1 //===-- PFTBuilder.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Lower/PFTBuilder.h" 10 #include "flang/Lower/IntervalSet.h" 11 #include "flang/Lower/Support/Utils.h" 12 #include "flang/Parser/dump-parse-tree.h" 13 #include "flang/Parser/parse-tree-visitor.h" 14 #include "flang/Semantics/semantics.h" 15 #include "flang/Semantics/tools.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/IntervalMap.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/Support/Debug.h" 20 21 #define DEBUG_TYPE "flang-pft" 22 23 static llvm::cl::opt<bool> clDisableStructuredFir( 24 "no-structured-fir", llvm::cl::desc("disable generation of structured FIR"), 25 llvm::cl::init(false), llvm::cl::Hidden); 26 27 using namespace Fortran; 28 29 namespace { 30 /// Helpers to unveil parser node inside Fortran::parser::Statement<>, 31 /// Fortran::parser::UnlabeledStatement, and Fortran::common::Indirection<> 32 template <typename A> 33 struct RemoveIndirectionHelper { 34 using Type = A; 35 }; 36 template <typename A> 37 struct RemoveIndirectionHelper<common::Indirection<A>> { 38 using Type = A; 39 }; 40 41 template <typename A> 42 struct UnwrapStmt { 43 static constexpr bool isStmt{false}; 44 }; 45 template <typename A> 46 struct UnwrapStmt<parser::Statement<A>> { 47 static constexpr bool isStmt{true}; 48 using Type = typename RemoveIndirectionHelper<A>::Type; 49 constexpr UnwrapStmt(const parser::Statement<A> &a) 50 : unwrapped{removeIndirection(a.statement)}, position{a.source}, 51 label{a.label} {} 52 const Type &unwrapped; 53 parser::CharBlock position; 54 std::optional<parser::Label> label; 55 }; 56 template <typename A> 57 struct UnwrapStmt<parser::UnlabeledStatement<A>> { 58 static constexpr bool isStmt{true}; 59 using Type = typename RemoveIndirectionHelper<A>::Type; 60 constexpr UnwrapStmt(const parser::UnlabeledStatement<A> &a) 61 : unwrapped{removeIndirection(a.statement)}, position{a.source} {} 62 const Type &unwrapped; 63 parser::CharBlock position; 64 std::optional<parser::Label> label; 65 }; 66 67 #ifndef NDEBUG 68 void dumpScope(const semantics::Scope *scope, int depth = -1); 69 #endif 70 71 /// The instantiation of a parse tree visitor (Pre and Post) is extremely 72 /// expensive in terms of compile and link time. So one goal here is to 73 /// limit the bridge to one such instantiation. 74 class PFTBuilder { 75 public: 76 PFTBuilder(const semantics::SemanticsContext &semanticsContext) 77 : pgm{std::make_unique<lower::pft::Program>( 78 semanticsContext.GetCommonBlocks())}, 79 semanticsContext{semanticsContext} { 80 lower::pft::PftNode pftRoot{*pgm.get()}; 81 pftParentStack.push_back(pftRoot); 82 } 83 84 /// Get the result 85 std::unique_ptr<lower::pft::Program> result() { return std::move(pgm); } 86 87 template <typename A> 88 constexpr bool Pre(const A &a) { 89 if constexpr (lower::pft::isFunctionLike<A>) { 90 return enterFunction(a, semanticsContext); 91 } else if constexpr (lower::pft::isConstruct<A> || 92 lower::pft::isDirective<A>) { 93 return enterConstructOrDirective(a); 94 } else if constexpr (UnwrapStmt<A>::isStmt) { 95 using T = typename UnwrapStmt<A>::Type; 96 // Node "a" being visited has one of the following types: 97 // Statement<T>, Statement<Indirection<T>>, UnlabeledStatement<T>, 98 // or UnlabeledStatement<Indirection<T>> 99 auto stmt{UnwrapStmt<A>(a)}; 100 if constexpr (lower::pft::isConstructStmt<T> || 101 lower::pft::isOtherStmt<T>) { 102 addEvaluation(lower::pft::Evaluation{ 103 stmt.unwrapped, pftParentStack.back(), stmt.position, stmt.label}); 104 return false; 105 } else if constexpr (std::is_same_v<T, parser::ActionStmt>) { 106 return std::visit( 107 common::visitors{ 108 [&](const common::Indirection<parser::IfStmt> &x) { 109 convertIfStmt(x.value(), stmt.position, stmt.label); 110 return false; 111 }, 112 [&](const auto &x) { 113 addEvaluation(lower::pft::Evaluation{ 114 removeIndirection(x), pftParentStack.back(), 115 stmt.position, stmt.label}); 116 return true; 117 }, 118 }, 119 stmt.unwrapped.u); 120 } 121 } 122 return true; 123 } 124 125 /// Convert an IfStmt into an IfConstruct, retaining the IfStmt as the 126 /// first statement of the construct. 127 void convertIfStmt(const parser::IfStmt &ifStmt, parser::CharBlock position, 128 std::optional<parser::Label> label) { 129 // Generate a skeleton IfConstruct parse node. Its components are never 130 // referenced. The actual components are available via the IfConstruct 131 // evaluation's nested evaluationList, with the ifStmt in the position of 132 // the otherwise normal IfThenStmt. Caution: All other PFT nodes reference 133 // front end generated parse nodes; this is an exceptional case. 134 static const auto ifConstruct = parser::IfConstruct{ 135 parser::Statement<parser::IfThenStmt>{ 136 std::nullopt, 137 parser::IfThenStmt{ 138 std::optional<parser::Name>{}, 139 parser::ScalarLogicalExpr{parser::LogicalExpr{parser::Expr{ 140 parser::LiteralConstant{parser::LogicalLiteralConstant{ 141 false, std::optional<parser::KindParam>{}}}}}}}}, 142 parser::Block{}, std::list<parser::IfConstruct::ElseIfBlock>{}, 143 std::optional<parser::IfConstruct::ElseBlock>{}, 144 parser::Statement<parser::EndIfStmt>{std::nullopt, 145 parser::EndIfStmt{std::nullopt}}}; 146 enterConstructOrDirective(ifConstruct); 147 addEvaluation( 148 lower::pft::Evaluation{ifStmt, pftParentStack.back(), position, label}); 149 Pre(std::get<parser::UnlabeledStatement<parser::ActionStmt>>(ifStmt.t)); 150 static const auto endIfStmt = parser::EndIfStmt{std::nullopt}; 151 addEvaluation( 152 lower::pft::Evaluation{endIfStmt, pftParentStack.back(), {}, {}}); 153 exitConstructOrDirective(); 154 } 155 156 template <typename A> 157 constexpr void Post(const A &) { 158 if constexpr (lower::pft::isFunctionLike<A>) { 159 exitFunction(); 160 } else if constexpr (lower::pft::isConstruct<A> || 161 lower::pft::isDirective<A>) { 162 exitConstructOrDirective(); 163 } 164 } 165 166 // Module like 167 bool Pre(const parser::Module &node) { return enterModule(node); } 168 bool Pre(const parser::Submodule &node) { return enterModule(node); } 169 170 void Post(const parser::Module &) { exitModule(); } 171 void Post(const parser::Submodule &) { exitModule(); } 172 173 // Block data 174 bool Pre(const parser::BlockData &node) { 175 addUnit(lower::pft::BlockDataUnit{node, pftParentStack.back(), 176 semanticsContext}); 177 return false; 178 } 179 180 // Get rid of production wrapper 181 bool Pre(const parser::Statement<parser::ForallAssignmentStmt> &statement) { 182 addEvaluation(std::visit( 183 [&](const auto &x) { 184 return lower::pft::Evaluation{x, pftParentStack.back(), 185 statement.source, statement.label}; 186 }, 187 statement.statement.u)); 188 return false; 189 } 190 bool Pre(const parser::WhereBodyConstruct &whereBody) { 191 return std::visit( 192 common::visitors{ 193 [&](const parser::Statement<parser::AssignmentStmt> &stmt) { 194 // Not caught as other AssignmentStmt because it is not 195 // wrapped in a parser::ActionStmt. 196 addEvaluation(lower::pft::Evaluation{stmt.statement, 197 pftParentStack.back(), 198 stmt.source, stmt.label}); 199 return false; 200 }, 201 [&](const auto &) { return true; }, 202 }, 203 whereBody.u); 204 } 205 206 // CompilerDirective have special handling in case they are top level 207 // directives (i.e. they do not belong to a ProgramUnit). 208 bool Pre(const parser::CompilerDirective &directive) { 209 assert(pftParentStack.size() > 0 && 210 "At least the Program must be a parent"); 211 if (pftParentStack.back().isA<lower::pft::Program>()) { 212 addUnit( 213 lower::pft::CompilerDirectiveUnit(directive, pftParentStack.back())); 214 return false; 215 } 216 return enterConstructOrDirective(directive); 217 } 218 219 private: 220 /// Initialize a new module-like unit and make it the builder's focus. 221 template <typename A> 222 bool enterModule(const A &mod) { 223 Fortran::lower::pft::ModuleLikeUnit &unit = 224 addUnit(lower::pft::ModuleLikeUnit{mod, pftParentStack.back()}); 225 functionList = &unit.nestedFunctions; 226 pushEvaluationList(&unit.evaluationList); 227 pftParentStack.emplace_back(unit); 228 LLVM_DEBUG(dumpScope(&unit.getScope())); 229 return true; 230 } 231 232 void exitModule() { 233 if (!evaluationListStack.empty()) 234 popEvaluationList(); 235 pftParentStack.pop_back(); 236 resetFunctionState(); 237 } 238 239 /// Add the end statement Evaluation of a sub/program to the PFT. 240 /// There may be intervening internal subprogram definitions between 241 /// prior statements and this end statement. 242 void endFunctionBody() { 243 if (evaluationListStack.empty()) 244 return; 245 auto evaluationList = evaluationListStack.back(); 246 if (evaluationList->empty() || !evaluationList->back().isEndStmt()) { 247 const auto &endStmt = 248 pftParentStack.back().get<lower::pft::FunctionLikeUnit>().endStmt; 249 endStmt.visit(common::visitors{ 250 [&](const parser::Statement<parser::EndProgramStmt> &s) { 251 addEvaluation(lower::pft::Evaluation{ 252 s.statement, pftParentStack.back(), s.source, s.label}); 253 }, 254 [&](const parser::Statement<parser::EndFunctionStmt> &s) { 255 addEvaluation(lower::pft::Evaluation{ 256 s.statement, pftParentStack.back(), s.source, s.label}); 257 }, 258 [&](const parser::Statement<parser::EndSubroutineStmt> &s) { 259 addEvaluation(lower::pft::Evaluation{ 260 s.statement, pftParentStack.back(), s.source, s.label}); 261 }, 262 [&](const parser::Statement<parser::EndMpSubprogramStmt> &s) { 263 addEvaluation(lower::pft::Evaluation{ 264 s.statement, pftParentStack.back(), s.source, s.label}); 265 }, 266 [&](const auto &s) { 267 llvm::report_fatal_error("missing end statement or unexpected " 268 "begin statement reference"); 269 }, 270 }); 271 } 272 lastLexicalEvaluation = nullptr; 273 } 274 275 /// Pop the ModuleLikeUnit evaluationList when entering the first module 276 /// procedure. 