1 //===- SimplifyIntrinsics.cpp -- replace intrinsics with simpler form -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 //===----------------------------------------------------------------------===// 10 /// \file 11 /// This pass looks for suitable calls to runtime library for intrinsics that 12 /// can be simplified/specialized and replaces with a specialized function. 13 /// 14 /// For example, SUM(arr) can be specialized as a simple function with one loop, 15 /// compared to the three arguments (plus file & line info) that the runtime 16 /// call has - when the argument is a 1D-array (multiple loops may be needed 17 // for higher dimension arrays, of course) 18 /// 19 /// The general idea is that besides making the call simpler, it can also be 20 /// inlined by other passes that run after this pass, which further improves 21 /// performance, particularly when the work done in the function is trivial 22 /// and small in size. 23 //===----------------------------------------------------------------------===// 24 25 #include "flang/Common/Fortran.h" 26 #include "flang/Optimizer/Builder/BoxValue.h" 27 #include "flang/Optimizer/Builder/FIRBuilder.h" 28 #include "flang/Optimizer/Builder/LowLevelIntrinsics.h" 29 #include "flang/Optimizer/Builder/Todo.h" 30 #include "flang/Optimizer/Dialect/FIROps.h" 31 #include "flang/Optimizer/Dialect/FIRType.h" 32 #include "flang/Optimizer/Dialect/Support/FIRContext.h" 33 #include "flang/Optimizer/HLFIR/HLFIRDialect.h" 34 #include "flang/Optimizer/Transforms/Passes.h" 35 #include "flang/Runtime/entry-names.h" 36 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 37 #include "mlir/IR/Matchers.h" 38 #include "mlir/IR/Operation.h" 39 #include "mlir/Pass/Pass.h" 40 #include "mlir/Transforms/DialectConversion.h" 41 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 42 #include "mlir/Transforms/RegionUtils.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <llvm/Support/ErrorHandling.h> 46 #include <mlir/Dialect/Arith/IR/Arith.h> 47 #include <mlir/IR/BuiltinTypes.h> 48 #include <mlir/IR/Location.h> 49 #include <mlir/IR/MLIRContext.h> 50 #include <mlir/IR/Value.h> 51 #include <mlir/Support/LLVM.h> 52 #include <optional> 53 54 namespace fir { 55 #define GEN_PASS_DEF_SIMPLIFYINTRINSICS 56 #include "flang/Optimizer/Transforms/Passes.h.inc" 57 } // namespace fir 58 59 #define DEBUG_TYPE "flang-simplify-intrinsics" 60 61 namespace { 62 63 class SimplifyIntrinsicsPass 64 : public fir::impl::SimplifyIntrinsicsBase<SimplifyIntrinsicsPass> { 65 using FunctionTypeGeneratorTy = 66 llvm::function_ref<mlir::FunctionType(fir::FirOpBuilder &)>; 67 using FunctionBodyGeneratorTy = 68 llvm::function_ref<void(fir::FirOpBuilder &, mlir::func::FuncOp &)>; 69 using GenReductionBodyTy = llvm::function_ref<void( 70 fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, unsigned rank, 71 mlir::Type elementType)>; 72 73 public: 74 /// Generate a new function implementing a simplified version 75 /// of a Fortran runtime function defined by \p basename name. 76 /// \p typeGenerator is a callback that generates the new function's type. 77 /// \p bodyGenerator is a callback that generates the new function's body. 78 /// The new function is created in the \p builder's Module. 79 mlir::func::FuncOp getOrCreateFunction(fir::FirOpBuilder &builder, 80 const mlir::StringRef &basename, 81 FunctionTypeGeneratorTy typeGenerator, 82 FunctionBodyGeneratorTy bodyGenerator); 83 void runOnOperation() override; 84 void getDependentDialects(mlir::DialectRegistry ®istry) const override; 85 86 private: 87 /// Helper functions to replace a reduction type of call with its 88 /// simplified form. The actual function is generated using a callback 89 /// function. 90 /// \p call is the call to be replaced 91 /// \p kindMap is used to create FIROpBuilder 92 /// \p genBodyFunc is the callback that builds the replacement function 93 void simplifyIntOrFloatReduction(fir::CallOp call, 94 const fir::KindMapping &kindMap, 95 GenReductionBodyTy genBodyFunc); 96 void simplifyLogicalDim0Reduction(fir::CallOp call, 97 const fir::KindMapping &kindMap, 98 GenReductionBodyTy genBodyFunc); 99 void simplifyLogicalDim1Reduction(fir::CallOp call, 100 const fir::KindMapping &kindMap, 101 GenReductionBodyTy genBodyFunc); 102 void simplifyMinlocReduction(fir::CallOp call, 103 const fir::KindMapping &kindMap); 104 void simplifyReductionBody(fir::CallOp call, const fir::KindMapping &kindMap, 105 GenReductionBodyTy genBodyFunc, 106 fir::FirOpBuilder &builder, 107 const mlir::StringRef &basename, 108 mlir::Type elementType); 109 }; 110 111 } // namespace 112 113 /// Create FirOpBuilder with the provided \p op insertion point 114 /// and \p kindMap additionally inheriting FastMathFlags from \p op. 115 static fir::FirOpBuilder 116 getSimplificationBuilder(mlir::Operation *op, const fir::KindMapping &kindMap) { 117 fir::FirOpBuilder builder{op, kindMap}; 118 auto fmi = mlir::dyn_cast<mlir::arith::ArithFastMathInterface>(*op); 119 if (!fmi) 120 return builder; 121 122 // Regardless of what default FastMathFlags are used by FirOpBuilder, 123 // override them with FastMathFlags attached to the operation. 124 builder.setFastMathFlags(fmi.getFastMathFlagsAttr().getValue()); 125 return builder; 126 } 127 128 /// Generate function type for the simplified version of RTNAME(Sum) and 129 /// similar functions with a fir.box<none> type returning \p elementType. 130 static mlir::FunctionType genNoneBoxType(fir::FirOpBuilder &builder, 131 const mlir::Type &elementType) { 132 mlir::Type boxType = fir::BoxType::get(builder.getNoneType()); 133 return mlir::FunctionType::get(builder.getContext(), {boxType}, 134 {elementType}); 135 } 136 137 template <typename Op> 138 Op expectOp(mlir::Value val) { 139 if (Op op = mlir::dyn_cast_or_null<Op>(val.getDefiningOp())) 140 return op; 141 LLVM_DEBUG(llvm::dbgs() << "Didn't find expected " << Op::getOperationName() 142 << '\n'); 143 return nullptr; 144 } 145 146 template <typename Op> 147 static mlir::Value findDefSingle(fir::ConvertOp op) { 148 if (auto defOp = expectOp<Op>(op->getOperand(0))) { 149 return defOp.getResult(); 150 } 151 return {}; 152 } 153 154 template <typename... Ops> 155 static mlir::Value findDef(fir::ConvertOp op) { 156 mlir::Value defOp; 157 // Loop over the operation types given to see if any match, exiting once 158 // a match is found. Cast to void is needed to avoid compiler complaining 159 // that the result of expression is unused 160 (void)((defOp = findDefSingle<Ops>(op), (defOp)) || ...); 161 return defOp; 162 } 163 164 static bool isOperandAbsent(mlir::Value val) { 165 if (auto op = expectOp<fir::ConvertOp>(val)) { 166 assert(op->getOperands().size() != 0); 167 return mlir::isa_and_nonnull<fir::AbsentOp>( 168 op->getOperand(0).getDefiningOp()); 169 } 170 return false; 171 } 172 173 static bool isTrueOrNotConstant(mlir::Value val) { 174 if (auto op = expectOp<mlir::arith::ConstantOp>(val)) { 175 return !mlir::matchPattern(val, mlir::m_Zero()); 176 } 177 return true; 178 } 179 180 static bool isZero(mlir::Value val) { 181 if (auto op = expectOp<fir::ConvertOp>(val)) { 182 assert(op->getOperands().size() != 0); 183 if (mlir::Operation *defOp = op->getOperand(0).getDefiningOp()) 184 return mlir::matchPattern(defOp, mlir::m_Zero()); 185 } 186 return false; 187 } 188 189 static mlir::Value findBoxDef(mlir::Value val) { 190 if (auto op = expectOp<fir::ConvertOp>(val)) { 191 assert(op->getOperands().size() != 0); 192 return findDef<fir::EmboxOp, fir::ReboxOp>(op); 193 } 194 return {}; 195 } 196 197 static mlir::Value findMaskDef(mlir::Value val) { 198 if (auto op = expectOp<fir::ConvertOp>(val)) { 199 assert(op->getOperands().size() != 0); 200 return findDef<fir::EmboxOp, fir::ReboxOp, fir::AbsentOp>(op); 201 } 202 return {}; 203 } 204 205 static unsigned getDimCount(mlir::Value val) { 206 // In order to find the dimensions count, we look for EmboxOp/ReboxOp 207 // and take the count from its *result* type. Note that in case 208 // of sliced emboxing the operand and the result of EmboxOp/ReboxOp 209 // have different types. 