1 //===-- PFTBuilder.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Lower/PFTBuilder.h" 10 #include "flang/Lower/IntervalSet.h" 11 #include "flang/Lower/Support/Utils.h" 12 #include "flang/Parser/dump-parse-tree.h" 13 #include "flang/Parser/parse-tree-visitor.h" 14 #include "flang/Semantics/semantics.h" 15 #include "flang/Semantics/tools.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/IntervalMap.h" 18 #include "llvm/Support/CommandLine.h" 19 #include "llvm/Support/Debug.h" 20 21 #define DEBUG_TYPE "flang-pft" 22 23 static llvm::cl::opt<bool> clDisableStructuredFir( 24 "no-structured-fir", llvm::cl::desc("disable generation of structured FIR"), 25 llvm::cl::init(false), llvm::cl::Hidden); 26 27 using namespace Fortran; 28 29 namespace { 30 /// Helpers to unveil parser node inside Fortran::parser::Statement<>, 31 /// Fortran::parser::UnlabeledStatement, and Fortran::common::Indirection<> 32 template <typename A> 33 struct RemoveIndirectionHelper { 34 using Type = A; 35 }; 36 template <typename A> 37 struct RemoveIndirectionHelper<common::Indirection<A>> { 38 using Type = A; 39 }; 40 41 template <typename A> 42 struct UnwrapStmt { 43 static constexpr bool isStmt{false}; 44 }; 45 template <typename A> 46 struct UnwrapStmt<parser::Statement<A>> { 47 static constexpr bool isStmt{true}; 48 using Type = typename RemoveIndirectionHelper<A>::Type; 49 constexpr UnwrapStmt(const parser::Statement<A> &a) 50 : unwrapped{removeIndirection(a.statement)}, position{a.source}, 51 label{a.label} {} 52 const Type &unwrapped; 53 parser::CharBlock position; 54 std::optional<parser::Label> label; 55 }; 56 template <typename A> 57 struct UnwrapStmt<parser::UnlabeledStatement<A>> { 58 static constexpr bool isStmt{true}; 59 using Type = typename RemoveIndirectionHelper<A>::Type; 60 constexpr UnwrapStmt(const parser::UnlabeledStatement<A> &a) 61 : unwrapped{removeIndirection(a.statement)}, position{a.source} {} 62 const Type &unwrapped; 63 parser::CharBlock position; 64 std::optional<parser::Label> label; 65 }; 66 67 #ifndef NDEBUG 68 void dumpScope(const semantics::Scope *scope, int depth = -1); 69 #endif 70 71 /// The instantiation of a parse tree visitor (Pre and Post) is extremely 72 /// expensive in terms of compile and link time. So one goal here is to 73 /// limit the bridge to one such instantiation. 74 class PFTBuilder { 75 public: 76 PFTBuilder(const semantics::SemanticsContext &semanticsContext) 77 : pgm{std::make_unique<lower::pft::Program>( 78 semanticsContext.GetCommonBlocks())}, 79 semanticsContext{semanticsContext} { 80 lower::pft::PftNode pftRoot{*pgm.get()}; 81 pftParentStack.push_back(pftRoot); 82 } 83 84 /// Get the result 85 std::unique_ptr<lower::pft::Program> result() { return std::move(pgm); } 86 87 template <typename A> 88 constexpr bool Pre(const A &a) { 89 if constexpr (lower::pft::isFunctionLike<A>) { 90 return enterFunction(a, semanticsContext); 91 } else if constexpr (lower::pft::isConstruct<A> || 92 lower::pft::isDirective<A>) { 93 return enterConstructOrDirective(a); 94 } else if constexpr (UnwrapStmt<A>::isStmt) { 95 using T = typename UnwrapStmt<A>::Type; 96 // Node "a" being visited has one of the following types: 97 // Statement<T>, Statement<Indirection<T>>, UnlabeledStatement<T>, 98 // or UnlabeledStatement<Indirection<T>> 99 auto stmt{UnwrapStmt<A>(a)}; 100 if constexpr (lower::pft::isConstructStmt<T> || 101 lower::pft::isOtherStmt<T>) { 102 addEvaluation(lower::pft::Evaluation{ 103 stmt.unwrapped, pftParentStack.back(), stmt.position, stmt.label}); 