1 //===-- AffinePromotion.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation is a prototype that promote FIR loops operations 10 // to affine dialect operations. 11 // It is not part of the production pipeline and would need more work in order 12 // to be used in production. 13 // More information can be found in this presentation: 14 // https://slides.com/rajanwalia/deck 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "PassDetail.h" 19 #include "flang/Optimizer/Dialect/FIRDialect.h" 20 #include "flang/Optimizer/Dialect/FIROps.h" 21 #include "flang/Optimizer/Dialect/FIRType.h" 22 #include "flang/Optimizer/Transforms/Passes.h" 23 #include "mlir/Dialect/Affine/IR/AffineOps.h" 24 #include "mlir/Dialect/Func/IR/FuncOps.h" 25 #include "mlir/Dialect/SCF/IR/SCF.h" 26 #include "mlir/IR/BuiltinAttributes.h" 27 #include "mlir/IR/IntegerSet.h" 28 #include "mlir/IR/Visitors.h" 29 #include "mlir/Transforms/DialectConversion.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/Optional.h" 32 #include "llvm/Support/Debug.h" 33 34 #define DEBUG_TYPE "flang-affine-promotion" 35 36 using namespace fir; 37 using namespace mlir; 38 39 namespace { 40 struct AffineLoopAnalysis; 41 struct AffineIfAnalysis; 42 43 /// Stores analysis objects for all loops and if operations inside a function 44 /// these analysis are used twice, first for marking operations for rewrite and 45 /// second when doing rewrite. 46 struct AffineFunctionAnalysis { 47 explicit AffineFunctionAnalysis(mlir::func::FuncOp funcOp) { 48 for (fir::DoLoopOp op : funcOp.getOps<fir::DoLoopOp>()) 49 loopAnalysisMap.try_emplace(op, op, *this); 50 } 51 52 AffineLoopAnalysis getChildLoopAnalysis(fir::DoLoopOp op) const; 53 54 AffineIfAnalysis getChildIfAnalysis(fir::IfOp op) const; 55 56 llvm::DenseMap<mlir::Operation *, AffineLoopAnalysis> loopAnalysisMap; 57 llvm::DenseMap<mlir::Operation *, AffineIfAnalysis> ifAnalysisMap; 58 }; 59 } // namespace 60 61 static bool analyzeCoordinate(mlir::Value coordinate, mlir::Operation *op) { 62 if (auto blockArg = coordinate.dyn_cast<mlir::BlockArgument>()) { 63 if (isa<fir::DoLoopOp>(blockArg.getOwner()->getParentOp())) 64 return true; 65 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: array coordinate is not a " 66 "loop induction variable (owner not loopOp)\n"; 67 op->dump()); 68 return false; 69 } 70 LLVM_DEBUG( 71 llvm::dbgs() << "AffineLoopAnalysis: array coordinate is not a loop " 72 "induction variable (not a block argument)\n"; 73 op->dump(); coordinate.getDefiningOp()->dump()); 74 return false; 75 } 76 77 namespace { 78 struct AffineLoopAnalysis { 79 AffineLoopAnalysis() = default; 80 81 explicit AffineLoopAnalysis(fir::DoLoopOp op, AffineFunctionAnalysis &afa) 82 : legality(analyzeLoop(op, afa)) {} 83 84 bool canPromoteToAffine() { return legality; } 85 86 private: 87 bool analyzeBody(fir::DoLoopOp loopOperation, 88 AffineFunctionAnalysis &functionAnalysis) { 89 for (auto loopOp : loopOperation.getOps<fir::DoLoopOp>()) { 90 auto analysis = functionAnalysis.loopAnalysisMap 91 .try_emplace(loopOp, loopOp, functionAnalysis) 92 .first->getSecond(); 93 if (!analysis.canPromoteToAffine()) 94 return false; 95 } 96 for (auto ifOp : loopOperation.getOps<fir::IfOp>()) 97 functionAnalysis.ifAnalysisMap.try_emplace(ifOp, ifOp, functionAnalysis); 98 return true; 99 } 100 101 bool analyzeLoop(fir::DoLoopOp loopOperation, 102 AffineFunctionAnalysis &functionAnalysis) { 103 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: \n"; loopOperation.dump();); 104 return analyzeMemoryAccess(loopOperation) && 105 analyzeBody(loopOperation, functionAnalysis); 106 } 107 108 bool analyzeReference(mlir::Value memref, mlir::Operation *op) { 109 if (auto acoOp = memref.getDefiningOp<ArrayCoorOp>()) { 110 if (acoOp.getMemref().getType().isa<fir::BoxType>()) { 111 // TODO: Look if and how fir.box can be promoted to affine. 