210 // Actually, we can take the box type from the operand of 211 // the first ConvertOp that has non-opaque box type that we meet 212 // going through the ConvertOp chain. 213 if (mlir::Value emboxVal = findBoxDef(val)) 214 if (auto boxTy = emboxVal.getType().dyn_cast<fir::BoxType>()) 215 if (auto seqTy = boxTy.getEleTy().dyn_cast<fir::SequenceType>()) 216 return seqTy.getDimension(); 217 return 0; 218 } 219 220 /// Given the call operation's box argument \p val, discover 221 /// the element type of the underlying array object. 222 /// \returns the element type or std::nullopt if the type cannot 223 /// be reliably found. 224 /// We expect that the argument is a result of fir.convert 225 /// with the destination type of !fir.box<none>. 226 static std::optional<mlir::Type> getArgElementType(mlir::Value val) { 227 mlir::Operation *defOp; 228 do { 229 defOp = val.getDefiningOp(); 230 // Analyze only sequences of convert operations. 231 if (!mlir::isa<fir::ConvertOp>(defOp)) 232 return std::nullopt; 233 val = defOp->getOperand(0); 234 // The convert operation is expected to convert from one 235 // box type to another box type. 236 auto boxType = val.getType().cast<fir::BoxType>(); 237 auto elementType = fir::unwrapSeqOrBoxedSeqType(boxType); 238 if (!elementType.isa<mlir::NoneType>()) 239 return elementType; 240 } while (true); 241 } 242 243 using BodyOpGeneratorTy = llvm::function_ref<mlir::Value( 244 fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value, 245 mlir::Value)>; 246 using InitValGeneratorTy = llvm::function_ref<mlir::Value( 247 fir::FirOpBuilder &, mlir::Location, const mlir::Type &)>; 248 using ContinueLoopGenTy = llvm::function_ref<llvm::SmallVector<mlir::Value>( 249 fir::FirOpBuilder &, mlir::Location, mlir::Value)>; 250 251 /// Generate the reduction loop into \p funcOp. 252 /// 253 /// \p initVal is a function, called to get the initial value for 254 /// the reduction value 255 /// \p genBody is called to fill in the actual reduciton operation 256 /// for example add for SUM, MAX for MAXVAL, etc. 257 /// \p rank is the rank of the input argument. 258 /// \p elementType is the type of the elements in the input array, 259 /// which may be different to the return type. 260 /// \p loopCond is called to generate the condition to continue or 261 /// not for IterWhile loops 262 /// \p unorderedOrInitalLoopCond contains either a boolean or bool 263 /// mlir constant, and controls the inital value for while loops 264 /// or if DoLoop is ordered/unordered. 265 266 template <typename OP, typename T, int resultIndex> 267 static void 268 genReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, 269 InitValGeneratorTy initVal, ContinueLoopGenTy loopCond, 270 T unorderedOrInitialLoopCond, BodyOpGeneratorTy genBody, 271 unsigned rank, mlir::Type elementType, mlir::Location loc) { 272 273 mlir::IndexType idxTy = builder.getIndexType(); 274 275 mlir::Block::BlockArgListType args = funcOp.front().getArguments(); 276 mlir::Value arg = args[0]; 277 278 mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0); 279 280 fir::SequenceType::Shape flatShape(rank, 281 fir::SequenceType::getUnknownExtent()); 282 mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType); 283 mlir::Type boxArrTy = fir::BoxType::get(arrTy); 284 mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg); 285 mlir::Type resultType = funcOp.getResultTypes()[0]; 286 mlir::Value init = initVal(builder, loc, resultType); 287 288 llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds; 289 290 assert(rank > 0 && "rank cannot be zero"); 291 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 292 293 // Compute all the upper bounds before the loop nest. 294 // It is not strictly necessary for performance, since the loop nest 295 // does not have any store operations and any LICM optimization 296 // should be able to optimize the redundancy. 297 for (unsigned i = 0; i < rank; ++i) { 298 mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i); 299 auto dims = 300 builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx); 301 mlir::Value len = dims.getResult(1); 302 // We use C indexing here, so len-1 as loopcount 303 mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one); 304 bounds.push_back(loopCount); 305 } 306 // Create a loop nest consisting of OP operations. 307 // Collect the loops' induction variables into indices array, 308 // which will be used in the innermost loop to load the input 309 // array's element. 310 // The loops are generated such that the innermost loop processes 311 // the 0 dimension. 312 llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices; 313 for (unsigned i = rank; 0 < i; --i) { 314 mlir::Value step = one; 315 mlir::Value loopCount = bounds[i - 1]; 316 auto loop = builder.create<OP>(loc, zeroIdx, loopCount, step, 317 unorderedOrInitialLoopCond, 318 /*finalCountValue=*/false, init); 319 init = loop.getRegionIterArgs()[resultIndex]; 320 indices.push_back(loop.getInductionVar()); 321 // Set insertion point to the loop body so that the next loop 322 // is inserted inside the current one. 323 builder.setInsertionPointToStart(loop.getBody()); 324 } 325 326 // Reverse the indices such that they are ordered as: 327 // <dim-0-idx, dim-1-idx, ...> 328 std::reverse(indices.begin(), indices.end()); 329 // We are in the innermost loop: generate the reduction body. 330 mlir::Type eleRefTy = builder.getRefType(elementType); 331 mlir::Value addr = 332 builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices); 333 mlir::Value elem = builder.create<fir::LoadOp>(loc, addr); 334 mlir::Value reductionVal = genBody(builder, loc, elementType, elem, init); 335 // Generate vector with condition to continue while loop at [0] and result 336 // from current loop at [1] for IterWhileOp loops, just result at [0] for 337 // DoLoopOp loops. 338 llvm::SmallVector<mlir::Value> results = loopCond(builder, loc, reductionVal); 339 340 // Unwind the loop nest and insert ResultOp on each level 341 // to return the updated value of the reduction to the enclosing 342 // loops. 343 for (unsigned i = 0; i < rank; ++i) { 344 auto result = builder.create<fir::ResultOp>(loc, results); 345 // Proceed to the outer loop. 346 auto loop = mlir::cast<OP>(result->getParentOp()); 347 results = loop.getResults(); 348 // Set insertion point after the loop operation that we have 349 // just processed. 