xref: /llvm-project/flang/lib/Semantics/resolve-names-utils.cpp (revision 0f973ac783aa100cfbce1cd2c6e8a3a8f648fae7)
1 //===-- lib/Semantics/resolve-names-utils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "resolve-names-utils.h"
10 #include "flang/Common/Fortran-features.h"
11 #include "flang/Common/Fortran.h"
12 #include "flang/Common/idioms.h"
13 #include "flang/Common/indirection.h"
14 #include "flang/Evaluate/fold.h"
15 #include "flang/Evaluate/tools.h"
16 #include "flang/Evaluate/traverse.h"
17 #include "flang/Evaluate/type.h"
18 #include "flang/Parser/char-block.h"
19 #include "flang/Parser/parse-tree.h"
20 #include "flang/Semantics/expression.h"
21 #include "flang/Semantics/semantics.h"
22 #include "flang/Semantics/tools.h"
23 #include <initializer_list>
24 #include <variant>
25 
26 namespace Fortran::semantics {
27 
28 using common::LanguageFeature;
29 using common::LogicalOperator;
30 using common::NumericOperator;
31 using common::RelationalOperator;
32 using IntrinsicOperator = parser::DefinedOperator::IntrinsicOperator;
33 
34 static constexpr const char *operatorPrefix{"operator("};
35 
36 static GenericKind MapIntrinsicOperator(IntrinsicOperator);
37 
38 Symbol *Resolve(const parser::Name &name, Symbol *symbol) {
39   if (symbol && !name.symbol) {
40     name.symbol = symbol;
41   }
42   return symbol;
43 }
44 Symbol &Resolve(const parser::Name &name, Symbol &symbol) {
45   return *Resolve(name, &symbol);
46 }
47 
48 parser::MessageFixedText WithSeverity(
49     const parser::MessageFixedText &msg, parser::Severity severity) {
50   return parser::MessageFixedText{
51       msg.text().begin(), msg.text().size(), severity};
52 }
53 
54 bool IsIntrinsicOperator(
55     const SemanticsContext &context, const SourceName &name) {
56   std::string str{name.ToString()};
57   for (int i{0}; i != common::LogicalOperator_enumSize; ++i) {
58     auto names{context.languageFeatures().GetNames(LogicalOperator{i})};
59     if (llvm::is_contained(names, str)) {
60       return true;
61     }
62   }
63   for (int i{0}; i != common::RelationalOperator_enumSize; ++i) {
64     auto names{context.languageFeatures().GetNames(RelationalOperator{i})};
65     if (llvm::is_contained(names, str)) {
66       return true;
67     }
68   }
69   return false;
70 }
71 
72 template <typename E>
73 std::forward_list<std::string> GetOperatorNames(
74     const SemanticsContext &context, E opr) {
75   std::forward_list<std::string> result;
76   for (const char *name : context.languageFeatures().GetNames(opr)) {
77     result.emplace_front(std::string{operatorPrefix} + name + ')');
78   }
79   return result;
80 }
81 
82 std::forward_list<std::string> GetAllNames(
83     const SemanticsContext &context, const SourceName &name) {
84   std::string str{name.ToString()};
85   if (!name.empty() && name.end()[-1] == ')' &&
86       name.ToString().rfind(std::string{operatorPrefix}, 0) == 0) {
87     for (int i{0}; i != common::LogicalOperator_enumSize; ++i) {
88       auto names{GetOperatorNames(context, LogicalOperator{i})};
89       if (llvm::is_contained(names, str)) {
90         return names;
91       }
92     }
93     for (int i{0}; i != common::RelationalOperator_enumSize; ++i) {
94       auto names{GetOperatorNames(context, RelationalOperator{i})};
95       if (llvm::is_contained(names, str)) {
96         return names;
97       }
98     }
99   }
100   return {str};
101 }
102 
103 bool IsLogicalConstant(
104     const SemanticsContext &context, const SourceName &name) {
105   std::string str{name.ToString()};
106   return str == ".true." || str == ".false." ||
107       (context.IsEnabled(LanguageFeature::LogicalAbbreviations) &&
108           (str == ".t" || str == ".f."));
109 }
110 
111 void GenericSpecInfo::Resolve(Symbol *symbol) const {
112   if (symbol) {
113     if (auto *details{symbol->detailsIf<GenericDetails>()}) {
114       details->set_kind(kind_);
115     }
116     if (parseName_) {
117       semantics::Resolve(*parseName_, symbol);
118     }
119   }
120 }
121 
122 void GenericSpecInfo::Analyze(const parser::DefinedOpName &name) {
123   kind_ = GenericKind::OtherKind::DefinedOp;
124   parseName_ = &name.v;
125   symbolName_ = name.v.source;
126 }
127 
128 void GenericSpecInfo::Analyze(const parser::GenericSpec &x) {
129   symbolName_ = x.source;
130   kind_ = common::visit(
131       common::visitors{
132           [&](const parser::Name &y) -> GenericKind {
133             parseName_ = &y;