112 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: cannot promote loop, " 113 "array memory operation uses fir.box\n"; 114 op->dump(); acoOp.dump();); 115 return false; 116 } 117 bool canPromote = true; 118 for (auto coordinate : acoOp.getIndices()) 119 canPromote = canPromote && analyzeCoordinate(coordinate, op); 120 return canPromote; 121 } 122 if (auto coOp = memref.getDefiningOp<CoordinateOp>()) { 123 LLVM_DEBUG(llvm::dbgs() 124 << "AffineLoopAnalysis: cannot promote loop, " 125 "array memory operation uses non ArrayCoorOp\n"; 126 op->dump(); coOp.dump();); 127 128 return false; 129 } 130 LLVM_DEBUG(llvm::dbgs() << "AffineLoopAnalysis: unknown type of memory " 131 "reference for array load\n"; 132 op->dump();); 133 return false; 134 } 135 136 bool analyzeMemoryAccess(fir::DoLoopOp loopOperation) { 137 for (auto loadOp : loopOperation.getOps<fir::LoadOp>()) 138 if (!analyzeReference(loadOp.getMemref(), loadOp)) 139 return false; 140 for (auto storeOp : loopOperation.getOps<fir::StoreOp>()) 141 if (!analyzeReference(storeOp.getMemref(), storeOp)) 142 return false; 143 return true; 144 } 145 146 bool legality{}; 147 }; 148 } // namespace 149 150 AffineLoopAnalysis 151 AffineFunctionAnalysis::getChildLoopAnalysis(fir::DoLoopOp op) const { 152 auto it = loopAnalysisMap.find_as(op); 153 if (it == loopAnalysisMap.end()) { 154 LLVM_DEBUG(llvm::dbgs() << "AffineFunctionAnalysis: not computed for:\n"; 155 op.dump();); 156 op.emitError("error in fetching loop analysis in AffineFunctionAnalysis\n"); 157 return {}; 158 } 159 return it->getSecond(); 160 } 161 162 namespace { 163 /// Calculates arguments for creating an IntegerSet. symCount, dimCount are the 164 /// final number of symbols and dimensions of the affine map. Integer set if 165 /// possible is in Optional IntegerSet. 166 struct AffineIfCondition { 167 using MaybeAffineExpr = llvm::Optional<mlir::AffineExpr>; 168 169 explicit AffineIfCondition(mlir::Value fc) : firCondition(fc) { 170 if (auto condDef = firCondition.getDefiningOp<mlir::arith::CmpIOp>()) 171 fromCmpIOp(condDef); 172 } 173 174 bool hasIntegerSet() const { return integerSet.has_value(); } 175 176 mlir::IntegerSet getIntegerSet() const { 177 assert(hasIntegerSet() && "integer set is missing"); 178 return integerSet.value(); 179 } 180 181 mlir::ValueRange getAffineArgs() const { return affineArgs; } 182 183 private: 184 MaybeAffineExpr affineBinaryOp(mlir::AffineExprKind kind, mlir::Value lhs, 185 mlir::Value rhs) { 186 return affineBinaryOp(kind, toAffineExpr(lhs), toAffineExpr(rhs)); 187 } 188 189 MaybeAffineExpr affineBinaryOp(mlir::AffineExprKind kind, MaybeAffineExpr lhs, 190 MaybeAffineExpr rhs) { 191 if (lhs && rhs) 192 return mlir::getAffineBinaryOpExpr(kind, *lhs, *rhs); 193 return {}; 194 } 195 196 MaybeAffineExpr toAffineExpr(MaybeAffineExpr e) { return e; } 197 198 MaybeAffineExpr toAffineExpr(int64_t value) { 199 return {mlir::getAffineConstantExpr(value, firCondition.getContext())}; 200 } 201 202 /// Returns an AffineExpr if it is a result of operations that can be done 203 /// in an affine expression, this includes -, +, *, rem, constant. 