104 return false; 105 } else if constexpr (std::is_same_v<T, parser::ActionStmt>) { 106 return std::visit( 107 common::visitors{ 108 [&](const common::Indirection<parser::CallStmt> &x) { 109 addEvaluation(lower::pft::Evaluation{ 110 removeIndirection(x), pftParentStack.back(), 111 stmt.position, stmt.label}); 112 checkForFPEnvironmentCalls(x.value()); 113 return true; 114 }, 115 [&](const common::Indirection<parser::IfStmt> &x) { 116 convertIfStmt(x.value(), stmt.position, stmt.label); 117 return false; 118 }, 119 [&](const auto &x) { 120 addEvaluation(lower::pft::Evaluation{ 121 removeIndirection(x), pftParentStack.back(), 122 stmt.position, stmt.label}); 123 return true; 124 }, 125 }, 126 stmt.unwrapped.u); 127 } 128 } 129 return true; 130 } 131 132 /// Check for calls that could modify the floating point environment. 133 /// See F18 Clauses 134 /// - 17.1p3 (Overview of IEEE arithmetic support) 135 /// - 17.3p3 (The exceptions) 136 /// - 17.4p5 (The rounding modes) 137 /// - 17.6p1 (Halting) 138 void checkForFPEnvironmentCalls(const parser::CallStmt &callStmt) { 139 const auto *callName = std::get_if<parser::Name>( 140 &std::get<parser::ProcedureDesignator>(callStmt.call.t).u); 141 if (!callName) 142 return; 143 const Fortran::semantics::Symbol &procSym = callName->symbol->GetUltimate(); 144 if (!procSym.owner().IsModule()) 145 return; 146 const Fortran::semantics::Symbol &modSym = *procSym.owner().symbol(); 147 if (!modSym.attrs().test(Fortran::semantics::Attr::INTRINSIC)) 148 return; 149 // Modules IEEE_FEATURES, IEEE_EXCEPTIONS, and IEEE_ARITHMETIC get common 150 // declarations from several __fortran_... support module files. 151 llvm::StringRef modName = toStringRef(modSym.name()); 152 if (!modName.startswith("ieee_") && !modName.startswith("__fortran_")) 153 return; 154 llvm::StringRef procName = toStringRef(procSym.name()); 155 if (!procName.startswith("ieee_")) 156 return; 157 lower::pft::FunctionLikeUnit *proc = 158 evaluationListStack.back()->back().getOwningProcedure(); 159 proc->hasIeeeAccess = true; 160 if (!procName.startswith("ieee_set_")) 161 return; 162 if (procName.startswith("ieee_set_modes_") || 163 procName.startswith("ieee_set_status_")) 164 proc->mayModifyHaltingMode = proc->mayModifyRoundingMode = true; 165 else if (procName.startswith("ieee_set_halting_mode_")) 166 proc->mayModifyHaltingMode = true; 167 else if (procName.startswith("ieee_set_rounding_mode_")) 168 proc->mayModifyRoundingMode = true; 169 } 170 171 /// Convert an IfStmt into an IfConstruct, retaining the IfStmt as the 172 /// first statement of the construct. 173 void convertIfStmt(const parser::IfStmt &ifStmt, parser::CharBlock position, 174 std::optional<parser::Label> label) { 175 // Generate a skeleton IfConstruct parse node. Its components are never 176 // referenced. The actual components are available via the IfConstruct 177 // evaluation's nested evaluationList, with the ifStmt in the position of 178 // the otherwise normal IfThenStmt. Caution: All other PFT nodes reference 179 // front end generated parse nodes; this is an exceptional case. 180 static const auto ifConstruct = parser::IfConstruct{ 181 parser::Statement<parser::IfThenStmt>{ 182 std::nullopt, 183 parser::IfThenStmt{ 184 std::optional<parser::Name>{}, 185 parser::ScalarLogicalExpr{parser::LogicalExpr{parser::Expr{ 186 parser::LiteralConstant{parser::LogicalLiteralConstant{ 187 false, std::optional<parser::KindParam>{}}}}}}}}, 188 parser::Block{}, std::list<parser::IfConstruct::ElseIfBlock>{}, 