1 //===-- lib/Parser/expr-parsers.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 // Per-type parsers for expressions. 10 11 #include "expr-parsers.h" 12 #include "basic-parsers.h" 13 #include "misc-parsers.h" 14 #include "stmt-parser.h" 15 #include "token-parsers.h" 16 #include "type-parser-implementation.h" 17 #include "flang/Parser/characters.h" 18 #include "flang/Parser/parse-tree.h" 19 20 namespace Fortran::parser { 21 22 // R764 boz-literal-constant -> binary-constant | octal-constant | hex-constant 23 // R765 binary-constant -> B ' digit [digit]... ' | B " digit [digit]... " 24 // R766 octal-constant -> O ' digit [digit]... ' | O " digit [digit]... " 25 // R767 hex-constant -> 26 // Z ' hex-digit [hex-digit]... ' | Z " hex-digit [hex-digit]... " 27 // extension: X accepted for Z 28 // extension: BOZX suffix accepted 29 TYPE_PARSER(construct<BOZLiteralConstant>(BOZLiteral{})) 30 31 // R769 array-constructor -> (/ ac-spec /) | lbracket ac-spec rbracket 32 TYPE_CONTEXT_PARSER("array constructor"_en_US, 33 construct<ArrayConstructor>( 34 "(/" >> Parser<AcSpec>{} / "/)" || bracketed(Parser<AcSpec>{}))) 35 36 // R770 ac-spec -> type-spec :: | [type-spec ::] ac-value-list 37 TYPE_PARSER(construct<AcSpec>(maybe(typeSpec / "::"), 38 nonemptyList("expected array constructor values"_err_en_US, 39 Parser<AcValue>{})) || 40 construct<AcSpec>(typeSpec / "::")) 41 42 // R773 ac-value -> expr | ac-implied-do 43 TYPE_PARSER( 44 // PGI/Intel extension: accept triplets in array constructors 45 extension<LanguageFeature::TripletInArrayConstructor>( 46 "nonstandard usage: triplet in array constructor"_port_en_US, 47 construct<AcValue>(construct<AcValue::Triplet>(scalarIntExpr, 48 ":" >> scalarIntExpr, maybe(":" >> scalarIntExpr)))) || 49 construct<AcValue>(indirect(expr)) || 50 construct<AcValue>(indirect(Parser<AcImpliedDo>{}))) 51 52 // R774 ac-implied-do -> ( ac-value-list , ac-implied-do-control ) 53 TYPE_PARSER(parenthesized( 54 construct<AcImpliedDo>(nonemptyList(Parser<AcValue>{} / lookAhead(","_tok)), 55 "," >> Parser<AcImpliedDoControl>{}))) 56 57 // R775 ac-implied-do-control -> 58 // [integer-type-spec ::] ac-do-variable = scalar-int-expr , 59 // scalar-int-expr [, scalar-int-expr] 60 // R776 ac-do-variable -> do-variable 61 TYPE_PARSER(construct<AcImpliedDoControl>( 62 maybe(integerTypeSpec / "::"), loopBounds(scalarIntExpr))) 63 64 // R1001 primary -> 65 // literal-constant | designator | array-constructor | 66 // structure-constructor | function-reference | type-param-inquiry | 67 // type-param-name | ( expr ) 68 // type-param-inquiry is parsed as a structure component, except for 69 // substring%KIND/LEN 70 constexpr auto primary{instrumented("primary"_en_US, 71 first(construct<Expr>(indirect(Parser<CharLiteralConstantSubstring>{})), 72 construct<Expr>(literalConstant), 73 construct<Expr>(construct<Expr::Parentheses>(parenthesized(expr))), 74 construct<Expr>(indirect(functionReference) / !"("_tok / !"%"_tok), 75 construct<Expr>(designator / !"("_tok / !"