204 /// block arguments of a loopOp or forOp are used as dimensions 205 MaybeAffineExpr toAffineExpr(mlir::Value value) { 206 if (auto op = value.getDefiningOp<mlir::arith::SubIOp>()) 207 return affineBinaryOp( 208 mlir::AffineExprKind::Add, toAffineExpr(op.getLhs()), 209 affineBinaryOp(mlir::AffineExprKind::Mul, toAffineExpr(op.getRhs()), 210 toAffineExpr(-1))); 211 if (auto op = value.getDefiningOp<mlir::arith::AddIOp>()) 212 return affineBinaryOp(mlir::AffineExprKind::Add, op.getLhs(), 213 op.getRhs()); 214 if (auto op = value.getDefiningOp<mlir::arith::MulIOp>()) 215 return affineBinaryOp(mlir::AffineExprKind::Mul, op.getLhs(), 216 op.getRhs()); 217 if (auto op = value.getDefiningOp<mlir::arith::RemUIOp>()) 218 return affineBinaryOp(mlir::AffineExprKind::Mod, op.getLhs(), 219 op.getRhs()); 220 if (auto op = value.getDefiningOp<mlir::arith::ConstantOp>()) 221 if (auto intConstant = op.getValue().dyn_cast<IntegerAttr>()) 222 return toAffineExpr(intConstant.getInt()); 223 if (auto blockArg = value.dyn_cast<mlir::BlockArgument>()) { 224 affineArgs.push_back(value); 225 if (isa<fir::DoLoopOp>(blockArg.getOwner()->getParentOp()) || 226 isa<mlir::AffineForOp>(blockArg.getOwner()->getParentOp())) 227 return {mlir::getAffineDimExpr(dimCount++, value.getContext())}; 228 return {mlir::getAffineSymbolExpr(symCount++, value.getContext())}; 229 } 230 return {}; 231 } 232 233 void fromCmpIOp(mlir::arith::CmpIOp cmpOp) { 234 auto lhsAffine = toAffineExpr(cmpOp.getLhs()); 235 auto rhsAffine = toAffineExpr(cmpOp.getRhs()); 236 if (!lhsAffine || !rhsAffine) 237 return; 238 auto constraintPair = 239 constraint(cmpOp.getPredicate(), *rhsAffine - *lhsAffine); 240 if (!constraintPair) 241 return; 242 integerSet = mlir::IntegerSet::get( 243 dimCount, symCount, {constraintPair->first}, {constraintPair->second}); 244 } 245 246 llvm::Optional<std::pair<AffineExpr, bool>> 247 constraint(mlir::arith::CmpIPredicate predicate, mlir::AffineExpr basic) { 248 switch (predicate) { 249 case mlir::arith::CmpIPredicate::slt: 250 return {std::make_pair(basic - 1, false)}; 251 case mlir::arith::CmpIPredicate::sle: 252 return {std::make_pair(basic, false)}; 253 case mlir::arith::CmpIPredicate::sgt: 254 return {std::make_pair(1 - basic, false)}; 255 case mlir::arith::CmpIPredicate::sge: 256 return {std::make_pair(0 - basic, false)}; 257 case mlir::arith::CmpIPredicate::eq: 258 return {std::make_pair(basic, true)}; 259 default: 260 return {}; 261 } 262 } 263 264 llvm::SmallVector<mlir::Value> affineArgs; 265 llvm::Optional<mlir::IntegerSet> integerSet; 266 mlir::Value firCondition; 267 unsigned symCount{0u}; 268 unsigned dimCount{0u}; 269 }; 270 } // namespace 271 272 namespace { 273 /// Analysis for affine promotion of fir.if 274 struct AffineIfAnalysis { 275 AffineIfAnalysis() = default; 276 277 explicit AffineIfAnalysis(fir::IfOp op, AffineFunctionAnalysis &afa) 278 : legality(analyzeIf(op, afa)) {} 279 280 bool canPromoteToAffine() { return legality; } 281 282 private: 283 bool analyzeIf(fir::IfOp op, AffineFunctionAnalysis &afa) { 284 if (op.getNumResults() == 0) 285 return true; 286 LLVM_DEBUG(llvm::dbgs() 287 << "AffineIfAnalysis: not promoting as op has results\n";); 