277 void cleanModuleEvaluationList() { 278 if (evaluationListStack.empty()) 279 return; 280 if (pftParentStack.back().isA<lower::pft::ModuleLikeUnit>()) 281 popEvaluationList(); 282 } 283 284 /// Initialize a new function-like unit and make it the builder's focus. 285 template <typename A> 286 bool enterFunction(const A &func, 287 const semantics::SemanticsContext &semanticsContext) { 288 cleanModuleEvaluationList(); 289 endFunctionBody(); // enclosing host subprogram body, if any 290 Fortran::lower::pft::FunctionLikeUnit &unit = 291 addFunction(lower::pft::FunctionLikeUnit{func, pftParentStack.back(), 292 semanticsContext}); 293 labelEvaluationMap = &unit.labelEvaluationMap; 294 assignSymbolLabelMap = &unit.assignSymbolLabelMap; 295 functionList = &unit.nestedFunctions; 296 pushEvaluationList(&unit.evaluationList); 297 pftParentStack.emplace_back(unit); 298 LLVM_DEBUG(dumpScope(&unit.getScope())); 299 return true; 300 } 301 302 void exitFunction() { 303 rewriteIfGotos(); 304 endFunctionBody(); 305 analyzeBranches(nullptr, *evaluationListStack.back()); // add branch links 306 processEntryPoints(); 307 popEvaluationList(); 308 labelEvaluationMap = nullptr; 309 assignSymbolLabelMap = nullptr; 310 pftParentStack.pop_back(); 311 resetFunctionState(); 312 } 313 314 /// Initialize a new construct or directive and make it the builder's focus. 315 template <typename A> 316 bool enterConstructOrDirective(const A &constructOrDirective) { 317 Fortran::lower::pft::Evaluation &eval = addEvaluation( 318 lower::pft::Evaluation{constructOrDirective, pftParentStack.back()}); 319 eval.evaluationList.reset(new lower::pft::EvaluationList); 320 pushEvaluationList(eval.evaluationList.get()); 321 pftParentStack.emplace_back(eval); 322 constructAndDirectiveStack.emplace_back(&eval); 323 return true; 324 } 325 326 void exitConstructOrDirective() { 327 rewriteIfGotos(); 328 auto *eval = constructAndDirectiveStack.back(); 329 if (eval->isExecutableDirective()) { 330 // A construct at the end of an (unstructured) OpenACC or OpenMP 331 // construct region must have an exit target inside the region. 332 Fortran::lower::pft::EvaluationList &evaluationList = 333 *eval->evaluationList; 334 if (!evaluationList.empty() && evaluationList.back().isConstruct()) { 335 static const parser::ContinueStmt exitTarget{}; 336 addEvaluation( 337 lower::pft::Evaluation{exitTarget, pftParentStack.back(), {}, {}}); 338 } 339 } 340 popEvaluationList(); 341 pftParentStack.pop_back(); 342 constructAndDirectiveStack.pop_back(); 343 } 344 345 /// Reset function state to that of an enclosing host function. 346 void resetFunctionState() { 347 if (!pftParentStack.empty()) { 348 pftParentStack.back().visit(common::visitors{ 349 [&](lower::pft::FunctionLikeUnit &p) { 350 functionList = &p.nestedFunctions; 351 labelEvaluationMap = &p.labelEvaluationMap; 352 assignSymbolLabelMap = &p.assignSymbolLabelMap; 353 }, 354 [&](lower::pft::ModuleLikeUnit &p) { 355 functionList = &p.nestedFunctions; 356 }, 357 [&](auto &) { functionList = nullptr; }, 358 }); 359 } 360 } 361 362 template <typename A> 363 A &addUnit(A &&unit) { 364 pgm->getUnits().emplace_back(std::move(unit)); 365 return std::get<A>(pgm->getUnits().back()); 366 } 367 368 template <typename A> 369 A &addFunction(A &&func) { 370 if (functionList) { 371 functionList->emplace_back(std::move(func)); 372 return functionList->back(); 373 } 374 return addUnit(std::move(func)); 375 } 376 377 // ActionStmt has a couple of non-conforming cases, explicitly handled here. 378 // The other cases use an Indirection, which are discarded in the PFT. 379 lower::pft::Evaluation 380 makeEvaluationAction(const parser::ActionStmt &statement, 381 parser::CharBlock position, 382 std::optional<parser::Label> label) { 383 return std::visit( 384 common::visitors{ 385 [&](const auto &x) { 386 return lower::pft::Evaluation{ 387 removeIndirection(x), pftParentStack.back(), position, label}; 388 }, 389 }, 390 statement.u); 391 } 392 393 /// Append an Evaluation to the end of the current list. 394 lower::pft::Evaluation &addEvaluation(lower::pft::Evaluation &&eval) { 395 assert(functionList && "not in a function"); 396 assert(!evaluationListStack.empty() && "empty evaluation list stack"); 397 if (!constructAndDirectiveStack.empty()) 398 eval.parentConstruct = constructAndDirectiveStack.back(); 399 auto &entryPointList = eval.getOwningProcedure()->entryPointList; 400 evaluationListStack.back()->emplace_back(std::move(eval)); 401 lower::pft::Evaluation *p = &evaluationListStack.back()->back(); 402 if (p->isActionStmt() || p->isConstructStmt() || p->isEndStmt() || 403 p->isExecutableDirective()) { 404 if (lastLexicalEvaluation) { 405 lastLexicalEvaluation->lexicalSuccessor = p; 406 p->printIndex = lastLexicalEvaluation->printIndex + 1; 407 } else { 408 p->printIndex = 1; 409 } 410 lastLexicalEvaluation = p; 411 for (std::size_t entryIndex = entryPointList.size() - 1; 412 entryIndex && !entryPointList[entryIndex].second->lexicalSuccessor; 413 --entryIndex) 414 // Link to the entry's first executable statement. 415 entryPointList[entryIndex].second->lexicalSuccessor = p; 416 } else if (const auto *entryStmt = p->getIf<parser::EntryStmt>()) { 417 const semantics::Symbol *sym = 418 std::get<parser::Name>(entryStmt->t).symbol; 419 if (auto *details = sym->detailsIf<semantics::GenericDetails>()) 420 sym = details->specific(); 421 assert(sym->has<semantics::SubprogramDetails>() && 422 "entry must be a subprogram"); 423 entryPointList.push_back(std::pair{sym, p}); 424 } 425 if (p->label.has_value()) 426 labelEvaluationMap->try_emplace(*p->label, p); 427 return evaluationListStack.back()->back(); 428 } 429 430 /// push a new list on the stack of Evaluation lists 431 void pushEvaluationList(lower::pft::EvaluationList *evaluationList) { 432 assert(functionList && "not in a function"); 433 assert(evaluationList && evaluationList->empty() && 434 "evaluation list isn't correct"); 435 evaluationListStack.emplace_back(evaluationList); 436 } 437 438 /// pop the current list and return to the last Evaluation list 439 void popEvaluationList() { 440 assert(functionList && "not in a function"); 441 evaluationListStack.pop_back(); 442 } 443 444 /// Rewrite IfConstructs containing a GotoStmt or CycleStmt to eliminate an 445 /// unstructured branch and a trivial basic block. The pre-branch-analysis 446 /// code: 447 /// 448 /// <<IfConstruct>> 449 /// 1 If[Then]Stmt: if(cond) goto L 450 /// 2 GotoStmt: goto L 451 /// 3 EndIfStmt 452 /// <<End IfConstruct>> 453 /// 4 Statement: ... 454 /// 5 Statement: ... 455 /// 6 Statement: L ... 456 /// 457 /// becomes: 458 /// 459 /// <<IfConstruct>> 460 /// 1 If[Then]Stmt [negate]: if(cond) goto L 461 /// 4 Statement: ... 462 /// 5 Statement: ... 463 /// 3 EndIfStmt 464 /// <<End IfConstruct>> 465 /// 6 Statement: L ... 466 /// 467 /// The If[Then]Stmt condition is implicitly negated. It is not modified 468 /// in the PFT. It must be negated when generating FIR. The GotoStmt or 469 /// CycleStmt is deleted. 470 /// 471 /// The transformation is only valid for forward branch targets at the same 472 /// construct nesting level as the IfConstruct. The result must not violate 473 /// construct nesting requirements or contain an EntryStmt. The result 474 /// is subject to normal un/structured code classification analysis. The 475 /// result is allowed to violate the F18 Clause 11.1.2.1 prohibition on 476 /// transfer of control into the interior of a construct block, as that does 477 /// not compromise correct code generation. When two transformation 478 /// candidates overlap, at least one must be disallowed. In such cases, 479 /// the current heuristic favors simple code generation, which happens to 480 /// favor later candidates over earlier candidates. That choice is probably 481 /// not significant, but could be changed. 