(const parser::BlockConstruct &x) { 7181 const auto &[blockStmt, specPart, execPart, endBlockStmt] = x.t; 7182 Walk(blockStmt); 7183 CheckDef(blockStmt.statement.v); 7184 PushScope(Scope::Kind::BlockConstruct, nullptr); 7185 Walk(specPart); 7186 HandleImpliedAsynchronousInScope(execPart); 7187 Walk(execPart); 7188 Walk(endBlockStmt); 7189 PopScope(); 7190 CheckRef(endBlockStmt.statement.v); 7191 return false; 7192 } 7193 7194 void ConstructVisitor::Post(const parser::Selector &x) { 7195 GetCurrentAssociation().selector = ResolveSelector(x); 7196 } 7197 7198 void ConstructVisitor::Post(const parser::AssociateStmt &x) { 7199 CheckDef(x.t); 7200 PushScope(Scope::Kind::OtherConstruct, nullptr); 7201 const auto assocCount{std::get<std::list<parser::Association>>(x.t).size()}; 7202 for (auto nthLastAssoc{assocCount}; nthLastAssoc > 0; --nthLastAssoc) { 7203 SetCurrentAssociation(nthLastAssoc); 7204 if (auto *symbol{MakeAssocEntity()}) { 7205 const MaybeExpr &expr{GetCurrentAssociation().selector.expr}; 7206 if (ExtractCoarrayRef(expr)) { // C1103 7207 Say("Selector must not be a coindexed object"_err_en_US); 7208 } 7209 if (evaluate::IsAssumedRank(expr)) { 7210 Say("Selector must not be assumed-rank"_err_en_US); 7211 } 7212 SetTypeFromAssociation(*symbol); 7213 SetAttrsFromAssociation(*symbol); 7214 } 7215 } 7216 PopAssociation(assocCount); 7217 } 7218 7219 void ConstructVisitor::Post(const parser::EndAssociateStmt &x) { 7220 PopScope(); 7221 CheckRef(x.v); 7222 } 7223 7224 bool ConstructVisitor::Pre(const parser::Association &x) { 7225 PushAssociation(); 7226 const auto &name{std::get<parser::Name>(x.t)}; 7227 GetCurrentAssociation().name = &name; 7228 return true; 7229 } 7230 7231 bool ConstructVisitor::Pre(const parser::ChangeTeamStmt &x) { 7232 CheckDef(x.t); 7233 PushScope(Scope::Kind::OtherConstruct, nullptr); 7234 PushAssociation(); 7235 return true; 7236 } 7237 7238 void ConstructVisitor::Post(const parser::CoarrayAssociation &x) { 7239 const auto &decl{std::get<parser::CodimensionDecl>(x.t)}; 7240 const auto &name{std::get<parser::Name>(decl.t)}; 7241 if (auto *symbol{FindInScope(name)}) { 7242 const auto &selector{std::get<parser::Selector>(x.t)}; 7243 if (auto sel{ResolveSelector(selector)}) { 7244 const Symbol *whole{UnwrapWholeSymbolDataRef(sel.expr)}; 7245 if (!whole || whole->Corank() == 0) { 7246 Say(sel.source, // C1116 7247 "Selector in coarray association must name a coarray"_err_en_US); 7248 } else if (auto dynType{sel.expr->GetType()}) { 7249 if (!symbol->GetType()) { 7250 symbol->SetType(ToDeclTypeSpec(std::move(*dynType))); 7251 } 7252 } 7253 } 7254 } 7255 } 7256 7257 void ConstructVisitor::Post(const parser::EndChangeTeamStmt &x) { 7258 PopAssociation(); 7259 PopScope(); 7260 CheckRef(x.t); 7261 } 7262 7263 bool ConstructVisitor::Pre(const parser::SelectTypeConstruct &) { 7264 PushAssociation(); 7265 return true; 7266 } 7267 7268 void ConstructVisitor::Post(const parser::SelectTypeConstruct &) { 7269 PopAssociation(); 7270 } 7271 7272 void ConstructVisitor::Post(const parser::SelectTypeStmt &x) { 7273 auto &association{GetCurrentAssociation()}; 7274 if (const std::optional<parser::Name> &name{std::get<1>(x.t)}) { 7275 // This isn't a name in the current scope, it is in each TypeGuardStmt 7276 MakePlaceholder(*name, MiscDetails::Kind::SelectTypeAssociateName); 7277 association.name = &*name; 7278 if (ExtractCoarrayRef(association.selector.expr)) { // C1103 7279 Say("Selector must not be a coindexed object"_err_en_US); 7280 } 7281 if (association.selector.expr) { 7282 auto exprType{association.selector.expr->GetType()}; 7283 if (exprType && !exprType->IsPolymorphic()) { // C1159 7284 Say(association.selector.source, 7285 "Selector '%s' in SELECT TYPE statement must be " 7286 "polymorphic"_err_en_US); 7287 } 7288 } 7289 } else { 7290 if (const Symbol * 7291 whole{UnwrapWholeSymbolDataRef(association.selector.expr)}) { 7292 ConvertToObjectEntity(const_cast<Symbol &>(*whole)); 7293 if (!IsVariableName(*whole)) { 7294 Say(association.selector.source, // C901 7295 "Selector is not a variable"_err_en_US); 7296 association = {}; 7297 } 7298 if (const DeclTypeSpec * type{whole->GetType()}) { 7299 if (!type->IsPolymorphic()) { // C1159 7300 Say(association.selector.source, 7301 "Selector '%s' in SELECT TYPE statement must be " 7302 "polymorphic"_err_en_US); 7303 } 7304 } 7305 } else { 7306 Say(association.selector.source, // C1157 7307 "Selector is not a named variable: 'associate-name =>' is required"_err_en_US); 7308 association = {}; 7309 } 7310 } 7311 } 7312 7313 void ConstructVisitor::Post(const parser::SelectRankStmt &x) { 7314 auto &association{GetCurrentAssociation()}; 7315 if (const std::optional<parser::Name> &name{std::get<1>(x.t)}) { 7316 // This isn't a name in the current scope, it is in each SelectRankCaseStmt 7317 MakePlaceholder(*name, MiscDetails::Kind::SelectRankAssociateName); 7318 association.name = &*name; 7319 } 7320 } 7321 7322 bool ConstructVisitor::Pre(const parser::SelectTypeConstruct::TypeCase &) { 7323 PushScope(Scope::Kind::OtherConstruct, nullptr); 7324 return true; 7325 } 7326 void ConstructVisitor::Post(const parser::SelectTypeConstruct::TypeCase &) { 7327 PopScope(); 7328 } 7329 7330 bool ConstructVisitor::Pre(const parser::SelectRankConstruct::RankCase &) { 7331 PushScope(Scope::Kind::OtherConstruct, nullptr); 7332 return true; 7333 } 7334 void ConstructVisitor::Post(const parser::SelectRankConstruct::RankCase &) { 7335 PopScope(); 7336 } 7337 7338 bool ConstructVisitor::Pre(const parser::TypeGuardStmt::Guard &x) { 7339 if (std::holds_alternative<parser::DerivedTypeSpec>(x.u)) { 7340 // CLASS IS (t) 7341 SetDeclTypeSpecCategory(DeclTypeSpec::Category::ClassDerived); 7342 } 7343 return true; 7344 } 7345 7346 void ConstructVisitor::Post(const parser::TypeGuardStmt::Guard &x) { 7347 if (auto *symbol{MakeAssocEntity()}) { 7348 if (std::holds_alternative<parser::Default>(x.u)) { 7349 SetTypeFromAssociation(*symbol); 7350 } else if (const auto *type{GetDeclTypeSpec()}) { 7351 symbol->SetType(*type); 7352 } 7353 SetAttrsFromAssociation(*symbol); 7354 } 7355 } 7356 7357 void ConstructVisitor::Post(const parser::SelectRankCaseStmt::Rank &x) { 7358 if (auto *symbol{MakeAssocEntity()}) { 7359 SetTypeFromAssociation(*symbol); 7360 auto &details{symbol->get<AssocEntityDetails>()}; 7361 // Don't call SetAttrsFromAssociation() for SELECT RANK. 7362 Attrs selectorAttrs{ 7363 evaluate::GetAttrs(GetCurrentAssociation().selector.expr)}; 7364 Attrs attrsToKeep{Attr::ASYNCHRONOUS, Attr::TARGET, Attr::VOLATILE}; 7365 if (const auto *rankValue{ 7366 std::get_if<parser::ScalarIntConstantExpr>(&x.u)}) { 7367 // RANK(n) 7368 if (auto expr{EvaluateIntExpr(*rankValue)}) { 7369 if (auto val{evaluate::ToInt64(*expr)}) { 7370 details.set_rank(*val); 7371 attrsToKeep |= Attrs{Attr::ALLOCATABLE, Attr::POINTER}; 7372 } else { 7373 Say("RANK() expression must be constant"_err_en_US); 7374 } 7375 } 7376 } else if (std::holds_alternative<parser::Star>(x.u)) { 7377 // RANK(*): assumed-size 7378 details.set_IsAssumedSize(); 7379 } else { 7380 CHECK(std::holds_alternative<parser::Default>(x.u)); 7381 // RANK DEFAULT: assumed-rank 7382 details.set_IsAssumedRank(); 7383 attrsToKeep |= Attrs{Attr::ALLOCATABLE, Attr::POINTER}; 7384 } 7385 symbol->attrs() |= selectorAttrs & attrsToKeep; 7386 } 7387 } 7388 7389 bool ConstructVisitor::Pre(const parser::SelectRankConstruct &) { 7390 PushAssociation(); 7391 return true; 7392 } 7393 7394 void ConstructVisitor::Post(const parser::SelectRankConstruct &) { 7395 PopAssociation(); 7396 } 7397 7398 bool ConstructVisitor::CheckDef(const std::optional<parser::Name> &x) { 7399 if (x && !x->symbol) { 7400 // Construct names are not scoped by BLOCK in the standard, but many, 7401 // but not all, compilers do treat them as if they were so scoped. 7402 if (Symbol * inner{FindInScope(currScope(), *x)}) { 7403 SayAlreadyDeclared(*x, *inner); 7404 } else { 7405 if (context().ShouldWarn(common::LanguageFeature::BenignNameClash)) { 7406 if (Symbol * 7407 other{FindInScopeOrBlockConstructs(InclusiveScope(), x->source)}) { 7408 SayWithDecl(*x, *other, 7409 "The construct name '%s' should be distinct at the subprogram level"_port_en_US) 7410 .set_languageFeature(common::LanguageFeature::BenignNameClash); 7411 } 7412 } 7413 MakeSymbol(*x, MiscDetails{MiscDetails::Kind::ConstructName}); 7414 } 7415 } 7416 return true; 7417 } 7418 7419 void ConstructVisitor::CheckRef(const std::optional<parser::Name> &x) { 7420 if (x) { 7421 // Just add an occurrence of this name; checking is done in ValidateLabels 7422 FindSymbol(*x); 7423 } 7424 } 7425 7426 // Make a symbol for the associating entity of the current association. 7427 Symbol *ConstructVisitor::MakeAssocEntity() { 7428 Symbol *symbol{nullptr}; 7429 auto &association{GetCurrentAssociation()}; 7430 if (association.name) { 7431 symbol = &MakeSymbol(*association.name, UnknownDetails{}); 7432 if (symbol->has<AssocEntityDetails>() && symbol->owner() == currScope()) { 7433 Say(*association.name, // C1102 7434 "The associate name '%s' is already used in this associate statement"_err_en_US); 7435 return nullptr; 7436 } 7437 } else if (const Symbol * 7438 whole{UnwrapWholeSymbolDataRef(association.selector.expr)}) { 7439 symbol = &MakeSymbol(whole->name()); 7440 } else { 7441 return nullptr; 7442 } 7443 if (auto &expr{association.selector.expr}) { 7444 symbol->set_details(AssocEntityDetails{common::Clone(*expr)}); 7445 } else { 7446 symbol->set_details(AssocEntityDetails{}); 7447 } 7448 return symbol; 7449 } 7450 7451 // Set the type of symbol based on the current association selector. 7452 void ConstructVisitor::SetTypeFromAssociation(Symbol &symbol) { 7453 auto &details{symbol.get<AssocEntityDetails>()}; 7454 const MaybeExpr *pexpr{&details.expr()}; 7455 if (!*pexpr) { 7456 pexpr = &GetCurrentAssociation().selector.expr; 7457 } 7458 if (*pexpr) { 7459 const SomeExpr &expr{**pexpr}; 7460 if (std::optional<evaluate::DynamicType> type{expr.GetType()}) { 7461 if (const auto *charExpr{ 7462 evaluate::UnwrapExpr<evaluate::Expr<evaluate::SomeCharacter>>( 7463 expr)}) { 7464 symbol.SetType(ToDeclTypeSpec(std::move(*type), 7465 FoldExpr(common::visit( 7466 [](const auto &kindChar) { return kindChar.LEN(); }, 7467 charExpr->u)))); 7468 } else { 7469 symbol.SetType(ToDeclTypeSpec(std::move(*type))); 7470 } 7471 } else { 7472 // BOZ literals, procedure designators, &c. are not acceptable 7473 Say(symbol.name(), "Associate name '%s' must have a type"_err_en_US); 7474 } 7475 } 7476 } 7477 7478 // If current selector is a variable, set some of its attributes on symbol. 7479 // For ASSOCIATE, CHANGE TEAM, and SELECT TYPE only; not SELECT RANK. 7480 void ConstructVisitor::SetAttrsFromAssociation(Symbol &symbol) { 7481 Attrs attrs{evaluate::GetAttrs(GetCurrentAssociation().selector.expr)}; 7482 symbol.attrs() |= 7483 attrs & Attrs{Attr::TARGET, Attr::ASYNCHRONOUS, Attr::VOLATILE}; 7484 if (attrs.test(Attr::POINTER)) { 7485 SetImplicitAttr(symbol, Attr::TARGET); 7486 } 7487 } 7488 7489 ConstructVisitor::Selector ConstructVisitor::ResolveSelector( 7490 const parser::Selector &x) { 7491 return common::visit(common::visitors{ 7492 [&](const parser::Expr &expr) { 7493 return Selector{expr.source, EvaluateExpr(x)}; 7494 }, 7495 [&](const parser::Variable &var) { 7496 return Selector{var.GetSource(), EvaluateExpr(x)}; 7497 }, 7498 }, 7499 x.u); 7500 } 7501 7502 // Set the current association to the nth to the last association on the 7503 // association stack. The top of the stack is at n = 1. This allows access 7504 // to the interior of a list of associations at the top of the stack. 