288 return false; 289 } 290 291 bool legality{}; 292 }; 293 } // namespace 294 295 AffineIfAnalysis 296 AffineFunctionAnalysis::getChildIfAnalysis(fir::IfOp op) const { 297 auto it = ifAnalysisMap.find_as(op); 298 if (it == ifAnalysisMap.end()) { 299 LLVM_DEBUG(llvm::dbgs() << "AffineFunctionAnalysis: not computed for:\n"; 300 op.dump();); 301 op.emitError("error in fetching if analysis in AffineFunctionAnalysis\n"); 302 return {}; 303 } 304 return it->getSecond(); 305 } 306 307 /// AffineMap rewriting fir.array_coor operation to affine apply, 308 /// %dim = fir.gendim %lowerBound, %upperBound, %stride 309 /// %a = fir.array_coor %arr(%dim) %i 310 /// returning affineMap = affine_map<(i)[lb, ub, st] -> (i*st - lb)> 311 static mlir::AffineMap createArrayIndexAffineMap(unsigned dimensions, 312 MLIRContext *context) { 313 auto index = mlir::getAffineConstantExpr(0, context); 314 auto accuExtent = mlir::getAffineConstantExpr(1, context); 315 for (unsigned i = 0; i < dimensions; ++i) { 316 mlir::AffineExpr idx = mlir::getAffineDimExpr(i, context), 317 lowerBound = mlir::getAffineSymbolExpr(i * 3, context), 318 currentExtent = 319 mlir::getAffineSymbolExpr(i * 3 + 1, context), 320 stride = mlir::getAffineSymbolExpr(i * 3 + 2, context), 321 currentPart = (idx * stride - lowerBound) * accuExtent; 322 index = currentPart + index; 323 accuExtent = accuExtent * currentExtent; 324 } 325 return mlir::AffineMap::get(dimensions, dimensions * 3, index); 326 } 327 328 static Optional<int64_t> constantIntegerLike(const mlir::Value value) { 329 if (auto definition = value.getDefiningOp<mlir::arith::ConstantOp>()) 330 if (auto stepAttr = definition.getValue().dyn_cast<IntegerAttr>()) 331 return stepAttr.getInt(); 332 return {}; 333 } 334 335 static mlir::Type coordinateArrayElement(fir::ArrayCoorOp op) { 336 if (auto refType = 337 op.getMemref().getType().dyn_cast_or_null<ReferenceType>()) { 338 if (auto seqType = refType.getEleTy().dyn_cast_or_null<SequenceType>()) { 339 return seqType.getEleTy(); 340 } 341 } 342 op.emitError( 343 "AffineLoopConversion: array type in coordinate operation not valid\n"); 344 return mlir::Type(); 345 } 346 347 static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::ShapeOp shape, 348 SmallVectorImpl<mlir::Value> &indexArgs, 349 mlir::PatternRewriter &rewriter) { 350 auto one = rewriter.create<mlir::arith::ConstantOp>( 351 acoOp.getLoc(), rewriter.getIndexType(), rewriter.getIndexAttr(1)); 352 auto extents = shape.getExtents(); 353 for (auto i = extents.begin(); i < extents.end(); i++) { 354 indexArgs.push_back(one); 355 indexArgs.push_back(*i); 356 indexArgs.push_back(one); 357 } 358 } 359 360 static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::ShapeShiftOp shape, 361 SmallVectorImpl<mlir::Value> &indexArgs, 362 mlir::PatternRewriter &rewriter) { 363 auto one = rewriter.create<mlir::arith::ConstantOp>( 364 acoOp.getLoc(), rewriter.getIndexType(), rewriter.getIndexAttr(1)); 365 auto extents = shape.getPairs(); 366 for (auto i = extents.begin(); i < extents.end();) { 367 indexArgs.push_back(*i++); 368 indexArgs.push_back(*i++); 369 indexArgs.push_back(one); 370 } 371 } 372 373 static void populateIndexArgs(fir::ArrayCoorOp acoOp, fir::SliceOp slice, 374 SmallVectorImpl<mlir::Value> &indexArgs, 375 mlir::PatternRewriter &rewriter) { 376 auto extents = slice.getTriples(); 377 for (auto i = extents.begin(); i < extents.end();) { 