350 builder.setInsertionPointAfter(loop.getOperation()); 351 } 352 // End of loop nest. The insertion point is after the outermost loop. 353 // Return the reduction value from the function. 354 builder.create<mlir::func::ReturnOp>(loc, results[resultIndex]); 355 } 356 using MinlocBodyOpGeneratorTy = llvm::function_ref<mlir::Value( 357 fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value, 358 mlir::Value, llvm::SmallVector<mlir::Value, Fortran::common::maxRank> &)>; 359 360 static void 361 genMinlocReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, 362 InitValGeneratorTy initVal, 363 MinlocBodyOpGeneratorTy genBody, unsigned rank, 364 mlir::Type elementType, mlir::Location loc, bool hasMask, 365 mlir::Type maskElemType, mlir::Value resultArr) { 366 367 mlir::IndexType idxTy = builder.getIndexType(); 368 369 mlir::Block::BlockArgListType args = funcOp.front().getArguments(); 370 mlir::Value arg = args[1]; 371 372 mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0); 373 374 fir::SequenceType::Shape flatShape(rank, 375 fir::SequenceType::getUnknownExtent()); 376 mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType); 377 mlir::Type boxArrTy = fir::BoxType::get(arrTy); 378 mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg); 379 380 mlir::Type resultElemType = hlfir::getFortranElementType(resultArr.getType()); 381 mlir::Value flagSet = builder.createIntegerConstant(loc, resultElemType, 1); 382 mlir::Value zero = builder.createIntegerConstant(loc, resultElemType, 0); 383 mlir::Value flagRef = builder.createTemporary(loc, resultElemType); 384 builder.create<fir::StoreOp>(loc, zero, flagRef); 385 386 mlir::Value mask; 387 if (hasMask) { 388 mlir::Type maskTy = fir::SequenceType::get(flatShape, maskElemType); 389 mlir::Type boxMaskTy = fir::BoxType::get(maskTy); 390 mask = builder.create<fir::ConvertOp>(loc, boxMaskTy, args[2]); 391 } 392 393 mlir::Value init = initVal(builder, loc, elementType); 394 llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds; 395 396 assert(rank > 0 && "rank cannot be zero"); 397 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 398 399 // Compute all the upper bounds before the loop nest. 400 // It is not strictly necessary for performance, since the loop nest 401 // does not have any store operations and any LICM optimization 402 // should be able to optimize the redundancy. 403 for (unsigned i = 0; i < rank; ++i) { 404 mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i); 405 auto dims = 406 builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx); 407 mlir::Value len = dims.getResult(1); 408 // We use C indexing here, so len-1 as loopcount 409 mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one); 410 bounds.push_back(loopCount); 411 } 412 // Create a loop nest consisting of OP operations. 413 // Collect the loops' induction variables into indices array, 414 // which will be used in the innermost loop to load the input 415 // array's element. 416 // The loops are generated such that the innermost loop processes 417 // the 0 dimension. 418 llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices; 419 for (unsigned i = rank; 0 < i; --i) { 420 mlir::Value step = one; 421 mlir::Value loopCount = bounds[i - 1]; 422 auto loop = 423 builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step, false, 424 /*finalCountValue=*/false, init); 425 init = loop.getRegionIterArgs()[0]; 426 indices.push_back(loop.getInductionVar()); 427 // Set insertion point to the loop body so that the next loop 428 // is inserted inside the current one. 429 builder.setInsertionPointToStart(loop.getBody()); 430 } 431 432 // Reverse the indices such that they are ordered as: 433 // <dim-0-idx, dim-1-idx, ...> 434 std::reverse(indices.begin(), indices.end()); 435 // We are in the innermost loop: generate the reduction body. 436 if (hasMask) { 437 mlir::Type logicalRef = builder.getRefType(maskElemType); 438 mlir::Value maskAddr = 439 builder.create<fir::CoordinateOp>(loc, logicalRef, mask, indices); 440 mlir::Value maskElem = builder.create<fir::LoadOp>(loc, maskAddr); 441 442 // fir::IfOp requires argument to be I1 - won't accept logical or any other 443 // Integer. 444 mlir::Type ifCompatType = builder.getI1Type(); 445 mlir::Value ifCompatElem = 446 builder.create<fir::ConvertOp>(loc, ifCompatType, maskElem); 447 448 llvm::SmallVector<mlir::Type> resultsTy = {elementType, elementType}; 449 fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, ifCompatElem, 450 /*withElseRegion=*/true); 451 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 452 } 453 454 // Set flag that mask was true at some point 455 builder.create<fir::StoreOp>(loc, flagSet, flagRef); 456 mlir::Type eleRefTy = builder.getRefType(elementType); 457 mlir::Value addr = 458 builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices); 459 mlir::Value elem = builder.create<fir::LoadOp>(loc, addr); 460 461 mlir::Value reductionVal = 462 genBody(builder, loc, elementType, elem, init, indices); 463 464 if (hasMask) { 465 fir::IfOp ifOp = 466 mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp()); 467 builder.create<fir::ResultOp>(loc, reductionVal); 468 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 469 builder.create<fir::ResultOp>(loc, init); 470 reductionVal = ifOp.getResult(0); 471 builder.setInsertionPointAfter(ifOp); 472 } 473 474 // Unwind the loop nest and insert ResultOp on each level 475 // to return the updated value of the reduction to the enclosing 476 // loops. 477 for (unsigned i = 0; i < rank; ++i) { 478 auto result = builder.create<fir::ResultOp>(loc, reductionVal); 479 // Proceed to the outer loop. 480 auto loop = mlir::cast<fir::DoLoopOp>(result->getParentOp()); 481 reductionVal = loop.getResult(0); 482 // Set insertion point after the loop operation that we have 483 // just processed. 484 builder.setInsertionPointAfter(loop.getOperation()); 485 } 486 // End of loop nest. The insertion point is after the outermost loop. 487 if (fir::IfOp ifOp = 488 mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp())) { 489 builder.create<fir::ResultOp>(loc, reductionVal); 490 builder.setInsertionPointAfter(ifOp); 491 // Redefine flagSet to escape scope of ifOp 492 flagSet = builder.createIntegerConstant(loc, resultElemType, 1); 493 reductionVal = ifOp.getResult(0); 494 } 495 496 // Check for case where array was full of max values. 497 // flag will be 0 if mask was never true, 1 if mask was true as some point, 498 // this is needed to avoid catching cases where we didn't access any elements 499 // e.g. mask=.FALSE. 