7505 void ConstructVisitor::SetCurrentAssociation(std::size_t n) { 7506 CHECK(n > 0 && n <= associationStack_.size()); 7507 currentAssociation_ = &associationStack_[associationStack_.size() - n]; 7508 } 7509 7510 ConstructVisitor::Association &ConstructVisitor::GetCurrentAssociation() { 7511 CHECK(currentAssociation_); 7512 return *currentAssociation_; 7513 } 7514 7515 void ConstructVisitor::PushAssociation() { 7516 associationStack_.emplace_back(Association{}); 7517 currentAssociation_ = &associationStack_.back(); 7518 } 7519 7520 void ConstructVisitor::PopAssociation(std::size_t count) { 7521 CHECK(count > 0 && count <= associationStack_.size()); 7522 associationStack_.resize(associationStack_.size() - count); 7523 currentAssociation_ = 7524 associationStack_.empty() ? nullptr : &associationStack_.back(); 7525 } 7526 7527 const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec( 7528 evaluate::DynamicType &&type) { 7529 switch (type.category()) { 7530 SWITCH_COVERS_ALL_CASES 7531 case common::TypeCategory::Integer: 7532 case common::TypeCategory::Real: 7533 case common::TypeCategory::Complex: 7534 return context().MakeNumericType(type.category(), type.kind()); 7535 case common::TypeCategory::Logical: 7536 return context().MakeLogicalType(type.kind()); 7537 case common::TypeCategory::Derived: 7538 if (type.IsAssumedType()) { 7539 return currScope().MakeTypeStarType(); 7540 } else if (type.IsUnlimitedPolymorphic()) { 7541 return currScope().MakeClassStarType(); 7542 } else { 7543 return currScope().MakeDerivedType( 7544 type.IsPolymorphic() ? DeclTypeSpec::ClassDerived 7545 : DeclTypeSpec::TypeDerived, 7546 common::Clone(type.GetDerivedTypeSpec()) 7547 7548 ); 7549 } 7550 case common::TypeCategory::Character: 7551 CRASH_NO_CASE; 7552 } 7553 } 7554 7555 const DeclTypeSpec &ConstructVisitor::ToDeclTypeSpec( 7556 evaluate::DynamicType &&type, MaybeSubscriptIntExpr &&length) { 7557 CHECK(type.category() == common::TypeCategory::Character); 7558 if (length) { 7559 return currScope().MakeCharacterType( 7560 ParamValue{SomeIntExpr{*std::move(length)}, common::TypeParamAttr::Len}, 7561 KindExpr{type.kind()}); 7562 } else { 7563 return currScope().MakeCharacterType( 7564 ParamValue::Deferred(common::TypeParamAttr::Len), 7565 KindExpr{type.kind()}); 7566 } 7567 } 7568 7569 class ExecutionPartSkimmerBase { 7570 public: 7571 template <typename A> bool Pre(const A &) { return true; } 7572 template <typename A> void Post(const A &) {} 7573 7574 bool InNestedBlockConstruct() const { return blockDepth_ > 0; } 7575 7576 bool Pre(const parser::AssociateConstruct &) { 7577 PushScope(); 7578 return true; 7579 } 7580 void Post(const parser::AssociateConstruct &) { PopScope(); } 7581 bool Pre(const parser::Association &x) { 7582 Hide(std::get<parser::Name>(x.t)); 7583 return true; 7584 } 7585 bool Pre(const parser::BlockConstruct &) { 7586 PushScope(); 7587 ++blockDepth_; 7588 return true; 7589 } 7590 void Post(const parser::BlockConstruct &) { 7591 --blockDepth_; 7592 PopScope(); 7593 } 7594 bool Pre(const parser::EntityDecl &x) { 7595 Hide(std::get<parser::ObjectName>(x.t)); 7596 return true; 7597 } 7598 void Post(const parser::ImportStmt &x) { 7599 if (x.kind == common::ImportKind::None || 7600 x.kind == common::ImportKind::Only) { 7601 if (!nestedScopes_.front().importOnly.has_value()) { 7602 nestedScopes_.front().importOnly.emplace(); 7603 } 7604 for (const auto &name : x.names) { 7605 nestedScopes_.front().importOnly->emplace(name.source); 7606 } 7607 } else { 7608 // no special handling needed for explicit names or IMPORT, ALL 7609 } 7610 } 7611 void Post(const parser::UseStmt &x) { 7612 if (const auto *onlyList{std::get_if<std::list<parser::Only>>(&x.u)}) { 7613 for (const auto &only : *onlyList) { 7614 if (const auto *name{std::get_if<parser::Name>(&only.u)}) { 7615 Hide(*name); 7616 } else if (const auto *rename{std::get_if<parser::Rename>(&only.u)}) { 7617 if (const auto *names{ 7618 std::get_if<parser::Rename::Names>(&rename->u)}) { 7619 Hide(std::get<0>(names->t)); 7620 } 7621 } 7622 } 7623 } else { 7624 // USE may or may not shadow symbols in host scopes 7625 nestedScopes_.front().hasUseWithoutOnly = true; 7626 } 7627 } 7628 bool Pre(const parser::DerivedTypeStmt &x) { 7629 Hide(std::get<parser::Name>(x.t)); 7630 PushScope(); 7631 return true; 7632 } 7633 void Post(const parser::DerivedTypeDef &) { PopScope(); } 7634 bool Pre(const parser::SelectTypeConstruct &) { 7635 PushScope(); 7636 return true; 7637 } 7638 void Post(const parser::SelectTypeConstruct &) { PopScope(); } 7639 bool Pre(const parser::SelectTypeStmt &x) { 7640 if (const auto &maybeName{std::get<1>(x.t)}) { 7641 Hide(*maybeName); 7642 } 7643 return true; 7644 } 7645 bool Pre(const parser::SelectRankConstruct &) { 7646 PushScope(); 7647 return true; 7648 } 7649 void Post(const parser::SelectRankConstruct &) { PopScope(); } 7650 bool Pre(const parser::SelectRankStmt &x) { 7651 if (const auto &maybeName{std::get<1>(x.t)}) { 7652 Hide(*maybeName); 7653 } 7654 return true; 7655 } 7656 7657 protected: 7658 bool IsHidden(SourceName name) { 7659 for (const auto &scope : nestedScopes_) { 7660 if (scope.locals.find(name) != scope.locals.end()) { 7661 return true; // shadowed by nested declaration 7662 } 7663 if (scope.hasUseWithoutOnly) { 7664 break; 7665 } 7666 if (scope.importOnly && 7667 scope.importOnly->find(name) == scope.importOnly->end()) { 7668 return true; // not imported 7669 } 7670 } 7671 return false; 7672 } 7673 7674 void EndWalk() { CHECK(nestedScopes_.empty()); } 7675 7676 private: 7677 void PushScope() { nestedScopes_.emplace_front(); } 7678 void PopScope() { nestedScopes_.pop_front(); } 7679 void Hide(const parser::Name &name) { 7680 nestedScopes_.front().locals.emplace(name.source); 7681 } 7682 7683 int blockDepth_{0}; 7684 struct NestedScopeInfo { 7685 bool hasUseWithoutOnly{false}; 7686 std::set<SourceName> locals; 7687 std::optional<std::set<SourceName>> importOnly; 7688 }; 7689 std::list<NestedScopeInfo> nestedScopes_; 7690 }; 7691 7692 class ExecutionPartAsyncIOSkimmer : public ExecutionPartSkimmerBase { 7693 public: 7694 explicit ExecutionPartAsyncIOSkimmer(SemanticsContext &context) 7695 : context_{context} {} 7696 7697 void Walk(const parser::Block &block) { 7698 parser::Walk(block, *this); 7699 EndWalk(); 7700 } 7701 7702 const std::set<SourceName> asyncIONames() const { return asyncIONames_; } 7703 7704 using ExecutionPartSkimmerBase::Post; 7705 using ExecutionPartSkimmerBase::Pre; 7706 7707 bool Pre(const parser::IoControlSpec::Asynchronous &async) { 7708 if (auto folded{evaluate::Fold( 7709 context_.foldingContext(), AnalyzeExpr(context_, async.v))}) { 7710 if (auto str{ 7711 evaluate::GetScalarConstantValue<evaluate::Ascii>(*folded)}) { 7712 for (char ch : *str) { 7713 if (ch != ' ') { 7714 inAsyncIO_ = ch == 'y' || ch == 'Y'; 7715 break; 7716 } 7717 } 7718 } 7719 } 7720 return true; 7721 } 7722 void Post(const parser::ReadStmt &) { inAsyncIO_ = false; } 7723 void Post(const parser::WriteStmt &) { inAsyncIO_ = false; } 7724 void Post(const parser::IoControlSpec::Size &size) { 7725 if (const auto *designator{ 7726 std::get_if<common::Indirection<parser::Designator>>( 7727 &size.v.thing.thing.u)}) { 7728 NoteAsyncIODesignator(designator->value()); 7729 } 7730 } 7731 void Post(const parser::InputItem &x) { 7732 if (const auto *var{std::get_if<parser::Variable>(&x.u)}) { 7733 if (const auto *designator{ 7734 std::get_if<common::Indirection<parser::Designator>>(&var->u)}) { 7735 NoteAsyncIODesignator(designator->value()); 7736 } 7737 } 7738 } 7739 void Post(const parser::OutputItem &x) { 7740 if (const auto *expr{std::get_if<parser::Expr>(&x.u)}) { 7741 if (const auto *designator{ 7742 std::get_if<common::Indirection<parser::Designator>>(&expr->u)}) { 7743 NoteAsyncIODesignator(designator->value()); 7744 } 7745 } 7746 } 7747 7748 private: 7749 void NoteAsyncIODesignator(const parser::Designator &designator) { 7750 if (inAsyncIO_ && !InNestedBlockConstruct()) { 7751 const parser::Name &name{parser::GetFirstName(designator)}; 7752 if (!IsHidden(name.source)) { 7753 asyncIONames_.insert(name.source); 7754 } 7755 } 7756 } 7757 7758 SemanticsContext &context_; 7759 bool inAsyncIO_{false}; 7760 std::set<SourceName> asyncIONames_; 7761 }; 7762 7763 // Any data list item or SIZE= specifier of an I/O data transfer statement 7764 // with ASYNCHRONOUS="YES" implicitly has the ASYNCHRONOUS attribute in the 7765 // local scope. 7766 void ConstructVisitor::HandleImpliedAsynchronousInScope( 7767 const parser::Block &block) { 7768 ExecutionPartAsyncIOSkimmer skimmer{context()}; 7769 skimmer.Walk(block); 7770 for (auto name : skimmer.asyncIONames()) { 7771 if (Symbol * symbol{currScope().FindSymbol(name)}) { 7772 if (!symbol->attrs().test(Attr::ASYNCHRONOUS)) { 7773 if (&symbol->owner() != &currScope()) { 7774 symbol = &*currScope() 7775 .try_emplace(name, HostAssocDetails{*symbol}) 7776 .first->second; 7777 } 7778 if (symbol->has<AssocEntityDetails>()) { 7779 symbol = const_cast<Symbol *>(&GetAssociationRoot(*symbol)); 7780 } 7781 SetImplicitAttr(*symbol, Attr::ASYNCHRONOUS); 7782 } 7783 } 7784 } 7785 } 7786 7787 // ResolveNamesVisitor implementation 7788 7789 bool ResolveNamesVisitor::Pre(const parser::FunctionReference &x) { 7790 HandleCall(Symbol::Flag::Function, x.v); 7791 return false; 7792 } 7793 bool ResolveNamesVisitor::Pre(const parser::CallStmt &x) { 7794 HandleCall(Symbol::Flag::Subroutine, x.call); 7795 Walk(x.chevrons); 7796 return false; 7797 } 7798 7799 bool ResolveNamesVisitor::Pre(const parser::ImportStmt &x) { 7800 auto &scope{currScope()}; 7801 // Check C896 and C899: where IMPORT statements are allowed 7802 switch (scope.kind()) { 7803 case Scope::Kind::Module: 7804 if (scope.IsModule()) { 7805 Say("IMPORT is not allowed in a module scoping unit"_err_en_US); 7806 return false; 7807 } else if (x.kind == common::ImportKind::None) { 7808 Say("IMPORT,NONE is not allowed in a submodule scoping unit"_err_en_US); 7809 return false; 7810 } 7811 break; 7812 case Scope::Kind::MainProgram: 7813 Say("IMPORT is not allowed in a main program scoping unit"_err_en_US); 7814 return false; 7815 case Scope::Kind::Subprogram: 7816 if (scope.parent().IsGlobal()) { 7817 Say("IMPORT is not allowed in an external subprogram scoping unit"_err_en_US); 7818 return false; 7819 } 7820 break; 7821 case Scope::Kind::BlockData: // C1415 (in part) 7822 Say("IMPORT is not allowed in a BLOCK DATA subprogram"_err_en_US); 7823 return false; 7824 default:; 7825 } 7826 if (auto error{scope.SetImportKind(x.kind)}) { 7827 Say(std::move(*error)); 7828 } 7829 for (auto &name : x.names) { 7830 if (Symbol * outer{FindSymbol(scope.parent(), name)}) { 7831 scope.add_importName(name.source); 7832 if (Symbol * symbol{FindInScope(name)}) { 7833 if (outer->GetUltimate() == symbol->GetUltimate()) { 7834 context().Warn(common::LanguageFeature::BenignNameClash, name.source, 7835 "The same '%s' is already present in this