378 indexArgs.push_back(*i++); 379 indexArgs.push_back(*i++); 380 indexArgs.push_back(*i++); 381 } 382 } 383 384 static void populateIndexArgs(fir::ArrayCoorOp acoOp, 385 SmallVectorImpl<mlir::Value> &indexArgs, 386 mlir::PatternRewriter &rewriter) { 387 if (auto shape = acoOp.getShape().getDefiningOp<ShapeOp>()) 388 return populateIndexArgs(acoOp, shape, indexArgs, rewriter); 389 if (auto shapeShift = acoOp.getShape().getDefiningOp<ShapeShiftOp>()) 390 return populateIndexArgs(acoOp, shapeShift, indexArgs, rewriter); 391 if (auto slice = acoOp.getShape().getDefiningOp<SliceOp>()) 392 return populateIndexArgs(acoOp, slice, indexArgs, rewriter); 393 } 394 395 /// Returns affine.apply and fir.convert from array_coor and gendims 396 static std::pair<mlir::AffineApplyOp, fir::ConvertOp> 397 createAffineOps(mlir::Value arrayRef, mlir::PatternRewriter &rewriter) { 398 auto acoOp = arrayRef.getDefiningOp<ArrayCoorOp>(); 399 auto affineMap = 400 createArrayIndexAffineMap(acoOp.getIndices().size(), acoOp.getContext()); 401 SmallVector<mlir::Value> indexArgs; 402 indexArgs.append(acoOp.getIndices().begin(), acoOp.getIndices().end()); 403 404 populateIndexArgs(acoOp, indexArgs, rewriter); 405 406 auto affineApply = rewriter.create<mlir::AffineApplyOp>(acoOp.getLoc(), 407 affineMap, indexArgs); 408 auto arrayElementType = coordinateArrayElement(acoOp); 409 auto newType = mlir::MemRefType::get({-1}, arrayElementType); 410 auto arrayConvert = rewriter.create<fir::ConvertOp>(acoOp.getLoc(), newType, 411 acoOp.getMemref()); 412 return std::make_pair(affineApply, arrayConvert); 413 } 414 415 static void rewriteLoad(fir::LoadOp loadOp, mlir::PatternRewriter &rewriter) { 416 rewriter.setInsertionPoint(loadOp); 417 auto affineOps = createAffineOps(loadOp.getMemref(), rewriter); 418 rewriter.replaceOpWithNewOp<mlir::AffineLoadOp>( 419 loadOp, affineOps.second.getResult(), affineOps.first.getResult()); 420 } 421 422 static void rewriteStore(fir::StoreOp storeOp, 423 mlir::PatternRewriter &rewriter) { 424 rewriter.setInsertionPoint(storeOp); 425 auto affineOps = createAffineOps(storeOp.getMemref(), rewriter); 426 rewriter.replaceOpWithNewOp<mlir::AffineStoreOp>(storeOp, storeOp.getValue(), 427 affineOps.second.getResult(), 428 affineOps.first.getResult()); 429 } 430 431 static void rewriteMemoryOps(Block *block, mlir::PatternRewriter &rewriter) { 432 for (auto &bodyOp : block->getOperations()) { 433 if (isa<fir::LoadOp>(bodyOp)) 434 rewriteLoad(cast<fir::LoadOp>(bodyOp), rewriter); 435 if (isa<fir::StoreOp>(bodyOp)) 436 rewriteStore(cast<fir::StoreOp>(bodyOp), rewriter); 437 } 438 } 439 440 namespace { 441 /// Convert `fir.do_loop` to `affine.for`, creates fir.convert for arrays to 442 /// memref, rewrites array_coor to affine.apply with affine_map. Rewrites fir 443 /// loads and stores to affine. 444 class AffineLoopConversion : public mlir::OpRewritePattern<fir::DoLoopOp> { 445 public: 446 using OpRewritePattern::OpRewritePattern; 447 AffineLoopConversion(mlir::MLIRContext *context, AffineFunctionAnalysis &afa) 448 : OpRewritePattern(context), functionAnalysis(afa) {} 449 450 mlir::LogicalResult 451 matchAndRewrite(fir::DoLoopOp loop, 452 mlir::PatternRewriter &rewriter) const override { 453 LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: rewriting loop:\n"; 454 loop.dump();); 455 LLVM_ATTRIBUTE_UNUSED auto loopAnalysis = 456 