134             symbolName_ = y.source;
135             return GenericKind::OtherKind::Name;
136           },
137           [&](const parser::DefinedOperator &y) {
138             return common::visit(
139                 common::visitors{
140                     [&](const parser::DefinedOpName &z) -> GenericKind {
141                       Analyze(z);
142                       return GenericKind::OtherKind::DefinedOp;
143                     },
144                     [&](const IntrinsicOperator &z) {
145                       return MapIntrinsicOperator(z);
146                     },
147                 },
148                 y.u);
149           },
150           [&](const parser::GenericSpec::Assignment &) -> GenericKind {
151             return GenericKind::OtherKind::Assignment;
152           },
153           [&](const parser::GenericSpec::ReadFormatted &) -> GenericKind {
154             return common::DefinedIo::ReadFormatted;
155           },
156           [&](const parser::GenericSpec::ReadUnformatted &) -> GenericKind {
157             return common::DefinedIo::ReadUnformatted;
158           },
159           [&](const parser::GenericSpec::WriteFormatted &) -> GenericKind {
160             return common::DefinedIo::WriteFormatted;
161           },
162           [&](const parser::GenericSpec::WriteUnformatted &) -> GenericKind {
163             return common::DefinedIo::WriteUnformatted;
164           },
165       },
166       x.u);
167 }
168 
169 llvm::raw_ostream &operator<<(
170     llvm::raw_ostream &os, const GenericSpecInfo &info) {
171   os << "GenericSpecInfo: kind=" << info.kind_.ToString();
172   os << " parseName="
173      << (info.parseName_ ? info.parseName_->ToString() : "null");
174   os << " symbolName="
175      << (info.symbolName_ ? info.symbolName_->ToString() : "null");
176   return os;
177 }
178 
179 // parser::DefinedOperator::IntrinsicOperator -> GenericKind
180 static GenericKind MapIntrinsicOperator(IntrinsicOperator op) {
181   switch (op) {
182     SWITCH_COVERS_ALL_CASES
183   case IntrinsicOperator::Concat:
184     return GenericKind::OtherKind::Concat;
185   case IntrinsicOperator::Power:
186     return NumericOperator::Power;
187   case IntrinsicOperator::Multiply:
188     return NumericOperator::Multiply;
189   case IntrinsicOperator::Divide:
190     return NumericOperator::Divide;
191   case IntrinsicOperator::Add:
192     return NumericOperator::Add;
193   case IntrinsicOperator::Subtract:
194     return NumericOperator::Subtract;
195   case IntrinsicOperator::AND:
196     return LogicalOperator::And;
197   case IntrinsicOperator::OR:
198     return LogicalOperator::Or;
199   case IntrinsicOperator::EQV:
200     return LogicalOperator::Eqv;
201   case IntrinsicOperator::NEQV:
202     return LogicalOperator::Neqv;
203   case IntrinsicOperator::NOT:
204     return LogicalOperator::Not;
205   case IntrinsicOperator::LT:
206     return RelationalOperator::LT;
207   case IntrinsicOperator::LE:
208     return RelationalOperator::LE;
209   case IntrinsicOperator::EQ:
210     return RelationalOperator::EQ;
211   case IntrinsicOperator::NE:
212     return RelationalOperator::NE;
213   case IntrinsicOperator::GE:
214     return RelationalOperator::GE;
215   case IntrinsicOperator::GT:
216     return RelationalOperator::GT;
217   }
218 }
219 
220 class ArraySpecAnalyzer {
221 public:
222   ArraySpecAnalyzer(SemanticsContext &context) : context_{context} {}
223   ArraySpec Analyze(const parser::ArraySpec &);
224   ArraySpec AnalyzeDeferredShapeSpecList(const parser::DeferredShapeSpecList &);
225   ArraySpec Analyze(const parser::ComponentArraySpec &);
226   ArraySpec Analyze(const parser::CoarraySpec &);
227 
228 private:
229   SemanticsContext &context_;
230   ArraySpec arraySpec_;
231 
232   template <typename T> void Analyze(const std::list<T> &list) {
233     for (const auto &elem : list) {
234       Analyze(elem);
235     }
236   }
237   void Analyze(const parser::AssumedShapeSpec &);
238   void Analyze(const parser::ExplicitShapeSpec &);
239   void Analyze(const parser::AssumedImpliedSpec &);
240   void Analyze(const parser::DeferredShapeSpecList &);
241   void Analyze(const parser::AssumedRankSpec &);
242   void MakeExplicit(const std::optional<parser::SpecificationExpr> &,
243       const parser::SpecificationExpr &);
244   void MakeImplied(const std::optional<parser::SpecificationExpr> &);
245   void MakeDeferred(int);
246   Bound GetBound(const std::optional<parser::SpecificationExpr> &);