500 mlir::Value flagValue = 501 builder.create<fir::LoadOp>(loc, resultElemType, flagRef); 502 mlir::Value flagCmp = builder.create<mlir::arith::CmpIOp>( 503 loc, mlir::arith::CmpIPredicate::eq, flagValue, flagSet); 504 fir::IfOp ifMaskTrueOp = 505 builder.create<fir::IfOp>(loc, flagCmp, /*withElseRegion=*/false); 506 builder.setInsertionPointToStart(&ifMaskTrueOp.getThenRegion().front()); 507 508 mlir::Value testInit = initVal(builder, loc, elementType); 509 fir::IfOp ifMinSetOp; 510 if (elementType.isa<mlir::FloatType>()) { 511 mlir::Value cmp = builder.create<mlir::arith::CmpFOp>( 512 loc, mlir::arith::CmpFPredicate::OEQ, testInit, reductionVal); 513 ifMinSetOp = builder.create<fir::IfOp>(loc, cmp, 514 /*withElseRegion*/ false); 515 } else { 516 mlir::Value cmp = builder.create<mlir::arith::CmpIOp>( 517 loc, mlir::arith::CmpIPredicate::eq, testInit, reductionVal); 518 ifMinSetOp = builder.create<fir::IfOp>(loc, cmp, 519 /*withElseRegion*/ false); 520 } 521 builder.setInsertionPointToStart(&ifMinSetOp.getThenRegion().front()); 522 523 // Load output array with 1s instead of 0s 524 for (unsigned int i = 0; i < rank; ++i) { 525 mlir::Type resultRefTy = builder.getRefType(resultElemType); 526 // mlir::Value one = builder.createIntegerConstant(loc, resultElemType, 1); 527 mlir::Value index = builder.createIntegerConstant(loc, idxTy, i); 528 mlir::Value resultElemAddr = 529 builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index); 530 builder.create<fir::StoreOp>(loc, flagSet, resultElemAddr); 531 } 532 builder.setInsertionPointAfter(ifMaskTrueOp); 533 // Store newly created output array to the reference passed in 534 fir::SequenceType::Shape resultShape(1, rank); 535 mlir::Type outputArrTy = fir::SequenceType::get(resultShape, resultElemType); 536 mlir::Type outputHeapTy = fir::HeapType::get(outputArrTy); 537 mlir::Type outputBoxTy = fir::BoxType::get(outputHeapTy); 538 mlir::Type outputRefTy = builder.getRefType(outputBoxTy); 539 540 mlir::Value outputArrNone = args[0]; 541 mlir::Value outputArr = 542 builder.create<fir::ConvertOp>(loc, outputRefTy, outputArrNone); 543 544 // Store nearly created array to output array 545 builder.create<fir::StoreOp>(loc, resultArr, outputArr); 546 builder.create<mlir::func::ReturnOp>(loc); 547 } 548 549 static llvm::SmallVector<mlir::Value> nopLoopCond(fir::FirOpBuilder &builder, 550 mlir::Location loc, 551 mlir::Value reductionVal) { 552 return {reductionVal}; 553 } 554 555 /// Generate function body of the simplified version of RTNAME(Sum) 556 /// with signature provided by \p funcOp. The caller is responsible 557 /// for saving/restoring the original insertion point of \p builder. 558 /// \p funcOp is expected to be empty on entry to this function. 559 /// \p rank specifies the rank of the input argument. 560 static void genRuntimeSumBody(fir::FirOpBuilder &builder, 561 mlir::func::FuncOp &funcOp, unsigned rank, 562 mlir::Type elementType) { 563 // function RTNAME(Sum)<T>x<rank>_simplified(arr) 564 // T, dimension(:) :: arr 565 // T sum = 0 566 // integer iter 567 // do iter = 0, extent(arr) 568 // sum = sum + arr[iter] 569 // end do 570 // RTNAME(Sum)<T>x<rank>_simplified = sum 571 // end function RTNAME(Sum)<T>x<rank>_simplified 572 auto zero = [](fir::FirOpBuilder builder, mlir::Location loc, 573 mlir::Type elementType) { 574 if (auto ty = elementType.dyn_cast<mlir::FloatType>()) { 575 const llvm::fltSemantics &sem = ty.getFloatSemantics(); 576 return builder.createRealConstant(loc, elementType, 577 llvm::APFloat::getZero(sem)); 578 } 579 return builder.createIntegerConstant(loc, elementType, 0); 580 }; 581 582 auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc, 583 mlir::Type elementType, mlir::Value elem1, 584 mlir::Value elem2) -> mlir::Value { 585 if (elementType.isa<mlir::FloatType>()) 586 return builder.create<mlir::arith::AddFOp>(loc, elem1, elem2); 587 if (elementType.isa<mlir::IntegerType>()) 588 return builder.create<mlir::arith::AddIOp>(loc, elem1, elem2); 589 590 llvm_unreachable("unsupported type"); 591 return {}; 592 }; 593 594 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); 595 builder.setInsertionPointToEnd(funcOp.addEntryBlock()); 596 597 genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond, 598 false, genBodyOp, rank, elementType, 599 loc); 600 } 601 602 static void genRuntimeMaxvalBody(fir::FirOpBuilder &builder, 603 mlir::func::FuncOp &funcOp, unsigned rank, 604 mlir::Type elementType) { 605 auto init = [](fir::FirOpBuilder builder, mlir::Location loc, 606 mlir::Type elementType) { 607 if (auto ty = elementType.dyn_cast<mlir::FloatType>()) { 608 const llvm::fltSemantics &sem = ty.getFloatSemantics(); 609 return builder.createRealConstant( 610 loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/true)); 611 } 612 unsigned bits = elementType.getIntOrFloatBitWidth(); 613 int64_t minInt = llvm::APInt::getSignedMinValue(bits).getSExtValue(); 614 return builder.createIntegerConstant(loc, elementType, minInt); 615 }; 616 617 auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc, 618 mlir::Type elementType, mlir::Value elem1, 619 mlir::Value elem2) -> mlir::Value { 620 if (elementType.isa<mlir::FloatType>()) { 621 // arith.maxf later converted to llvm.intr.maxnum does not work 622 // correctly for NaNs and -0.0 (see maxnum/minnum pattern matching 623 // in LLVM's InstCombine pass). Moreover, llvm.intr.maxnum 624 // for F128 operands is lowered into fmaxl call by LLVM. 625 // This libm function may not work properly for F128 arguments 626 // on targets where long double is not F128. It is an LLVM issue, 627 // but we just use normal select here to resolve all the cases. 628 auto compare = builder.create<mlir::arith::CmpFOp>( 629 loc, mlir::arith::CmpFPredicate::OGT, elem1, elem2); 630 return builder.create<mlir::arith::SelectOp>(loc, compare, elem1, elem2); 631 } 632 if (elementType.isa<mlir::IntegerType>()) 633 return builder.create<mlir::arith::MaxSIOp>(loc, elem1, elem2); 634 635 llvm_unreachable("unsupported type"); 636 return {}; 637 }; 638 639 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); 640 builder.setInsertionPointToEnd(funcOp.addEntryBlock()); 641 642 genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, init, nopLoopCond, 643 false, genBodyOp, rank, elementType, 644 loc); 645 } 646 647 static void genRuntimeCountBody(fir::FirOpBuilder &builder, 648 mlir::func::FuncOp &funcOp, unsigned rank, 649 mlir::Type elementType) { 650 auto zero = [](fir::FirOpBuilder builder, mlir::Location loc, 651 mlir::Type elementType) { 652 unsigned bits = elementType.getIntOrFloatBitWidth(); 653 int64_t zeroInt = llvm::APInt::getZero(bits).getSExtValue(); 654 return builder.createIntegerConstant(loc, elementType, zeroInt); 655 }; 656 657 auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc, 658 mlir::Type elementType, mlir::Value elem1, 659 mlir::Value elem2) -> mlir::Value { 660 auto zero32 = builder.createIntegerConstant(loc, elementType, 0); 661 auto zero64 = builder.createIntegerConstant(loc, builder.getI64Type(), 0); 662 auto one64 = builder.createIntegerConstant(loc, builder.getI64Type(), 1); 663 664 auto compare = builder.create<mlir::arith::CmpIOp>( 665 loc, mlir::arith::CmpIPredicate::eq, elem1, zero32); 666 auto select = 667 builder.create<mlir::arith::SelectOp>(loc, compare, zero64, one64); 668 return builder.create<mlir::arith::AddIOp>(loc, select, elem2); 669 }; 670 671 // Count always gets I32 for elementType as it converts logical input to 672 // logical<4> before passing to the function. 