%"_tok), 76 construct<Expr>(indirect(Parser<SubstringInquiry>{})), // %LEN or %KIND 77 construct<Expr>(Parser<StructureConstructor>{}), 78 construct<Expr>(Parser<ArrayConstructor>{}), 79 // PGI/XLF extension: COMPLEX constructor (x,y) 80 construct<Expr>(parenthesized( 81 construct<Expr::ComplexConstructor>(expr, "," >> expr))), 82 extension<LanguageFeature::PercentLOC>( 83 "nonstandard usage: %LOC"_port_en_US, 84 construct<Expr>("%LOC" >> parenthesized(construct<Expr::PercentLoc>( 85 indirect(variable)))))))}; 86 87 // R1002 level-1-expr -> [defined-unary-op] primary 88 // TODO: Reasonable extension: permit multiple defined-unary-ops 89 constexpr auto level1Expr{sourced( 90 primary || // must come before define op to resolve .TRUE._8 ambiguity 91 construct<Expr>(construct<Expr::DefinedUnary>(definedOpName, primary)))}; 92 93 // R1004 mult-operand -> level-1-expr [power-op mult-operand] 94 // R1007 power-op -> ** 95 // Exponentiation (**) is Fortran's only right-associative binary operation. 96 struct MultOperand { 97 using resultType = Expr; 98 constexpr MultOperand() {} 99 static inline std::optional<Expr> Parse(ParseState &); 100 }; 101 102 // Extension: allow + or - before a mult-operand 103 // Such a unary operand has lower precedence than exponentiation, 104 // so -x**2 is -(x**2), not (-x)**2; this matches all other 105 // compilers with this extension. 106 static constexpr auto standardMultOperand{sourced(MultOperand{})}; 107 static constexpr auto multOperand{standardMultOperand || 108 extension<LanguageFeature::SignedMultOperand>( 109 "nonstandard usage: signed mult-operand"_port_en_US, 110 construct<Expr>( 111 construct<Expr::UnaryPlus>("+" >> standardMultOperand))) || 112 extension<LanguageFeature::SignedMultOperand>( 113 "nonstandard usage: signed mult-operand"_port_en_US, 114 construct<Expr>(construct<Expr::Negate>("-" >> standardMultOperand)))}; 115 116 inline std::optional<Expr> MultOperand::Parse(ParseState &state) { 117 std::optional<Expr> result{level1Expr.Parse(state)}; 118 if (result) { 119 static constexpr auto op{attempt("**"_tok)}; 120 if (op.Parse(state)) { 121 std::function<Expr(Expr &&)> power{[&result](Expr &&right) { 122 return Expr{Expr::Power(std::move(result).value(), std::move(right))}; 123 }}; 124 return applyLambda(power, multOperand).Parse(state); // right-recursive 125 } 126 } 127 return result; 128 } 129 130 // R1005 add-operand -> [add-operand mult-op] mult-operand 131 // R1008 mult-op -> * | / 132 // The left recursion in the grammar is implemented iteratively. 133 struct AddOperand { 134 using resultType = Expr; 135 constexpr AddOperand() {} 136 static inline std::optional<Expr> Parse(ParseState &state) { 137 std::optional<Expr> result{multOperand.Parse(state)}; 138 if (result) { 139 auto source{result->source}; 140 std::function<Expr(Expr &&)> multiply{[&result](Expr &&right) { 141 return Expr{ 142 Expr::Multiply(std::move(result).value(), std::move(right))}; 143 }}; 144 std::function<Expr(Expr &&)> divide{[&result](Expr &&right) { 145 return Expr{Expr::Divide(std::move(result).value(), std::move(right))}; 146 }}; 147 auto more{attempt(sourced("*" >> applyLambda(multiply, multOperand) || 148 "/" >> applyLambda(divide, multOperand)))}; 149 while (std::optional<Expr> next{more.Parse(state)}) { 150 result = std::move(next); 151 result->source.ExtendToCover(source); 152 } 153 } 154 return result; 155 } 156 }; 157 constexpr AddOperand addOperand; 158 159 // R1006 level-2-expr -> [[level-2-expr] add-op] add-operand 160 // R1009 add-op -> + | - 161 // These are left-recursive productions, implemented iteratively. 