247   Bound GetBound(const parser::SpecificationExpr &);
248 };
249 
250 ArraySpec AnalyzeArraySpec(
251     SemanticsContext &context, const parser::ArraySpec &arraySpec) {
252   return ArraySpecAnalyzer{context}.Analyze(arraySpec);
253 }
254 ArraySpec AnalyzeArraySpec(
255     SemanticsContext &context, const parser::ComponentArraySpec &arraySpec) {
256   return ArraySpecAnalyzer{context}.Analyze(arraySpec);
257 }
258 ArraySpec AnalyzeDeferredShapeSpecList(SemanticsContext &context,
259     const parser::DeferredShapeSpecList &deferredShapeSpecs) {
260   return ArraySpecAnalyzer{context}.AnalyzeDeferredShapeSpecList(
261       deferredShapeSpecs);
262 }
263 ArraySpec AnalyzeCoarraySpec(
264     SemanticsContext &context, const parser::CoarraySpec &coarraySpec) {
265   return ArraySpecAnalyzer{context}.Analyze(coarraySpec);
266 }
267 
268 ArraySpec ArraySpecAnalyzer::Analyze(const parser::ComponentArraySpec &x) {
269   common::visit([this](const auto &y) { Analyze(y); }, x.u);
270   CHECK(!arraySpec_.empty());
271   return arraySpec_;
272 }
273 ArraySpec ArraySpecAnalyzer::Analyze(const parser::ArraySpec &x) {
274   common::visit(common::visitors{
275                     [&](const parser::AssumedSizeSpec &y) {
276                       Analyze(
277                           std::get<std::list<parser::ExplicitShapeSpec>>(y.t));
278                       Analyze(std::get<parser::AssumedImpliedSpec>(y.t));
279                     },
280                     [&](const parser::ImpliedShapeSpec &y) { Analyze(y.v); },
281                     [&](const auto &y) { Analyze(y); },
282                 },
283       x.u);
284   CHECK(!arraySpec_.empty());
285   return arraySpec_;
286 }
287 ArraySpec ArraySpecAnalyzer::AnalyzeDeferredShapeSpecList(
288     const parser::DeferredShapeSpecList &x) {
289   Analyze(x);
290   CHECK(!arraySpec_.empty());
291   return arraySpec_;
292 }
293 ArraySpec ArraySpecAnalyzer::Analyze(const parser::CoarraySpec &x) {
294   common::visit(
295       common::visitors{
296           [&](const parser::DeferredCoshapeSpecList &y) { MakeDeferred(y.v); },
297           [&](const parser::ExplicitCoshapeSpec &y) {
298             Analyze(std::get<std::list<parser::ExplicitShapeSpec>>(y.t));
299             MakeImplied(
300                 std::get<std::optional<parser::SpecificationExpr>>(y.t));
301           },
302       },
303       x.u);
304   CHECK(!arraySpec_.empty());
305   return arraySpec_;
306 }
307 
308 void ArraySpecAnalyzer::Analyze(const parser::AssumedShapeSpec &x) {
309   arraySpec_.push_back(ShapeSpec::MakeAssumedShape(GetBound(x.v)));
310 }
311 void ArraySpecAnalyzer::Analyze(const parser::ExplicitShapeSpec &x) {
312   MakeExplicit(std::get<std::optional<parser::SpecificationExpr>>(x.t),
313       std::get<parser::SpecificationExpr>(x.t));
314 }
315 void ArraySpecAnalyzer::Analyze(const parser::AssumedImpliedSpec &x) {
316   MakeImplied(x.v);
317 }
318 void ArraySpecAnalyzer::Analyze(const parser::DeferredShapeSpecList &x) {
319   MakeDeferred(x.v);
320 }
321 void ArraySpecAnalyzer::Analyze(const parser::AssumedRankSpec &) {
322   arraySpec_.push_back(ShapeSpec::MakeAssumedRank());
323 }
324 
325 void ArraySpecAnalyzer::MakeExplicit(
326     const std::optional<parser::SpecificationExpr> &lb,
327     const parser::SpecificationExpr &ub) {
328   arraySpec_.push_back(ShapeSpec::MakeExplicit(GetBound(lb), GetBound(ub)));
329 }
330 void ArraySpecAnalyzer::MakeImplied(
331     const std::optional<parser::SpecificationExpr> &lb) {
332   arraySpec_.push_back(ShapeSpec::MakeImplied(GetBound(lb)));
333 }
334 void ArraySpecAnalyzer::MakeDeferred(int n) {
335   for (int i = 0; i < n; ++i) {
336     arraySpec_.push_back(ShapeSpec::MakeDeferred());
337   }
338 }
339 
340 Bound ArraySpecAnalyzer::GetBound(
341     const std::optional<parser::SpecificationExpr> &x) {
342   return x ? GetBound(*x) : Bound{1};
343 }
344 Bound ArraySpecAnalyzer::GetBound(const parser::SpecificationExpr &x) {
345   MaybeSubscriptIntExpr expr;
346   if (MaybeExpr maybeExpr{AnalyzeExpr(context_, x.v)}) {
347     if (auto *intExpr{evaluate::UnwrapExpr<SomeIntExpr>(*maybeExpr)}) {
348       expr = evaluate::Fold(context_.foldingContext(),
349           evaluate::ConvertToType<evaluate::SubscriptInteger>(
350               std::move(*intExpr)));
351     }
352   }
353   return Bound{std::move(expr)};
354 }
355 
356 // If src is SAVE (explicitly or implicitly),
357 // set SAVE attribute on all members of dst.