673 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); 674 builder.setInsertionPointToEnd(funcOp.addEntryBlock()); 675 676 genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond, 677 false, genBodyOp, rank, elementType, 678 loc); 679 } 680 681 static void genRuntimeAnyBody(fir::FirOpBuilder &builder, 682 mlir::func::FuncOp &funcOp, unsigned rank, 683 mlir::Type elementType) { 684 auto zero = [](fir::FirOpBuilder builder, mlir::Location loc, 685 mlir::Type elementType) { 686 return builder.createIntegerConstant(loc, elementType, 0); 687 }; 688 689 auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc, 690 mlir::Type elementType, mlir::Value elem1, 691 mlir::Value elem2) -> mlir::Value { 692 auto zero = builder.createIntegerConstant(loc, elementType, 0); 693 return builder.create<mlir::arith::CmpIOp>( 694 loc, mlir::arith::CmpIPredicate::ne, elem1, zero); 695 }; 696 697 auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc, 698 mlir::Value reductionVal) { 699 auto one1 = builder.createIntegerConstant(loc, builder.getI1Type(), 1); 700 auto eor = builder.create<mlir::arith::XOrIOp>(loc, reductionVal, one1); 701 llvm::SmallVector<mlir::Value> results = {eor, reductionVal}; 702 return results; 703 }; 704 705 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); 706 builder.setInsertionPointToEnd(funcOp.addEntryBlock()); 707 mlir::Value ok = builder.createBool(loc, true); 708 709 genReductionLoop<fir::IterWhileOp, mlir::Value, 1>( 710 builder, funcOp, zero, continueCond, ok, genBodyOp, rank, elementType, 711 loc); 712 } 713 714 static void genRuntimeAllBody(fir::FirOpBuilder &builder, 715 mlir::func::FuncOp &funcOp, unsigned rank, 716 mlir::Type elementType) { 717 auto one = [](fir::FirOpBuilder builder, mlir::Location loc, 718 mlir::Type elementType) { 719 return builder.createIntegerConstant(loc, elementType, 1); 720 }; 721 722 auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc, 723 mlir::Type elementType, mlir::Value elem1, 724 mlir::Value elem2) -> mlir::Value { 725 auto zero = builder.createIntegerConstant(loc, elementType, 0); 726 return builder.create<mlir::arith::CmpIOp>( 727 loc, mlir::arith::CmpIPredicate::ne, elem1, zero); 728 }; 729 730 auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc, 731 mlir::Value reductionVal) { 732 llvm::SmallVector<mlir::Value> results = {reductionVal, reductionVal}; 733 return results; 734 }; 735 736 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); 737 builder.setInsertionPointToEnd(funcOp.addEntryBlock()); 738 mlir::Value ok = builder.createBool(loc, true); 739 740 genReductionLoop<fir::IterWhileOp, mlir::Value, 1>( 741 builder, funcOp, one, continueCond, ok, genBodyOp, rank, elementType, 742 loc); 743 } 744 745 static mlir::FunctionType genRuntimeMinlocType(fir::FirOpBuilder &builder, 746 unsigned int rank) { 747 mlir::Type boxType = fir::BoxType::get(builder.getNoneType()); 748 mlir::Type boxRefType = builder.getRefType(boxType); 749 750 return mlir::FunctionType::get(builder.getContext(), 751 {boxRefType, boxType, boxType}, {}); 752 } 753 754 static void genRuntimeMinlocBody(fir::FirOpBuilder &builder, 755 mlir::func::FuncOp &funcOp, unsigned rank, 756 int maskRank, mlir::Type elementType, 757 mlir::Type maskElemType, 758 mlir::Type resultElemTy) { 759 auto init = [](fir::FirOpBuilder builder, mlir::Location loc, 760 mlir::Type elementType) { 761 if (auto ty = elementType.dyn_cast<mlir::FloatType>()) { 762 const llvm::fltSemantics &sem = ty.getFloatSemantics(); 763 return builder.createRealConstant( 764 loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/false)); 765 } 766 unsigned bits = elementType.getIntOrFloatBitWidth(); 767 int64_t maxInt = llvm::APInt::getSignedMaxValue(bits).getSExtValue(); 768 return builder.createIntegerConstant(loc, elementType, maxInt); 769 }; 770 771 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext()); 772 builder.setInsertionPointToEnd(funcOp.addEntryBlock()); 773 774 mlir::Value mask = funcOp.front().getArgument(2); 775 776 // Set up result array in case of early exit / 0 length array 777 mlir::IndexType idxTy = builder.getIndexType(); 778 mlir::Type resultTy = fir::SequenceType::get(rank, resultElemTy); 779 mlir::Type resultHeapTy = fir::HeapType::get(resultTy); 780 mlir::Type resultBoxTy = fir::BoxType::get(resultHeapTy); 781 782 mlir::Value returnValue = builder.createIntegerConstant(loc, resultElemTy, 0); 783 mlir::Value resultArrSize = builder.createIntegerConstant(loc, idxTy, rank); 784 785 mlir::Value resultArrInit = builder.create<fir::AllocMemOp>(loc, resultTy); 786 mlir::Value resultArrShape = builder.create<fir::ShapeOp>(loc, resultArrSize); 787 mlir::Value resultArr = builder.create<fir::EmboxOp>( 788 loc, resultBoxTy, resultArrInit, resultArrShape); 789 790 mlir::Type resultRefTy = builder.getRefType(resultElemTy); 791 792 for (unsigned int i = 0; i < rank; ++i) { 793 mlir::Value index = builder.createIntegerConstant(loc, idxTy, i); 794 mlir::Value resultElemAddr = 795 builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index); 796 builder.create<fir::StoreOp>(loc, returnValue, resultElemAddr); 797 } 798 799 auto genBodyOp = 800 [&rank, &resultArr]( 801 fir::FirOpBuilder builder, mlir::Location loc, mlir::Type elementType, 802 mlir::Value elem1, mlir::Value elem2, 803 llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices) 804 -> mlir::Value { 805 mlir::Value cmp; 806 if (elementType.isa<mlir::FloatType>()) { 807 cmp = builder.create<mlir::arith::CmpFOp>( 808 loc, mlir::arith::CmpFPredicate::OLT, elem1, elem2); 809 } else if (elementType.isa<mlir::IntegerType>()) { 810 cmp = builder.create<mlir::arith::CmpIOp>( 811 loc, mlir::arith::CmpIPredicate::slt, elem1, elem2); 812 } else { 813 llvm_unreachable("unsupported type"); 814 } 815 816 fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cmp, 817 /*withElseRegion*/ true); 818 819 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 820 mlir::Type resultElemTy = hlfir::getFortranElementType(resultArr.getType()); 821 mlir::Type returnRefTy = builder.getRefType(resultElemTy); 822 mlir::IndexType idxTy = builder.getIndexType(); 823 824 mlir::Value one = builder.createIntegerConstant(loc, resultElemTy, 1); 825 826 for (unsigned int i = 0; i < rank; ++i) { 827 mlir::Value index = builder.createIntegerConstant(loc, idxTy, i); 828 mlir::Value resultElemAddr = 829 builder.create<fir::CoordinateOp>(loc, returnRefTy, resultArr, index); 830 mlir::Value convert = 831 builder.create<fir::ConvertOp>(loc, resultElemTy, indices[i]); 832 mlir::Value fortranIndex = 833 builder.create<mlir::arith::AddIOp>(loc, convert, one); 834 builder.create<fir::StoreOp>(loc, fortranIndex, resultElemAddr); 835 } 836 builder.create<fir::ResultOp>(loc, elem1); 837 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 838 builder.create<fir::ResultOp>(loc, elem2); 839 builder.setInsertionPointAfter(ifOp); 840 return ifOp.getResult(0); 841 }; 842 843 // if mask is a logical scalar, we can check its value before the main loop 844 // and either ignore the fact it is there or exit early. 