162 // Note that standard Fortran admits a unary + or - to appear only here, 163 // by means of a missing first operand; e.g., 2*-3 is valid in C but not 164 // standard Fortran. We accept unary + and - to appear before any primary 165 // as an extension. 166 struct Level2Expr { 167 using resultType = Expr; 168 constexpr Level2Expr() {} 169 static inline std::optional<Expr> Parse(ParseState &state) { 170 static constexpr auto unary{ 171 sourced( 172 construct<Expr>(construct<Expr::UnaryPlus>("+" >> addOperand)) || 173 construct<Expr>(construct<Expr::Negate>("-" >> addOperand))) || 174 addOperand}; 175 std::optional<Expr> result{unary.Parse(state)}; 176 if (result) { 177 auto source{result->source}; 178 std::function<Expr(Expr &&)> add{[&result](Expr &&right) { 179 return Expr{Expr::Add(std::move(result).value(), std::move(right))}; 180 }}; 181 std::function<Expr(Expr &&)> subtract{[&result](Expr &&right) { 182 return Expr{ 183 Expr::Subtract(std::move(result).value(), std::move(right))}; 184 }}; 185 auto more{attempt(sourced("+" >> applyLambda(add, addOperand) || 186 "-" >> applyLambda(subtract, addOperand)))}; 187 while (std::optional<Expr> next{more.Parse(state)}) { 188 result = std::move(next); 189 result->source.ExtendToCover(source); 190 } 191 } 192 return result; 193 } 194 }; 195 constexpr Level2Expr level2Expr; 196 197 // R1010 level-3-expr -> [level-3-expr concat-op] level-2-expr 198 // R1011 concat-op -> // 199 // Concatenation (//) is left-associative for parsing performance, although 200 // one would never notice if it were right-associated. 201 struct Level3Expr { 202 using resultType = Expr; 203 constexpr Level3Expr() {} 204 static inline std::optional<Expr> Parse(ParseState &state) { 205 std::optional<Expr> result{level2Expr.Parse(state)}; 206 if (result) { 207 auto source{result->source}; 208 std::function<Expr(Expr &&)> concat{[&result](Expr &&right) { 209 return Expr{Expr::Concat(std::move(result).value(), std::move(right))}; 210 }}; 211 auto more{attempt(sourced("//" >> applyLambda(concat, level2Expr)))}; 212 while (std::optional<Expr> next{more.Parse(state)}) { 213 result = std::move(next); 214 result->source.ExtendToCover(source); 215 } 216 } 217 return result; 218 } 219 }; 220 constexpr Level3Expr level3Expr; 221 222 // R1012 level-4-expr -> [level-3-expr rel-op] level-3-expr 223 // R1013 rel-op -> 224 // .EQ. | .NE. | .LT. | .LE. | .GT. | .GE. | 225 // == | /= | < | <= | > | >= @ | <> 226 // N.B. relations are not recursive (i.e., LOGICAL is not ordered) 227 struct Level4Expr { 228 using resultType = Expr; 229 constexpr Level4Expr() {} 230 static inline std::optional<Expr> Parse(ParseState &state) { 231 std::optional<Expr> result{level3Expr.Parse(state)}; 232 if (result) { 233 auto source{result->source}; 234 std::function<Expr(Expr &&)> lt{[&result](Expr &&right) { 235 return Expr{Expr::LT(std::move(result).value(), std::move(right))}; 236 }}; 237 std::function<Expr(Expr &&)> le{[&result](Expr &&right) { 238 return