189 std::optional<parser::IfConstruct::ElseBlock>{}, 190 parser::Statement<parser::EndIfStmt>{std::nullopt, 191 parser::EndIfStmt{std::nullopt}}}; 192 enterConstructOrDirective(ifConstruct); 193 addEvaluation( 194 lower::pft::Evaluation{ifStmt, pftParentStack.back(), position, label}); 195 Pre(std::get<parser::UnlabeledStatement<parser::ActionStmt>>(ifStmt.t)); 196 static const auto endIfStmt = parser::EndIfStmt{std::nullopt}; 197 addEvaluation( 198 lower::pft::Evaluation{endIfStmt, pftParentStack.back(), {}, {}}); 199 exitConstructOrDirective(); 200 } 201 202 template <typename A> 203 constexpr void Post(const A &) { 204 if constexpr (lower::pft::isFunctionLike<A>) { 205 exitFunction(); 206 } else if constexpr (lower::pft::isConstruct<A> || 207 lower::pft::isDirective<A>) { 208 exitConstructOrDirective(); 209 } 210 } 211 212 // Module like 213 bool Pre(const parser::Module &node) { return enterModule(node); } 214 bool Pre(const parser::Submodule &node) { return enterModule(node); } 215 216 void Post(const parser::Module &) { exitModule(); } 217 void Post(const parser::Submodule &) { exitModule(); } 218 219 // Block data 220 bool Pre(const parser::BlockData &node) { 221 addUnit(lower::pft::BlockDataUnit{node, pftParentStack.back(), 222 semanticsContext}); 223 return false; 224 } 225 226 // Get rid of production wrapper 227 bool Pre(const parser::Statement<parser::ForallAssignmentStmt> &statement) { 228 addEvaluation(std::visit( 229 [&](const auto &x) { 230 return lower::pft::Evaluation{x, pftParentStack.back(), 231 statement.source, statement.label}; 232 }, 233 statement.statement.u)); 234 return false; 235 } 236 bool Pre(const parser::WhereBodyConstruct &whereBody) { 237 return std::visit( 238 common::visitors{ 239 [&](const parser::Statement<parser::AssignmentStmt> &stmt) { 240 // Not caught as other AssignmentStmt because it is not 241 // wrapped in a parser::ActionStmt. 242 addEvaluation(lower::pft::Evaluation{stmt.statement, 243 pftParentStack.back(), 244 stmt.source, stmt.label}); 245 return false; 246 }, 247 [&](const auto &) { return true; }, 248 }, 249 whereBody.u); 250 } 251 252 // CompilerDirective have special handling in case they are top level 253 // directives (i.e. they do not belong to a ProgramUnit). 254 bool Pre(const parser::CompilerDirective &directive) { 255 assert(pftParentStack.size() > 0 && 256 "At least the Program must be a parent"); 257 if (pftParentStack.back().isA<lower::pft::Program>()) { 258 addUnit( 259 lower::pft::CompilerDirectiveUnit(directive, pftParentStack.back())); 260 return false; 261 } 262 return enterConstructOrDirective(directive); 263 } 264 265 bool Pre(const parser::OpenACCRoutineConstruct &directive) { 266 assert(pftParentStack.size() > 0 && 267 "At least the Program must be a parent"); 268 if (pftParentStack.back().isA<lower::pft::Program>()) { 269 addUnit( 270 lower::pft::OpenACCDirectiveUnit(directive, pftParentStack.back())); 271 return false; 272 } 273 return enterConstructOrDirective(directive); 274 } 275 276 private: 277 /// Initialize a new module-like unit and make it the builder's focus. 278 template <typename A> 279 bool enterModule(const A &mod) { 280 Fortran::lower::pft::ModuleLikeUnit &unit = 281 addUnit(lower::pft::ModuleLikeUnit{mod, pftParentStack.back()}); 282 functionList = &unit.nestedFunctions; 283 pushEvaluationList(&unit.evaluationList); 284 pftParentStack.emplace_back(unit); 285 LLVM_DEBUG(dumpScope(&unit.getScope())); 286 return true; 287 } 288 289 void exitModule() { 290 if (!evaluationListStack.empty()) 291 popEvaluationList(); 292 pftParentStack.pop_back(); 293 resetFunctionState(); 294 } 295 296 /// Add the end statement Evaluation of a sub/program to the PFT. 297 /// There may be intervening internal subprogram definitions between 298 /// prior statements and this end statement. 