scope"_port_en_US, 7836 name.source); 7837 } else { 7838 Say(name, 7839 "A distinct '%s' is already present in this scope"_err_en_US) 7840 .Attach(symbol->name(), "Previous declaration of '%s'"_en_US) 7841 .Attach(outer->name(), "Declaration of '%s' in host scope"_en_US); 7842 } 7843 } 7844 } else { 7845 Say(name, "'%s' not found in host scope"_err_en_US); 7846 } 7847 } 7848 prevImportStmt_ = currStmtSource(); 7849 return false; 7850 } 7851 7852 const parser::Name *DeclarationVisitor::ResolveStructureComponent( 7853 const parser::StructureComponent &x) { 7854 return FindComponent(ResolveDataRef(x.base), x.component); 7855 } 7856 7857 const parser::Name *DeclarationVisitor::ResolveDesignator( 7858 const parser::Designator &x) { 7859 return common::visit( 7860 common::visitors{ 7861 [&](const parser::DataRef &x) { return ResolveDataRef(x); }, 7862 [&](const parser::Substring &x) { 7863 Walk(std::get<parser::SubstringRange>(x.t).t); 7864 return ResolveDataRef(std::get<parser::DataRef>(x.t)); 7865 }, 7866 }, 7867 x.u); 7868 } 7869 7870 const parser::Name *DeclarationVisitor::ResolveDataRef( 7871 const parser::DataRef &x) { 7872 return common::visit( 7873 common::visitors{ 7874 [=](const parser::Name &y) { return ResolveName(y); }, 7875 [=](const Indirection<parser::StructureComponent> &y) { 7876 return ResolveStructureComponent(y.value()); 7877 }, 7878 [&](const Indirection<parser::ArrayElement> &y) { 7879 Walk(y.value().subscripts); 7880 const parser::Name *name{ResolveDataRef(y.value().base)}; 7881 if (name && name->symbol) { 7882 if (!IsProcedure(*name->symbol)) { 7883 ConvertToObjectEntity(*name->symbol); 7884 } else if (!context().HasError(*name->symbol)) { 7885 SayWithDecl(*name, *name->symbol, 7886 "Cannot reference function '%s' as data"_err_en_US); 7887 context().SetError(*name->symbol); 7888 } 7889 } 7890 return name; 7891 }, 7892 [&](const Indirection<parser::CoindexedNamedObject> &y) { 7893 Walk(y.value().imageSelector); 7894 return ResolveDataRef(y.value().base); 7895 }, 7896 }, 7897 x.u); 7898 } 7899 7900 // If implicit types are allowed, ensure name is in the symbol table. 7901 // Otherwise, report an error if it hasn't been declared. 7902 const parser::Name *DeclarationVisitor::ResolveName(const parser::Name &name) { 7903 FindSymbol(name); 7904 if (CheckForHostAssociatedImplicit(name)) { 7905 NotePossibleBadForwardRef(name); 7906 return &name; 7907 } 7908 if (Symbol * symbol{name.symbol}) { 7909 if (CheckUseError(name)) { 7910 return nullptr; // reported an error 7911 } 7912 NotePossibleBadForwardRef(name); 7913 symbol->set(Symbol::Flag::ImplicitOrError, false); 7914 if (IsUplevelReference(*symbol)) { 7915 MakeHostAssocSymbol(name, *symbol); 7916 } else if (IsDummy(*symbol) || 7917 (!symbol->GetType() && FindCommonBlockContaining(*symbol))) { 7918 CheckEntryDummyUse(name.source, symbol); 7919 ConvertToObjectEntity(*symbol); 7920 ApplyImplicitRules(*symbol); 7921 } else if (const auto *tpd{symbol->detailsIf<TypeParamDetails>()}; 7922 tpd && !tpd->attr()) { 7923 Say(name, 7924 "Type parameter '%s' was referenced before being declared"_err_en_US, 7925 name.source); 7926 context().SetError(*symbol); 7927 } 7928 if (checkIndexUseInOwnBounds_ && 7929 *checkIndexUseInOwnBounds_ == name.source && !InModuleFile()) { 7930 context().Warn(common::LanguageFeature::ImpliedDoIndexScope, name.source, 7931 "Implied DO index '%s' uses an object of the same name in its bounds expressions"_port_en_US, 7932 name.source); 7933 } 7934 return &name; 7935 } 7936 if (isImplicitNoneType() && !deferImplicitTyping_) { 7937 Say(name, "No explicit type declared for '%s'"_err_en_US); 7938 return nullptr; 7939 } 7940 // Create the symbol, then ensure that it is accessible 7941 if (checkIndexUseInOwnBounds_ && *checkIndexUseInOwnBounds_ == name.source) { 7942 Say(name, 7943 "Implied DO index '%s' uses itself in its own bounds expressions"_err_en_US, 7944 name.source); 7945 } 7946 MakeSymbol(InclusiveScope(), name.source, Attrs{}); 7947 auto *symbol{FindSymbol(name)}; 7948 if (!symbol) { 7949 Say(name, 7950 "'%s' from host scoping unit is not accessible due to IMPORT"_err_en_US); 7951 return nullptr; 7952 } 7953 ConvertToObjectEntity(*symbol); 7954 ApplyImplicitRules(*symbol); 7955 NotePossibleBadForwardRef(name); 7956 return &name; 7957 } 7958 7959 // A specification expression may refer to a symbol in the host procedure that 7960 // is implicitly typed. Because specification parts are processed before 7961 // execution parts, this may be the first time we see the symbol. It can't be a 7962 // local in the current scope (because it's in a specification expression) so 7963 // either it is implicitly declared in the host procedure or it is an error. 7964 // We create a symbol in the host assuming it is the former; if that proves to 7965 // be wrong we report an error later in CheckDeclarations(). 7966 bool DeclarationVisitor::CheckForHostAssociatedImplicit( 7967 const parser::Name &name) { 7968 if (!inSpecificationPart_ || inEquivalenceStmt_) { 7969 return false; 7970 } 7971 if (name.symbol) { 7972 ApplyImplicitRules(*name.symbol, true); 7973 } 7974 if (Scope * host{GetHostProcedure()}; host && !isImplicitNoneType(*host)) { 7975 Symbol *hostSymbol{nullptr}; 7976 if (!name.symbol) { 7977 if (currScope().CanImport(name.source)) { 7978 hostSymbol = &MakeSymbol(*host, name.source, Attrs{}); 7979 ConvertToObjectEntity(*hostSymbol); 7980 ApplyImplicitRules(*hostSymbol); 7981 hostSymbol->set(Symbol::Flag::ImplicitOrError); 7982 } 7983 } else if (name.symbol->test(Symbol::Flag::ImplicitOrError)) { 7984 hostSymbol = name.symbol; 7985 } 7986 if (hostSymbol) { 7987 Symbol &symbol{MakeHostAssocSymbol(name, *hostSymbol)}; 7988 if (auto *assoc{symbol.detailsIf<HostAssocDetails>()}) { 7989 if (isImplicitNoneType()) { 7990 assoc->implicitOrExplicitTypeError = true; 7991 } else { 7992 assoc->implicitOrSpecExprError = true; 7993 } 7994 return true; 7995 } 7996 } 7997 } 7998 return false; 7999 } 8000 8001 bool DeclarationVisitor::IsUplevelReference(const Symbol &symbol) { 8002 const Scope &symbolUnit{GetProgramUnitContaining(symbol)}; 8003 if (symbolUnit == GetProgramUnitContaining(currScope())) { 8004 return false; 8005 } else { 8006 Scope::Kind kind{symbolUnit.kind()}; 8007 return kind == Scope::Kind::Subprogram || kind == Scope::Kind::MainProgram; 8008 } 8009 } 8010 8011 // base is a part-ref of a derived type; find the named component in its type. 8012 // Also handles intrinsic type parameter inquiries (%kind, %len) and 8013 // COMPLEX component references (%re, %im). 8014 const parser::Name *DeclarationVisitor::FindComponent( 8015 const parser::Name *base, const parser::Name &component) { 8016 if (!base || !base->symbol) { 8017 return nullptr; 8018 } 8019 if (auto *misc{base->symbol->detailsIf<MiscDetails>()}) { 8020 if (component.source == "kind") { 8021 if (misc->kind() == MiscDetails::Kind::ComplexPartRe || 8022 misc->kind() == MiscDetails::Kind::ComplexPartIm || 8023 misc->kind() == MiscDetails::Kind::KindParamInquiry || 8024 misc->kind() == MiscDetails::Kind::LenParamInquiry) { 8025 // x%{re,im,kind,len}%kind 8026 MakePlaceholder(component, MiscDetails::Kind::KindParamInquiry); 8027 return &component; 8028 } 8029 } 8030 } 8031 CheckEntryDummyUse(base->source, base->symbol); 8032 auto &symbol{base->symbol->GetUltimate()}; 8033 if (!symbol.has<AssocEntityDetails>() && !ConvertToObjectEntity(symbol)) { 8034 SayWithDecl(*base, symbol, 8035 "'%s' is not an object and may not be used as the base of a component reference or type parameter inquiry"_err_en_US); 8036 return nullptr; 8037 } 8038 auto *type{symbol.GetType()}; 8039 if (!type) { 8040 return nullptr; // should have already reported error 8041 } 8042 if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) { 8043 auto category{intrinsic->category()}; 8044 MiscDetails::Kind miscKind{MiscDetails::Kind::None}; 8045 if (component.source == "kind") { 8046 miscKind = MiscDetails::Kind::KindParamInquiry; 8047 } else if (category == TypeCategory::Character) { 8048 if (component.source == "len") { 8049 miscKind = MiscDetails::Kind::LenParamInquiry; 8050 } 8051 } else if (category == TypeCategory::Complex) { 8052 if (component.source == "re") { 8053 miscKind = MiscDetails::Kind::ComplexPartRe; 8054 } else if (component.source == "im") { 8055 miscKind = MiscDetails::Kind::ComplexPartIm; 8056 } 8057 } 8058 if (miscKind != MiscDetails::Kind::None) { 8059 MakePlaceholder(component, miscKind); 8060 return &component; 8061 } 8062 } else if (DerivedTypeSpec * derived{type->AsDerived()}) { 8063 derived->Instantiate(currScope()); // in case of forward referenced type 8064 if (const Scope * scope{derived->scope()}) { 8065 if (Resolve(component, scope->FindComponent(component.source))) { 8066 if (auto msg{CheckAccessibleSymbol(currScope(), *component.symbol)}) { 8067 context().Say(component.source, *msg); 8068 } 8069 return &component; 8070 } else { 8071 SayDerivedType(component.source, 8072 "Component '%s' not found in derived type '%s'"_err_en_US, *scope); 8073 } 8074 } 8075 return nullptr; 8076 } 8077 if (symbol.test(Symbol::Flag::Implicit)) { 8078 Say(*base, 8079 "'%s' is not an object of derived type; it is implicitly typed"_err_en_US); 8080 } else { 8081 SayWithDecl( 8082 *base, symbol, "'%s' is not an object of derived type"_err_en_US); 8083 } 8084 return nullptr; 8085 } 8086 8087 void DeclarationVisitor::Initialization(const parser::Name &name, 8088 const parser::Initialization &init, bool inComponentDecl) { 8089 // Traversal of the initializer was deferred to here so that the 8090 // symbol being declared can be available for use in the expression, e.g.: 8091 // real, parameter :: x = tiny(x) 8092 if (!name.symbol) { 8093 return; 8094 } 8095 Symbol &ultimate{name.symbol->GetUltimate()}; 8096 // TODO: check C762 - all bounds and type parameters of component 8097 // are colons or constant expressions if component is initialized 8098 common::visit( 8099 common::visitors{ 8100 [&](const parser::ConstantExpr &expr) { 8101 Walk(expr); 8102 if (IsNamedConstant(ultimate) || inComponentDecl) { 8103 NonPointerInitialization(name, expr); 8104 } else { 8105 // Defer analysis so forward references to nested subprograms 8106 // can be properly resolved when they appear in structure 8107 // constructors. 8108 ultimate.set(Symbol::Flag::InDataStmt); 8109 } 8110 }, 8111 [&](const parser::NullInit &null) { // => NULL() 8112 Walk(null); 8113 if (auto nullInit{EvaluateExpr(null)}) { 8114 if (!evaluate::IsNullPointer(*nullInit)) { // C813 8115 Say(null.v.value().source, 8116 "Pointer initializer must be intrinsic NULL()"_err_en_US); 8117 } else if (IsPointer(ultimate)) { 8118 if (auto *object{ultimate.detailsIf<ObjectEntityDetails>()}) { 8119 CHECK(!object->init()); 8120 object->set_init(std::move(*nullInit)); 8121 } else if (auto *procPtr{ 8122 ultimate.detailsIf<ProcEntityDetails>()}) { 8123 CHECK(!procPtr->init()); 8124 procPtr->set_init(nullptr); 8125 } 8126 } else { 8127 Say(name, 8128 "Non-pointer component '%s' initialized with null pointer"_err_en_US); 8129 } 8130 } 8131 }, 8132 [&](const parser::InitialDataTarget &target) { 8133 // Defer analysis to the end of the specification part 8134 // so that forward references and attribute checks like SAVE 8135 // work better. 