Expr{Expr::LE(std::move(result).value(), std::move(right))}; 239 }}; 240 std::function<Expr(Expr &&)> eq{[&result](Expr &&right) { 241 return Expr{Expr::EQ(std::move(result).value(), std::move(right))}; 242 }}; 243 std::function<Expr(Expr &&)> ne{[&result](Expr &&right) { 244 return Expr{Expr::NE(std::move(result).value(), std::move(right))}; 245 }}; 246 std::function<Expr(Expr &&)> ge{[&result](Expr &&right) { 247 return Expr{Expr::GE(std::move(result).value(), std::move(right))}; 248 }}; 249 std::function<Expr(Expr &&)> gt{[&result](Expr &&right) { 250 return Expr{Expr::GT(std::move(result).value(), std::move(right))}; 251 }}; 252 auto more{attempt( 253 sourced((".LT."_tok || "<"_tok) >> applyLambda(lt, level3Expr) || 254 (".LE."_tok || "<="_tok) >> applyLambda(le, level3Expr) || 255 (".EQ."_tok || "=="_tok) >> applyLambda(eq, level3Expr) || 256 (".NE."_tok || "/="_tok || 257 extension<LanguageFeature::AlternativeNE>( 258 "nonstandard usage: <> for /= or .NE."_port_en_US, 259 "<>"_tok /* PGI/Cray extension; Cray also has .LG. */)) >> 260 applyLambda(ne, level3Expr) || 261 (".GE."_tok || ">="_tok) >> applyLambda(ge, level3Expr) || 262 (".GT."_tok || ">"_tok) >> applyLambda(gt, level3Expr)))}; 263 if (std::optional<Expr> next{more.Parse(state)}) { 264 next->source.ExtendToCover(source); 265 return next; 266 } 267 } 268 return result; 269 } 270 }; 271 constexpr Level4Expr level4Expr; 272 273 // R1014 and-operand -> [not-op] level-4-expr 274 // R1018 not-op -> .NOT. 275 // N.B. Fortran's .NOT. binds less tightly than its comparison operators do. 276 // PGI/Intel extension: accept multiple .NOT. operators 277 struct AndOperand { 278 using resultType = Expr; 279 constexpr AndOperand() {} 280 static inline std::optional<Expr> Parse(ParseState &); 281 }; 282 constexpr AndOperand andOperand; 283 284 // Match a logical operator or, optionally, its abbreviation. 285 inline constexpr auto logicalOp(const char *op, const char *abbrev) { 286 return TokenStringMatch{op} || 287 extension<LanguageFeature::LogicalAbbreviations>( 288 "nonstandard usage: abbreviated LOGICAL operator"_port_en_US, 289 TokenStringMatch{abbrev}); 290 } 291 292 inline std::optional<Expr> AndOperand::Parse(ParseState &state) { 293 static constexpr auto notOp{attempt(logicalOp(".NOT.", ".N.") >> andOperand)}; 294 if (std::optional<Expr> negation{notOp.Parse(state)}) { 295 return Expr{Expr::NOT{std::move(*negation)}}; 296 } else { 297 return level4Expr.Parse(state); 298 } 299 } 300 301 // R1015 or-operand -> [or-operand and-op] and-operand 302 // R1019 and-op -> .AND. 303 // .AND. is left-associative 304 struct OrOperand { 305 using resultType = Expr; 306 constexpr OrOperand() {} 307 static inline std::optional<Expr> Parse(ParseState &state) { 308 static constexpr auto operand{sourced(andOperand)}; 309 std::optional<Expr> result{operand.Parse(state)}; 310 if (result) { 311 auto source{result->source}; 312 std::function<Expr(Expr &&)> logicalAnd{[&result](Expr &&right) { 313 return Expr{Expr::AND(std::move(result).value(), std::move(right))}; 314 }}; 315 auto more{attempt(sourced( 316 logicalOp(".AND.", ".A.") >> applyLambda(logicalAnd, andOperand)))}; 317 while (std::optional<Expr> next{more.Parse(state)}) { 