functionAnalysis.getChildLoopAnalysis(loop); 457 auto &loopOps = loop.getBody()->getOperations(); 458 auto loopAndIndex = createAffineFor(loop, rewriter); 459 auto affineFor = loopAndIndex.first; 460 auto inductionVar = loopAndIndex.second; 461 462 rewriter.startRootUpdate(affineFor.getOperation()); 463 affineFor.getBody()->getOperations().splice( 464 std::prev(affineFor.getBody()->end()), loopOps, loopOps.begin(), 465 std::prev(loopOps.end())); 466 rewriter.finalizeRootUpdate(affineFor.getOperation()); 467 468 rewriter.startRootUpdate(loop.getOperation()); 469 loop.getInductionVar().replaceAllUsesWith(inductionVar); 470 rewriter.finalizeRootUpdate(loop.getOperation()); 471 472 rewriteMemoryOps(affineFor.getBody(), rewriter); 473 474 LLVM_DEBUG(llvm::dbgs() << "AffineLoopConversion: loop rewriten to:\n"; 475 affineFor.dump();); 476 rewriter.replaceOp(loop, affineFor.getOperation()->getResults()); 477 return success(); 478 } 479 480 private: 481 std::pair<mlir::AffineForOp, mlir::Value> 482 createAffineFor(fir::DoLoopOp op, mlir::PatternRewriter &rewriter) const { 483 if (auto constantStep = constantIntegerLike(op.getStep())) 484 if (*constantStep > 0) 485 return positiveConstantStep(op, *constantStep, rewriter); 486 return genericBounds(op, rewriter); 487 } 488 489 // when step for the loop is positive compile time constant 490 std::pair<mlir::AffineForOp, mlir::Value> 491 positiveConstantStep(fir::DoLoopOp op, int64_t step, 492 mlir::PatternRewriter &rewriter) const { 493 auto affineFor = rewriter.create<mlir::AffineForOp>( 494 op.getLoc(), ValueRange(op.getLowerBound()), 495 mlir::AffineMap::get(0, 1, 496 mlir::getAffineSymbolExpr(0, op.getContext())), 497 ValueRange(op.getUpperBound()), 498 mlir::AffineMap::get(0, 1, 499 1 + mlir::getAffineSymbolExpr(0, op.getContext())), 500 step); 501 return std::make_pair(affineFor, affineFor.getInductionVar()); 502 } 503 504 std::pair<mlir::AffineForOp, mlir::Value> 505 genericBounds(fir::DoLoopOp op, mlir::PatternRewriter &rewriter) const { 506 auto lowerBound = mlir::getAffineSymbolExpr(0, op.getContext()); 507 auto upperBound = mlir::getAffineSymbolExpr(1, op.getContext()); 508 auto step = mlir::getAffineSymbolExpr(2, op.getContext()); 509 mlir::AffineMap upperBoundMap = mlir::AffineMap::get( 510 0, 3, (upperBound - lowerBound + step).floorDiv(step)); 511 auto genericUpperBound = rewriter.create<mlir::AffineApplyOp>( 512 op.getLoc(), upperBoundMap, 513 ValueRange({op.getLowerBound(), op.getUpperBound(), op.getStep()})); 514 auto actualIndexMap = mlir::AffineMap::get( 515 1, 2, 516 (lowerBound + mlir::getAffineDimExpr(0, op.getContext())) * 517 mlir::getAffineSymbolExpr(1, op.getContext())); 518 519 auto affineFor = rewriter.create<mlir::AffineForOp>( 520 op.getLoc(), ValueRange(), 521 AffineMap::getConstantMap(0, op.getContext()), 522 genericUpperBound.getResult(), 523 mlir::AffineMap::get(0, 1, 524 1 + mlir::getAffineSymbolExpr(0, op.getContext())), 525 1); 526 rewriter.setInsertionPointToStart(affineFor.getBody()); 527 auto actualIndex = rewriter.create<mlir::AffineApplyOp>( 528 op.getLoc(), actualIndexMap, 529 ValueRange( 530 {affineFor.getInductionVar(), op.getLowerBound(), op.getStep()})); 531 return std::make_pair(affineFor, actualIndex.getResult()); 532 } 533 534 AffineFunctionAnalysis &functionAnalysis; 535 }; 536 537 /// Convert `fir.if` to `affine.if`. 