482 /// 483 void rewriteIfGotos() { 484 auto &evaluationList = *evaluationListStack.back(); 485 if (!evaluationList.size()) 486 return; 487 struct T { 488 lower::pft::EvaluationList::iterator ifConstructIt; 489 parser::Label ifTargetLabel; 490 bool isCycleStmt = false; 491 }; 492 llvm::SmallVector<T> ifCandidateStack; 493 const auto *doStmt = 494 evaluationList.begin()->getIf<parser::NonLabelDoStmt>(); 495 std::string doName = doStmt ? getConstructName(*doStmt) : std::string{}; 496 for (auto it = evaluationList.begin(), end = evaluationList.end(); 497 it != end; ++it) { 498 auto &eval = *it; 499 if (eval.isA<parser::EntryStmt>() || eval.isIntermediateConstructStmt()) { 500 ifCandidateStack.clear(); 501 continue; 502 } 503 auto firstStmt = [](lower::pft::Evaluation *e) { 504 return e->isConstruct() ? &*e->evaluationList->begin() : e; 505 }; 506 const Fortran::lower::pft::Evaluation &targetEval = *firstStmt(&eval); 507 bool targetEvalIsEndDoStmt = targetEval.isA<parser::EndDoStmt>(); 508 auto branchTargetMatch = [&]() { 509 if (const parser::Label targetLabel = 510 ifCandidateStack.back().ifTargetLabel) 511 if (targetLabel == *targetEval.label) 512 return true; // goto target match 513 if (targetEvalIsEndDoStmt && ifCandidateStack.back().isCycleStmt) 514 return true; // cycle target match 515 return false; 516 }; 517 if (targetEval.label || targetEvalIsEndDoStmt) { 518 while (!ifCandidateStack.empty() && branchTargetMatch()) { 519 lower::pft::EvaluationList::iterator ifConstructIt = 520 ifCandidateStack.back().ifConstructIt; 521 lower::pft::EvaluationList::iterator successorIt = 522 std::next(ifConstructIt); 523 if (successorIt != it) { 524 Fortran::lower::pft::EvaluationList &ifBodyList = 525 *ifConstructIt->evaluationList; 526 lower::pft::EvaluationList::iterator branchStmtIt = 527 std::next(ifBodyList.begin()); 528 assert((branchStmtIt->isA<parser::GotoStmt>() || 529 branchStmtIt->isA<parser::CycleStmt>()) && 530 "expected goto or cycle statement"); 531 ifBodyList.erase(branchStmtIt); 532 lower::pft::Evaluation &ifStmt = *ifBodyList.begin(); 533 ifStmt.negateCondition = true; 534 ifStmt.lexicalSuccessor = firstStmt(&*successorIt); 535 lower::pft::EvaluationList::iterator endIfStmtIt = 536 std::prev(ifBodyList.end()); 537 std::prev(it)->lexicalSuccessor = &*endIfStmtIt; 538 endIfStmtIt->lexicalSuccessor = firstStmt(&*it); 539 ifBodyList.splice(endIfStmtIt, evaluationList, successorIt, it); 540 for (; successorIt != endIfStmtIt; ++successorIt) 541 successorIt->parentConstruct = &*ifConstructIt; 542 } 543 ifCandidateStack.pop_back(); 544 } 545 } 546 if (eval.isA<parser::IfConstruct>() && eval.evaluationList->size() == 3) { 547 const auto bodyEval = std::next(eval.evaluationList->begin()); 548 if (const auto *gotoStmt = bodyEval->getIf<parser::GotoStmt>()) { 549 ifCandidateStack.push_back({it, gotoStmt->v}); 550 } else if (doStmt) { 551 if (const auto *cycleStmt = bodyEval->getIf<parser::CycleStmt>()) { 552 std::string cycleName = getConstructName(*cycleStmt); 553 if (cycleName.empty() || cycleName == doName) 554 // This candidate will match doStmt's EndDoStmt. 555 ifCandidateStack.push_back({it, {}, true}); 556 } 557 } 558 } 559 } 560 } 561 562 /// Mark IO statement ERR, EOR, and END specifier branch targets. 563 /// Mark an IO statement with an assigned format as unstructured. 564 template <typename A> 565 void analyzeIoBranches(lower::pft::Evaluation &eval, const A &stmt) { 566 auto analyzeFormatSpec = [&](const parser::Format &format) { 567 if (const auto *expr = std::get_if<parser::Expr>(&format.u)) { 568 if (semantics::ExprHasTypeCategory(*semantics::GetExpr(*expr), 569 common::TypeCategory::Integer)) 570 eval.isUnstructured = true; 571 } 572 }; 573 auto analyzeSpecs{[&](const auto &specList) { 574 for (const auto &spec : specList) { 575 std::visit( 576 Fortran::common::visitors{ 577 [&](const Fortran::parser::Format &format) { 578 analyzeFormatSpec(format); 579 }, 580 [&](const auto &label) { 581 using LabelNodes = 582 std::tuple<parser::ErrLabel, parser::EorLabel, 583 parser::EndLabel>; 584 if constexpr (common::HasMember<decltype(label), LabelNodes>) 585 markBranchTarget(eval, label.v); 586 }}, 587 spec.u); 588 } 589 }}; 590 591 using OtherIOStmts = 592 std::tuple<parser::BackspaceStmt, parser::CloseStmt, 593 parser::EndfileStmt, parser::FlushStmt, parser::OpenStmt, 594 parser::RewindStmt, parser::WaitStmt>; 595 596 if constexpr (std::is_same_v<A, parser::ReadStmt> || 597 std::is_same_v<A, parser::WriteStmt>) { 598 if (stmt.format) 599 analyzeFormatSpec(*stmt.format); 600 analyzeSpecs(stmt.controls); 601 } else if constexpr (std::is_same_v<A, parser::PrintStmt>) { 602 analyzeFormatSpec(std::get<parser::Format>(stmt.t)); 603 } else if constexpr (std::is_same_v<A, parser::InquireStmt>) { 604 if (const auto *specList = 605 std::get_if<std::list<parser::InquireSpec>>(&stmt.u)) 606 analyzeSpecs(*specList); 607 } else if constexpr (common::HasMember<A, OtherIOStmts>) { 608 analyzeSpecs(stmt.v); 609 } else { 610 // Always crash if this is instantiated 611 static_assert(!std::is_same_v<A, parser::ReadStmt>, 612 "Unexpected IO statement"); 613 } 614 } 615 616 /// Set the exit of a construct, possibly from multiple enclosing constructs. 617 void setConstructExit(lower::pft::Evaluation &eval) { 618 eval.constructExit = &eval.evaluationList->back().nonNopSuccessor(); 619 } 620 621 /// Mark the target of a branch as a new block. 622 void markBranchTarget(lower::pft::Evaluation &sourceEvaluation, 623 lower::pft::Evaluation &targetEvaluation) { 624 sourceEvaluation.isUnstructured = true; 625 if (!sourceEvaluation.controlSuccessor) 626 sourceEvaluation.controlSuccessor = &targetEvaluation; 627 targetEvaluation.isNewBlock = true; 628 // If this is a branch into the body of a construct (usually illegal, 629 // but allowed in some legacy cases), then the targetEvaluation and its 630 // ancestors must be marked as unstructured. 631 lower::pft::Evaluation *sourceConstruct = sourceEvaluation.parentConstruct; 632 lower::pft::Evaluation *targetConstruct = targetEvaluation.parentConstruct; 633 if (targetConstruct && 634 &targetConstruct->getFirstNestedEvaluation() == &targetEvaluation) 635 // A branch to an initial constructStmt is a branch to the construct. 636 targetConstruct = targetConstruct->parentConstruct; 637 if (targetConstruct) { 638 while (sourceConstruct && sourceConstruct != targetConstruct) 639 sourceConstruct = sourceConstruct->parentConstruct; 640 if (sourceConstruct != targetConstruct) // branch into a construct body 641 for (lower::pft::Evaluation *eval = &targetEvaluation; eval; 642 eval = eval->parentConstruct) { 643 eval->isUnstructured = true; 644 // If the branch is a backward branch into an already analyzed 645 // DO or IF construct, mark the construct exit as a new block. 646 // For a forward branch, the isUnstructured flag will cause this 647 // to be done when the construct is analyzed. 648 if (eval->constructExit && (eval->isA<parser::DoConstruct>() || 649 eval->isA<parser::IfConstruct>())) 650 eval->constructExit->isNewBlock = true; 651 } 652 } 653 } 654 void markBranchTarget(lower::pft::Evaluation &sourceEvaluation, 655 parser::Label label) { 656 assert(label && "missing branch target label"); 657 lower::pft::Evaluation *targetEvaluation{ 658 labelEvaluationMap->find(label)->second}; 659 assert(targetEvaluation && "missing branch target evaluation"); 660 markBranchTarget(sourceEvaluation, *targetEvaluation); 661 } 662 663 /// Mark the successor of an Evaluation as a new block. 664 void markSuccessorAsNewBlock(lower::pft::Evaluation &eval) { 665 eval.nonNopSuccessor().isNewBlock = true; 666 } 667 668 template <typename A> 669 inline std::string getConstructName(const A &stmt) { 670 using MaybeConstructNameWrapper = 671 std::tuple<parser::BlockStmt, parser::CycleStmt, parser::ElseStmt, 672 parser::ElsewhereStmt, parser::EndAssociateStmt, 673 parser::EndBlockStmt, parser::EndCriticalStmt, 674 parser::EndDoStmt, parser::EndForallStmt, parser::EndIfStmt, 675 parser::EndSelectStmt, parser::EndWhereStmt, 676 parser::ExitStmt>; 677 if constexpr (common::HasMember<A, MaybeConstructNameWrapper>) { 678 if (stmt.v) 679 return stmt.v->ToString(); 680 } 681 682 using MaybeConstructNameInTuple = std::tuple< 683 parser::AssociateStmt, parser::CaseStmt, parser::ChangeTeamStmt, 684 parser::CriticalStmt, parser::ElseIfStmt, parser::EndChangeTeamStmt, 685 parser::ForallConstructStmt, parser::IfThenStmt, parser::LabelDoStmt, 686 parser::MaskedElsewhereStmt, parser::NonLabelDoStmt, 687 parser::SelectCaseStmt, parser::SelectRankCaseStmt, 688 parser::TypeGuardStmt, parser::WhereConstructStmt>; 689 if constexpr (common::HasMember<A, MaybeConstructNameInTuple>) { 690 if (auto name = std::get<std::optional<parser::Name>>(stmt.t)) 691 return name->ToString(); 692 } 693 694 // These statements have multiple std::optional<parser::Name> elements. 695 if constexpr (std::is_same_v<A, parser::SelectRankStmt> || 696 std::is_same_v<A, parser::SelectTypeStmt>) { 697 if (auto name = std::get<0>(stmt.t)) 698 return name->ToString(); 699 } 700 701 return {}; 702 } 703 704 /// \p parentConstruct can be null if this statement is at the highest 705 /// level of a program. 706 template <typename A> 707 void insertConstructName(const A &stmt, 708 lower::pft::Evaluation *parentConstruct) { 709 std::string name = getConstructName(stmt); 710 if (!name.empty()) 711 constructNameMap[name] = parentConstruct; 712 } 713 714 /// Insert branch links for a list of Evaluations. 715 /// \p parentConstruct can be null if the evaluationList contains the 716 /// top-level statements of a program. 717 void analyzeBranches(lower::pft::Evaluation *parentConstruct, 718 std::list<lower::pft::Evaluation> &evaluationList) { 719 lower::pft::Evaluation *lastConstructStmtEvaluation{}; 720 for (auto &eval : evaluationList) { 721 eval.visit(common::visitors{ 722 // Action statements (except IO statements) 723 [&](const parser::CallStmt &s) { 724 // Look for alternate return specifiers. 