358 static void PropagateSaveAttr(
359     const EquivalenceObject &src, EquivalenceSet &dst) {
360   if (IsSaved(src.symbol)) {
361     for (auto &obj : dst) {
362       if (!obj.symbol.attrs().test(Attr::SAVE)) {
363         obj.symbol.attrs().set(Attr::SAVE);
364         // If the other equivalenced symbol itself is not SAVE,
365         // then adding SAVE here implies that it has to be implicit.
366         obj.symbol.implicitAttrs().set(Attr::SAVE);
367       }
368     }
369   }
370 }
371 static void PropagateSaveAttr(const EquivalenceSet &src, EquivalenceSet &dst) {
372   if (!src.empty()) {
373     PropagateSaveAttr(src.front(), dst);
374   }
375 }
376 
377 void EquivalenceSets::AddToSet(const parser::Designator &designator) {
378   if (CheckDesignator(designator)) {
379     if (Symbol * symbol{currObject_.symbol}) {
380       if (!currSet_.empty()) {
381         // check this symbol against first of set for compatibility
382         Symbol &first{currSet_.front().symbol};
383         CheckCanEquivalence(designator.source, first, *symbol) &&
384             CheckCanEquivalence(designator.source, *symbol, first);
385       }
386       auto subscripts{currObject_.subscripts};
387       if (subscripts.empty()) {
388         if (const ArraySpec * shape{symbol->GetShape()};
389             shape && shape->IsExplicitShape()) {
390           // record a whole array as its first element
391           for (const ShapeSpec &spec : *shape) {
392             if (auto lbound{spec.lbound().GetExplicit()}) {
393               if (auto lbValue{evaluate::ToInt64(*lbound)}) {
394                 subscripts.push_back(*lbValue);
395                 continue;
396               }
397             }
398             subscripts.clear(); // error recovery
399             break;
400           }
401         }
402       }
403       auto substringStart{currObject_.substringStart};
404       currSet_.emplace_back(
405           *symbol, subscripts, substringStart, designator.source);
406       PropagateSaveAttr(currSet_.back(), currSet_);
407     }
408   }
409   currObject_ = {};
410 }
411 
412 void EquivalenceSets::FinishSet(const parser::CharBlock &source) {
413   std::set<std::size_t> existing; // indices of sets intersecting this one
414   for (auto &obj : currSet_) {
415     auto it{objectToSet_.find(obj)};
416     if (it != objectToSet_.end()) {
417       existing.insert(it->second); // symbol already in this set
418     }
419   }
420   if (existing.empty()) {
421     sets_.push_back({}); // create a new equivalence set
422     MergeInto(source, currSet_, sets_.size() - 1);
423   } else {
424     auto it{existing.begin()};
425     std::size_t dstIndex{*it};
426     MergeInto(source, currSet_, dstIndex);
427     while (++it != existing.end()) {
428       MergeInto(source, sets_[*it], dstIndex);
429     }
430   }
431   currSet_.clear();
432 }
433 
434 // Report an error or warning if sym1 and sym2 cannot be in the same equivalence
435 // set.