8136 auto restorer{common::ScopedSet(deferImplicitTyping_, true)}; 8137 Walk(target); 8138 ultimate.set(Symbol::Flag::InDataStmt); 8139 }, 8140 [&](const std::list<Indirection<parser::DataStmtValue>> &values) { 8141 // Handled later in data-to-inits conversion 8142 ultimate.set(Symbol::Flag::InDataStmt); 8143 Walk(values); 8144 }, 8145 }, 8146 init.u); 8147 } 8148 8149 void DeclarationVisitor::PointerInitialization( 8150 const parser::Name &name, const parser::InitialDataTarget &target) { 8151 if (name.symbol) { 8152 Symbol &ultimate{name.symbol->GetUltimate()}; 8153 if (!context().HasError(ultimate)) { 8154 if (IsPointer(ultimate)) { 8155 Walk(target); 8156 if (MaybeExpr expr{EvaluateExpr(target)}) { 8157 // Validation is done in declaration checking. 8158 if (auto *details{ultimate.detailsIf<ObjectEntityDetails>()}) { 8159 CHECK(!details->init()); 8160 details->set_init(std::move(*expr)); 8161 ultimate.set(Symbol::Flag::InDataStmt, false); 8162 } else if (auto *details{ultimate.detailsIf<ProcEntityDetails>()}) { 8163 // something like "REAL, EXTERNAL, POINTER :: p => t" 8164 if (evaluate::IsNullProcedurePointer(*expr)) { 8165 CHECK(!details->init()); 8166 details->set_init(nullptr); 8167 } else if (const Symbol * 8168 targetSymbol{evaluate::UnwrapWholeSymbolDataRef(*expr)}) { 8169 CHECK(!details->init()); 8170 details->set_init(*targetSymbol); 8171 } else { 8172 Say(name, 8173 "Procedure pointer '%s' must be initialized with a procedure name or NULL()"_err_en_US); 8174 context().SetError(ultimate); 8175 } 8176 } 8177 } 8178 } else { 8179 Say(name, 8180 "'%s' is not a pointer but is initialized like one"_err_en_US); 8181 context().SetError(ultimate); 8182 } 8183 } 8184 } 8185 } 8186 void DeclarationVisitor::PointerInitialization( 8187 const parser::Name &name, const parser::ProcPointerInit &target) { 8188 if (name.symbol) { 8189 Symbol &ultimate{name.symbol->GetUltimate()}; 8190 if (!context().HasError(ultimate)) { 8191 if (IsProcedurePointer(ultimate)) { 8192 auto &details{ultimate.get<ProcEntityDetails>()}; 8193 CHECK(!details.init()); 8194 if (const auto *targetName{std::get_if<parser::Name>(&target.u)}) { 8195 Walk(target); 8196 if (!CheckUseError(*targetName) && targetName->symbol) { 8197 // Validation is done in declaration checking. 8198 details.set_init(*targetName->symbol); 8199 } 8200 } else { // explicit NULL 8201 details.set_init(nullptr); 8202 } 8203 } else { 8204 Say(name, 8205 "'%s' is not a procedure pointer but is initialized " 8206 "like one"_err_en_US); 8207 context().SetError(ultimate); 8208 } 8209 } 8210 } 8211 } 8212 8213 void DeclarationVisitor::NonPointerInitialization( 8214 const parser::Name &name, const parser::ConstantExpr &expr) { 8215 if (!context().HasError(name.symbol)) { 8216 Symbol &ultimate{name.symbol->GetUltimate()}; 8217 if (!context().HasError(ultimate)) { 8218 if (IsPointer(ultimate)) { 8219 Say(name, 8220 "'%s' is a pointer but is not initialized like one"_err_en_US); 8221 } else if (auto *details{ultimate.detailsIf<ObjectEntityDetails>()}) { 8222 if (details->init()) { 8223 SayWithDecl(name, *name.symbol, 8224 "'%s' has already been initialized"_err_en_US); 8225 } else if (IsAllocatable(ultimate)) { 8226 Say(name, "Allocatable object '%s' cannot be initialized"_err_en_US); 8227 } else if (ultimate.owner().IsParameterizedDerivedType()) { 8228 // Save the expression for per-instantiation analysis. 8229 details->set_unanalyzedPDTComponentInit(&expr.thing.value()); 8230 } else if (MaybeExpr folded{EvaluateNonPointerInitializer( 8231 ultimate, expr, expr.thing.value().source)}) { 8232 details->set_init(std::move(*folded)); 8233 ultimate.set(Symbol::Flag::InDataStmt, false); 8234 } 8235 } else { 8236 Say(name, "'%s' is not an object that can be initialized"_err_en_US); 8237 } 8238 } 8239 } 8240 } 8241 8242 void ResolveNamesVisitor::HandleCall( 8243 Symbol::Flag procFlag, const parser::Call &call) { 8244 common::visit( 8245 common::visitors{ 8246 [&](const parser::Name &x) { HandleProcedureName(procFlag, x); }, 8247 [&](const parser::ProcComponentRef &x) { 8248 Walk(x); 8249 const parser::Name &name{x.v.thing.component}; 8250 if (Symbol * symbol{name.symbol}) { 8251 if (IsProcedure(*symbol)) { 8252 SetProcFlag(name, *symbol, procFlag); 8253 } 8254 } 8255 }, 8256 }, 8257 std::get<parser::ProcedureDesignator>(call.t).u); 8258 const auto &arguments{std::get<std::list<parser::ActualArgSpec>>(call.t)}; 8259 Walk(arguments); 8260 // Once an object has appeared in a specification function reference as 8261 // a whole scalar actual argument, it cannot be (re)dimensioned later. 8262 // The fact that it appeared to be a scalar may determine the resolution 8263 // or the result of an inquiry intrinsic function or generic procedure. 8264 if (inSpecificationPart_) { 8265 for (const auto &argSpec : arguments) { 8266 const auto &actual{std::get<parser::ActualArg>(argSpec.t)}; 8267 if (const auto *expr{ 8268 std::get_if<common::Indirection<parser::Expr>>(&actual.u)}) { 8269 if (const auto *designator{ 8270 std::get_if<common::Indirection<parser::Designator>>( 8271 &expr->value().u)}) { 8272 if (const auto *dataRef{ 8273 std::get_if<parser::DataRef>(&designator->value().u)}) { 8274 if (const auto *name{std::get_if<parser::Name>(&dataRef->u)}; 8275 name && name->symbol) { 8276 const Symbol &symbol{*name->symbol}; 8277 const auto *object{symbol.detailsIf<ObjectEntityDetails>()}; 8278 if (symbol.has<EntityDetails>() || 8279 (object && !object->IsArray())) { 8280 NoteScalarSpecificationArgument(symbol); 8281 } 8282 } 8283 } 8284 } 8285 } 8286 } 8287 } 8288 } 8289 8290 void ResolveNamesVisitor::HandleProcedureName( 8291 Symbol::Flag flag, const parser::Name &name) { 8292 CHECK(flag == Symbol::Flag::Function || flag == Symbol::Flag::Subroutine); 8293 auto *symbol{FindSymbol(NonDerivedTypeScope(), name)}; 8294 if (!symbol) { 8295 if (IsIntrinsic(name.source, flag)) { 8296 symbol = &MakeSymbol(InclusiveScope(), name.source, Attrs{}); 8297 SetImplicitAttr(*symbol, Attr::INTRINSIC); 8298 } else if (const auto ppcBuiltinScope = 8299 currScope().context().GetPPCBuiltinsScope()) { 8300 // Check if it is a builtin from the predefined module 8301 symbol = FindSymbol(*ppcBuiltinScope, name); 8302 if (!symbol) { 8303 symbol = &MakeSymbol(context().globalScope(), name.source, Attrs{}); 8304 } 8305 } else { 8306 symbol = &MakeSymbol(context().globalScope(), name.source, Attrs{}); 8307 } 8308 Resolve(name, *symbol); 8309 ConvertToProcEntity(*symbol, name.source); 8310 if (!symbol->attrs().test(Attr::INTRINSIC)) { 8311 if (CheckImplicitNoneExternal(name.source, *symbol)) { 8312 MakeExternal(*symbol); 8313 // Create a place-holder HostAssocDetails symbol to preclude later 8314 // use of this name as a local symbol; but don't actually use this new 8315 // HostAssocDetails symbol in expressions. 8316 MakeHostAssocSymbol(name, *symbol); 8317 name.symbol = symbol; 8318 } 8319 } 8320 CheckEntryDummyUse(name.source, symbol); 8321 SetProcFlag(name, *symbol, flag); 8322 } else if (CheckUseError(name)) { 8323 // error was reported 8324 } else { 8325 symbol = &symbol->GetUltimate(); 8326 if (!name.symbol || 8327 (name.symbol->has<HostAssocDetails>() && symbol->owner().IsGlobal() && 8328 (symbol->has<ProcEntityDetails>() || 8329 (symbol->has<SubprogramDetails>() && 8330 symbol->scope() /*not ENTRY*/)))) { 8331 name.symbol = symbol; 8332 } 8333 CheckEntryDummyUse(name.source, symbol); 8334 bool convertedToProcEntity{ConvertToProcEntity(*symbol, name.source)}; 8335 if (convertedToProcEntity && !symbol->attrs().test(Attr::EXTERNAL) && 8336 IsIntrinsic(symbol->name(), flag) && !IsDummy(*symbol)) { 8337 AcquireIntrinsicProcedureFlags(*symbol); 8338 } 8339 if (!SetProcFlag(name, *symbol, flag)) { 8340 return; // reported error 8341 } 8342 CheckImplicitNoneExternal(name.source, *symbol); 8343 if (IsProcedure(*symbol) || symbol->has<DerivedTypeDetails>() || 8344 symbol->has<AssocEntityDetails>()) { 8345 // Symbols with DerivedTypeDetails and AssocEntityDetails are accepted 8346 // here as procedure-designators because this means the related 8347 // FunctionReference are mis-parsed structure constructors or array 8348 // references that will be fixed later when analyzing expressions. 8349 } else if (symbol->has<ObjectEntityDetails>()) { 8350 // Symbols with ObjectEntityDetails are also accepted because this can be 8351 // a mis-parsed array reference that will be fixed later. Ensure that if 8352 // this is a symbol from a host procedure, a symbol with HostAssocDetails 8353 // is created for the current scope. 8354 // Operate on non ultimate symbol so that HostAssocDetails are also 8355 // created for symbols used associated in the host procedure. 8356 ResolveName(name); 8357 } else if (symbol->test(Symbol::Flag::Implicit)) { 8358 Say(name, 8359 "Use of '%s' as a procedure conflicts with its implicit definition"_err_en_US); 8360 } else { 8361 SayWithDecl(name, *symbol, 8362 "Use of '%s' as a procedure conflicts with its declaration"_err_en_US); 8363 } 8364 } 8365 } 8366 8367 bool ResolveNamesVisitor::CheckImplicitNoneExternal( 8368 const SourceName &name, const Symbol &symbol) { 8369 if (symbol.has<ProcEntityDetails>() && isImplicitNoneExternal() && 8370 !symbol.attrs().test(Attr::EXTERNAL) && 8371 !symbol.attrs().test(Attr::INTRINSIC) && !symbol.HasExplicitInterface()) { 8372 Say(name, 8373 "'%s' is an external procedure without the EXTERNAL attribute in a scope with IMPLICIT NONE(EXTERNAL)"_err_en_US); 8374 return false; 8375 } 8376 return true; 8377 } 8378 8379 // Variant of HandleProcedureName() for use while skimming the executable 8380 // part of a subprogram to catch calls to dummy procedures that are part 8381 // of the subprogram's interface, and to mark as procedures any symbols 8382 // that might otherwise have been miscategorized as objects. 8383 void ResolveNamesVisitor::NoteExecutablePartCall( 8384 Symbol::Flag flag, SourceName name, bool hasCUDAChevrons) { 8385 // Subtlety: The symbol pointers in the parse tree are not set, because 8386 // they might end up resolving elsewhere (e.g., construct entities in 8387 // SELECT TYPE). 8388 if (Symbol * symbol{currScope().FindSymbol(name)}) { 8389 Symbol::Flag other{flag == Symbol::Flag::Subroutine 8390 ? Symbol::Flag::Function 8391 : Symbol::Flag::Subroutine}; 8392 if (!symbol->test(other)) { 8393 ConvertToProcEntity(*symbol, name); 8394 if (auto *details{symbol->detailsIf<ProcEntityDetails>()}) { 8395 symbol->set(flag); 8396 if (IsDummy(*symbol)) { 8397 SetImplicitAttr(*symbol, Attr::EXTERNAL); 8398 } 8399 ApplyImplicitRules(*symbol); 8400 if (hasCUDAChevrons) { 8401 details->set_isCUDAKernel(); 8402 } 8403 } 8404 } 8405 } 8406 } 8407 8408 static bool IsLocallyImplicitGlobalSymbol( 8409 const Symbol &symbol, const parser::Name &localName) { 8410 if (symbol.owner().IsGlobal()) { 8411 const auto *subp{symbol.detailsIf<SubprogramDetails>()}; 8412 const Scope *scope{ 8413 subp && subp->entryScope() ? subp->entryScope() : symbol.scope()}; 8414 return !(scope && scope->sourceRange().Contains(localName.source)); 8415 } 8416 return false; 8417 } 8418 8419 static bool TypesMismatchIfNonNull( 8420 const DeclTypeSpec *type1, const DeclTypeSpec *type2) { 8421 return type1 && type2 && *type1 != *type2; 8422 } 8423 8424 // Check and set the Function or Subroutine flag on symbol; false on error. 