725 const auto &args = 726 std::get<std::list<parser::ActualArgSpec>>(s.v.t); 727 for (const auto &arg : args) { 728 const auto &actual = std::get<parser::ActualArg>(arg.t); 729 if (const auto *altReturn = 730 std::get_if<parser::AltReturnSpec>(&actual.u)) 731 markBranchTarget(eval, altReturn->v); 732 } 733 }, 734 [&](const parser::CycleStmt &s) { 735 std::string name = getConstructName(s); 736 lower::pft::Evaluation *construct{name.empty() 737 ? doConstructStack.back() 738 : constructNameMap[name]}; 739 assert(construct && "missing CYCLE construct"); 740 markBranchTarget(eval, construct->evaluationList->back()); 741 }, 742 [&](const parser::ExitStmt &s) { 743 std::string name = getConstructName(s); 744 lower::pft::Evaluation *construct{name.empty() 745 ? doConstructStack.back() 746 : constructNameMap[name]}; 747 assert(construct && "missing EXIT construct"); 748 markBranchTarget(eval, *construct->constructExit); 749 }, 750 [&](const parser::FailImageStmt &) { 751 eval.isUnstructured = true; 752 if (eval.lexicalSuccessor->lexicalSuccessor) 753 markSuccessorAsNewBlock(eval); 754 }, 755 [&](const parser::GotoStmt &s) { markBranchTarget(eval, s.v); }, 756 [&](const parser::IfStmt &) { 757 eval.lexicalSuccessor->isNewBlock = true; 758 lastConstructStmtEvaluation = &eval; 759 }, 760 [&](const parser::ReturnStmt &) { 761 eval.isUnstructured = true; 762 if (eval.lexicalSuccessor->lexicalSuccessor) 763 markSuccessorAsNewBlock(eval); 764 }, 765 [&](const parser::StopStmt &) { 766 eval.isUnstructured = true; 767 if (eval.lexicalSuccessor->lexicalSuccessor) 768 markSuccessorAsNewBlock(eval); 769 }, 770 [&](const parser::ComputedGotoStmt &s) { 771 for (auto &label : std::get<std::list<parser::Label>>(s.t)) 772 markBranchTarget(eval, label); 773 }, 774 [&](const parser::ArithmeticIfStmt &s) { 775 markBranchTarget(eval, std::get<1>(s.t)); 776 markBranchTarget(eval, std::get<2>(s.t)); 777 markBranchTarget(eval, std::get<3>(s.t)); 778 }, 779 [&](const parser::AssignStmt &s) { // legacy label assignment 780 auto &label = std::get<parser::Label>(s.t); 781 const auto *sym = std::get<parser::Name>(s.t).symbol; 782 assert(sym && "missing AssignStmt symbol"); 783 lower::pft::Evaluation *target{ 784 labelEvaluationMap->find(label)->second}; 785 assert(target && "missing branch target evaluation"); 786 if (!target->isA<parser::FormatStmt>()) 787 target->isNewBlock = true; 788 auto iter = assignSymbolLabelMap->find(*sym); 789 if (iter == assignSymbolLabelMap->end()) { 790 lower::pft::LabelSet labelSet{}; 791 labelSet.insert(label); 792 assignSymbolLabelMap->try_emplace(*sym, labelSet); 793 } else { 794 iter->second.insert(label); 795 } 796 }, 797 [&](const parser::AssignedGotoStmt &) { 798 // Although this statement is a branch, it doesn't have any 799 // explicit control successors. So the code at the end of the 800 // loop won't mark the successor. Do that here. 801 eval.isUnstructured = true; 802 markSuccessorAsNewBlock(eval); 803 }, 804 805 // The first executable statement after an EntryStmt is a new block. 806 [&](const parser::EntryStmt &) { 807 eval.lexicalSuccessor->isNewBlock = true; 808 }, 809 810 // Construct statements 811 [&](const parser::AssociateStmt &s) { 812 insertConstructName(s, parentConstruct); 813 }, 814 [&](const parser::BlockStmt &s) { 815 insertConstructName(s, parentConstruct); 816 }, 817 [&](const parser::SelectCaseStmt &s) { 818 insertConstructName(s, parentConstruct); 819 lastConstructStmtEvaluation = &eval; 820 }, 821 [&](const parser::CaseStmt &) { 822 eval.isNewBlock = true; 823 lastConstructStmtEvaluation->controlSuccessor = &eval; 824 lastConstructStmtEvaluation = &eval; 825 }, 826 [&](const parser::EndSelectStmt &) { 827 eval.nonNopSuccessor().isNewBlock = true; 828 lastConstructStmtEvaluation = nullptr; 829 }, 830 [&](const parser::ChangeTeamStmt &s) { 831 insertConstructName(s, parentConstruct); 832 }, 833 [&](const parser::CriticalStmt &s) { 834 insertConstructName(s, parentConstruct); 835 }, 836 [&](const parser::NonLabelDoStmt &s) { 837 insertConstructName(s, parentConstruct); 838 doConstructStack.push_back(parentConstruct); 839 const auto &loopControl = 840 std::get<std::optional<parser::LoopControl>>(s.t); 841 if (!loopControl.has_value()) { 842 eval.isUnstructured = true; // infinite loop 843 return; 844 } 845 eval.nonNopSuccessor().isNewBlock = true; 846 eval.controlSuccessor = &evaluationList.back(); 847 if (const auto *bounds = 848 std::get_if<parser::LoopControl::Bounds>(&loopControl->u)) { 849 if (bounds->name.thing.symbol->GetType()->IsNumeric( 850 common::TypeCategory::Real)) 851 eval.isUnstructured = true; // real-valued loop control 852 } else if (std::get_if<parser::ScalarLogicalExpr>( 853 &loopControl->u)) { 854 eval.isUnstructured = true; // while loop 855 } 856 }, 857 [&](const parser::EndDoStmt &) { 858 lower::pft::Evaluation &doEval = evaluationList.front(); 859 eval.controlSuccessor = &doEval; 860 doConstructStack.pop_back(); 861 if (parentConstruct->lowerAsStructured()) 862 return; 863 // The loop is unstructured, which wasn't known for all cases when 864 // visiting the NonLabelDoStmt. 865 parentConstruct->constructExit->isNewBlock = true; 866 const auto &doStmt = *doEval.getIf<parser::NonLabelDoStmt>(); 867 const auto &loopControl = 868 std::get<std::optional<parser::LoopControl>>(doStmt.t); 869 if (!loopControl.has_value()) 870 return; // infinite loop 871 if (const auto *concurrent = 872 std::get_if<parser::LoopControl::Concurrent>( 873 &loopControl->u)) { 874 // If there is a mask, the EndDoStmt starts a new block. 875 const auto &header = 876 std::get<parser::ConcurrentHeader>(concurrent->t); 877 eval.isNewBlock |= 878 std::get<std::optional<parser::ScalarLogicalExpr>>(header.t) 879 .has_value(); 880 } 881 }, 882 [&](const parser::IfThenStmt &s) { 883 insertConstructName(s, parentConstruct); 884 eval.lexicalSuccessor->isNewBlock = true; 885 lastConstructStmtEvaluation = &eval; 886 }, 887 [&](const parser::ElseIfStmt &) { 888 eval.isNewBlock = true; 889 eval.lexicalSuccessor->isNewBlock = true; 890 lastConstructStmtEvaluation->controlSuccessor = &eval; 891 lastConstructStmtEvaluation = &eval; 892 }, 893 [&](const parser::ElseStmt &) { 894 eval.isNewBlock = true; 895 lastConstructStmtEvaluation->controlSuccessor = &eval; 896 lastConstructStmtEvaluation = nullptr; 897 }, 898 [&](const parser::EndIfStmt &) { 899 if (parentConstruct->lowerAsUnstructured()) 900 parentConstruct->constructExit->isNewBlock = true; 901 if (lastConstructStmtEvaluation) { 902 lastConstructStmtEvaluation->controlSuccessor = 903 parentConstruct->constructExit; 904 lastConstructStmtEvaluation = nullptr; 905 } 906 }, 907 [&](const parser::SelectRankStmt &s) { 908 insertConstructName(s, parentConstruct); 909 lastConstructStmtEvaluation = &eval; 910 }, 911 [&](const parser::SelectRankCaseStmt &) { 912 eval.isNewBlock = true; 913 lastConstructStmtEvaluation->controlSuccessor = &eval; 914 lastConstructStmtEvaluation = &eval; 915 }, 916 [&](const parser::SelectTypeStmt &s) { 917 insertConstructName(s, parentConstruct); 918 lastConstructStmtEvaluation = &eval; 919 }, 920 [&](const parser::TypeGuardStmt &) { 921 eval.isNewBlock = true; 922 lastConstructStmtEvaluation->controlSuccessor = &eval; 923 lastConstructStmtEvaluation = &eval; 924 }, 925 926 // Constructs - set (unstructured) construct exit targets 927 [&](const parser::AssociateConstruct &) { setConstructExit(eval); }, 928 [&](const parser::BlockConstruct &) { 929 // EndBlockStmt may have code. 930 eval.constructExit = &eval.evaluationList->back(); 931 }, 932 [&](const parser::CaseConstruct &) { 933 setConstructExit(eval); 934 eval.isUnstructured = true; 935 }, 936 [&](const parser::ChangeTeamConstruct &) { 937 // EndChangeTeamStmt may have code. 938 eval.constructExit = &eval.evaluationList->back(); 939 }, 940 [&](const parser::CriticalConstruct &) { 941 // EndCriticalStmt may have code. 942 eval.constructExit = &eval.evaluationList->back(); 943 }, 944 [&](const parser::DoConstruct &) { setConstructExit(eval); }, 945 [&](const parser::ForallConstruct &) { setConstructExit(eval); }, 946 [&](const parser::IfConstruct &) { setConstructExit(eval); }, 947 [&](const parser::SelectRankConstruct &) { 948 setConstructExit(eval); 949 eval.isUnstructured = true; 950 }, 951 [&](const parser::SelectTypeConstruct &) { 952 setConstructExit(eval); 953 eval.isUnstructured = true; 954 }, 955 [&](const parser::WhereConstruct &) { setConstructExit(eval); }, 956 957 // Default - Common analysis for IO statements; otherwise nop. 958 [&](const auto &stmt) { 959 using A = std::decay_t<decltype(stmt)>; 960 using IoStmts = std::tuple< 961 parser::BackspaceStmt, parser::CloseStmt, parser::EndfileStmt, 962 parser::FlushStmt, parser::InquireStmt, parser::OpenStmt, 963 parser::PrintStmt, parser::ReadStmt, parser::RewindStmt, 964 parser::WaitStmt, parser::WriteStmt>; 965 if constexpr (common::HasMember<A, IoStmts>) 966 analyzeIoBranches(eval, stmt); 967 }, 968 }); 969 970 // Analyze construct evaluations. 971 if (eval.evaluationList) 972 analyzeBranches(&eval, *eval.evaluationList); 973 974 // Set the successor of the last statement in an IF or SELECT block. 975 if (!eval.controlSuccessor && eval.lexicalSuccessor && 976 eval.lexicalSuccessor->isIntermediateConstructStmt()) { 977 eval.controlSuccessor = parentConstruct->constructExit; 978 eval.lexicalSuccessor->isNewBlock = true; 979 } 980 981 // Propagate isUnstructured flag to enclosing construct. 982 if (parentConstruct && eval.isUnstructured) 983 parentConstruct->isUnstructured = true; 984 985 // The successor of a branch starts a new block. 986 if (eval.controlSuccessor && eval.isActionStmt() && 987 eval.lowerAsUnstructured()) 988 markSuccessorAsNewBlock(eval); 989 } 990 } 991 992 /// Do processing specific to subprograms with multiple entry points. 