318 result = std::move(next); 319 result->source.ExtendToCover(source); 320 } 321 } 322 return result; 323 } 324 }; 325 constexpr OrOperand orOperand; 326 327 // R1016 equiv-operand -> [equiv-operand or-op] or-operand 328 // R1020 or-op -> .OR. 329 // .OR. is left-associative 330 struct EquivOperand { 331 using resultType = Expr; 332 constexpr EquivOperand() {} 333 static inline std::optional<Expr> Parse(ParseState &state) { 334 std::optional<Expr> result{orOperand.Parse(state)}; 335 if (result) { 336 auto source{result->source}; 337 std::function<Expr(Expr &&)> logicalOr{[&result](Expr &&right) { 338 return Expr{Expr::OR(std::move(result).value(), std::move(right))}; 339 }}; 340 auto more{attempt(sourced( 341 logicalOp(".OR.", ".O.") >> applyLambda(logicalOr, orOperand)))}; 342 while (std::optional<Expr> next{more.Parse(state)}) { 343 result = std::move(next); 344 result->source.ExtendToCover(source); 345 } 346 } 347 return result; 348 } 349 }; 350 constexpr EquivOperand equivOperand; 351 352 // R1017 level-5-expr -> [level-5-expr equiv-op] equiv-operand 353 // R1021 equiv-op -> .EQV. | .NEQV. 354 // Logical equivalence is left-associative. 355 // Extension: .XOR. as synonym for .NEQV. 356 struct Level5Expr { 357 using resultType = Expr; 358 constexpr Level5Expr() {} 359 static inline std::optional<Expr> Parse(ParseState &state) { 360 std::optional<Expr> result{equivOperand.Parse(state)}; 361 if (result) { 362 auto source{result->source}; 363 std::function<Expr(Expr &&)> eqv{[&result](Expr &&right) { 364 return Expr{Expr::EQV(std::move(result).value(), std::move(right))}; 365 }}; 366 std::function<Expr(Expr &&)> neqv{[&result](Expr &&right) { 367 return Expr{Expr::NEQV(std::move(result).value(), std::move(right))}; 368 }}; 369 auto more{attempt(sourced(".EQV." >> applyLambda(eqv, equivOperand) || 370 (".NEQV."_tok || 371 extension<LanguageFeature::XOROperator>( 372 "nonstandard usage: .XOR./.X. spelling of .NEQV."_port_en_US, 373 logicalOp(".XOR.", ".X."))) >> 374 applyLambda(neqv, equivOperand)))}; 375 while (std::optional<Expr> next{more.Parse(state)}) { 376 result = std::move(next); 377 result->source.ExtendToCover(source); 378 } 379 } 380 return result; 381 } 382 }; 383 constexpr Level5Expr level5Expr; 384 385 // R1022 expr -> [expr defined-binary-op] level-5-expr 386 // Defined binary operators associate leftwards. 387 template <> std::optional<Expr> Parser<Expr>::Parse(ParseState &state) { 388 std::optional<Expr> result{level5Expr.Parse(state)}; 389 if (result) { 390 auto source{result->source}; 391 std::function<Expr(DefinedOpName &&, Expr &&)> defBinOp{ 392 [&result](DefinedOpName &&op, Expr &&right) { 393 return Expr{Expr::DefinedBinary( 394 std::move(op), std::move(result).value(), std::move(right))}; 395 }}; 396 auto more{attempt( 397 sourced(applyLambda<Expr>(defBinOp, definedOpName, level5Expr)))}; 398 while (std::optional<Expr> next{more.Parse(state)}) { 399 result = std::move(next); 400 result->source.ExtendToCover(source); 401 } 402 } 403 return result; 404 } 405 406 // R1003 defined-unary-op -> . letter [letter]... . 407 // R1023 defined-binary-op -> . letter [letter]... . 