436 bool EquivalenceSets::CheckCanEquivalence(
437     const parser::CharBlock &source, const Symbol &sym1, const Symbol &sym2) {
438   std::optional<common::LanguageFeature> feature;
439   std::optional<parser::MessageFixedText> msg;
440   const DeclTypeSpec *type1{sym1.GetType()};
441   const DeclTypeSpec *type2{sym2.GetType()};
442   bool isDefaultNum1{IsDefaultNumericSequenceType(type1)};
443   bool isAnyNum1{IsAnyNumericSequenceType(type1)};
444   bool isDefaultNum2{IsDefaultNumericSequenceType(type2)};
445   bool isAnyNum2{IsAnyNumericSequenceType(type2)};
446   bool isChar1{IsCharacterSequenceType(type1)};
447   bool isChar2{IsCharacterSequenceType(type2)};
448   if (sym1.attrs().test(Attr::PROTECTED) &&
449       !sym2.attrs().test(Attr::PROTECTED)) { // C8114
450     msg = "Equivalence set cannot contain '%s'"
451           " with PROTECTED attribute and '%s' without"_err_en_US;
452   } else if ((isDefaultNum1 && isDefaultNum2) || (isChar1 && isChar2)) {
453     // ok & standard conforming
454   } else if (!(isAnyNum1 || isChar1) &&
455       !(isAnyNum2 || isChar2)) { // C8110 - C8113
456     if (AreTkCompatibleTypes(type1, type2)) {
457       msg =
458           "nonstandard: Equivalence set contains '%s' and '%s' with same type that is neither numeric nor character sequence type"_port_en_US;
459       feature = LanguageFeature::EquivalenceSameNonSequence;
460     } else {
461       msg = "Equivalence set cannot contain '%s' and '%s' with distinct types "
462             "that are not both numeric or character sequence types"_err_en_US;
463     }
464   } else if (isAnyNum1) {
465     if (isChar2) {
466       msg =
467           "nonstandard: Equivalence set contains '%s' that is numeric sequence type and '%s' that is character"_port_en_US;
468       feature = LanguageFeature::EquivalenceNumericWithCharacter;
469     } else if (isAnyNum2) {
470       if (isDefaultNum1) {
471         msg =
472             "nonstandard: Equivalence set contains '%s' that is a default "
473             "numeric sequence type and '%s' that is numeric with non-default kind"_port_en_US;
474       } else if (!isDefaultNum2) {
475         msg = "nonstandard: Equivalence set contains '%s' and '%s' that are "
476               "numeric sequence types with non-default kinds"_port_en_US;
477       }
478       feature = LanguageFeature::EquivalenceNonDefaultNumeric;
479     }
480   }
481   if (msg) {
482     if (feature) {
483       context_.Warn(
484           *feature, source, std::move(*msg), sym1.name(), sym2.name());
485     } else {
486       context_.Say(source, std::move(*msg), sym1.name(), sym2.name());
487     }
488     return false;
489   }
490   return true;
491 }
492 
493 // Move objects from src to sets_[dstIndex]
494 void EquivalenceSets::MergeInto(const parser::CharBlock &source,
495     EquivalenceSet &src, std::size_t dstIndex) {
496   EquivalenceSet &dst{sets_[dstIndex]};
497   PropagateSaveAttr(dst, src);
498   for (const auto &obj : src) {
499     dst.push_back(obj);
500     objectToSet_[obj] = dstIndex;
501   }
502   PropagateSaveAttr(src, dst);
503   src.clear();
504 }
505 
506 // If set has an object with this symbol, return it.
507 const EquivalenceObject *EquivalenceSets::Find(
508     const EquivalenceSet &set, const Symbol &symbol) {
509   for (const auto &obj : set) {
510     if (obj.symbol == symbol) {
511       return &obj;
512     }
513   }
514   return nullptr;
515 }
516 
517 bool EquivalenceSets::CheckDesignator(const parser::Designator &designator) {
518   return common::visit(
519       common::visitors{
520           [&](const parser::DataRef &x) {
521             return CheckDataRef(designator.source, x);
522           },
523           [&](const parser::Substring &x) {
524             const auto &dataRef{std::get<parser::DataRef>(x.t)};
525             const auto &range{std::get<parser::SubstringRange>(x.t)};
526             bool ok{CheckDataRef(designator.source, dataRef)};
527             if (const auto &lb{std::get<0>(range.t)}) {
528               ok &= CheckSubstringBound(lb->thing.thing.value(), true);
529             } else {
530               currObject_.substringStart = 1;
531             }
532             if (const auto &ub{std::get<1>(range.t)}) {
533               ok &= CheckSubstringBound(ub->thing.thing.value(), false);
534             }
535             return ok;
536           },
537       },
538       designator.u);
539 }
540 
541 bool EquivalenceSets::CheckDataRef(
542     const parser::CharBlock &source, const parser::DataRef &x) {
543   return common::visit(
544       common::visitors{
545           [&](const parser::Name &name) { return CheckObject(name); },
546           [&](const common::Indirection<parser::StructureComponent> &) {
547             context_.Say(source, // C8107
548                 "Derived type component '%s' is not allowed in an equivalence set"_err_en_US,