993 void processEntryPoints() { 994 lower::pft::Evaluation *initialEval = &evaluationListStack.back()->front(); 995 lower::pft::FunctionLikeUnit *unit = initialEval->getOwningProcedure(); 996 int entryCount = unit->entryPointList.size(); 997 if (entryCount == 1) 998 return; 999 1000 // The first executable statement in the subprogram is preceded by a 1001 // branch to the entry point, so it starts a new block. 1002 if (initialEval->hasNestedEvaluations()) 1003 initialEval = &initialEval->getFirstNestedEvaluation(); 1004 else if (initialEval->isA<Fortran::parser::EntryStmt>()) 1005 initialEval = initialEval->lexicalSuccessor; 1006 initialEval->isNewBlock = true; 1007 1008 // All function entry points share a single result container. 1009 // Find one of the largest results. 1010 for (int entryIndex = 0; entryIndex < entryCount; ++entryIndex) { 1011 unit->setActiveEntry(entryIndex); 1012 const auto &details = 1013 unit->getSubprogramSymbol().get<semantics::SubprogramDetails>(); 1014 if (details.isFunction()) { 1015 const semantics::Symbol *resultSym = &details.result(); 1016 assert(resultSym && "missing result symbol"); 1017 if (!unit->primaryResult || 1018 unit->primaryResult->size() < resultSym->size()) 1019 unit->primaryResult = resultSym; 1020 } 1021 } 1022 unit->setActiveEntry(0); 1023 } 1024 1025 std::unique_ptr<lower::pft::Program> pgm; 1026 std::vector<lower::pft::PftNode> pftParentStack; 1027 const semantics::SemanticsContext &semanticsContext; 1028 1029 /// functionList points to the internal or module procedure function list 1030 /// of a FunctionLikeUnit or a ModuleLikeUnit. It may be null. 1031 std::list<lower::pft::FunctionLikeUnit> *functionList{}; 1032 std::vector<lower::pft::Evaluation *> constructAndDirectiveStack{}; 1033 std::vector<lower::pft::Evaluation *> doConstructStack{}; 1034 /// evaluationListStack is the current nested construct evaluationList state. 1035 std::vector<lower::pft::EvaluationList *> evaluationListStack{}; 1036 llvm::DenseMap<parser::Label, lower::pft::Evaluation *> *labelEvaluationMap{}; 1037 lower::pft::SymbolLabelMap *assignSymbolLabelMap{}; 1038 std::map<std::string, lower::pft::Evaluation *> constructNameMap{}; 1039 lower::pft::Evaluation *lastLexicalEvaluation{}; 1040 }; 1041 1042 #ifndef NDEBUG 1043 /// Dump all program scopes and symbols with addresses to disambiguate names. 1044 /// This is static, unchanging front end information, so dump it only once. 1045 void dumpScope(const semantics::Scope *scope, int depth) { 1046 static int initialVisitCounter = 0; 1047 if (depth < 0) { 1048 if (++initialVisitCounter != 1) 1049 return; 1050 while (!scope->IsGlobal()) 1051 scope = &scope->parent(); 1052 LLVM_DEBUG(llvm::dbgs() << "Full program scope information.\n" 1053 "Addresses in angle brackets are scopes. " 1054 "Unbracketed addresses are symbols.\n"); 1055 } 1056 static const std::string white{" ++"}; 1057 std::string w = white.substr(0, depth * 2); 1058 if (depth >= 0) { 1059 LLVM_DEBUG(llvm::dbgs() << w << "<" << scope << "> "); 1060 if (auto *sym{scope->symbol()}) { 1061 LLVM_DEBUG(llvm::dbgs() << sym << " " << *sym << "\n"); 1062 } else { 1063 if (scope->IsIntrinsicModules()) { 1064 LLVM_DEBUG(llvm::dbgs() << "IntrinsicModules (no detail)\n"); 1065 return; 1066 } 1067 LLVM_DEBUG(llvm::dbgs() << "[anonymous]\n"); 1068 } 1069 } 1070 for (const auto &scp : scope->children()) 1071 if (!scp.symbol()) 1072 dumpScope(&scp, depth + 1); 1073 for (auto iter = scope->begin(); iter != scope->end(); ++iter) { 1074 common::Reference<semantics::Symbol> sym = iter->second; 1075 if (auto scp = sym->scope()) 1076 dumpScope(scp, depth + 1); 1077 else 1078 LLVM_DEBUG(llvm::dbgs() << w + " " << &*sym << " " << *sym << "\n"); 1079 } 1080 } 1081 #endif // NDEBUG 1082 1083 class PFTDumper { 1084 public: 1085 void dumpPFT(llvm::raw_ostream &outputStream, 1086 const lower::pft::Program &pft) { 1087 for (auto &unit : pft.getUnits()) { 1088 std::visit(common::visitors{ 1089 [&](const lower::pft::BlockDataUnit &unit) { 1090 outputStream << getNodeIndex(unit) << " "; 1091 outputStream << "BlockData: "; 1092 outputStream << "\nEnd BlockData\n\n"; 1093 }, 1094 [&](const lower::pft::FunctionLikeUnit &func) { 1095 dumpFunctionLikeUnit(outputStream, func); 1096 }, 1097 [&](const lower::pft::ModuleLikeUnit &unit) { 1098 dumpModuleLikeUnit(outputStream, unit); 1099 }, 1100 [&](const lower::pft::CompilerDirectiveUnit &unit) { 1101 dumpCompilerDirectiveUnit(outputStream, unit); 1102 }, 1103 }, 1104 unit); 1105 } 1106 } 1107 1108 llvm::StringRef evaluationName(const lower::pft::Evaluation &eval) { 1109 return eval.visit([](const auto &parseTreeNode) { 1110 return parser::ParseTreeDumper::GetNodeName(parseTreeNode); 1111 }); 1112 } 1113 1114 void dumpEvaluation(llvm::raw_ostream &outputStream, 1115 const lower::pft::Evaluation &eval, 1116 const std::string &indentString, int indent = 1) { 1117 llvm::StringRef name = evaluationName(eval); 1118 llvm::StringRef newBlock = eval.isNewBlock ? "^" : ""; 1119 llvm::StringRef bang = eval.isUnstructured ? "!" : ""; 1120 outputStream << indentString; 1121 if (eval.printIndex) 1122 outputStream << eval.printIndex << ' '; 1123 if (eval.hasNestedEvaluations()) 1124 outputStream << "<<" << newBlock << name << bang << ">>"; 1125 else 1126 outputStream << newBlock << name << bang; 1127 if (eval.negateCondition) 1128 outputStream << " [negate]"; 1129 if (eval.constructExit) 1130 outputStream << " -> " << eval.constructExit->printIndex; 1131 else if (eval.controlSuccessor) 1132 outputStream << " -> " << eval.controlSuccessor->printIndex; 1133 else if (eval.isA<parser::EntryStmt>() && eval.lexicalSuccessor) 1134 outputStream << " -> " << eval.lexicalSuccessor->printIndex; 1135 if (!eval.position.empty()) 1136 outputStream << ": " << eval.position.ToString(); 1137 else if (auto *dir = eval.getIf<Fortran::parser::CompilerDirective>()) 1138 outputStream << ": !" << dir->source.ToString(); 1139 outputStream << '\n'; 1140 if (eval.hasNestedEvaluations()) { 1141 dumpEvaluationList(outputStream, *eval.evaluationList, indent + 1); 1142 outputStream << indentString << "<<End " << name << bang << ">>\n"; 1143 } 1144 } 1145 1146 void dumpEvaluation(llvm::raw_ostream &ostream, 1147 const lower::pft::Evaluation &eval) { 1148 dumpEvaluation(ostream, eval, ""); 1149 } 1150 1151 void dumpEvaluationList(llvm::raw_ostream &outputStream, 1152 const lower::pft::EvaluationList &evaluationList, 1153 int indent = 1) { 1154 static const auto white = " ++"s; 1155 auto indentString = white.substr(0, indent * 2); 1156 for (const lower::pft::Evaluation &eval : evaluationList) 1157 dumpEvaluation(outputStream, eval, indentString, indent); 1158 } 1159 1160 void 1161 dumpFunctionLikeUnit(llvm::raw_ostream &outputStream, 1162 const lower::pft::FunctionLikeUnit &functionLikeUnit) { 1163 outputStream << getNodeIndex(functionLikeUnit) << " "; 1164 llvm::StringRef unitKind; 1165 llvm::StringRef name; 1166 llvm::StringRef header; 1167 if (functionLikeUnit.beginStmt) { 1168 functionLikeUnit.beginStmt->visit(common::visitors{ 1169 [&](const parser::Statement<parser::ProgramStmt> &stmt) { 1170 unitKind = "Program"; 1171 name = toStringRef(stmt.statement.v.source); 1172 }, 1173 [&](const parser::Statement<parser::FunctionStmt> &stmt) { 1174 unitKind = "Function"; 1175 name = toStringRef(std::get<parser::Name>(stmt.statement.t).source); 1176 header = toStringRef(stmt.source); 1177 }, 1178 [&](const parser::Statement<parser::SubroutineStmt> &stmt) { 1179 unitKind = "Subroutine"; 1180 name = toStringRef(std::get<parser::Name>(stmt.statement.t).source); 1181 header = toStringRef(stmt.source); 1182 }, 1183 [&](const parser::Statement<parser::MpSubprogramStmt> &stmt) { 1184 unitKind = "MpSubprogram"; 1185 name = toStringRef(stmt.statement.v.source); 1186 header = toStringRef(stmt.source); 1187 }, 1188 [&](const auto &) { llvm_unreachable("not a valid begin stmt"); }, 1189 }); 1190 } else { 1191 unitKind = "Program"; 1192 name = "<anonymous>"; 1193 } 1194 outputStream << unitKind << ' ' << name; 1195 if (!header.empty()) 1196 outputStream << ": " << header; 1197 outputStream << '\n'; 1198 dumpEvaluationList(outputStream, functionLikeUnit.evaluationList); 1199 if (!functionLikeUnit.nestedFunctions.empty()) { 1200 outputStream << "\nContains\n"; 1201 for (const lower::pft::FunctionLikeUnit &func : 1202 functionLikeUnit.nestedFunctions) 1203 dumpFunctionLikeUnit(outputStream, func); 1204 outputStream << "End Contains\n"; 1205 } 1206 outputStream << "End " << unitKind << ' ' << name << "\n\n"; 1207 } 1208 1209 void dumpModuleLikeUnit(llvm::raw_ostream &outputStream, 1210 const lower::pft::ModuleLikeUnit &moduleLikeUnit) { 1211 outputStream << getNodeIndex(moduleLikeUnit) << " "; 1212 llvm::StringRef unitKind; 1213 llvm::StringRef name; 1214 llvm::StringRef header; 1215 moduleLikeUnit.beginStmt.visit(common::visitors{ 1216 [&](const parser::Statement<parser::ModuleStmt> &stmt) { 1217 unitKind = "Module"; 1218 name = toStringRef(stmt.statement.v.source); 1219 header = toStringRef(stmt.source); 1220 }, 1221 [&](const parser::Statement<parser::SubmoduleStmt> &stmt) { 1222 unitKind = "Submodule"; 1223 name = toStringRef(std::get<parser::Name>(stmt.statement.t).source); 1224 header = toStringRef(stmt.source); 1225 }, 1226 [&](const auto &) { 1227 llvm_unreachable("not a valid module