8425 bool ResolveNamesVisitor::SetProcFlag( 8426 const parser::Name &name, Symbol &symbol, Symbol::Flag flag) { 8427 if (symbol.test(Symbol::Flag::Function) && flag == Symbol::Flag::Subroutine) { 8428 SayWithDecl( 8429 name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US); 8430 context().SetError(symbol); 8431 return false; 8432 } else if (symbol.test(Symbol::Flag::Subroutine) && 8433 flag == Symbol::Flag::Function) { 8434 SayWithDecl( 8435 name, symbol, "Cannot call subroutine '%s' like a function"_err_en_US); 8436 context().SetError(symbol); 8437 return false; 8438 } else if (flag == Symbol::Flag::Function && 8439 IsLocallyImplicitGlobalSymbol(symbol, name) && 8440 TypesMismatchIfNonNull(symbol.GetType(), GetImplicitType(symbol))) { 8441 SayWithDecl(name, symbol, 8442 "Implicit declaration of function '%s' has a different result type than in previous declaration"_err_en_US); 8443 return false; 8444 } else if (symbol.has<ProcEntityDetails>()) { 8445 symbol.set(flag); // in case it hasn't been set yet 8446 if (flag == Symbol::Flag::Function) { 8447 ApplyImplicitRules(symbol); 8448 } 8449 if (symbol.attrs().test(Attr::INTRINSIC)) { 8450 AcquireIntrinsicProcedureFlags(symbol); 8451 } 8452 } else if (symbol.GetType() && flag == Symbol::Flag::Subroutine) { 8453 SayWithDecl( 8454 name, symbol, "Cannot call function '%s' like a subroutine"_err_en_US); 8455 context().SetError(symbol); 8456 } else if (symbol.attrs().test(Attr::INTRINSIC)) { 8457 AcquireIntrinsicProcedureFlags(symbol); 8458 } 8459 return true; 8460 } 8461 8462 bool ModuleVisitor::Pre(const parser::AccessStmt &x) { 8463 Attr accessAttr{AccessSpecToAttr(std::get<parser::AccessSpec>(x.t))}; 8464 if (!currScope().IsModule()) { // C869 8465 Say(currStmtSource().value(), 8466 "%s statement may only appear in the specification part of a module"_err_en_US, 8467 EnumToString(accessAttr)); 8468 return false; 8469 } 8470 const auto &accessIds{std::get<std::list<parser::AccessId>>(x.t)}; 8471 if (accessIds.empty()) { 8472 if (prevAccessStmt_) { // C869 8473 Say("The default accessibility of this module has already been declared"_err_en_US) 8474 .Attach(*prevAccessStmt_, "Previous declaration"_en_US); 8475 } 8476 prevAccessStmt_ = currStmtSource(); 8477 auto *moduleDetails{DEREF(currScope().symbol()).detailsIf<ModuleDetails>()}; 8478 DEREF(moduleDetails).set_isDefaultPrivate(accessAttr == Attr::PRIVATE); 8479 } else { 8480 for (const auto &accessId : accessIds) { 8481 GenericSpecInfo info{accessId.v.value()}; 8482 auto *symbol{FindInScope(info.symbolName())}; 8483 if (!symbol && !info.kind().IsName()) { 8484 symbol = &MakeSymbol(info.symbolName(), Attrs{}, GenericDetails{}); 8485 } 8486 info.Resolve(&SetAccess(info.symbolName(), accessAttr, symbol)); 8487 } 8488 } 8489 return false; 8490 } 8491 8492 // Set the access specification for this symbol. 8493 Symbol &ModuleVisitor::SetAccess( 8494 const SourceName &name, Attr attr, Symbol *symbol) { 8495 if (!symbol) { 8496 symbol = &MakeSymbol(name); 8497 } 8498 Attrs &attrs{symbol->attrs()}; 8499 if (attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) { 8500 // PUBLIC/PRIVATE already set: make it a fatal error if it changed 8501 Attr prev{attrs.test(Attr::PUBLIC) ? Attr::PUBLIC : Attr::PRIVATE}; 8502 if (attr != prev) { 8503 Say(name, 8504 "The accessibility of '%s' has already been specified as %s"_err_en_US, 8505 MakeOpName(name), EnumToString(prev)); 8506 } else { 8507 context().Warn(common::LanguageFeature::RedundantAttribute, name, 8508 "The accessibility of '%s' has already been specified as %s"_warn_en_US, 8509 MakeOpName(name), EnumToString(prev)); 8510 } 8511 } else { 8512 attrs.set(attr); 8513 } 8514 return *symbol; 8515 } 8516 8517 static bool NeedsExplicitType(const Symbol &symbol) { 8518 if (symbol.has<UnknownDetails>()) { 8519 return true; 8520 } else if (const auto *details{symbol.detailsIf<EntityDetails>()}) { 8521 return !details->type(); 8522 } else if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) { 8523 return !details->type(); 8524 } else if (const auto *details{symbol.detailsIf<ProcEntityDetails>()}) { 8525 return !details->procInterface() && !details->type(); 8526 } else { 8527 return false; 8528 } 8529 } 8530 8531 void ResolveNamesVisitor::HandleDerivedTypesInImplicitStmts( 8532 const parser::ImplicitPart &implicitPart, 8533 const std::list<parser::DeclarationConstruct> &decls) { 8534 // Detect derived type definitions and create symbols for them now if 8535 // they appear in IMPLICIT statements so that these forward-looking 8536 // references will not be ambiguous with host associations. 8537 std::set<SourceName> implicitDerivedTypes; 8538 for (const auto &ipStmt : implicitPart.v) { 8539 if (const auto *impl{std::get_if< 8540 parser::Statement<common::Indirection<parser::ImplicitStmt>>>( 8541 &ipStmt.u)}) { 8542 if (const auto *specs{std::get_if<std::list<parser::ImplicitSpec>>( 8543 &impl->statement.value().u)}) { 8544 for (const auto &spec : *specs) { 8545 const auto &declTypeSpec{ 8546 std::get<parser::DeclarationTypeSpec>(spec.t)}; 8547 if (const auto *dtSpec{common::visit( 8548 common::visitors{ 8549 [](const parser::DeclarationTypeSpec::Type &x) { 8550 return &x.derived; 8551 }, 8552 [](const parser::DeclarationTypeSpec::Class &x) { 8553 return &x.derived; 8554 }, 8555 [](const auto &) -> const parser::DerivedTypeSpec * { 8556 return nullptr; 8557 }}, 8558 declTypeSpec.u)}) { 8559 implicitDerivedTypes.emplace( 8560 std::get<parser::Name>(dtSpec->t).source); 8561 } 8562 } 8563 } 8564 } 8565 } 8566 if (!implicitDerivedTypes.empty()) { 8567 for (const auto &decl : decls) { 8568 if (const auto *spec{ 8569 std::get_if<parser::SpecificationConstruct>(&decl.u)}) { 8570 if (const auto *dtDef{ 8571 std::get_if<common::Indirection<parser::DerivedTypeDef>>( 8572 &spec->u)}) { 8573 const parser::DerivedTypeStmt &dtStmt{ 8574 std::get<parser::Statement<parser::DerivedTypeStmt>>( 8575 dtDef->value().t) 8576 .statement}; 8577 const parser::Name &name{std::get<parser::Name>(dtStmt.t)}; 8578 if (implicitDerivedTypes.find(name.source) != 8579 implicitDerivedTypes.end() && 8580 !FindInScope(name)) { 8581 DerivedTypeDetails details; 8582 details.set_isForwardReferenced(true); 8583 Resolve(name, MakeSymbol(name, std::move(details))); 8584 implicitDerivedTypes.erase(name.source); 8585 } 8586 } 8587 } 8588 } 8589 } 8590 } 8591 8592 bool ResolveNamesVisitor::Pre(const parser::SpecificationPart &x) { 8593 const auto &[accDecls, ompDecls, compilerDirectives, useStmts, importStmts, 8594 implicitPart, decls] = x.t; 8595 auto flagRestorer{common::ScopedSet(inSpecificationPart_, true)}; 8596 auto stateRestorer{ 8597 common::ScopedSet(specPartState_, SpecificationPartState{})}; 8598 Walk(accDecls); 8599 Walk(ompDecls); 8600 Walk(compilerDirectives); 8601 for (const auto &useStmt : useStmts) { 8602 CollectUseRenames(useStmt.statement.value()); 8603 } 8604 Walk(useStmts); 8605 UseCUDABuiltinNames(); 8606 ClearUseRenames(); 8607 ClearUseOnly(); 8608 ClearModuleUses(); 8609 Walk(importStmts); 8610 HandleDerivedTypesInImplicitStmts(implicitPart, decls); 8611 Walk(implicitPart); 8612 for (const auto &decl : decls) { 8613 if (const auto *spec{ 8614 std::get_if<parser::SpecificationConstruct>(&decl.u)}) { 8615 PreSpecificationConstruct(*spec); 8616 } 8617 } 8618 Walk(decls); 8619 FinishSpecificationPart(decls); 8620 return false; 8621 } 8622 8623 void ResolveNamesVisitor::UseCUDABuiltinNames() { 8624 if (FindCUDADeviceContext(&currScope())) { 8625 for (const auto &[name, symbol] : context().GetCUDABuiltinsScope()) { 8626 if (!FindInScope(name)) { 8627 auto &localSymbol{MakeSymbol(name)}; 8628 localSymbol.set_details(UseDetails{name, *symbol}); 8629 localSymbol.flags() = symbol->flags(); 8630 } 8631 } 8632 } 8633 } 8634 8635 // Initial processing on specification constructs, before visiting them. 8636 void ResolveNamesVisitor::PreSpecificationConstruct( 8637 const parser::SpecificationConstruct &spec) { 8638 common::visit( 8639 common::visitors{ 8640 [&](const parser::Statement<Indirection<parser::GenericStmt>> &y) { 8641 CreateGeneric(std::get<parser::GenericSpec>(y.statement.value().t)); 8642 }, 8643 [&](const Indirection<parser::InterfaceBlock> &y) { 8644 const auto &stmt{std::get<parser::Statement<parser::InterfaceStmt>>( 8645 y.value().t)}; 8646 if (const auto *spec{parser::Unwrap<parser::GenericSpec>(stmt)}) { 8647 CreateGeneric(*spec); 8648 } 8649 }, 8650 [&](const parser::Statement<parser::OtherSpecificationStmt> &y) { 8651 common::visit( 8652 common::visitors{ 8653 [&](const common::Indirection<parser::CommonStmt> &z) { 8654 CreateCommonBlockSymbols(z.value()); 8655 }, 8656 [&](const common::Indirection<parser::TargetStmt> &z) { 8657 CreateObjectSymbols(z.value().v, Attr::TARGET); 8658 }, 8659 [](const auto &) {}, 8660 }, 8661 y.statement.u); 8662 }, 8663 [](const auto &) {}, 8664 }, 8665 spec.u); 8666 } 8667 8668 void ResolveNamesVisitor::CreateCommonBlockSymbols( 8669 const parser::CommonStmt &commonStmt) { 8670 for (const parser::CommonStmt::Block &block : commonStmt.blocks) { 8671 const auto &[name, objects] = block.t; 8672 Symbol &commonBlock{MakeCommonBlockSymbol(name)}; 8673 for (const auto &object : objects) { 8674 Symbol &obj{DeclareObjectEntity(std::get<parser::Name>(object.t))}; 8675 if (auto *details{obj.detailsIf<ObjectEntityDetails>()}) { 8676 details->set_commonBlock(commonBlock); 8677 commonBlock.get<CommonBlockDetails>().add_object(obj); 8678 } 8679 } 8680 } 8681 } 8682 8683 void ResolveNamesVisitor::CreateObjectSymbols( 8684 const std::list<parser::ObjectDecl> &decls, Attr attr) { 8685 for (const parser::ObjectDecl &decl : decls) { 8686 SetImplicitAttr(DeclareEntity<ObjectEntityDetails>( 8687 std::get<parser::ObjectName>(decl.t), Attrs{}), 8688 attr); 8689 } 8690 } 8691 8692 void ResolveNamesVisitor::CreateGeneric(const parser::GenericSpec &x) { 8693 auto info{GenericSpecInfo{x}}; 8694 SourceName symbolName{info.symbolName()}; 8695 if (IsLogicalConstant(context(), symbolName)) { 8696 Say(symbolName, 8697 "Logical constant '%s' may not be used as a defined operator"_err_en_US); 8698 return; 8699 } 8700 GenericDetails genericDetails; 8701 Symbol *existing{nullptr}; 8702 // Check all variants of names, e.g. "operator(.ne.)" for "operator(/=)" 8703 for (const std::string &n : GetAllNames(context(), symbolName)) { 8704 existing = currScope().FindSymbol(SourceName{n}); 8705 if (existing) { 8706 break; 8707 } 8708 } 8709 if (existing) { 8710 Symbol &ultimate{existing->GetUltimate()}; 8711 if (auto *existingGeneric{ultimate.detailsIf<GenericDetails>()}) { 8712 if (&existing->owner() == &currScope()) { 8713 if (const auto *existingUse{existing->detailsIf<UseDetails>()}) { 8714 // Create a local copy of a use associated generic so that 8715 // it can be locally extended without corrupting the original. 8716 genericDetails.CopyFrom(*existingGeneric); 8717 if (existingGeneric->specific()) { 8718 genericDetails.set_specific(*existingGeneric->specific()); 8719 } 8720 AddGenericUse( 8721 genericDetails, existing->name(), existingUse->symbol()); 8722 } else if (existing == &ultimate) { 8723 // Extending an extant generic in the same scope 8724 info.Resolve(existing); 8725 return; 8726 } else { 8727 // Host association of a generic is handled elsewhere 8728 CHECK(existing->has<HostAssocDetails>()); 8729 } 8730 } else { 8731 // Create a new generic for this scope. 