299 void endFunctionBody() { 300 if (evaluationListStack.empty()) 301 return; 302 auto evaluationList = evaluationListStack.back(); 303 if (evaluationList->empty() || !evaluationList->back().isEndStmt()) { 304 const auto &endStmt = 305 pftParentStack.back().get<lower::pft::FunctionLikeUnit>().endStmt; 306 endStmt.visit(common::visitors{ 307 [&](const parser::Statement<parser::EndProgramStmt> &s) { 308 addEvaluation(lower::pft::Evaluation{ 309 s.statement, pftParentStack.back(), s.source, s.label}); 310 }, 311 [&](const parser::Statement<parser::EndFunctionStmt> &s) { 312 addEvaluation(lower::pft::Evaluation{ 313 s.statement, pftParentStack.back(), s.source, s.label}); 314 }, 315 [&](const parser::Statement<parser::EndSubroutineStmt> &s) { 316 addEvaluation(lower::pft::Evaluation{ 317 s.statement, pftParentStack.back(), s.source, s.label}); 318 }, 319 [&](const parser::Statement<parser::EndMpSubprogramStmt> &s) { 320 addEvaluation(lower::pft::Evaluation{ 321 s.statement, pftParentStack.back(), s.source, s.label}); 322 }, 323 [&](const auto &s) { 324 llvm::report_fatal_error("missing end statement or unexpected " 325 "begin statement reference"); 326 }, 327 }); 328 } 329 lastLexicalEvaluation = nullptr; 330 } 331 332 /// Pop the ModuleLikeUnit evaluationList when entering the first module 333 /// procedure. 334 void cleanModuleEvaluationList() { 335 if (evaluationListStack.empty()) 336 return; 337 if (pftParentStack.back().isA<lower::pft::ModuleLikeUnit>()) 338 popEvaluationList(); 339 } 340 341 /// Initialize a new function-like unit and make it the builder's focus. 342 template <typename A> 343 bool enterFunction(const A &func, 344 const semantics::SemanticsContext &semanticsContext) { 345 cleanModuleEvaluationList(); 346 endFunctionBody(); // enclosing host subprogram body, if any 347 Fortran::lower::pft::FunctionLikeUnit &unit = 348 addFunction(lower::pft::FunctionLikeUnit{func, pftParentStack.back(), 349 semanticsContext}); 350 labelEvaluationMap = &unit.labelEvaluationMap; 351 assignSymbolLabelMap = &unit.assignSymbolLabelMap; 352 functionList = &unit.nestedFunctions; 353 pushEvaluationList(&unit.evaluationList); 354 pftParentStack.emplace_back(unit); 355 LLVM_DEBUG(dumpScope(&unit.getScope())); 356 return true; 357 } 358 359 void exitFunction() { 360 rewriteIfGotos(); 361 endFunctionBody(); 362 analyzeBranches(nullptr, *evaluationListStack.back()); // add branch links 363 processEntryPoints(); 364 popEvaluationList(); 365 labelEvaluationMap = nullptr; 366 assignSymbolLabelMap = nullptr; 367 pftParentStack.pop_back(); 368 resetFunctionState(); 369 } 370 371 /// Initialize a new construct or directive and make it the builder's focus. 372 template <typename A> 373 bool enterConstructOrDirective(const A &constructOrDirective) { 374 Fortran::lower::pft::Evaluation &eval = addEvaluation( 375 lower::pft::Evaluation{constructOrDirective, pftParentStack.back()}); 376 eval.evaluationList.reset(new lower::pft::EvaluationList); 377 pushEvaluationList(eval.evaluationList.get()); 378 pftParentStack.emplace_back(eval); 379 constructAndDirectiveStack.emplace_back(&eval); 380 return true; 381 } 382 383 void exitConstructOrDirective() { 384 auto isOpenMPLoopConstruct = [](Fortran::lower::pft::Evaluation *eval) { 385 if (const auto *ompConstruct = eval->getIf<parser::OpenMPConstruct>()) 386 if (std::holds_alternative<parser::OpenMPLoopConstruct>( 387 ompConstruct->u)) 388 return true; 389 return false; 390 }; 391 392 rewriteIfGotos(); 393 auto *eval = constructAndDirectiveStack.back(); 394 if (eval->isExecutableDirective() && !isOpenMPLoopConstruct(eval)) { 395 // A construct at the end of an (unstructured) OpenACC or OpenMP 396 // construct region must have an exit target inside the region. 