845 if (maskRank == 0) { 846 mlir::Type logical = builder.getI1Type(); 847 mlir::IndexType idxTy = builder.getIndexType(); 848 849 fir::SequenceType::Shape singleElement(1, 1); 850 mlir::Type arrTy = fir::SequenceType::get(singleElement, logical); 851 mlir::Type boxArrTy = fir::BoxType::get(arrTy); 852 mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, mask); 853 854 mlir::Value indx = builder.createIntegerConstant(loc, idxTy, 0); 855 mlir::Type logicalRefTy = builder.getRefType(logical); 856 mlir::Value condAddr = 857 builder.create<fir::CoordinateOp>(loc, logicalRefTy, array, indx); 858 mlir::Value cond = builder.create<fir::LoadOp>(loc, condAddr); 859 860 fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cond, 861 /*withElseRegion=*/true); 862 863 builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); 864 mlir::Value basicValue; 865 if (elementType.isa<mlir::IntegerType>()) { 866 basicValue = builder.createIntegerConstant(loc, elementType, 0); 867 } else { 868 basicValue = builder.createRealConstant(loc, elementType, 0); 869 } 870 builder.create<fir::ResultOp>(loc, basicValue); 871 872 builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); 873 } 874 875 // bit of a hack - maskRank is set to -1 for absent mask arg, so don't 876 // generate high level mask or element by element mask. 877 bool hasMask = maskRank > 0; 878 879 genMinlocReductionLoop(builder, funcOp, init, genBodyOp, rank, elementType, 880 loc, hasMask, maskElemType, resultArr); 881 } 882 883 /// Generate function type for the simplified version of RTNAME(DotProduct) 884 /// operating on the given \p elementType. 885 static mlir::FunctionType genRuntimeDotType(fir::FirOpBuilder &builder, 886 const mlir::Type &elementType) { 887 mlir::Type boxType = fir::BoxType::get(builder.getNoneType()); 888 return mlir::FunctionType::get(builder.getContext(), {boxType, boxType}, 889 {elementType}); 890 } 891 892 /// Generate function body of the simplified version of RTNAME(DotProduct) 893 /// with signature provided by \p funcOp. The caller is responsible 894 /// for saving/restoring the original insertion point of \p builder. 895 /// \p funcOp is expected to be empty on entry to this function. 896 /// \p arg1ElementTy and \p arg2ElementTy specify elements types 897 /// of the underlying array objects - they are used to generate proper 898 /// element accesses. 899 static void genRuntimeDotBody(fir::FirOpBuilder &builder, 900 mlir::func::FuncOp &funcOp, 901 mlir::Type arg1ElementTy, 902 mlir::Type arg2ElementTy) { 903 // function RTNAME(DotProduct)<T>_simplified(arr1, arr2) 904 // T, dimension(:) :: arr1, arr2 905 // T product = 0 906 // integer iter 907 // do iter = 0, extent(arr1) 908 // product = product + arr1[iter] * arr2[iter] 909 // end do 910 // RTNAME(ADotProduct)<T>_simplified = product 911 // end function RTNAME(DotProduct)<T>_simplified 912 auto loc = mlir::UnknownLoc::get(builder.getContext()); 913 mlir::Type resultElementType = funcOp.getResultTypes()[0]; 914 builder.setInsertionPointToEnd(funcOp.addEntryBlock()); 915 916 mlir::IndexType idxTy = builder.getIndexType(); 917 918 mlir::Value zero = 919 resultElementType.isa<mlir::FloatType>() 920 ? builder.createRealConstant(loc, resultElementType, 0.0) 921 : builder.createIntegerConstant(loc, resultElementType, 0); 922 923 mlir::Block::BlockArgListType args = funcOp.front().getArguments(); 924 mlir::Value arg1 = args[0]; 925 mlir::Value arg2 = args[1]; 926 927 mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0); 928 929 fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()}; 930 mlir::Type arrTy1 = fir::SequenceType::get(flatShape, arg1ElementTy); 931 mlir::Type boxArrTy1 = fir::BoxType::get(arrTy1); 932 mlir::Value array1 = builder.create<fir::ConvertOp>(loc, boxArrTy1, arg1); 933 mlir::Type arrTy2 = fir::SequenceType::get(flatShape, arg2ElementTy); 934 mlir::Type boxArrTy2 = fir::BoxType::get(arrTy2); 935 mlir::Value array2 = builder.create<fir::ConvertOp>(loc, boxArrTy2, arg2); 936 // This version takes the loop trip count from the first argument. 937 // If the first argument's box has unknown (at compilation time) 938 // extent, then it may be better to take the extent from the second 939 // argument - so that after inlining the loop may be better optimized, e.g. 940 // fully unrolled. This requires generating two versions of the simplified 941 // function and some analysis at the call site to choose which version 942 // is more profitable to call. 943 // Note that we can assume that both arguments have the same extent. 944 auto dims = 945 builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array1, zeroIdx); 946 mlir::Value len = dims.getResult(1); 947 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1); 948 mlir::Value step = one; 949 950 // We use C indexing here, so len-1 as loopcount 951 mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one); 952 auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step, 953 /*unordered=*/false, 954 /*finalCountValue=*/false, zero); 955 mlir::Value sumVal = loop.getRegionIterArgs()[0]; 956 957 // Begin loop code 958 mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint(); 959 builder.setInsertionPointToStart(loop.getBody()); 960 961 mlir::Type eleRef1Ty = builder.getRefType(arg1ElementTy); 962 mlir::Value index = loop.getInductionVar(); 963 mlir::Value addr1 = 964 builder.create<fir::CoordinateOp>(loc, eleRef1Ty, array1, index); 965 mlir::Value elem1 = builder.create<fir::LoadOp>(loc, addr1); 966 // Convert to the result type. 967 elem1 = builder.create<fir::ConvertOp>(loc, resultElementType, elem1); 968 969 mlir::Type eleRef2Ty = builder.getRefType(arg2ElementTy); 970 mlir::Value addr2 = 971 builder.create<fir::CoordinateOp>(loc, eleRef2Ty, array2, index); 972 mlir::Value elem2 = builder.create<fir::LoadOp>(loc, addr2); 973 // Convert to the result type. 974 elem2 = builder.create<fir::ConvertOp>(loc, resultElementType, elem2); 975 976 if (resultElementType.isa<mlir::FloatType>()) 977 sumVal = builder.create<mlir::arith::AddFOp>( 978 loc, builder.create<mlir::arith::MulFOp>(loc, elem1, elem2), sumVal); 979 else if (resultElementType.isa<mlir::IntegerType>()) 980 sumVal = builder.create<mlir::arith::AddIOp>( 981 loc, builder.create<mlir::arith::MulIOp>(loc, elem1, elem2), sumVal); 982 else 983 llvm_unreachable("unsupported type"); 984 985 builder.create<fir::ResultOp>(loc, sumVal); 986 // End of loop. 987 builder.restoreInsertionPoint(loopEndPt); 988 989 mlir::Value resultVal = loop.getResult(0); 990 builder.create<mlir::func::ReturnOp>(loc, resultVal); 991 } 992 993 mlir::func::FuncOp SimplifyIntrinsicsPass::getOrCreateFunction( 994 fir::FirOpBuilder &builder, const mlir::StringRef &baseName, 995 FunctionTypeGeneratorTy typeGenerator, 996 FunctionBodyGeneratorTy bodyGenerator) { 997 // WARNING: if the function generated here changes its signature 998 // or behavior (the body code), we should probably embed some 999 // versioning information into its name, otherwise libraries 1000 // statically linked with older versions of Flang may stop 1001 // working with object files created with newer Flang. 1002 // We can also avoid this by using internal linkage, but 1003 // this may increase the size of final executable/shared library. 