8732 } 8733 } else if (ultimate.has<SubprogramDetails>() || 8734 ultimate.has<SubprogramNameDetails>()) { 8735 genericDetails.set_specific(*existing); 8736 } else if (ultimate.has<ProcEntityDetails>()) { 8737 if (existing->name() != symbolName || 8738 !ultimate.attrs().test(Attr::INTRINSIC)) { 8739 genericDetails.set_specific(*existing); 8740 } 8741 } else if (ultimate.has<DerivedTypeDetails>()) { 8742 genericDetails.set_derivedType(*existing); 8743 } else if (&existing->owner() == &currScope()) { 8744 SayAlreadyDeclared(symbolName, *existing); 8745 return; 8746 } 8747 if (&existing->owner() == &currScope()) { 8748 EraseSymbol(*existing); 8749 } 8750 } 8751 info.Resolve(&MakeSymbol(symbolName, Attrs{}, std::move(genericDetails))); 8752 } 8753 8754 void ResolveNamesVisitor::FinishSpecificationPart( 8755 const std::list<parser::DeclarationConstruct> &decls) { 8756 misparsedStmtFuncFound_ = false; 8757 funcResultStack().CompleteFunctionResultType(); 8758 CheckImports(); 8759 for (auto &pair : currScope()) { 8760 auto &symbol{*pair.second}; 8761 if (inInterfaceBlock()) { 8762 ConvertToObjectEntity(symbol); 8763 } 8764 if (NeedsExplicitType(symbol)) { 8765 ApplyImplicitRules(symbol); 8766 } 8767 if (IsDummy(symbol) && isImplicitNoneType() && 8768 symbol.test(Symbol::Flag::Implicit) && !context().HasError(symbol)) { 8769 Say(symbol.name(), 8770 "No explicit type declared for dummy argument '%s'"_err_en_US); 8771 context().SetError(symbol); 8772 } 8773 if (symbol.has<GenericDetails>()) { 8774 CheckGenericProcedures(symbol); 8775 } 8776 if (!symbol.has<HostAssocDetails>()) { 8777 CheckPossibleBadForwardRef(symbol); 8778 } 8779 // Propagate BIND(C) attribute to procedure entities from their interfaces, 8780 // but not the NAME=, even if it is empty (which would be a reasonable 8781 // and useful behavior, actually). This interpretation is not at all 8782 // clearly described in the standard, but matches the behavior of several 8783 // other compilers. 8784 if (auto *proc{symbol.detailsIf<ProcEntityDetails>()}; proc && 8785 !proc->isDummy() && !IsPointer(symbol) && 8786 !symbol.attrs().test(Attr::BIND_C)) { 8787 if (const Symbol * iface{proc->procInterface()}; 8788 iface && IsBindCProcedure(*iface)) { 8789 SetImplicitAttr(symbol, Attr::BIND_C); 8790 SetBindNameOn(symbol); 8791 } 8792 } 8793 } 8794 currScope().InstantiateDerivedTypes(); 8795 for (const auto &decl : decls) { 8796 if (const auto *statement{std::get_if< 8797 parser::Statement<common::Indirection<parser::StmtFunctionStmt>>>( 8798 &decl.u)}) { 8799 messageHandler().set_currStmtSource(statement->source); 8800 AnalyzeStmtFunctionStmt(statement->statement.value()); 8801 } 8802 } 8803 // TODO: what about instantiations in BLOCK? 8804 CheckSaveStmts(); 8805 CheckCommonBlocks(); 8806 if (!inInterfaceBlock()) { 8807 // TODO: warn for the case where the EQUIVALENCE statement is in a 8808 // procedure declaration in an interface block 8809 CheckEquivalenceSets(); 8810 } 8811 } 8812 8813 // Analyze the bodies of statement functions now that the symbols in this 8814 // specification part have been fully declared and implicitly typed. 8815 // (Statement function references are not allowed in specification 8816 // expressions, so it's safe to defer processing their definitions.) 8817 void ResolveNamesVisitor::AnalyzeStmtFunctionStmt( 8818 const parser::StmtFunctionStmt &stmtFunc) { 8819 const auto &name{std::get<parser::Name>(stmtFunc.t)}; 8820 Symbol *symbol{name.symbol}; 8821 auto *details{symbol ? symbol->detailsIf<SubprogramDetails>() : nullptr}; 8822 if (!details || !symbol->scope() || 8823 &symbol->scope()->parent() != &currScope() || details->isInterface() || 8824 details->isDummy() || details->entryScope() || 8825 details->moduleInterface() || symbol->test(Symbol::Flag::Subroutine)) { 8826 return; // error recovery 8827 } 8828 // Resolve the symbols on the RHS of the statement function. 8829 PushScope(*symbol->scope()); 8830 const auto &parsedExpr{std::get<parser::Scalar<parser::Expr>>(stmtFunc.t)}; 8831 Walk(parsedExpr); 8832 PopScope(); 8833 if (auto expr{AnalyzeExpr(context(), stmtFunc)}) { 8834 if (auto type{evaluate::DynamicType::From(*symbol)}) { 8835 if (auto converted{evaluate::ConvertToType(*type, std::move(*expr))}) { 8836 details->set_stmtFunction(std::move(*converted)); 8837 } else { 8838 Say(name.source, 8839 "Defining expression of statement function '%s' cannot be converted to its result type %s"_err_en_US, 8840 name.source, type->AsFortran()); 8841 } 8842 } else { 8843 details->set_stmtFunction(std::move(*expr)); 8844 } 8845 } 8846 if (!details->stmtFunction()) { 8847 context().SetError(*symbol); 8848 } 8849 } 8850 8851 void ResolveNamesVisitor::CheckImports() { 8852 auto &scope{currScope()}; 8853 switch (scope.GetImportKind()) { 8854 case common::ImportKind::None: 8855 break; 8856 case common::ImportKind::All: 8857 // C8102: all entities in host must not be hidden 8858 for (const auto &pair : scope.parent()) { 8859 auto &name{pair.first}; 8860 std::optional<SourceName> scopeName{scope.GetName()}; 8861 if (!scopeName || name != *scopeName) { 8862 CheckImport(prevImportStmt_.value(), name); 8863 } 8864 } 8865 break; 8866 case common::ImportKind::Default: 8867 case common::ImportKind::Only: 8868 // C8102: entities named in IMPORT must not be hidden 8869 for (auto &name : scope.importNames()) { 8870 CheckImport(name, name); 8871 } 8872 break; 8873 } 8874 } 8875 8876 void ResolveNamesVisitor::CheckImport( 8877 const SourceName &location, const SourceName &name) { 8878 if (auto *symbol{FindInScope(name)}) { 8879 const Symbol &ultimate{symbol->GetUltimate()}; 8880 if (&ultimate.owner() == &currScope()) { 8881 Say(location, "'%s' from host is not accessible"_err_en_US, name) 8882 .Attach(symbol->name(), "'%s' is hidden by this entity"_because_en_US, 8883 symbol->name()); 8884 } 8885 } 8886 } 8887 8888 bool ResolveNamesVisitor::Pre(const parser::ImplicitStmt &x) { 8889 return CheckNotInBlock("IMPLICIT") && // C1107 8890 ImplicitRulesVisitor::Pre(x); 8891 } 8892 8893 void ResolveNamesVisitor::Post(const parser::PointerObject &x) { 8894 common::visit(common::visitors{ 8895 [&](const parser::Name &x) { ResolveName(x); }, 8896 [&](const parser::StructureComponent &x) { 8897 ResolveStructureComponent(x); 8898 }, 8899 }, 8900 x.u); 8901 } 8902 void ResolveNamesVisitor::Post(const parser::AllocateObject &x) { 8903 common::visit(common::visitors{ 8904 [&](const parser::Name &x) { ResolveName(x); }, 8905 [&](const parser::StructureComponent &x) { 8906 ResolveStructureComponent(x); 8907 }, 8908 }, 8909 x.u); 8910 } 8911 8912 bool ResolveNamesVisitor::Pre(const parser::PointerAssignmentStmt &x) { 8913 const auto &dataRef{std::get<parser::DataRef>(x.t)}; 8914 const auto &bounds{std::get<parser::PointerAssignmentStmt::Bounds>(x.t)}; 8915 const auto &expr{std::get<parser::Expr>(x.t)}; 8916 ResolveDataRef(dataRef); 8917 Symbol *ptrSymbol{parser::GetLastName(dataRef).symbol}; 8918 Walk(bounds); 8919 // Resolve unrestricted specific intrinsic procedures as in "p => cos". 8920 if (const parser::Name * name{parser::Unwrap<parser::Name>(expr)}) { 8921 if (NameIsKnownOrIntrinsic(*name)) { 8922 if (Symbol * symbol{name->symbol}) { 8923 if (IsProcedurePointer(ptrSymbol) && 8924 !ptrSymbol->test(Symbol::Flag::Function) && 8925 !ptrSymbol->test(Symbol::Flag::Subroutine)) { 8926 if (symbol->test(Symbol::Flag::Function)) { 8927 ApplyImplicitRules(*ptrSymbol); 8928 } 8929 } 8930 // If the name is known because it is an object entity from a host 8931 // procedure, create a host associated symbol. 8932 if (symbol->GetUltimate().has<ObjectEntityDetails>() && 8933 IsUplevelReference(*symbol)) { 8934 MakeHostAssocSymbol(*name, *symbol); 8935 } 8936 } 8937 return false; 8938 } 8939 // Can also reference a global external procedure here 8940 if (auto it{context().globalScope().find(name->source)}; 8941 it != context().globalScope().end()) { 8942 Symbol &global{*it->second}; 8943 if (IsProcedure(global)) { 8944 Resolve(*name, global); 8945 return false; 8946 } 8947 } 8948 if (IsProcedurePointer(parser::GetLastName(dataRef).symbol) && 8949 !FindSymbol(*name)) { 8950 // Unknown target of procedure pointer must be an external procedure 8951 Symbol &symbol{MakeSymbol( 8952 context().globalScope(), name->source, Attrs{Attr::EXTERNAL})}; 8953 symbol.implicitAttrs().set(Attr::EXTERNAL); 8954 Resolve(*name, symbol); 8955 ConvertToProcEntity(symbol, name->source); 8956 return false; 8957 } 8958 } 8959 Walk(expr); 8960 return false; 8961 } 8962 void ResolveNamesVisitor::Post(const parser::Designator &x) { 8963 ResolveDesignator(x); 8964 } 8965 void ResolveNamesVisitor::Post(const parser::SubstringInquiry &x) { 8966 Walk(std::get<parser::SubstringRange>(x.v.t).t); 8967 ResolveDataRef(std::get<parser::DataRef>(x.v.t)); 8968 } 8969 8970 void ResolveNamesVisitor::Post(const parser::ProcComponentRef &x) { 8971 ResolveStructureComponent(x.v.thing); 8972 } 8973 void ResolveNamesVisitor::Post(const parser::TypeGuardStmt &x) { 8974 DeclTypeSpecVisitor::Post(x); 8975 ConstructVisitor::Post(x); 8976 } 8977 bool ResolveNamesVisitor::Pre(const parser::StmtFunctionStmt &x) { 8978 if (HandleStmtFunction(x)) { 8979 return false; 8980 } else { 8981 // This is an array element or pointer-valued function assignment: 8982 // resolve the names of indices/arguments 8983 const auto &names{std::get<std::list<parser::Name>>(x.t)}; 8984 for (auto &name : names) { 8985 ResolveName(name); 8986 } 8987 return true; 8988 } 8989 } 8990 8991 bool ResolveNamesVisitor::Pre(const parser::DefinedOpName &x) { 8992 const parser::Name &name{x.v}; 8993 if (FindSymbol(name)) { 8994 // OK 8995 } else if (IsLogicalConstant(context(), name.source)) { 8996 Say(name, 8997 "Logical constant '%s' may not be used as a defined operator"_err_en_US); 8998 } else { 8999 // Resolved later in expression semantics 9000 MakePlaceholder(name, MiscDetails::Kind::TypeBoundDefinedOp); 9001 } 9002 return false; 9003 } 9004 9005 void ResolveNamesVisitor::Post(const parser::AssignStmt &x) { 9006 if (auto *name{ResolveName(std::get<parser::Name>(x.t))}) { 9007 CheckEntryDummyUse(name->source, name->symbol); 9008 ConvertToObjectEntity(DEREF(name->symbol)); 9009 } 9010 } 9011 void ResolveNamesVisitor::Post(const parser::AssignedGotoStmt &x) { 9012 if (auto *name{ResolveName(std::get<parser::Name>(x.t))}) { 9013 CheckEntryDummyUse(name->source, name->symbol); 9014 ConvertToObjectEntity(DEREF(name->symbol)); 9015 } 9016 } 9017 9018 void ResolveNamesVisitor::Post(const parser::CompilerDirective &x) { 9019 if (std::holds_alternative<parser::CompilerDirective::VectorAlways>(x.u)) { 9020 return; 9021 } 9022 if (const auto *tkr{ 9023 std::get_if<std::list<parser::CompilerDirective::IgnoreTKR>>(&x.u)}) { 9024 if (currScope().IsTopLevel() || 9025 GetProgramUnitContaining(currScope()).kind() != 9026 Scope::Kind::Subprogram) { 9027 Say(x.source, 9028 "!DIR$ IGNORE_TKR directive must appear in a subroutine or function"_err_en_US); 9029 return; 9030 } 9031 if (!inSpecificationPart_) { 9032 Say(x.source, 9033 "!DIR$ IGNORE_TKR directive must appear in the specification part"_err_en_US); 9034 return; 9035 } 9036 if (tkr->empty()) { 9037 Symbol *symbol{currScope().symbol()}; 