408 // R1414 local-defined-operator -> defined-unary-op | defined-binary-op 409 // R1415 use-defined-operator -> defined-unary-op | defined-binary-op 410 // C1003 A defined operator must be distinct from logical literal constants 411 // and intrinsic operator names; this is handled by attempting their parses 412 // first, and by name resolution on their definitions, for best errors. 413 // N.B. The name of the operator is captured with the dots around it. 414 constexpr auto definedOpNameChar{letter || 415 extension<LanguageFeature::PunctuationInNames>( 416 "nonstandard usage: non-alphabetic character in defined operator"_port_en_US, 417 "$@"_ch)}; 418 TYPE_PARSER( 419 space >> construct<DefinedOpName>(sourced("."_ch >> 420 some(definedOpNameChar) >> construct<Name>() / "."_ch))) 421 422 // R1028 specification-expr -> scalar-int-expr 423 TYPE_PARSER(construct<SpecificationExpr>(scalarIntExpr)) 424 425 // R1032 assignment-stmt -> variable = expr 426 TYPE_CONTEXT_PARSER("assignment statement"_en_US, 427 construct<AssignmentStmt>(variable / "=", expr)) 428 429 // R1033 pointer-assignment-stmt -> 430 // data-pointer-object [( bounds-spec-list )] => data-target | 431 // data-pointer-object ( bounds-remapping-list ) => data-target | 432 // proc-pointer-object => proc-target 433 // R1034 data-pointer-object -> 434 // variable-name | scalar-variable % data-pointer-component-name 435 // C1022 a scalar-variable shall be a data-ref 436 // C1024 a data-pointer-object shall not be a coindexed object 437 // R1038 proc-pointer-object -> proc-pointer-name | proc-component-ref 438 // 439 // A distinction can't be made at the time of the initial parse between 440 // data-pointer-object and proc-pointer-object, or between data-target 441 // and proc-target. 442 TYPE_CONTEXT_PARSER("pointer assignment statement"_en_US, 443 construct<PointerAssignmentStmt>(dataRef, 444 parenthesized(nonemptyList(Parser<BoundsRemapping>{})), "=>" >> expr) || 445 construct<PointerAssignmentStmt>(dataRef, 446 defaulted(parenthesized(nonemptyList(Parser<BoundsSpec>{}))), 447 "=>" >> expr)) 448 449 // R1035 bounds-spec -> lower-bound-expr : 450 TYPE_PARSER(construct<BoundsSpec>(boundExpr / ":")) 451 452 // R1036 bounds-remapping -> lower-bound-expr : upper-bound-expr 453 TYPE_PARSER(construct<BoundsRemapping>(boundExpr / ":", boundExpr)) 454 455 // R1039 proc-component-ref -> scalar-variable % procedure-component-name 456 // C1027 the scalar-variable must be a data-ref without coindices. 457 TYPE_PARSER(construct<ProcComponentRef>(structureComponent)) 458 459 // R1041 where-stmt -> WHERE ( mask-expr ) where-assignment-stmt 460 // R1045 where-assignment-stmt -> assignment-stmt 461 // R1046 mask-expr -> logical-expr 462 TYPE_CONTEXT_PARSER("WHERE statement"_en_US, 463 construct<WhereStmt>("WHERE" >> parenthesized(logicalExpr), assignmentStmt)) 464 465 // R1042 where-construct -> 466 // where-construct-stmt [where-body-construct]... 467 // [masked-elsewhere-stmt [where-body-construct]...]... 