538 class AffineIfConversion : public mlir::OpRewritePattern<fir::IfOp> { 539 public: 540 using OpRewritePattern::OpRewritePattern; 541 AffineIfConversion(mlir::MLIRContext *context, AffineFunctionAnalysis &afa) 542 : OpRewritePattern(context) {} 543 mlir::LogicalResult 544 matchAndRewrite(fir::IfOp op, 545 mlir::PatternRewriter &rewriter) const override { 546 LLVM_DEBUG(llvm::dbgs() << "AffineIfConversion: rewriting if:\n"; 547 op.dump();); 548 auto &ifOps = op.getThenRegion().front().getOperations(); 549 auto affineCondition = AffineIfCondition(op.getCondition()); 550 if (!affineCondition.hasIntegerSet()) { 551 LLVM_DEBUG( 552 llvm::dbgs() 553 << "AffineIfConversion: couldn't calculate affine condition\n";); 554 return failure(); 555 } 556 auto affineIf = rewriter.create<mlir::AffineIfOp>( 557 op.getLoc(), affineCondition.getIntegerSet(), 558 affineCondition.getAffineArgs(), !op.getElseRegion().empty()); 559 rewriter.startRootUpdate(affineIf); 560 affineIf.getThenBlock()->getOperations().splice( 561 std::prev(affineIf.getThenBlock()->end()), ifOps, ifOps.begin(), 562 std::prev(ifOps.end())); 563 if (!op.getElseRegion().empty()) { 564 auto &otherOps = op.getElseRegion().front().getOperations(); 565 affineIf.getElseBlock()->getOperations().splice( 566 std::prev(affineIf.getElseBlock()->end()), otherOps, otherOps.begin(), 567 std::prev(otherOps.end())); 568 } 569 rewriter.finalizeRootUpdate(affineIf); 570 rewriteMemoryOps(affineIf.getBody(), rewriter); 571 572 LLVM_DEBUG(llvm::dbgs() << "AffineIfConversion: if converted to:\n"; 573 affineIf.dump();); 574 rewriter.replaceOp(op, affineIf.getOperation()->getResults()); 575 return success(); 576 } 577 }; 578 579 /// Promote fir.do_loop and fir.if to affine.for and affine.if, in the cases 580 /// where such a promotion is possible. 581 class AffineDialectPromotion 582 : public AffineDialectPromotionBase<AffineDialectPromotion> { 583 public: 584 void runOnOperation() override { 585 586 auto *context = &getContext(); 587 auto function = getOperation(); 588 markAllAnalysesPreserved(); 589 auto functionAnalysis = AffineFunctionAnalysis(function); 590 mlir::RewritePatternSet patterns(context); 591 patterns.insert<AffineIfConversion>(context, functionAnalysis); 592 patterns.insert<AffineLoopConversion>(context, functionAnalysis); 593 mlir::ConversionTarget target = *context; 594 target.addLegalDialect< 595 mlir::AffineDialect, FIROpsDialect, mlir::scf::SCFDialect, 596 mlir::arith::ArithmeticDialect, mlir::func::FuncDialect>(); 597 target.addDynamicallyLegalOp<IfOp>([&functionAnalysis](fir::IfOp op) { 598 return !(functionAnalysis.getChildIfAnalysis(op).canPromoteToAffine()); 599 }); 600 target.addDynamicallyLegalOp<DoLoopOp>([&functionAnalysis]( 601 fir::DoLoopOp op) { 602 return !(functionAnalysis.getChildLoopAnalysis(op).canPromoteToAffine()); 603 }); 604 605 LLVM_DEBUG(llvm::dbgs() 606 << "AffineDialectPromotion: running promotion on: \n"; 607 function.print(llvm::dbgs());); 608 // apply the patterns 609 if (mlir::failed(mlir::applyPartialConversion(function, target, 610 std::move(patterns)))) { 611 mlir::emitError(mlir::UnknownLoc::get(context), 612 "error in converting to affine dialect\n"); 613 signalPassFailure(); 614 } 615 } 616 }; 617 } // namespace 618 619 /// Convert FIR loop constructs to the Affine dialect 620 std::unique_ptr<mlir::Pass> fir::createPromoteToAffinePass() { 621 return std::make_unique<AffineDialectPromotion>(); 622 } 623