9038 if (SubprogramDetails * 9039 subp{symbol ? symbol->detailsIf<SubprogramDetails>() : nullptr}) { 9040 subp->set_defaultIgnoreTKR(true); 9041 } 9042 } else { 9043 for (const parser::CompilerDirective::IgnoreTKR &item : *tkr) { 9044 common::IgnoreTKRSet set; 9045 if (const auto &maybeList{ 9046 std::get<std::optional<std::list<const char *>>>(item.t)}) { 9047 for (const char *p : *maybeList) { 9048 if (p) { 9049 switch (*p) { 9050 case 't': 9051 set.set(common::IgnoreTKR::Type); 9052 break; 9053 case 'k': 9054 set.set(common::IgnoreTKR::Kind); 9055 break; 9056 case 'r': 9057 set.set(common::IgnoreTKR::Rank); 9058 break; 9059 case 'd': 9060 set.set(common::IgnoreTKR::Device); 9061 break; 9062 case 'm': 9063 set.set(common::IgnoreTKR::Managed); 9064 break; 9065 case 'c': 9066 set.set(common::IgnoreTKR::Contiguous); 9067 break; 9068 case 'a': 9069 set = common::ignoreTKRAll; 9070 break; 9071 default: 9072 Say(x.source, 9073 "'%c' is not a valid letter for !DIR$ IGNORE_TKR directive"_err_en_US, 9074 *p); 9075 set = common::ignoreTKRAll; 9076 break; 9077 } 9078 } 9079 } 9080 if (set.empty()) { 9081 Say(x.source, 9082 "!DIR$ IGNORE_TKR directive may not have an empty parenthesized list of letters"_err_en_US); 9083 } 9084 } else { // no (list) 9085 set = common::ignoreTKRAll; 9086 ; 9087 } 9088 const auto &name{std::get<parser::Name>(item.t)}; 9089 Symbol *symbol{FindSymbol(name)}; 9090 if (!symbol) { 9091 symbol = &MakeSymbol(name, Attrs{}, ObjectEntityDetails{}); 9092 } 9093 if (symbol->owner() != currScope()) { 9094 SayWithDecl( 9095 name, *symbol, "'%s' must be local to this subprogram"_err_en_US); 9096 } else { 9097 ConvertToObjectEntity(*symbol); 9098 if (auto *object{symbol->detailsIf<ObjectEntityDetails>()}) { 9099 object->set_ignoreTKR(set); 9100 } else { 9101 SayWithDecl(name, *symbol, "'%s' must be an object"_err_en_US); 9102 } 9103 } 9104 } 9105 } 9106 } else if (context().ShouldWarn(common::UsageWarning::IgnoredDirective)) { 9107 Say(x.source, "Unrecognized compiler directive was ignored"_warn_en_US) 9108 .set_usageWarning(common::UsageWarning::IgnoredDirective); 9109 } 9110 } 9111 9112 bool ResolveNamesVisitor::Pre(const parser::ProgramUnit &x) { 9113 if (std::holds_alternative<common::Indirection<parser::CompilerDirective>>( 9114 x.u)) { 9115 // TODO: global directives 9116 return true; 9117 } 9118 if (std::holds_alternative< 9119 common::Indirection<parser::OpenACCRoutineConstruct>>(x.u)) { 9120 ResolveAccParts(context(), x, &topScope_); 9121 return false; 9122 } 9123 auto root{ProgramTree::Build(x, context())}; 9124 SetScope(topScope_); 9125 ResolveSpecificationParts(root); 9126 FinishSpecificationParts(root); 9127 ResolveExecutionParts(root); 9128 FinishExecutionParts(root); 9129 ResolveAccParts(context(), x, /*topScope=*/nullptr); 9130 ResolveOmpParts(context(), x); 9131 return false; 9132 } 9133 9134 template <typename A> std::set<SourceName> GetUses(const A &x) { 9135 std::set<SourceName> uses; 9136 if constexpr (!std::is_same_v<A, parser::CompilerDirective> && 9137 !std::is_same_v<A, parser::OpenACCRoutineConstruct>) { 9138 const auto &spec{std::get<parser::SpecificationPart>(x.t)}; 9139 const auto &unitUses{std::get< 9140 std::list<parser::Statement<common::Indirection<parser::UseStmt>>>>( 9141 spec.t)}; 9142 for (const auto &u : unitUses) { 9143 uses.insert(u.statement.value().moduleName.source); 9144 } 9145 } 9146 return uses; 9147 } 9148 9149 bool ResolveNamesVisitor::Pre(const parser::Program &x) { 9150 std::map<SourceName, const parser::ProgramUnit *> modules; 9151 std::set<SourceName> uses; 9152 bool disordered{false}; 9153 for (const auto &progUnit : x.v) { 9154 if (const auto *indMod{ 9155 std::get_if<common::Indirection<parser::Module>>(&progUnit.u)}) { 9156 const parser::Module &mod{indMod->value()}; 9157 const auto &moduleStmt{ 9158 std::get<parser::Statement<parser::ModuleStmt>>(mod.t)}; 9159 const SourceName &name{moduleStmt.statement.v.source}; 9160 if (auto iter{modules.find(name)}; iter != modules.end()) { 9161 Say(name, 9162 "Module '%s' appears multiple times in a compilation unit"_err_en_US) 9163 .Attach(iter->first, "First definition of module"_en_US); 9164 return true; 9165 } 9166 modules.emplace(name, &progUnit); 9167 if (auto iter{uses.find(name)}; iter != uses.end()) { 9168 if (context().ShouldWarn(common::LanguageFeature::MiscUseExtensions)) { 9169 Say(name, 9170 "A USE statement referencing module '%s' appears earlier in this compilation unit"_port_en_US, 9171 name) 9172 .Attach(*iter, "First USE of module"_en_US); 9173 } 9174 disordered = true; 9175 } 9176 } 9177 for (SourceName used : common::visit( 9178 [](const auto &indUnit) { return GetUses(indUnit.value()); }, 9179 progUnit.u)) { 9180 uses.insert(used); 9181 } 9182 } 9183 if (!disordered) { 9184 return true; 9185 } 9186 // Process modules in topological order 9187 std::vector<const parser::ProgramUnit *> moduleOrder; 9188 while (!modules.empty()) { 9189 bool ok; 9190 for (const auto &pair : modules) { 9191 const SourceName &name{pair.first}; 9192 const parser::ProgramUnit &progUnit{*pair.second}; 9193 const parser::Module &m{ 9194 std::get<common::Indirection<parser::Module>>(progUnit.u).value()}; 9195 ok = true; 9196 for (const SourceName &use : GetUses(m)) { 9197 if (modules.find(use) != modules.end()) { 9198 ok = false; 9199 break; 9200 } 9201 } 9202 if (ok) { 9203 moduleOrder.push_back(&progUnit); 9204 modules.erase(name); 9205 break; 9206 } 9207 } 9208 if (!ok) { 9209 Message *msg{nullptr}; 9210 for (const auto &pair : modules) { 9211 if (msg) { 9212 msg->Attach(pair.first, "Module in a cycle"_en_US); 9213 } else { 9214 msg = &Say(pair.first, 9215 "Some modules in this compilation unit form one or more cycles of dependence"_err_en_US); 9216 } 9217 } 9218 return false; 9219 } 9220 } 9221 // Modules can be ordered. Process them first, and then all of the other 9222 // program units. 9223 for (const parser::ProgramUnit *progUnit : moduleOrder) { 9224 Walk(*progUnit); 9225 } 9226 for (const auto &progUnit : x.v) { 9227 if (!std::get_if<common::Indirection<parser::Module>>(&progUnit.u)) { 9228 Walk(progUnit); 9229 } 9230 } 9231 return false; 9232 } 9233 9234 // References to procedures need to record that their symbols are known 9235 // to be procedures, so that they don't get converted to objects by default. 9236 class ExecutionPartCallSkimmer : public ExecutionPartSkimmerBase { 9237 public: 9238 explicit ExecutionPartCallSkimmer(ResolveNamesVisitor &resolver) 9239 : resolver_{resolver} {} 9240 9241 void Walk(const parser::ExecutionPart &exec) { 9242 parser::Walk(exec, *this); 9243 EndWalk(); 9244 } 9245 9246 using ExecutionPartSkimmerBase::Post; 9247 using ExecutionPartSkimmerBase::Pre; 9248 9249 void Post(const parser::FunctionReference &fr) { 9250 NoteCall(Symbol::Flag::Function, fr.v, false); 9251 } 9252 void Post(const parser::CallStmt &cs) { 9253 NoteCall(Symbol::Flag::Subroutine, cs.call, cs.chevrons.has_value()); 9254 } 9255 9256 private: 9257 void NoteCall( 9258 Symbol::Flag flag, const parser::Call &call, bool hasCUDAChevrons) { 9259 auto &designator{std::get<parser::ProcedureDesignator>(call.t)}; 9260 if (const auto *name{std::get_if<parser::Name>(&designator.u)}) { 9261 if (!IsHidden(name->source)) { 9262 resolver_.NoteExecutablePartCall(flag, name->source, hasCUDAChevrons); 9263 } 9264 } 9265 } 9266 9267 ResolveNamesVisitor &resolver_; 9268 }; 9269 9270 // Build the scope tree and resolve names in the specification parts of this 9271 // node and its children 9272 void ResolveNamesVisitor::ResolveSpecificationParts(ProgramTree &node) { 9273 if (node.isSpecificationPartResolved()) { 9274 return; // been here already 9275 } 9276 node.set_isSpecificationPartResolved(); 9277 if (!BeginScopeForNode(node)) { 9278 return; // an error prevented scope from being created 9279 } 9280 Scope &scope{currScope()}; 9281 node.set_scope(scope); 9282 AddSubpNames(node); 9283 common::visit( 9284 [&](const auto *x) { 9285 if (x) { 9286 Walk(*x); 9287 } 9288 }, 9289 node.stmt()); 9290 Walk(node.spec()); 9291 // If this is a function, convert result to an object. This is to prevent the 9292 // result from being converted later to a function symbol if it is called 9293 // inside the function. 9294 // If the result is function pointer, then ConvertToObjectEntity will not 9295 // convert the result to an object, and calling the symbol inside the function 9296 // will result in calls to the result pointer. 9297 // A function cannot be called recursively if RESULT was not used to define a 9298 // distinct result name (15.6.2.2 point 4.). 9299 if (Symbol * symbol{scope.symbol()}) { 9300 if (auto *details{symbol->detailsIf<SubprogramDetails>()}) { 9301 if (details->isFunction()) { 9302 ConvertToObjectEntity(const_cast<Symbol &>(details->result())); 9303 } 9304 } 9305 } 9306 if (node.IsModule()) { 9307 ApplyDefaultAccess(); 9308 } 9309 for (auto &child : node.children()) { 9310 ResolveSpecificationParts(child); 9311 } 9312 if (node.exec()) { 9313 ExecutionPartCallSkimmer{*this}.Walk(*node.exec()); 9314 HandleImpliedAsynchronousInScope(node.exec()->v); 9315 } 9316 EndScopeForNode(node); 9317 // Ensure that every object entity has a type. 9318 bool inModule{node.GetKind() == ProgramTree::Kind::Module || 9319 node.GetKind() == ProgramTree::Kind::Submodule}; 9320 for (auto &pair : *node.scope()) { 9321 Symbol &symbol{*pair.second}; 9322 if (inModule && symbol.attrs().test(Attr::EXTERNAL) && !IsPointer(symbol) && 9323 !symbol.test(Symbol::Flag::Function) && 9324 !symbol.test(Symbol::Flag::Subroutine)) { 9325 // in a module, external proc without return type is subroutine 9326 symbol.set( 9327 symbol.GetType() ? Symbol::Flag::Function : Symbol::Flag::Subroutine); 9328 } 9329 ApplyImplicitRules(symbol); 9330 } 9331 } 9332 9333 // Add SubprogramNameDetails symbols for module and internal subprograms and 9334 // their ENTRY statements. 9335 void ResolveNamesVisitor::AddSubpNames(ProgramTree &node) { 9336 auto kind{ 9337 node.IsModule() ? SubprogramKind::Module : SubprogramKind::Internal}; 9338 for (auto &child : node.children()) { 9339 auto &symbol{MakeSymbol(child.name(), SubprogramNameDetails{kind, child})}; 9340 if (child.HasModulePrefix()) { 9341 SetExplicitAttr(symbol, Attr::MODULE); 9342 } 9343 if (child.bindingSpec()) { 9344 SetExplicitAttr(symbol, Attr::BIND_C); 9345 } 9346 auto childKind{child.GetKind()}; 9347 if (childKind == ProgramTree::Kind::Function) { 9348 symbol.set(Symbol::Flag::Function); 9349 } else if (childKind == ProgramTree::Kind::Subroutine) { 9350 symbol.set(Symbol::Flag::Subroutine); 9351 } else { 9352 continue; // make ENTRY symbols only where valid 9353 } 9354 for (const auto &entryStmt : child.entryStmts()) { 9355 SubprogramNameDetails details{kind, child}; 9356 auto &symbol{ 9357 MakeSymbol(std::get<parser::Name>(entryStmt->t), std::move(details))}; 9358 symbol.set(child.GetSubpFlag()); 9359 if (child.HasModulePrefix()) { 9360 SetExplicitAttr(symbol, Attr::MODULE); 9361 } 9362 if (child.bindingSpec()) { 9363 SetExplicitAttr(symbol, Attr::BIND_C); 9364 } 9365 } 9366 } 9367 for (const auto &generic : node.genericSpecs()) { 9368 if (const auto *name{std::get_if<parser::Name>(&generic->u)}) { 9369 if (currScope().find(name->source) != currScope().end()) { 9370 // If this scope has both a generic interface and a contained 9371 // subprogram with the same name, create the generic's symbol 9372 // now so that any other generics of the same name that are pulled 9373 // into scope later via USE association will properly merge instead 9374 // of raising a bogus error due a conflict with the subprogram. 