begin stmt"); 1228 }, 1229 }); 1230 outputStream << unitKind << ' ' << name << ": " << header << '\n'; 1231 dumpEvaluationList(outputStream, moduleLikeUnit.evaluationList); 1232 outputStream << "Contains\n"; 1233 for (const lower::pft::FunctionLikeUnit &func : 1234 moduleLikeUnit.nestedFunctions) 1235 dumpFunctionLikeUnit(outputStream, func); 1236 outputStream << "End Contains\nEnd " << unitKind << ' ' << name << "\n\n"; 1237 } 1238 1239 // Top level directives 1240 void dumpCompilerDirectiveUnit( 1241 llvm::raw_ostream &outputStream, 1242 const lower::pft::CompilerDirectiveUnit &directive) { 1243 outputStream << getNodeIndex(directive) << " "; 1244 outputStream << "CompilerDirective: !"; 1245 outputStream << directive.get<Fortran::parser::CompilerDirective>() 1246 .source.ToString(); 1247 outputStream << "\nEnd CompilerDirective\n\n"; 1248 } 1249 1250 template <typename T> 1251 std::size_t getNodeIndex(const T &node) { 1252 auto addr = static_cast<const void *>(&node); 1253 auto it = nodeIndexes.find(addr); 1254 if (it != nodeIndexes.end()) 1255 return it->second; 1256 nodeIndexes.try_emplace(addr, nextIndex); 1257 return nextIndex++; 1258 } 1259 std::size_t getNodeIndex(const lower::pft::Program &) { return 0; } 1260 1261 private: 1262 llvm::DenseMap<const void *, std::size_t> nodeIndexes; 1263 std::size_t nextIndex{1}; // 0 is the root 1264 }; 1265 1266 } // namespace 1267 1268 template <typename A, typename T> 1269 static lower::pft::FunctionLikeUnit::FunctionStatement 1270 getFunctionStmt(const T &func) { 1271 lower::pft::FunctionLikeUnit::FunctionStatement result{ 1272 std::get<parser::Statement<A>>(func.t)}; 1273 return result; 1274 } 1275 1276 template <typename A, typename T> 1277 static lower::pft::ModuleLikeUnit::ModuleStatement getModuleStmt(const T &mod) { 1278 lower::pft::ModuleLikeUnit::ModuleStatement result{ 1279 std::get<parser::Statement<A>>(mod.t)}; 1280 return result; 1281 } 1282 1283 template <typename A> 1284 static const semantics::Symbol *getSymbol(A &beginStmt) { 1285 const auto *symbol = beginStmt.visit(common::visitors{ 1286 [](const parser::Statement<parser::ProgramStmt> &stmt) 1287 -> const semantics::Symbol * { return stmt.statement.v.symbol; }, 1288 [](const parser::Statement<parser::FunctionStmt> &stmt) 1289 -> const semantics::Symbol * { 1290 return std::get<parser::Name>(stmt.statement.t).symbol; 1291 }, 1292 [](const parser::Statement<parser::SubroutineStmt> &stmt) 1293 -> const semantics::Symbol * { 1294 return std::get<parser::Name>(stmt.statement.t).symbol; 1295 }, 1296 [](const parser::Statement<parser::MpSubprogramStmt> &stmt) 1297 -> const semantics::Symbol * { return stmt.statement.v.symbol; }, 1298 [](const parser::Statement<parser::ModuleStmt> &stmt) 1299 -> const semantics::Symbol * { return stmt.statement.v.symbol; }, 1300 [](const parser::Statement<parser::SubmoduleStmt> &stmt) 1301 -> const semantics::Symbol * { 1302 return std::get<parser::Name>(stmt.statement.t).symbol; 1303 }, 1304 [](const auto &) -> const semantics::Symbol * { 1305 llvm_unreachable("unknown FunctionLike or ModuleLike beginStmt"); 1306 return nullptr; 1307 }}); 1308 assert(symbol && "parser::Name must have resolved symbol"); 1309 return symbol; 1310 } 1311 1312 bool Fortran::lower::pft::Evaluation::lowerAsStructured() const { 1313 return !lowerAsUnstructured(); 1314 } 1315 1316 bool Fortran::lower::pft::Evaluation::lowerAsUnstructured() const { 1317 return isUnstructured || clDisableStructuredFir; 1318 } 1319 1320 lower::pft::FunctionLikeUnit * 1321 Fortran::lower::pft::Evaluation::getOwningProcedure() const { 1322 return parent.visit(common::visitors{ 1323 [](lower::pft::FunctionLikeUnit &c) { return &c; }, 1324 [&](lower::pft::Evaluation &c) { return c.getOwningProcedure(); }, 1325 [](auto &) -> lower::pft::FunctionLikeUnit * { return nullptr; }, 1326 }); 1327 } 1328 1329 bool Fortran::lower::definedInCommonBlock(const semantics::Symbol &sym) { 1330 return semantics::FindCommonBlockContaining(sym); 1331 } 1332 1333 /// Is the symbol `sym` a global? 1334 bool Fortran::lower::symbolIsGlobal(const semantics::Symbol &sym) { 1335 return semantics::IsSaved(sym) || lower::definedInCommonBlock(sym) || 1336 semantics::IsNamedConstant(sym); 1337 } 1338 1339 namespace { 1340 /// This helper class sorts the symbols in a scope such that a symbol will 1341 /// be placed after those it depends upon. Otherwise the sort is stable and 1342 /// preserves the order of the symbol table, which is sorted by name. This 1343 /// analysis may also be done for an individual symbol. 1344 struct SymbolDependenceAnalysis { 1345 explicit SymbolDependenceAnalysis(const semantics::Scope &scope) { 1346 analyzeEquivalenceSets(scope); 1347 for (const auto &iter : scope) 1348 analyze(iter.second.get()); 1349 finalize(); 1350 } 1351 explicit SymbolDependenceAnalysis(const semantics::Symbol &symbol) { 1352 analyzeEquivalenceSets(symbol.owner()); 1353 analyze(symbol); 1354 finalize(); 1355 } 1356 Fortran::lower::pft::VariableList getVariableList() { 1357 return std::move(layeredVarList[0]); 1358 } 1359 1360 private: 1361 /// Analyze the equivalence sets defined in \p scope, plus the equivalence 1362 /// sets in host module, submodule, and procedure scopes that may define 1363 /// symbols referenced in \p scope. This analysis excludes equivalence sets 1364 /// involving common blocks, which are handled elsewhere. 1365 void analyzeEquivalenceSets(const semantics::Scope &scope) { 1366 // FIXME: When this function is called on the scope of an internal 1367 // procedure whose parent contains an EQUIVALENCE set and the internal 1368 // procedure uses variables from that EQUIVALENCE set, we end up creating 1369 // an AggregateStore for those variables unnecessarily. 1370 1371 // A function defined in a [sub]module has no explicit USE of its ancestor 1372 // [sub]modules. Analyze those scopes here to accommodate references to 1373 // symbols in them. 1374 for (auto *scp = &scope.parent(); !scp->IsGlobal(); scp = &scp->parent()) 1375 if (scp->kind() == Fortran::semantics::Scope::Kind::Module) 1376 analyzeLocalEquivalenceSets(*scp); 1377 // Analyze local, USEd, and host procedure scope equivalences. 1378 for (const auto &iter : scope) { 1379 const semantics::Symbol &ultimate = iter.second.get().GetUltimate(); 1380 if (!skipSymbol(ultimate)) 1381 analyzeLocalEquivalenceSets(ultimate.owner()); 1382 } 1383 // Add all aggregate stores to the front of the variable list. 1384 adjustSize(1); 1385 // The copy in the loop matters, 'stores' will still be used. 1386 for (auto st : stores) 1387 layeredVarList[0].emplace_back(std::move(st)); 1388 } 1389 1390 /// Analyze the equivalence sets defined locally in \p scope that don't 1391 /// involve common blocks. 1392 void analyzeLocalEquivalenceSets(const semantics::Scope &scope) { 1393 if (scope.equivalenceSets().empty()) 1394 return; // no equivalence sets to analyze 1395 if (analyzedScopes.find(&scope) != analyzedScopes.end()) 1396 return; // equivalence sets already analyzed 1397 1398 analyzedScopes.insert(&scope); 1399 std::list<std::list<semantics::SymbolRef>> aggregates = 1400 Fortran::semantics::GetStorageAssociations(scope); 1401 for (std::list<semantics::SymbolRef> aggregate : aggregates) { 1402 const Fortran::semantics::Symbol *aggregateSym = nullptr; 1403 bool isGlobal = false; 1404 const semantics::Symbol &first = *aggregate.front(); 1405 // Exclude equivalence sets involving common blocks. 1406 // Those are handled in instantiateCommon. 1407 if (lower::definedInCommonBlock(first)) 1408 continue; 1409 std::size_t start = first.offset(); 1410 std::size_t end = first.offset() + first.size(); 1411 const Fortran::semantics::Symbol *namingSym = nullptr; 1412 for (semantics::SymbolRef symRef : aggregate) { 1413 const semantics::Symbol &sym = *symRef; 1414 aliasSyms.insert(&sym); 1415 if (sym.test(Fortran::semantics::Symbol::Flag::CompilerCreated)) { 1416 aggregateSym = &sym; 1417 } else { 1418 isGlobal |= lower::symbolIsGlobal(sym); 1419 start = std::min(sym.offset(), start); 1420 end = std::max(sym.offset() + sym.size(), end); 1421 if (!namingSym || (sym.name() < namingSym->name())) 1422 namingSym = &sym; 1423 } 1424 } 1425 assert(namingSym && "must contain at least one user symbol"); 1426 if (!aggregateSym) { 1427 stores.emplace_back( 1428 Fortran::lower::pft::Variable::Interval{start, end - start}, 1429 *namingSym, isGlobal); 1430 } else { 1431 stores.emplace_back(*aggregateSym, *namingSym, isGlobal); 1432 } 1433 } 1434 } 1435 1436 // Recursively visit each symbol to determine the height of its dependence on 1437 // other symbols. 1438 int analyze(const semantics::Symbol &sym) { 1439 auto done = seen.insert(&sym); 1440 if (!done.second) 1441 return 0; 1442 LLVM_DEBUG(llvm::dbgs() << "analyze symbol " << &sym << " in <" 1443 << &sym.owner() << ">: " << sym << '\n'); 1444 const bool isProcedurePointerOrDummy = 1445 semantics::IsProcedurePointer(sym) || 1446 (semantics::IsProcedure(sym) && IsDummy(sym)); 1447 // A procedure argument in a subprogram with multiple entry points might 1448 // need a layeredVarList entry to trigger creation of a symbol map entry 1449 // in some cases. Non-dummy procedures don't. 1450 if (semantics::IsProcedure(sym) && !isProcedurePointerOrDummy) 1451 return 0; 1452 semantics::Symbol ultimate = sym.GetUltimate(); 1453 if (const auto *details = 1454 ultimate.detailsIf<semantics::NamelistDetails>()) { 1455 // handle namelist group symbols 1456 for (const semantics::SymbolRef &s : details->objects()) 1457 analyze(s); 1458 return 0; 1459 } 1460 if (!ultimate.has<semantics::ObjectEntityDetails>() && 1461 !isProcedurePointerOrDummy) 1462 return 0; 1463 1464 if (sym.has<semantics::DerivedTypeDetails>()) 1465 llvm_unreachable("not yet implemented - derived type analysis"); 1466 1467 // Symbol must be something lowering will have to allocate. 