549                 source);
550             return false;
551           },
552           [&](const common::Indirection<parser::ArrayElement> &elem) {
553             bool ok{CheckDataRef(source, elem.value().base)};
554             for (const auto &subscript : elem.value().subscripts) {
555               ok &= common::visit(
556                   common::visitors{
557                       [&](const parser::SubscriptTriplet &) {
558                         context_.Say(source, // C924, R872
559                             "Array section '%s' is not allowed in an equivalence set"_err_en_US,
560                             source);
561                         return false;
562                       },
563                       [&](const parser::IntExpr &y) {
564                         return CheckArrayBound(y.thing.value());
565                       },
566                   },
567                   subscript.u);
568             }
569             return ok;
570           },
571           [&](const common::Indirection<parser::CoindexedNamedObject> &) {
572             context_.Say(source, // C924 (R872)
573                 "Coindexed object '%s' is not allowed in an equivalence set"_err_en_US,
574                 source);
575             return false;
576           },
577       },
578       x.u);
579 }
580 
581 bool EquivalenceSets::CheckObject(const parser::Name &name) {
582   currObject_.symbol = name.symbol;
583   return currObject_.symbol != nullptr;
584 }
585 
586 bool EquivalenceSets::CheckArrayBound(const parser::Expr &bound) {
587   MaybeExpr expr{
588       evaluate::Fold(context_.foldingContext(), AnalyzeExpr(context_, bound))};
589   if (!expr) {
590     return false;
591   }
592   if (expr->Rank() > 0) {
593     context_.Say(bound.source, // C924, R872
594         "Array with vector subscript '%s' is not allowed in an equivalence set"_err_en_US,
595         bound.source);
596     return false;
597   }
598   auto subscript{evaluate::ToInt64(*expr)};
599   if (!subscript) {
600     context_.Say(bound.source, // C8109
601         "Array with nonconstant subscript '%s' is not allowed in an equivalence set"_err_en_US,
602         bound.source);
603     return false;
604   }
605   currObject_.subscripts.push_back(*subscript);
606   return true;
607 }
608 
609 bool EquivalenceSets::CheckSubstringBound(
610     const parser::Expr &bound, bool isStart) {
611   MaybeExpr expr{
612       evaluate::Fold(context_.foldingContext(), AnalyzeExpr(context_, bound))};
613   if (!expr) {
614     return false;
615   }
616   auto subscript{evaluate::ToInt64(*expr)};
617   if (!subscript) {
618     context_.Say(bound.source, // C8109
619         "Substring with nonconstant bound '%s' is not allowed in an equivalence set"_err_en_US,
620         bound.source);
621     return false;
622   }
623   if (!isStart) {
624     auto start{currObject_.substringStart};
625     if (*subscript < (start ? *start : 1)) {
626       context_.Say(bound.source, // C8116
627           "Substring with zero length is not allowed in an equivalence set"_err_en_US);
628       return false;
629     }
630   } else if (*subscript != 1) {
631     currObject_.substringStart = *subscript;
632   }
633   return true;
634 }
635 
636 bool EquivalenceSets::IsCharacterSequenceType(const DeclTypeSpec *type) {
637   return IsSequenceType(type, [&](const IntrinsicTypeSpec &type) {
638     auto kind{evaluate::ToInt64(type.kind())};
639     return type.category() == TypeCategory::Character && kind &&
640         kind.value() == context_.GetDefaultKind(TypeCategory::Character);
641   });
642 }
643 
644 // Numeric or logical type of default kind or DOUBLE PRECISION or DOUBLE COMPLEX
645 bool EquivalenceSets::IsDefaultKindNumericType(const IntrinsicTypeSpec &type) {
646   if (auto kind{evaluate::ToInt64(type.kind())}) {
647     switch (type.category()) {
648     case TypeCategory::Integer:
649     case TypeCategory::Logical:
650       return *kind == context_.GetDefaultKind(TypeCategory::Integer);
651     case TypeCategory::Real:
652     case TypeCategory::Complex:
653       return *kind == context_.GetDefaultKind(TypeCategory::Real) ||
654           *kind == context_.doublePrecisionKind();
655     default:
656       return false;
657     }
658   }
659   return false;
660 }
661 
662 bool EquivalenceSets::IsDefaultNumericSequenceType(const DeclTypeSpec *type) {
663   return IsSequenceType(type, [&](const IntrinsicTypeSpec &type) {
664     return IsDefaultKindNumericType(type);
665   });
666 }
667 
668 bool EquivalenceSets::IsAnyNumericSequenceType(const DeclTypeSpec *type) {
669   return IsSequenceType(type, [&](const IntrinsicTypeSpec &type) {
670     return type.category() == TypeCategory::Logical ||
671         common::IsNumericTypeCategory(type.category());
672   });
673 }
674 
675 // Is type an intrinsic type that satisfies predicate or a sequence type
676 // whose components do.