9375 CreateGeneric(*generic); 9376 } 9377 } 9378 } 9379 } 9380 9381 // Push a new scope for this node or return false on error. 9382 bool ResolveNamesVisitor::BeginScopeForNode(const ProgramTree &node) { 9383 switch (node.GetKind()) { 9384 SWITCH_COVERS_ALL_CASES 9385 case ProgramTree::Kind::Program: 9386 PushScope(Scope::Kind::MainProgram, 9387 &MakeSymbol(node.name(), MainProgramDetails{})); 9388 return true; 9389 case ProgramTree::Kind::Function: 9390 case ProgramTree::Kind::Subroutine: 9391 return BeginSubprogram(node.name(), node.GetSubpFlag(), 9392 node.HasModulePrefix(), node.bindingSpec(), &node.entryStmts()); 9393 case ProgramTree::Kind::MpSubprogram: 9394 return BeginMpSubprogram(node.name()); 9395 case ProgramTree::Kind::Module: 9396 BeginModule(node.name(), false); 9397 return true; 9398 case ProgramTree::Kind::Submodule: 9399 return BeginSubmodule(node.name(), node.GetParentId()); 9400 case ProgramTree::Kind::BlockData: 9401 PushBlockDataScope(node.name()); 9402 return true; 9403 } 9404 } 9405 9406 void ResolveNamesVisitor::EndScopeForNode(const ProgramTree &node) { 9407 std::optional<parser::CharBlock> stmtSource; 9408 const std::optional<parser::LanguageBindingSpec> *binding{nullptr}; 9409 common::visit( 9410 common::visitors{ 9411 [&](const parser::Statement<parser::FunctionStmt> *stmt) { 9412 if (stmt) { 9413 stmtSource = stmt->source; 9414 if (const auto &maybeSuffix{ 9415 std::get<std::optional<parser::Suffix>>( 9416 stmt->statement.t)}) { 9417 binding = &maybeSuffix->binding; 9418 } 9419 } 9420 }, 9421 [&](const parser::Statement<parser::SubroutineStmt> *stmt) { 9422 if (stmt) { 9423 stmtSource = stmt->source; 9424 binding = &std::get<std::optional<parser::LanguageBindingSpec>>( 9425 stmt->statement.t); 9426 } 9427 }, 9428 [](const auto *) {}, 9429 }, 9430 node.stmt()); 9431 EndSubprogram(stmtSource, binding, &node.entryStmts()); 9432 } 9433 9434 // Some analyses and checks, such as the processing of initializers of 9435 // pointers, are deferred until all of the pertinent specification parts 9436 // have been visited. This deferred processing enables the use of forward 9437 // references in these circumstances. 9438 // Data statement objects with implicit derived types are finally 9439 // resolved here. 9440 class DeferredCheckVisitor { 9441 public: 9442 explicit DeferredCheckVisitor(ResolveNamesVisitor &resolver) 9443 : resolver_{resolver} {} 9444 9445 template <typename A> void Walk(const A &x) { parser::Walk(x, *this); } 9446 9447 template <typename A> bool Pre(const A &) { return true; } 9448 template <typename A> void Post(const A &) {} 9449 9450 void Post(const parser::DerivedTypeStmt &x) { 9451 const auto &name{std::get<parser::Name>(x.t)}; 9452 if (Symbol * symbol{name.symbol}) { 9453 if (Scope * scope{symbol->scope()}) { 9454 if (scope->IsDerivedType()) { 9455 CHECK(outerScope_ == nullptr); 9456 outerScope_ = &resolver_.currScope(); 9457 resolver_.SetScope(*scope); 9458 } 9459 } 9460 } 9461 } 9462 void Post(const parser::EndTypeStmt &) { 9463 if (outerScope_) { 9464 resolver_.SetScope(*outerScope_); 9465 outerScope_ = nullptr; 9466 } 9467 } 9468 9469 void Post(const parser::ProcInterface &pi) { 9470 if (const auto *name{std::get_if<parser::Name>(&pi.u)}) { 9471 resolver_.CheckExplicitInterface(*name); 9472 } 9473 } 9474 bool Pre(const parser::EntityDecl &decl) { 9475 Init(std::get<parser::Name>(decl.t), 9476 std::get<std::optional<parser::Initialization>>(decl.t)); 9477 return false; 9478 } 9479 bool Pre(const parser::ComponentDecl &decl) { 9480 Init(std::get<parser::Name>(decl.t), 9481 std::get<std::optional<parser::Initialization>>(decl.t)); 9482 return false; 9483 } 9484 bool Pre(const parser::ProcDecl &decl) { 9485 if (const auto &init{ 9486 std::get<std::optional<parser::ProcPointerInit>>(decl.t)}) { 9487 resolver_.PointerInitialization(std::get<parser::Name>(decl.t), *init); 9488 } 9489 return false; 9490 } 9491 void Post(const parser::TypeBoundProcedureStmt::WithInterface &tbps) { 9492 resolver_.CheckExplicitInterface(tbps.interfaceName); 9493 } 9494 void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &tbps) { 9495 if (outerScope_) { 9496 resolver_.CheckBindings(tbps); 9497 } 9498 } 9499 bool Pre(const parser::DataStmtObject &) { 9500 ++dataStmtObjectNesting_; 9501 return true; 9502 } 9503 void Post(const parser::DataStmtObject &) { --dataStmtObjectNesting_; } 9504 void Post(const parser::Designator &x) { 9505 if (dataStmtObjectNesting_ > 0) { 9506 resolver_.ResolveDesignator(x); 9507 } 9508 } 9509 9510 private: 9511 void Init(const parser::Name &name, 9512 const std::optional<parser::Initialization> &init) { 9513 if (init) { 9514 if (const auto *target{ 9515 std::get_if<parser::InitialDataTarget>(&init->u)}) { 9516 resolver_.PointerInitialization(name, *target); 9517 } else if (const auto *expr{ 9518 std::get_if<parser::ConstantExpr>(&init->u)}) { 9519 if (name.symbol) { 9520 if (const auto *object{name.symbol->detailsIf<ObjectEntityDetails>()}; 9521 !object || !object->init()) { 9522 resolver_.NonPointerInitialization(name, *expr); 9523 } 9524 } 9525 } 9526 } 9527 } 9528 9529 ResolveNamesVisitor &resolver_; 9530 Scope *outerScope_{nullptr}; 9531 int dataStmtObjectNesting_{0}; 9532 }; 9533 9534 // Perform checks and completions that need to happen after all of 9535 // the specification parts but before any of the execution parts. 9536 void ResolveNamesVisitor::FinishSpecificationParts(const ProgramTree &node) { 9537 if (!node.scope()) { 9538 return; // error occurred creating scope 9539 } 9540 auto flagRestorer{common::ScopedSet(inSpecificationPart_, true)}; 9541 SetScope(*node.scope()); 9542 // The initializers of pointers and non-PARAMETER objects, the default 9543 // initializers of components, and non-deferred type-bound procedure 9544 // bindings have not yet been traversed. 9545 // We do that now, when any forward references that appeared 9546 // in those initializers will resolve to the right symbols without 9547 // incurring spurious errors with IMPLICIT NONE or forward references 9548 // to nested subprograms. 9549 DeferredCheckVisitor{*this}.Walk(node.spec()); 9550 for (Scope &childScope : currScope().children()) { 9551 if (childScope.IsParameterizedDerivedTypeInstantiation()) { 9552 FinishDerivedTypeInstantiation(childScope); 9553 } 9554 } 9555 for (const auto &child : node.children()) { 9556 FinishSpecificationParts(child); 9557 } 9558 } 9559 9560 void ResolveNamesVisitor::FinishExecutionParts(const ProgramTree &node) { 9561 if (node.scope()) { 9562 SetScope(*node.scope()); 9563 if (node.exec()) { 9564 DeferredCheckVisitor{*this}.Walk(*node.exec()); 9565 } 9566 for (const auto &child : node.children()) { 9567 FinishExecutionParts(child); 9568 } 9569 } 9570 } 9571 9572 // Duplicate and fold component object pointer default initializer designators 9573 // using the actual type parameter values of each particular instantiation. 9574 // Validation is done later in declaration checking. 9575 void ResolveNamesVisitor::FinishDerivedTypeInstantiation(Scope &scope) { 9576 CHECK(scope.IsDerivedType() && !scope.symbol()); 9577 if (DerivedTypeSpec * spec{scope.derivedTypeSpec()}) { 9578 spec->Instantiate(currScope()); 9579 const Symbol &origTypeSymbol{spec->typeSymbol()}; 9580 if (const Scope * origTypeScope{origTypeSymbol.scope()}) { 9581 CHECK(origTypeScope->IsDerivedType() && 9582 origTypeScope->symbol() == &origTypeSymbol); 9583 auto &foldingContext{GetFoldingContext()}; 9584 auto restorer{foldingContext.WithPDTInstance(*spec)}; 9585 for (auto &pair : scope) { 9586 Symbol &comp{*pair.second}; 9587 const Symbol &origComp{DEREF(FindInScope(*origTypeScope, comp.name()))}; 9588 if (IsPointer(comp)) { 9589 if (auto *details{comp.detailsIf<ObjectEntityDetails>()}) { 9590 auto origDetails{origComp.get<ObjectEntityDetails>()}; 9591 if (const MaybeExpr & init{origDetails.init()}) { 9592 SomeExpr newInit{*init}; 9593 MaybeExpr folded{FoldExpr(std::move(newInit))}; 9594 details->set_init(std::move(folded)); 9595 } 9596 } 9597 } 9598 } 9599 } 9600 } 9601 } 9602 9603 // Resolve names in the execution part of this node and its children 9604 void ResolveNamesVisitor::ResolveExecutionParts(const ProgramTree &node) { 9605 if (!node.scope()) { 9606 return; // error occurred creating scope 9607 } 9608 SetScope(*node.scope()); 9609 if (const auto *exec{node.exec()}) { 9610 Walk(*exec); 9611 } 9612 FinishNamelists(); 9613 if (node.IsModule()) { 9614 // A second final pass to catch new symbols added from implicitly 9615 // typed names in NAMELIST groups or the specification parts of 9616 // module subprograms. 9617 ApplyDefaultAccess(); 9618 } 9619 PopScope(); // converts unclassified entities into objects 9620 for (const auto &child : node.children()) { 9621 ResolveExecutionParts(child); 9622 } 9623 } 9624 9625 void ResolveNamesVisitor::Post(const parser::Program &x) { 9626 // ensure that all temps were deallocated 9627 CHECK(!attrs_); 9628 CHECK(!cudaDataAttr_); 9629 CHECK(!GetDeclTypeSpec()); 9630 // Top-level resolution to propagate information across program units after 9631 // each of them has been resolved separately. 9632 ResolveOmpTopLevelParts(context(), x); 9633 } 9634 9635 // A singleton instance of the scope -> IMPLICIT rules mapping is 9636 // shared by all instances of ResolveNamesVisitor and accessed by this 9637 // pointer when the visitors (other than the top-level original) are 9638 // constructed. 9639 static ImplicitRulesMap *sharedImplicitRulesMap{nullptr}; 9640 9641 bool ResolveNames( 9642 SemanticsContext &context, const parser::Program &program, Scope &top) { 9643 ImplicitRulesMap implicitRulesMap; 9644 auto restorer{common::ScopedSet(sharedImplicitRulesMap, &implicitRulesMap)}; 9645 ResolveNamesVisitor{context, implicitRulesMap, top}.Walk(program); 9646 return !context.AnyFatalError(); 9647 } 9648 9649 // Processes a module (but not internal) function when it is referenced 9650 // in a specification expression in a sibling procedure. 9651 void ResolveSpecificationParts( 9652 SemanticsContext &context, const Symbol &subprogram) { 9653 auto originalLocation{context.location()}; 9654 ImplicitRulesMap implicitRulesMap; 9655 bool localImplicitRulesMap{false}; 9656 if (!sharedImplicitRulesMap) { 9657 sharedImplicitRulesMap = &implicitRulesMap; 9658 localImplicitRulesMap = true; 9659 } 9660 ResolveNamesVisitor visitor{ 9661 context, *sharedImplicitRulesMap, context.globalScope()}; 9662 const auto &details{subprogram.get<SubprogramNameDetails>()}; 9663 ProgramTree &node{details.node()}; 9664 const Scope &moduleScope{subprogram.owner()}; 9665 if (localImplicitRulesMap) { 9666 visitor.BeginScope(const_cast<Scope &>(moduleScope)); 9667 } else { 9668 visitor.SetScope(const_cast<Scope &>(moduleScope)); 9669 } 9670 visitor.ResolveSpecificationParts(node); 9671 context.set_location(std::move(originalLocation)); 9672 if (localImplicitRulesMap) { 9673 sharedImplicitRulesMap = nullptr; 9674 } 9675 } 9676 9677 } // namespace Fortran::semantics 9678