468 // [elsewhere-stmt [where-body-construct]...] end-where-stmt 469 TYPE_CONTEXT_PARSER("WHERE construct"_en_US, 470 construct<WhereConstruct>(statement(Parser<WhereConstructStmt>{}), 471 many(whereBodyConstruct), 472 many(construct<WhereConstruct::MaskedElsewhere>( 473 statement(Parser<MaskedElsewhereStmt>{}), 474 many(whereBodyConstruct))), 475 maybe(construct<WhereConstruct::Elsewhere>( 476 statement(Parser<ElsewhereStmt>{}), many(whereBodyConstruct))), 477 statement(Parser<EndWhereStmt>{}))) 478 479 // R1043 where-construct-stmt -> [where-construct-name :] WHERE ( mask-expr ) 480 TYPE_CONTEXT_PARSER("WHERE construct statement"_en_US, 481 construct<WhereConstructStmt>( 482 maybe(name / ":"), "WHERE" >> parenthesized(logicalExpr))) 483 484 // R1044 where-body-construct -> 485 // where-assignment-stmt | where-stmt | where-construct 486 TYPE_PARSER(construct<WhereBodyConstruct>(statement(assignmentStmt)) || 487 construct<WhereBodyConstruct>(statement(whereStmt)) || 488 construct<WhereBodyConstruct>(indirect(whereConstruct))) 489 490 // R1047 masked-elsewhere-stmt -> 491 // ELSEWHERE ( mask-expr ) [where-construct-name] 492 TYPE_CONTEXT_PARSER("masked ELSEWHERE statement"_en_US, 493 construct<MaskedElsewhereStmt>( 494 "ELSE WHERE" >> parenthesized(logicalExpr), maybe(name))) 495 496 // R1048 elsewhere-stmt -> ELSEWHERE [where-construct-name] 497 TYPE_CONTEXT_PARSER("ELSEWHERE statement"_en_US, 498 construct<ElsewhereStmt>("ELSE WHERE" >> maybe(name))) 499 500 // R1049 end-where-stmt -> ENDWHERE [where-construct-name] 501 TYPE_CONTEXT_PARSER("END WHERE statement"_en_US, 502 construct<EndWhereStmt>(recovery( 503 "END WHERE" >> maybe(name), namedConstructEndStmtErrorRecovery))) 504 505 // R1050 forall-construct -> 506 // forall-construct-stmt [forall-body-construct]... end-forall-stmt 507 TYPE_CONTEXT_PARSER("FORALL construct"_en_US, 508 construct<ForallConstruct>(statement(Parser<ForallConstructStmt>{}), 509 many(Parser<ForallBodyConstruct>{}), 510 statement(Parser<EndForallStmt>{}))) 511 512 // R1051 forall-construct-stmt -> 513 // [forall-construct-name :] FORALL concurrent-header 514 TYPE_CONTEXT_PARSER("FORALL construct statement"_en_US, 515 construct<ForallConstructStmt>( 516 maybe(name / ":"), "FORALL" >> indirect(concurrentHeader))) 517 518 // R1052 forall-body-construct -> 519 // forall-assignment-stmt | where-stmt | where-construct | 520 // forall-construct | forall-stmt 521 TYPE_PARSER(construct<ForallBodyConstruct>(statement(forallAssignmentStmt)) || 522 construct<ForallBodyConstruct>(statement(whereStmt)) || 523 construct<ForallBodyConstruct>(whereConstruct) || 524 construct<ForallBodyConstruct>(indirect(forallConstruct)) || 525 construct<ForallBodyConstruct>(statement(forallStmt))) 526 527 // R1053 forall-assignment-stmt -> assignment-stmt | pointer-assignment-stmt 528 TYPE_PARSER(construct<ForallAssignmentStmt>(assignmentStmt) || 529 construct<ForallAssignmentStmt>(pointerAssignmentStmt)) 530 531 // R1054 end-forall-stmt -> END FORALL [forall-construct-name] 532 TYPE_CONTEXT_PARSER("END FORALL statement"_en_US, 533 construct<EndForallStmt>(recovery( 534 "END FORALL" >> maybe(name), namedConstructEndStmtErrorRecovery))) 535 536 // R1055 forall-stmt -> FORALL concurrent-header forall-assignment-stmt 537 TYPE_CONTEXT_PARSER("FORALL statement"_en_US, 538 construct<ForallStmt>("FORALL" >> indirect(concurrentHeader), 539 unlabeledStatement(forallAssignmentStmt))) 540 } // namespace Fortran::parser 541