677 bool EquivalenceSets::IsSequenceType(const DeclTypeSpec *type,
678     std::function<bool(const IntrinsicTypeSpec &)> predicate) {
679   if (!type) {
680     return false;
681   } else if (const IntrinsicTypeSpec * intrinsic{type->AsIntrinsic()}) {
682     return predicate(*intrinsic);
683   } else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
684     for (const auto &pair : *derived->typeSymbol().scope()) {
685       const Symbol &component{*pair.second};
686       if (IsAllocatableOrPointer(component) ||
687           !IsSequenceType(component.GetType(), predicate)) {
688         return false;
689       }
690     }
691     return true;
692   } else {
693     return false;
694   }
695 }
696 
697 // MapSubprogramToNewSymbols() relies on the following recursive symbol/scope
698 // copying infrastructure to duplicate an interface's symbols and map all
699 // of the symbol references in their contained expressions and interfaces
700 // to the new symbols.
701 
702 struct SymbolAndTypeMappings {
703   std::map<const Symbol *, const Symbol *> symbolMap;
704   std::map<const DeclTypeSpec *, const DeclTypeSpec *> typeMap;
705 };
706 
707 class SymbolMapper : public evaluate::AnyTraverse<SymbolMapper, bool> {
708 public:
709   using Base = evaluate::AnyTraverse<SymbolMapper, bool>;
710   SymbolMapper(Scope &scope, SymbolAndTypeMappings &map)
711       : Base{*this}, scope_{scope}, map_{map} {}
712   using Base::operator();
713   bool operator()(const SymbolRef &ref) {
714     if (const Symbol *mapped{MapSymbol(*ref)}) {
715       const_cast<SymbolRef &>(ref) = *mapped;
716     } else if (ref->has<UseDetails>()) {
717       CopySymbol(&*ref);
718     }
719     return false;
720   }
721   bool operator()(const Symbol &x) {
722     if (MapSymbol(x)) {
723       DIE("SymbolMapper hit symbol outside SymbolRef");
724     }
725     return false;
726   }
727   void MapSymbolExprs(Symbol &);
728   Symbol *CopySymbol(const Symbol *);
729 
730 private:
731   void MapParamValue(ParamValue &param) { (*this)(param.GetExplicit()); }
732   void MapBound(Bound &bound) { (*this)(bound.GetExplicit()); }
733   void MapShapeSpec(ShapeSpec &spec) {
734     MapBound(spec.lbound());
735     MapBound(spec.ubound());
736   }
737   const Symbol *MapSymbol(const Symbol &) const;
738   const Symbol *MapSymbol(const Symbol *) const;
739   const DeclTypeSpec *MapType(const DeclTypeSpec &);
740   const DeclTypeSpec *MapType(const DeclTypeSpec *);
741   const Symbol *MapInterface(const Symbol *);
742 
743   Scope &scope_;
744   SymbolAndTypeMappings &map_;
745 };
746 
747 Symbol *SymbolMapper::CopySymbol(const Symbol *symbol) {
748   if (symbol) {
749     if (auto *subp{symbol->detailsIf<SubprogramDetails>()}) {
750       if (subp->isInterface()) {
751         if (auto pair{scope_.try_emplace(symbol->name(), symbol->attrs())};
752             pair.second) {
753           Symbol &copy{*pair.first->second};
754           map_.symbolMap[symbol] = &copy;
755           copy.set(symbol->test(Symbol::Flag::Subroutine)
756                   ? Symbol::Flag::Subroutine
757                   : Symbol::Flag::Function);
758           Scope &newScope{scope_.MakeScope(Scope::Kind::Subprogram, &copy)};
759           copy.set_scope(&newScope);
760           copy.set_details(SubprogramDetails{});
761           auto &newSubp{copy.get<SubprogramDetails>()};
762           newSubp.set_isInterface(true);
763           newSubp.set_isDummy(subp->isDummy());
764           newSubp.set_defaultIgnoreTKR(subp->defaultIgnoreTKR());
765           MapSubprogramToNewSymbols(*symbol, copy, newScope, &map_);
766           return &copy;
767         }
768       }
769     } else if (Symbol * copy{scope_.CopySymbol(*symbol)}) {
770       map_.symbolMap[symbol] = copy;
771       return copy;
772     }
773   }
774   return nullptr;
775 }
776 
777 void SymbolMapper::MapSymbolExprs(Symbol &symbol) {
778   common::visit(
779       common::visitors{[&](ObjectEntityDetails &object) {
780                          if (const DeclTypeSpec * type{object.type()}) {
781                            if (const DeclTypeSpec * newType{MapType(*type)}) {
782                              object.ReplaceType(*newType);
783                            }
784                          }
785                          for (ShapeSpec &spec : object.shape()) {
786                            MapShapeSpec(spec);
787                          }
788                          for (ShapeSpec &spec : object.coshape()) {
789                            MapShapeSpec(spec);
790                          }
791                        },