1004 std::string replacementName = mlir::Twine{baseName, "_simplified"}.str(); 1005 mlir::ModuleOp module = builder.getModule(); 1006 // If we already have a function, just return it. 1007 mlir::func::FuncOp newFunc = 1008 fir::FirOpBuilder::getNamedFunction(module, replacementName); 1009 mlir::FunctionType fType = typeGenerator(builder); 1010 if (newFunc) { 1011 assert(newFunc.getFunctionType() == fType && 1012 "type mismatch for simplified function"); 1013 return newFunc; 1014 } 1015 1016 // Need to build the function! 1017 auto loc = mlir::UnknownLoc::get(builder.getContext()); 1018 newFunc = 1019 fir::FirOpBuilder::createFunction(loc, module, replacementName, fType); 1020 auto inlineLinkage = mlir::LLVM::linkage::Linkage::LinkonceODR; 1021 auto linkage = 1022 mlir::LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage); 1023 newFunc->setAttr("llvm.linkage", linkage); 1024 1025 // Save the position of the original call. 1026 mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint(); 1027 1028 bodyGenerator(builder, newFunc); 1029 1030 // Now back to where we were adding code earlier... 1031 builder.restoreInsertionPoint(insertPt); 1032 1033 return newFunc; 1034 } 1035 1036 void SimplifyIntrinsicsPass::simplifyIntOrFloatReduction( 1037 fir::CallOp call, const fir::KindMapping &kindMap, 1038 GenReductionBodyTy genBodyFunc) { 1039 // args[1] and args[2] are source filename and line number, ignored. 1040 mlir::Operation::operand_range args = call.getArgs(); 1041 1042 const mlir::Value &dim = args[3]; 1043 const mlir::Value &mask = args[4]; 1044 // dim is zero when it is absent, which is an implementation 1045 // detail in the runtime library. 1046 1047 bool dimAndMaskAbsent = isZero(dim) && isOperandAbsent(mask); 1048 unsigned rank = getDimCount(args[0]); 1049 1050 // Rank is set to 0 for assumed shape arrays, don't simplify 1051 // in these cases 1052 if (!(dimAndMaskAbsent && rank > 0)) 1053 return; 1054 1055 mlir::Type resultType = call.getResult(0).getType(); 1056 1057 if (!resultType.isa<mlir::FloatType>() && 1058 !resultType.isa<mlir::IntegerType>()) 1059 return; 1060 1061 auto argType = getArgElementType(args[0]); 1062 if (!argType) 1063 return; 1064 assert(*argType == resultType && 1065 "Argument/result types mismatch in reduction"); 1066 1067 mlir::SymbolRefAttr callee = call.getCalleeAttr(); 1068 1069 fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)}; 1070 std::string fmfString{builder.getFastMathFlagsString()}; 1071 std::string funcName = 1072 (mlir::Twine{callee.getLeafReference().getValue(), "x"} + 1073 mlir::Twine{rank} + 1074 // We must mangle the generated function name with FastMathFlags 1075 // value. 1076 (fmfString.empty() ? mlir::Twine{} : mlir::Twine{"_", fmfString})) 1077 .str(); 1078 1079 simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName, 1080 resultType); 1081 } 1082 1083 void SimplifyIntrinsicsPass::simplifyLogicalDim0Reduction( 1084 fir::CallOp call, const fir::KindMapping &kindMap, 1085 GenReductionBodyTy genBodyFunc) { 1086 1087 mlir::Operation::operand_range args = call.getArgs(); 1088 const mlir::Value &dim = args[3]; 1089 unsigned rank = getDimCount(args[0]); 1090 1091 // getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in 1092 // these cases. 1093 if (!(isZero(dim) && rank > 0)) 1094 return; 1095 1096 mlir::Value inputBox = findBoxDef(args[0]); 1097 1098 mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType()); 1099 mlir::SymbolRefAttr callee = call.getCalleeAttr(); 1100 1101 fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)}; 1102 1103 // Treating logicals as integers makes things a lot easier 1104 fir::LogicalType logicalType = {elementType.dyn_cast<fir::LogicalType>()}; 1105 fir::KindTy kind = logicalType.getFKind(); 1106 mlir::Type intElementType = builder.getIntegerType(kind * 8); 1107 1108 // Mangle kind into function name as it is not done by default 1109 std::string funcName = 1110 (mlir::Twine{callee.getLeafReference().getValue(), "Logical"} + 1111 mlir::Twine{kind} + "x" + mlir::Twine{rank}) 1112 .str(); 1113 1114 simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName, 1115 intElementType); 1116 } 1117 1118 void SimplifyIntrinsicsPass::simplifyLogicalDim1Reduction( 1119 fir::CallOp call, const fir::KindMapping &kindMap, 1120 GenReductionBodyTy genBodyFunc) { 1121 1122 mlir::Operation::operand_range args = call.getArgs(); 1123 mlir::SymbolRefAttr callee = call.getCalleeAttr(); 1124 mlir::StringRef funcNameBase = callee.getLeafReference().getValue(); 1125 unsigned rank = getDimCount(args[0]); 1126 1127 // getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in 1128 // these cases. We check for Dim at the end as some logical functions (Any, 1129 // All) set dim to 1 instead of 0 when the argument is not present. 1130 if (funcNameBase.ends_with("Dim") || !(rank > 0)) 1131 return; 1132 1133 mlir::Value inputBox = findBoxDef(args[0]); 1134 mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType()); 1135 1136 fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)}; 1137 1138 // Treating logicals as integers makes things a lot easier 1139 fir::LogicalType logicalType = {elementType.dyn_cast<fir::LogicalType>()}; 1140 fir::KindTy kind = logicalType.getFKind(); 1141 mlir::Type intElementType = builder.getIntegerType(kind * 8); 1142 1143 // Mangle kind into function name as it is not done by default 1144 std::string funcName = 1145 (mlir::Twine{callee.getLeafReference().getValue(), "Logical"} + 1146 mlir::Twine{kind} + "x" + mlir::Twine{rank}) 1147 .str(); 1148 1149 simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName, 1150 intElementType); 1151 } 1152 1153 void SimplifyIntrinsicsPass::simplifyMinlocReduction( 1154 fir::CallOp call, const fir::KindMapping &kindMap) { 1155 1156 mlir::Operation::operand_range args = call.getArgs(); 1157 1158 mlir::Value back = args[6]; 1159 if (isTrueOrNotConstant(back)) 1160 return; 1161 1162 mlir::Value mask = args[5]; 1163 mlir::Value maskDef = findMaskDef(mask); 1164 1165 // maskDef is set to NULL when the defining op is not one we accept. 1166 // This tends to be because it is a selectOp, in which case let the 1167 // runtime deal with it. 1168 if (maskDef == NULL) 1169 return; 1170 1171 mlir::SymbolRefAttr callee = call.getCalleeAttr(); 1172 mlir::StringRef funcNameBase = callee.getLeafReference().getValue(); 1173 unsigned rank = getDimCount(args[1]); 1174 if (funcNameBase.ends_with("Dim") || !