1468 int depth = 0; 1469 // Analyze symbols appearing in object entity specification expressions. 1470 // This ensures these symbols will be instantiated before the current one. 1471 // This is not done for object entities that are host associated because 1472 // they must be instantiated from the value of the host symbols. 1473 // (The specification expressions should not be re-evaluated.) 1474 if (const auto *details = sym.detailsIf<semantics::ObjectEntityDetails>()) { 1475 const semantics::DeclTypeSpec *symTy = sym.GetType(); 1476 assert(symTy && "symbol must have a type"); 1477 // check CHARACTER's length 1478 if (symTy->category() == semantics::DeclTypeSpec::Character) 1479 if (auto e = symTy->characterTypeSpec().length().GetExplicit()) 1480 for (const auto &s : evaluate::CollectSymbols(*e)) 1481 depth = std::max(analyze(s) + 1, depth); 1482 1483 auto doExplicit = [&](const auto &bound) { 1484 if (bound.isExplicit()) { 1485 semantics::SomeExpr e{*bound.GetExplicit()}; 1486 for (const auto &s : evaluate::CollectSymbols(e)) 1487 depth = std::max(analyze(s) + 1, depth); 1488 } 1489 }; 1490 // Handle any symbols in array bound declarations. 1491 for (const semantics::ShapeSpec &subs : details->shape()) { 1492 doExplicit(subs.lbound()); 1493 doExplicit(subs.ubound()); 1494 } 1495 // Handle any symbols in coarray bound declarations. 1496 for (const semantics::ShapeSpec &subs : details->coshape()) { 1497 doExplicit(subs.lbound()); 1498 doExplicit(subs.ubound()); 1499 } 1500 // Handle any symbols in initialization expressions. 1501 if (auto e = details->init()) 1502 for (const auto &s : evaluate::CollectSymbols(*e)) 1503 depth = std::max(analyze(s) + 1, depth); 1504 } 1505 adjustSize(depth + 1); 1506 bool global = lower::symbolIsGlobal(sym); 1507 layeredVarList[depth].emplace_back(sym, global, depth); 1508 if (semantics::IsAllocatable(sym)) 1509 layeredVarList[depth].back().setHeapAlloc(); 1510 if (semantics::IsPointer(sym)) 1511 layeredVarList[depth].back().setPointer(); 1512 if (ultimate.attrs().test(semantics::Attr::TARGET)) 1513 layeredVarList[depth].back().setTarget(); 1514 1515 // If there are alias sets, then link the participating variables to their 1516 // aggregate stores when constructing the new variable on the list. 1517 if (lower::pft::Variable::AggregateStore *store = findStoreIfAlias(sym)) 1518 layeredVarList[depth].back().setAlias(store->getOffset()); 1519 return depth; 1520 } 1521 1522 /// Skip symbol in alias analysis. 1523 bool skipSymbol(const semantics::Symbol &sym) { 1524 // Common block equivalences are largely managed by the front end. 1525 // Compiler generated symbols ('.' names) cannot be equivalenced. 1526 // FIXME: Equivalence code generation may need to be revisited. 1527 return !sym.has<semantics::ObjectEntityDetails>() || 1528 lower::definedInCommonBlock(sym) || sym.name()[0] == '.'; 1529 } 1530 1531 // Make sure the table is of appropriate size. 1532 void adjustSize(std::size_t size) { 1533 if (layeredVarList.size() < size) 1534 layeredVarList.resize(size); 1535 } 1536 1537 Fortran::lower::pft::Variable::AggregateStore * 1538 findStoreIfAlias(const Fortran::evaluate::Symbol &sym) { 1539 const semantics::Symbol &ultimate = sym.GetUltimate(); 1540 const semantics::Scope &scope = ultimate.owner(); 1541 // Expect the total number of EQUIVALENCE sets to be small for a typical 1542 // Fortran program. 1543 if (aliasSyms.find(&ultimate) != aliasSyms.end()) { 1544 LLVM_DEBUG(llvm::dbgs() << "found aggregate containing " << &ultimate 1545 << " " << ultimate.name() << " in <" << &scope 1546 << "> " << scope.GetName() << '\n'); 1547 std::size_t off = ultimate.offset(); 1548 std::size_t symSize = ultimate.size(); 1549 for (lower::pft::Variable::AggregateStore &v : stores) { 1550 if (&v.getOwningScope() == &scope) { 1551 auto intervalOff = std::get<0>(v.interval); 1552 auto intervalSize = std::get<1>(v.interval); 1553 if (off >= intervalOff && off < intervalOff + intervalSize) 1554 return &v; 1555 // Zero sized symbol in zero sized equivalence. 1556 if (off == intervalOff && symSize == 0) 1557 return &v; 1558 } 1559 } 1560 // clang-format off 1561 LLVM_DEBUG( 1562 llvm::dbgs() << "looking for " << off << "\n{\n"; 1563 for (lower::pft::Variable::AggregateStore &v : stores) { 1564 llvm::dbgs() << " in scope: " << &v.getOwningScope() << "\n"; 1565 llvm::dbgs() << " i = [" << std::get<0>(v.interval) << ".." 1566 << std::get<0>(v.interval) + std::get<1>(v.interval) 1567 << "]\n"; 1568 } 1569 llvm::dbgs() << "}\n"); 1570 // clang-format on 1571 llvm_unreachable("the store must be present"); 1572 } 1573 return nullptr; 1574 } 1575 1576 /// Flatten the result VariableList. 1577 void finalize() { 1578 for (int i = 1, end = layeredVarList.size(); i < end; ++i) 1579 layeredVarList[0].insert(layeredVarList[0].end(), 1580 layeredVarList[i].begin(), 1581 layeredVarList[i].end()); 1582 } 1583 1584 llvm::SmallSet<const semantics::Symbol *, 32> seen; 1585 std::vector<Fortran::lower::pft::VariableList> layeredVarList; 1586 llvm::SmallSet<const semantics::Symbol *, 32> aliasSyms; 1587 /// Set of scopes that have been analyzed for aliases. 1588 llvm::SmallSet<const semantics::Scope *, 4> analyzedScopes; 1589 std::vector<Fortran::lower::pft::Variable::AggregateStore> stores; 1590 }; 1591 } // namespace 1592 1593 //===----------------------------------------------------------------------===// 1594 // FunctionLikeUnit implementation 1595 //===----------------------------------------------------------------------===// 1596 1597 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit( 1598 const parser::MainProgram &func, const lower::pft::PftNode &parent, 1599 const semantics::SemanticsContext &semanticsContext) 1600 : ProgramUnit{func, parent}, endStmt{ 1601 getFunctionStmt<parser::EndProgramStmt>( 1602 func)} { 1603 const auto &programStmt = 1604 std::get<std::optional<parser::Statement<parser::ProgramStmt>>>(func.t); 1605 if (programStmt.has_value()) { 1606 beginStmt = FunctionStatement(programStmt.value()); 1607 const semantics::Symbol *symbol = getSymbol(*beginStmt); 1608 entryPointList[0].first = symbol; 1609 scope = symbol->scope(); 1610 } else { 1611 scope = &semanticsContext.FindScope( 1612 std::get<parser::Statement<parser::EndProgramStmt>>(func.t).source); 1613 } 1614 } 1615 1616 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit( 1617 const parser::FunctionSubprogram &func, const lower::pft::PftNode &parent, 1618 const semantics::SemanticsContext &) 1619 : ProgramUnit{func, parent}, 1620 beginStmt{getFunctionStmt<parser::FunctionStmt>(func)}, 1621 endStmt{getFunctionStmt<parser::EndFunctionStmt>(func)} { 1622 const semantics::Symbol *symbol = getSymbol(*beginStmt); 1623 entryPointList[0].first = symbol; 1624 scope = symbol->scope(); 1625 } 1626 1627 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit( 1628 const parser::SubroutineSubprogram &func, const lower::pft::PftNode &parent, 1629 const semantics::SemanticsContext &) 1630 : ProgramUnit{func, parent}, 1631 beginStmt{getFunctionStmt<parser::SubroutineStmt>(func)}, 1632 endStmt{getFunctionStmt<parser::EndSubroutineStmt>(func)} { 1633 const semantics::Symbol *symbol = getSymbol(*beginStmt); 1634 entryPointList[0].first = symbol; 1635 scope = symbol->scope(); 1636 } 1637 1638 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit( 1639 const parser::SeparateModuleSubprogram &func, 1640 const lower::pft::PftNode &parent, const semantics::SemanticsContext &) 1641 : ProgramUnit{func, parent}, 1642 beginStmt{getFunctionStmt<parser::MpSubprogramStmt>(func)}, 1643 endStmt{getFunctionStmt<parser::EndMpSubprogramStmt>(func)} { 1644 const semantics::Symbol *symbol = getSymbol(*beginStmt); 1645 entryPointList[0].first = symbol; 1646 scope = symbol->scope(); 1647 } 1648 1649 Fortran::lower::HostAssociations & 1650 Fortran::lower::pft::FunctionLikeUnit::parentHostAssoc() { 1651 if (auto *par = parent.getIf<FunctionLikeUnit>()) 1652 return par->hostAssociations; 1653 llvm::report_fatal_error("parent is not a function"); 1654 } 1655 1656 bool Fortran::lower::pft::FunctionLikeUnit::parentHasTupleHostAssoc() { 1657 if (auto *par = parent.getIf<FunctionLikeUnit>()) 1658 return par->hostAssociations.hasTupleAssociations(); 1659 return false; 1660 } 1661 1662 bool Fortran::lower::pft::FunctionLikeUnit::parentHasHostAssoc() { 1663 if (auto *par = parent.getIf<FunctionLikeUnit>()) 1664 return !par->hostAssociations.empty(); 1665 return false; 1666 } 1667 1668 parser::CharBlock 1669 Fortran::lower::pft::FunctionLikeUnit::getStartingSourceLoc() const { 1670 if (beginStmt) 1671 return stmtSourceLoc(*beginStmt); 1672 if (!evaluationList.empty()) 1673 return evaluationList.front().position; 1674 return stmtSourceLoc(endStmt); 1675 } 1676 1677 //===----------------------------------------------------------------------===// 1678 // ModuleLikeUnit implementation 1679 //===----------------------------------------------------------------------===// 1680 1681 Fortran::lower::pft::ModuleLikeUnit::ModuleLikeUnit( 1682 const parser::Module &m, const lower::pft::PftNode &parent) 1683 : ProgramUnit{m, parent}, beginStmt{getModuleStmt<parser::ModuleStmt>(m)}, 1684 endStmt{getModuleStmt<parser::EndModuleStmt>(m)} {} 1685 1686 Fortran::lower::pft::ModuleLikeUnit::ModuleLikeUnit( 1687 const parser::Submodule &m, const lower::pft::PftNode &parent) 1688 : ProgramUnit{m, parent}, beginStmt{getModuleStmt<parser::SubmoduleStmt>( 1689 m)}, 1690 endStmt{getModuleStmt<parser::EndSubmoduleStmt>(m)} {} 1691 1692 parser::CharBlock 1693 Fortran::lower::pft::ModuleLikeUnit::getStartingSourceLoc() const { 1694 return stmtSourceLoc(beginStmt); 1695 } 1696 const Fortran::semantics::Scope & 1697 Fortran::lower::pft::ModuleLikeUnit::getScope() const { 1698 const Fortran::semantics::Symbol *symbol = getSymbol(beginStmt); 1699 assert(symbol && symbol->scope() && 1700 "Module statement must have a symbol with a scope"); 1701 return *symbol->scope(); 1702 } 1703 1704 //===----------------------------------------------------------------------===// 1705 // BlockDataUnit implementation 1706 //===----------------------------------------------------------------------===// 1707 1708 Fortran::lower::pft::BlockDataUnit::BlockDataUnit( 1709 const parser::BlockData &bd, const lower::pft::PftNode &parent, 1710 const semantics::SemanticsContext &semanticsContext) 1711 : ProgramUnit{bd, parent}, 1712 symTab{semanticsContext.FindScope( 1713 std::get<parser::Statement<parser::EndBlockDataStmt>>(bd.t).source)} { 1714 } 1715 1716 std::unique_ptr<lower::pft::Program> 1717 Fortran::lower::createPFT(const parser::Program &root, 1718 const semantics::SemanticsContext &semanticsContext) { 1719 PFTBuilder walker(semanticsContext); 1720 Walk(root, walker); 1721 return walker.result(); 1722 } 1723 1724 void Fortran::lower::dumpPFT(llvm::raw_ostream &outputStream, 1725 const lower::pft::Program &pft) { 1726 PFTDumper{}.dumpPFT(outputStream, pft); 1727 } 1728 1729 void Fortran::lower::pft::Program::dump() const { 1730 dumpPFT(llvm::errs(), *this); 1731 } 1732 1733 void Fortran::lower::pft::Evaluation::dump() const { 1734 PFTDumper{}.dumpEvaluation(llvm::errs(), *this); 1735 } 1736 1737 void Fortran::lower::pft::Variable::dump() const { 1738 if (auto *s = std::get_if<Nominal>(&var)) { 1739 llvm::errs() << s->symbol << " " << *s->symbol; 1740 llvm::errs() << " (depth: " << s->depth << ')'; 1741 if (s->global) 1742 llvm::errs() << ", global"; 1743 if (s->heapAlloc) 1744 llvm::errs() << ", allocatable"; 1745 if (s->pointer) 1746 llvm::errs() << ", pointer"; 1747 if (s->target) 1748 llvm::errs() << ", target"; 1749 if (s->aliaser) 1750 llvm::errs() << ", equivalence(" << s->aliasOffset << ')'; 1751 } else if (auto *s = std::get_if<AggregateStore>(&var)) { 1752 llvm::errs() << "interval[" << std::get<0>(s->interval) << ", " 1753 << std::get<1>(s->interval) << "]:"; 1754 llvm::errs() << " name: " << toStringRef(s->getNamingSymbol().name()); 1755 if (s->isGlobal()) 1756 llvm::errs() << ", global"; 1757 if (s->initialValueSymbol) 1758 llvm::errs() << ", initial value: {" << *s->initialValueSymbol << "}"; 1759 } else { 1760 llvm_unreachable("not a Variable"); 1761 } 1762 llvm::errs() << '\n'; 1763 } 1764 1765 void Fortran::lower::pft::dump(Fortran::lower::pft::VariableList &variableList, 1766 std::string s) { 1767 llvm::errs() << (s.empty() ? "VariableList" : s) << " " << &variableList 1768 << " size=" << variableList.size() << "\n"; 1769 for (auto var : variableList) { 1770 llvm::errs() << " "; 1771 var.dump(); 1772 } 1773 } 1774 1775 void Fortran::lower::pft::FunctionLikeUnit::dump() const { 1776 PFTDumper{}.dumpFunctionLikeUnit(llvm::errs(), *this); 1777 } 1778 1779 void Fortran::lower::pft::ModuleLikeUnit::dump() const { 1780 PFTDumper{}.dumpModuleLikeUnit(llvm::errs(), *this); 1781 } 1782 1783 /// The BlockDataUnit dump is just the associated symbol table. 1784 void Fortran::lower::pft::BlockDataUnit::dump() const { 1785 llvm::errs() << "block data {\n" << symTab << "\n}\n"; 1786 } 1787 1788 /// Find or create an ordered list of equivalences and variables in \p scope. 1789 /// The result is cached in \p map. 1790 const lower::pft::VariableList & 1791 lower::pft::getScopeVariableList(const semantics::Scope &scope, 1792 ScopeVariableListMap &map) { 1793 LLVM_DEBUG(llvm::dbgs() << "\ngetScopeVariableList of [sub]module scope <" 1794 << &scope << "> " << scope.GetName() << "\n"); 1795 auto iter = map.find(&scope); 1796 if (iter == map.end()) { 1797 SymbolDependenceAnalysis sda(scope); 1798 map.emplace(&scope, sda.getVariableList()); 1799 iter = map.find(&scope); 1800 } 1801 return iter->second; 1802 } 1803 1804 /// Create an ordered list of equivalences and variables in \p scope. 1805 /// The result is not cached. 1806 lower::pft::VariableList 1807 lower::pft::getScopeVariableList(const semantics::Scope &scope) { 1808 LLVM_DEBUG( 1809 llvm::dbgs() << "\ngetScopeVariableList of [sub]program|block scope <" 1810 << &scope << "> " << scope.GetName() << "\n"); 1811 SymbolDependenceAnalysis sda(scope); 1812 return sda.getVariableList(); 1813 } 1814 1815 /// Create an ordered list of equivalences and variables that \p symbol 1816 /// depends on (no caching). Include \p symbol at the end of the list. 1817 lower::pft::VariableList 1818 lower::pft::getDependentVariableList(const semantics::Symbol &symbol) { 1819 LLVM_DEBUG(llvm::dbgs() << "\ngetDependentVariableList of " << &symbol 1820 << " - " << symbol << "\n"); 1821 SymbolDependenceAnalysis sda(symbol); 1822 return sda.getVariableList(); 1823 } 1824 1825 namespace { 1826 /// Helper class to find all the symbols referenced in a FunctionLikeUnit. 1827 /// It defines a parse tree visitor doing a deep visit in all nodes with 1828 /// symbols (including evaluate::Expr). 1829 struct SymbolVisitor { 1830 template <typename A> 1831 bool Pre(const A &x) { 1832 if constexpr (Fortran::parser::HasTypedExpr<A>::value) 1833 // Some parse tree Expr may legitimately be un-analyzed after semantics 1834 // (for instance PDT component initial value in the PDT definition body). 1835 if (const auto *expr = Fortran::semantics::GetExpr(nullptr, x)) 1836 visitExpr(*expr); 1837 return true; 1838 } 1839 1840 bool Pre(const Fortran::parser::Name &name) { 1841 if (const semantics::Symbol *symbol = name.symbol) 1842 visitSymbol(*symbol); 1843 return false; 1844 } 1845 1846 template <typename T> 1847 void visitExpr(const Fortran::evaluate::Expr<T> &expr) { 1848 for (const semantics::Symbol &symbol : 1849 Fortran::evaluate::CollectSymbols(expr)) 1850 visitSymbol(symbol); 1851 } 1852 1853 void visitSymbol(const Fortran::semantics::Symbol &symbol) { 1854 callBack(symbol); 1855 // - Visit statement function body since it will be inlined in lowering. 1856 // - Visit function results specification expressions because allocations 1857 // happens on the caller side. 1858 if (const auto *subprogramDetails = 1859 symbol.detailsIf<Fortran::semantics::SubprogramDetails>()) { 1860 if (const auto &maybeExpr = subprogramDetails->stmtFunction()) { 1861 visitExpr(*maybeExpr); 1862 } else { 1863 if (subprogramDetails->isFunction()) { 1864 // Visit result extents expressions that are explicit. 1865 const Fortran::semantics::Symbol &result = 1866 subprogramDetails->result(); 1867 if (const auto *objectDetails = 1868 result.detailsIf<Fortran::semantics::ObjectEntityDetails>()) 1869 if (objectDetails->shape().IsExplicitShape()) 1870 for (const Fortran::semantics::ShapeSpec &shapeSpec : 1871 objectDetails->shape()) { 1872 visitExpr(shapeSpec.lbound().GetExplicit().value()); 1873 visitExpr(shapeSpec.ubound().GetExplicit().value()); 1874 } 1875 } 1876 } 1877 } 1878 if (Fortran::semantics::IsProcedure(symbol)) { 1879 if (auto dynamicType = Fortran::evaluate::DynamicType::From(symbol)) { 1880 // Visit result length specification expressions that are explicit. 1881 if (dynamicType->category() == 1882 Fortran::common::TypeCategory::Character) { 1883 if (std::optional<Fortran::evaluate::ExtentExpr> length = 1884 dynamicType->GetCharLength()) 1885 visitExpr(*length); 1886 } else if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec = 1887 Fortran::evaluate::GetDerivedTypeSpec(dynamicType)) { 1888 for (const auto &[_, param] : derivedTypeSpec->parameters()) 1889 if (const Fortran::semantics::MaybeIntExpr &expr = 1890 param.GetExplicit()) 1891 visitExpr(expr.value()); 1892 } 1893 } 1894 } 1895 } 1896 1897 template <typename A> 1898 constexpr void Post(const A &) {} 1899 1900 const std::function<void(const Fortran::semantics::Symbol &)> &callBack; 1901 }; 1902 } // namespace 1903 1904 void Fortran::lower::pft::visitAllSymbols( 1905 const Fortran::lower::pft::FunctionLikeUnit &funit, 1906 const std::function<void(const Fortran::semantics::Symbol &)> callBack) { 1907 SymbolVisitor visitor{callBack}; 1908 funit.visit([&](const auto &functionParserNode) { 1909 parser::Walk(functionParserNode, visitor); 1910 }); 1911 } 1912 1913 void Fortran::lower::pft::visitAllSymbols( 1914 const Fortran::lower::pft::Evaluation &eval, 1915 const std::function<void(const Fortran::semantics::Symbol &)> callBack) { 1916 SymbolVisitor visitor{callBack}; 1917 eval.visit([&](const auto &functionParserNode) { 1918 parser::Walk(functionParserNode, visitor); 1919 }); 1920 } 1921