397 // This is not applicable to the OpenMP loop construct since the 398 // end of the loop is an available target inside the region. 399 Fortran::lower::pft::EvaluationList &evaluationList = 400 *eval->evaluationList; 401 if (!evaluationList.empty() && evaluationList.back().isConstruct()) { 402 static const parser::ContinueStmt exitTarget{}; 403 addEvaluation( 404 lower::pft::Evaluation{exitTarget, pftParentStack.back(), {}, {}}); 405 } 406 } 407 popEvaluationList(); 408 pftParentStack.pop_back(); 409 constructAndDirectiveStack.pop_back(); 410 } 411 412 /// Reset function state to that of an enclosing host function. 413 void resetFunctionState() { 414 if (!pftParentStack.empty()) { 415 pftParentStack.back().visit(common::visitors{ 416 [&](lower::pft::FunctionLikeUnit &p) { 417 functionList = &p.nestedFunctions; 418 labelEvaluationMap = &p.labelEvaluationMap; 419 assignSymbolLabelMap = &p.assignSymbolLabelMap; 420 }, 421 [&](lower::pft::ModuleLikeUnit &p) { 422 functionList = &p.nestedFunctions; 423 }, 424 [&](auto &) { functionList = nullptr; }, 425 }); 426 } 427 } 428 429 template <typename A> 430 A &addUnit(A &&unit) { 431 pgm->getUnits().emplace_back(std::move(unit)); 432 return std::get<A>(pgm->getUnits().back()); 433 } 434 435 template <typename A> 436 A &addFunction(A &&func) { 437 if (functionList) { 438 functionList->emplace_back(std::move(func)); 439 return functionList->back(); 440 } 441 return addUnit(std::move(func)); 442 } 443 444 // ActionStmt has a couple of non-conforming cases, explicitly handled here. 445 // The other cases use an Indirection, which are discarded in the PFT. 446 lower::pft::Evaluation 447 makeEvaluationAction(const parser::ActionStmt &statement, 448 parser::CharBlock position, 449 std::optional<parser::Label> label) { 450 return std::visit( 451 common::visitors{ 452 [&](const auto &x) { 453 return lower::pft::Evaluation{ 454 removeIndirection(x), pftParentStack.back(), position, label}; 455 }, 456 }, 457 statement.u); 458 } 459 460 /// Append an Evaluation to the end of the current list. 461 lower::pft::Evaluation &addEvaluation(lower::pft::Evaluation &&eval) { 462 assert(functionList && "not in a function"); 463 assert(!evaluationListStack.empty() && "empty evaluation list stack"); 464 if (!constructAndDirectiveStack.empty()) 465 eval.parentConstruct = constructAndDirectiveStack.back(); 466 lower::pft::FunctionLikeUnit *owningProcedure = eval.getOwningProcedure(); 467 evaluationListStack.back()->emplace_back(std::move(eval)); 468 lower::pft::Evaluation *p = &evaluationListStack.back()->back(); 469 if (p->isActionStmt() || p->isConstructStmt() || p->isEndStmt() || 470 p->isExecutableDirective()) { 471 if (lastLexicalEvaluation) { 472 lastLexicalEvaluation->lexicalSuccessor = p; 473 p->printIndex = lastLexicalEvaluation->printIndex + 1; 474 } else { 475 p->printIndex = 1; 476 } 477 lastLexicalEvaluation = p; 478 if (owningProcedure) { 479 auto &entryPointList = owningProcedure->entryPointList; 480 for (std::size_t entryIndex = entryPointList.size() - 1; 481 entryIndex && !entryPointList[entryIndex].second->lexicalSuccessor; 482 --entryIndex) 483 // Link to the entry's first executable statement. 