(rank > 0)) 1175 return; 1176 1177 fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)}; 1178 mlir::Location loc = call.getLoc(); 1179 auto inputBox = findBoxDef(args[1]); 1180 mlir::Type inputType = hlfir::getFortranElementType(inputBox.getType()); 1181 1182 if (inputType.isa<fir::CharacterType>()) 1183 return; 1184 1185 int maskRank; 1186 fir::KindTy kind = 0; 1187 mlir::Type logicalElemType = builder.getI1Type(); 1188 if (isOperandAbsent(mask)) { 1189 maskRank = -1; 1190 } else { 1191 maskRank = getDimCount(mask); 1192 mlir::Type maskElemTy = hlfir::getFortranElementType(maskDef.getType()); 1193 fir::LogicalType logicalFirType = {maskElemTy.dyn_cast<fir::LogicalType>()}; 1194 kind = logicalFirType.getFKind(); 1195 // Convert fir::LogicalType to mlir::Type 1196 logicalElemType = logicalFirType; 1197 } 1198 1199 mlir::Operation *outputDef = args[0].getDefiningOp(); 1200 mlir::Value outputAlloc = outputDef->getOperand(0); 1201 mlir::Type outType = hlfir::getFortranElementType(outputAlloc.getType()); 1202 1203 std::string fmfString{builder.getFastMathFlagsString()}; 1204 std::string funcName = 1205 (mlir::Twine{callee.getLeafReference().getValue(), "x"} + 1206 mlir::Twine{rank} + 1207 (maskRank >= 0 1208 ? "_Logical" + mlir::Twine{kind} + "x" + mlir::Twine{maskRank} 1209 : "") + 1210 "_") 1211 .str(); 1212 1213 llvm::raw_string_ostream nameOS(funcName); 1214 outType.print(nameOS); 1215 nameOS << '_' << fmfString; 1216 1217 auto typeGenerator = [rank](fir::FirOpBuilder &builder) { 1218 return genRuntimeMinlocType(builder, rank); 1219 }; 1220 auto bodyGenerator = [rank, maskRank, inputType, logicalElemType, 1221 outType](fir::FirOpBuilder &builder, 1222 mlir::func::FuncOp &funcOp) { 1223 genRuntimeMinlocBody(builder, funcOp, rank, maskRank, inputType, 1224 logicalElemType, outType); 1225 }; 1226 1227 mlir::func::FuncOp newFunc = 1228 getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator); 1229 builder.create<fir::CallOp>(loc, newFunc, 1230 mlir::ValueRange{args[0], args[1], args[5]}); 1231 call->dropAllReferences(); 1232 call->erase(); 1233 } 1234 1235 void SimplifyIntrinsicsPass::simplifyReductionBody( 1236 fir::CallOp call, const fir::KindMapping &kindMap, 1237 GenReductionBodyTy genBodyFunc, fir::FirOpBuilder &builder, 1238 const mlir::StringRef &funcName, mlir::Type elementType) { 1239 1240 mlir::Operation::operand_range args = call.getArgs(); 1241 1242 mlir::Type resultType = call.getResult(0).getType(); 1243 unsigned rank = getDimCount(args[0]); 1244 1245 mlir::Location loc = call.getLoc(); 1246 1247 auto typeGenerator = [&resultType](fir::FirOpBuilder &builder) { 1248 return genNoneBoxType(builder, resultType); 1249 }; 1250 auto bodyGenerator = [&rank, &genBodyFunc, 1251 &elementType](fir::FirOpBuilder &builder, 1252 mlir::func::FuncOp &funcOp) { 1253 genBodyFunc(builder, funcOp, rank, elementType); 1254 }; 1255 // Mangle the function name with the rank value as "x<rank>". 1256 mlir::func::FuncOp newFunc = 1257 getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator); 1258 auto newCall = 1259 builder.create<fir::CallOp>(loc, newFunc, mlir::ValueRange{args[0]}); 1260 call->replaceAllUsesWith(newCall.getResults()); 1261 call->dropAllReferences(); 1262 call->erase(); 1263 } 1264 1265 void SimplifyIntrinsicsPass::runOnOperation() { 1266 LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n"); 1267 mlir::ModuleOp module = getOperation(); 1268 fir::KindMapping kindMap = fir::getKindMapping(module); 1269 module.walk([&](mlir::Operation *op) { 1270 if (auto call = mlir::dyn_cast<fir::CallOp>(op)) { 1271 if (mlir::SymbolRefAttr callee = call.getCalleeAttr()) { 1272 mlir::StringRef funcName = callee.getLeafReference().getValue(); 1273 // Replace call to runtime function for SUM when it has single 1274 // argument (no dim or mask argument) for 1D arrays with either 1275 // Integer4 or Real8 types. Other forms are ignored. 1276 // The new function is added to the module. 1277 // 1278 // Prototype for runtime call (from sum.cpp): 1279 // RTNAME(Sum<T>)(const Descriptor &x, const char *source, int line, 1280 // int dim, const Descriptor *mask) 1281 // 1282 if (funcName.startswith(RTNAME_STRING(Sum))) { 1283 simplifyIntOrFloatReduction(call, kindMap, genRuntimeSumBody); 1284 return; 1285 } 1286 if (funcName.startswith(RTNAME_STRING(DotProduct))) { 1287 LLVM_DEBUG(llvm::dbgs() << "Handling " << funcName << "\n"); 1288 LLVM_DEBUG(llvm::dbgs() << "Call operation:\n"; op->dump(); 1289 llvm::dbgs() << "\n"); 1290 mlir::Operation::operand_range args = call.getArgs(); 1291 const mlir::Value &v1 = args[0]; 1292 const mlir::Value &v2 = args[1]; 1293 mlir::Location loc = call.getLoc(); 1294 fir::FirOpBuilder builder{getSimplificationBuilder(op, kindMap)}; 1295 // Stringize the builder's FastMathFlags flags for mangling 1296 // the generated function name. 1297 std::string fmfString{builder.getFastMathFlagsString()}; 1298 1299 mlir::Type type = call.getResult(0).getType(); 1300 if (!type.isa<mlir::FloatType>() && !type.isa<mlir::IntegerType>()) 1301 return; 1302 1303 // Try to find the element types of the boxed arguments. 1304 auto arg1Type = getArgElementType(v1); 1305 auto arg2Type = getArgElementType(v2); 1306 1307 if (!arg1Type || !arg2Type) 1308 return; 1309 1310 // Support only floating point and integer arguments 1311 // now (e.g. logical is skipped here). 1312 if (!arg1Type->isa<mlir::FloatType>() && 1313 !arg1Type->isa<mlir::IntegerType>()) 1314 return; 1315 if (!arg2Type->isa<mlir::FloatType>() && 1316 !arg2Type->isa<mlir::IntegerType>()) 1317 return; 1318 1319 auto typeGenerator = [&type](fir::FirOpBuilder &builder) { 1320 return genRuntimeDotType(builder, type); 1321 }; 1322 auto bodyGenerator = [&arg1Type, 1323 &arg2Type](fir::FirOpBuilder &builder, 1324 mlir::func::FuncOp &funcOp) { 1325 genRuntimeDotBody(builder, funcOp, *arg1Type, *arg2Type); 1326 }; 1327 1328 // Suffix the function name with the element types 1329 // of the arguments. 1330 std::string typedFuncName(funcName); 1331 llvm::raw_string_ostream nameOS(typedFuncName); 1332 // We must mangle the generated function name with FastMathFlags 1333 // value. 1334 if (!fmfString.empty()) 1335 nameOS << '_' << fmfString; 1336 nameOS << '_'; 1337 arg1Type->print(nameOS); 1338 nameOS << '_'; 1339 arg2Type->print(nameOS); 1340 1341 mlir::func::FuncOp newFunc = getOrCreateFunction( 1342 builder, typedFuncName, typeGenerator, bodyGenerator); 1343 auto newCall = builder.create<fir::CallOp>(loc, newFunc, 1344 mlir::ValueRange{v1, v2}); 1345 call->replaceAllUsesWith(newCall.getResults()); 1346 call->dropAllReferences(); 1347 call->erase(); 1348 1349 LLVM_DEBUG(llvm::dbgs() << "Replaced with:\n"; newCall.dump(); 1350 llvm::dbgs() << "\n"); 1351 return; 1352 } 1353 if (funcName.startswith(RTNAME_STRING(Maxval))) { 1354 simplifyIntOrFloatReduction(call, kindMap, genRuntimeMaxvalBody); 1355 return; 1356 } 1357 if (funcName.startswith(RTNAME_STRING(Count))) { 1358 simplifyLogicalDim0Reduction(call, kindMap, genRuntimeCountBody); 1359 return; 1360 } 1361 if (funcName.startswith(RTNAME_STRING(Any))) { 1362 simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAnyBody); 1363 return; 1364 } 1365 if (funcName.endswith(RTNAME_STRING(All))) { 1366 simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAllBody); 1367 return; 1368 } 1369 if (funcName.startswith(RTNAME_STRING(Minloc))) { 1370 simplifyMinlocReduction(call, kindMap); 1371 return; 1372 } 1373 } 1374 } 1375 }); 1376 LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n"); 1377 } 1378 1379 void SimplifyIntrinsicsPass::getDependentDialects( 1380 mlir::DialectRegistry ®istry) const { 1381 // LLVM::LinkageAttr creation requires that LLVM dialect is loaded. 1382 registry.insert<mlir::LLVM::LLVMDialect>(); 1383 } 1384 std::unique_ptr<mlir::Pass> fir::createSimplifyIntrinsicsPass() { 1385 return std::make_unique<SimplifyIntrinsicsPass>(); 1386 } 1387