792           [&](ProcEntityDetails &proc) {
793             if (const Symbol *
794                 mappedSymbol{MapInterface(proc.rawProcInterface())}) {
795               proc.set_procInterfaces(
796                   *mappedSymbol, BypassGeneric(mappedSymbol->GetUltimate()));
797             } else if (const DeclTypeSpec * mappedType{MapType(proc.type())}) {
798               proc.set_type(*mappedType);
799             }
800             if (proc.init()) {
801               if (const Symbol * mapped{MapSymbol(*proc.init())}) {
802                 proc.set_init(*mapped);
803               }
804             }
805           },
806           [&](const HostAssocDetails &hostAssoc) {
807             if (const Symbol * mapped{MapSymbol(hostAssoc.symbol())}) {
808               symbol.set_details(HostAssocDetails{*mapped});
809             }
810           },
811           [](const auto &) {}},
812       symbol.details());
813 }
814 
815 const Symbol *SymbolMapper::MapSymbol(const Symbol &symbol) const {
816   if (auto iter{map_.symbolMap.find(&symbol)}; iter != map_.symbolMap.end()) {
817     return iter->second;
818   }
819   return nullptr;
820 }
821 
822 const Symbol *SymbolMapper::MapSymbol(const Symbol *symbol) const {
823   return symbol ? MapSymbol(*symbol) : nullptr;
824 }
825 
826 const DeclTypeSpec *SymbolMapper::MapType(const DeclTypeSpec &type) {
827   if (auto iter{map_.typeMap.find(&type)}; iter != map_.typeMap.end()) {
828     return iter->second;
829   }
830   const DeclTypeSpec *newType{nullptr};
831   if (type.category() == DeclTypeSpec::Category::Character) {
832     const CharacterTypeSpec &charType{type.characterTypeSpec()};
833     if (charType.length().GetExplicit()) {
834       ParamValue newLen{charType.length()};
835       (*this)(newLen.GetExplicit());
836       newType = &scope_.MakeCharacterType(
837           std::move(newLen), KindExpr{charType.kind()});
838     }
839   } else if (const DerivedTypeSpec *derived{type.AsDerived()}) {
840     if (!derived->parameters().empty()) {
841       DerivedTypeSpec newDerived{derived->name(), derived->typeSymbol()};
842       newDerived.CookParameters(scope_.context().foldingContext());
843       for (const auto &[paramName, paramValue] : derived->parameters()) {
844         ParamValue newParamValue{paramValue};
845         MapParamValue(newParamValue);
846         newDerived.AddParamValue(paramName, std::move(newParamValue));
847       }
848       // Scope::InstantiateDerivedTypes() instantiates it later.
849       newType = &scope_.MakeDerivedType(type.category(), std::move(newDerived));
850     }
851   }
852   if (newType) {
853     map_.typeMap[&type] = newType;
854   }
855   return newType;
856 }
857 
858 const DeclTypeSpec *SymbolMapper::MapType(const DeclTypeSpec *type) {
859   return type ? MapType(*type) : nullptr;
860 }
861 
862 const Symbol *SymbolMapper::MapInterface(const Symbol *interface) {
863   if (const Symbol *mapped{MapSymbol(interface)}) {
864     return mapped;
865   }
866   if (interface) {
867     if (&interface->owner() != &scope_) {
868       return interface;
869     } else if (const auto *subp{interface->detailsIf<SubprogramDetails>()};
870                subp && subp->isInterface()) {
871       return CopySymbol(interface);
872     }
873   }
874   return nullptr;
875 }
876 
877 void MapSubprogramToNewSymbols(const Symbol &oldSymbol, Symbol &newSymbol,
878     Scope &newScope, SymbolAndTypeMappings *mappings) {
879   SymbolAndTypeMappings newMappings;
880   if (!mappings) {
881     mappings = &newMappings;
882   }
883   mappings->symbolMap[&oldSymbol] = &newSymbol;
884   const auto &oldDetails{oldSymbol.get<SubprogramDetails>()};
885   auto &newDetails{newSymbol.get<SubprogramDetails>()};
886   SymbolMapper mapper{newScope, *mappings};
887   for (const Symbol *dummyArg : oldDetails.dummyArgs()) {
888     if (!dummyArg) {
889       newDetails.add_alternateReturn();
890     } else if (Symbol * copy{mapper.CopySymbol(dummyArg)}) {
891       copy->set(Symbol::Flag::Implicit, false);
892       newDetails.add_dummyArg(*copy);
893       mappings->symbolMap[dummyArg] = copy;
894     }
895   }
896   if (oldDetails.isFunction()) {
897     newScope.erase(newSymbol.name());
898     const Symbol &result{oldDetails.result()};
899     if (Symbol * copy{mapper.CopySymbol(&result)}) {
900       newDetails.set_result(*copy);
901       mappings->symbolMap[&result] = copy;
902     }
903   }
904   for (auto &[_, ref] : newScope) {
905     mapper.MapSymbolExprs(*ref);
906   }
907   newScope.InstantiateDerivedTypes();
908 }
909 
910 } // namespace Fortran::semantics
911