484 entryPointList[entryIndex].second->lexicalSuccessor = p; 485 } 486 } else if (const auto *entryStmt = p->getIf<parser::EntryStmt>()) { 487 const semantics::Symbol *sym = 488 std::get<parser::Name>(entryStmt->t).symbol; 489 if (auto *details = sym->detailsIf<semantics::GenericDetails>()) 490 sym = details->specific(); 491 assert(sym->has<semantics::SubprogramDetails>() && 492 "entry must be a subprogram"); 493 owningProcedure->entryPointList.push_back(std::pair{sym, p}); 494 } 495 if (p->label.has_value()) 496 labelEvaluationMap->try_emplace(*p->label, p); 497 return evaluationListStack.back()->back(); 498 } 499 500 /// push a new list on the stack of Evaluation lists 501 void pushEvaluationList(lower::pft::EvaluationList *evaluationList) { 502 assert(functionList && "not in a function"); 503 assert(evaluationList && evaluationList->empty() && 504 "evaluation list isn't correct"); 505 evaluationListStack.emplace_back(evaluationList); 506 } 507 508 /// pop the current list and return to the last Evaluation list 509 void popEvaluationList() { 510 assert(functionList && "not in a function"); 511 evaluationListStack.pop_back(); 512 } 513 514 /// Rewrite IfConstructs containing a GotoStmt or CycleStmt to eliminate an 515 /// unstructured branch and a trivial basic block. The pre-branch-analysis 516 /// code: 517 /// 518 /// <<IfConstruct>> 519 /// 1 If[Then]Stmt: if(cond) goto L 520 /// 2 GotoStmt: goto L 521 /// 3 EndIfStmt 522 /// <<End IfConstruct>> 523 /// 4 Statement: ... 524 /// 5 Statement: ... 525 /// 6 Statement: L ... 526 /// 527 /// becomes: 528 /// 529 /// <<IfConstruct>> 530 /// 1 If[Then]Stmt [negate]: if(cond) goto L 531 /// 4 Statement: ... 532 /// 5 Statement: ... 533 /// 3 EndIfStmt 534 /// <<End IfConstruct>> 535 /// 6 Statement: L ... 536 /// 537 /// The If[Then]Stmt condition is implicitly negated. It is not modified 538 /// in the PFT. It must be negated when generating FIR. The GotoStmt or 539 /// CycleStmt is deleted. 540 /// 541 /// The transformation is only valid for forward branch targets at the same 542 /// construct nesting level as the IfConstruct. The result must not violate 543 /// construct nesting requirements or contain an EntryStmt. The result 544 /// is subject to normal un/structured code classification analysis. The 545 /// result is allowed to violate the F18 Clause 11.1.2.1 prohibition on 546 /// transfer of control into the interior of a construct block, as that does 547 /// not compromise correct code generation. When two transformation 548 /// candidates overlap, at least one must be disallowed. In such cases, 549 /// the current heuristic favors simple code generation, which happens to 550 /// favor later candidates over earlier candidates. That choice is probably 551 /// not significant, but could be changed. 552 /// 553 void rewriteIfGotos() { 554 auto &evaluationList = *evaluationListStack.back(); 555 if (!evaluationList.size()) 556 return; 557 struct T { 558 lower::pft::EvaluationList::iterator ifConstructIt; 559 parser::Label ifTargetLabel; 560 bool isCycleStmt = false; 561 }; 562 llvm::SmallVector<T> ifCandidateStack; 563 const auto *doStmt = 564 evaluationList.begin()->getIf<parser::NonLabelDoStmt>(); 565 std::string doName = doStmt ? getConstructName(*doStmt) : std::string{}; 566 for (auto it = evaluationList.begin(), end = evaluationList.end(); 567 it != end; ++it) { 568 auto &eval = *it; 569 if (eval.isA<parser::EntryStmt>() || eval.isIntermediateConstructStmt()) { 570 ifCandidateStack.clear(); 571 continue; 572 } 573 auto firstStmt = [](lower::pft::Evaluation *e) { 574 return e->isConstruct() ? &*e->evaluationList->begin() : e; 575 }; 576 const Fortran::lower::pft::Evaluation &targetEval = *firstStmt(&eval); 577 bool targetEvalIsEndDoStmt = targetEval.isA<parser::EndDoStmt>(); 578 auto branchTargetMatch = [&]() { 579 if (const parser::Label targetLabel = 580 ifCandidateStack.back().ifTargetLabel) 581 if (targetEval.label && targetLabel == *targetEval.label) 582 return true; // goto target match 583 if (targetEvalIsEndDoStmt && ifCandidateStack.back().isCycleStmt) 584 return true; // cycle target match 585 return false; 586 }; 587 if (targetEval.label || targetEvalIsEndDoStmt) { 588 while (!ifCandidateStack.empty() && branchTargetMatch()) { 589 lower::pft::EvaluationList::iterator ifConstructIt = 590 ifCandidateStack.back().ifConstructIt; 591 lower::pft::EvaluationList::iterator successorIt = 592 std::next(ifConstructIt); 593 if (successorIt != it) { 594 Fortran::lower::pft::EvaluationList &ifBodyList = 595 *ifConstructIt->evaluationList; 596 lower::pft::EvaluationList::iterator branchStmtIt = 597 std::next(ifBodyList.begin()); 598 assert((branchStmtIt->isA<parser::GotoStmt>() || 599 branchStmtIt->isA<parser::CycleStmt>()) && 600 "expected goto or cycle statement"); 601 ifBodyList.erase(branchStmtIt); 602 lower::pft::Evaluation &ifStmt = *ifBodyList.begin(); 603 ifStmt.negateCondition = true; 604 ifStmt.lexicalSuccessor = firstStmt(&*successorIt); 605 lower::pft::EvaluationList::iterator endIfStmtIt = 606 std::prev(ifBodyList.end()); 607 std::prev(it)->lexicalSuccessor = &*endIfStmtIt; 608 endIfStmtIt->lexicalSuccessor = firstStmt(&*it); 609 ifBodyList.splice(endIfStmtIt, evaluationList, successorIt, it); 610 for (; successorIt != endIfStmtIt; ++successorIt) 611 successorIt->parentConstruct = &*ifConstructIt; 612 } 613 ifCandidateStack.pop_back(); 614 } 615 } 616 if (eval.isA<parser::IfConstruct>() && eval.evaluationList->size() == 3) { 617 const auto bodyEval = std::next(eval.evaluationList->begin()); 618 if (const auto *gotoStmt = bodyEval->getIf<parser::GotoStmt>()) { 619 ifCandidateStack.push_back({it, gotoStmt->v}); 620 } else if (doStmt) { 621 if (const auto *cycleStmt = bodyEval->getIf<parser::CycleStmt>()) { 622 std::string cycleName = getConstructName(*cycleStmt); 623 if (cycleName.empty() || cycleName == doName) 624 // This candidate will match doStmt's EndDoStmt. 625 ifCandidateStack.push_back({it, {}, true}); 626 } 627 } 628 } 629 } 630 } 631 632 /// Mark IO statement ERR, EOR, and END specifier branch targets. 633 /// Mark an IO statement with an assigned format as unstructured. 634 template <typename A> 635 void analyzeIoBranches(lower::pft::Evaluation &eval, const A &stmt) { 636 auto analyzeFormatSpec = [&](const parser::Format &format) { 637 if (const auto *expr = std::get_if<parser::Expr>(&format.u)) { 638 if (semantics::ExprHasTypeCategory(*semantics::GetExpr(*expr), 639 common::TypeCategory::Integer)) 640 eval.isUnstructured = true; 641 } 642 }; 643 auto analyzeSpecs{[&](const auto &specList) { 644 for (const auto &spec : specList) { 645 std::visit( 646 Fortran::common::visitors{ 647 [&](const Fortran::parser::Format &format) { 648 analyzeFormatSpec(format); 649 }, 650 [&](const auto &label) { 651 using LabelNodes = 652 std::tuple<parser::ErrLabel, parser::EorLabel, 653 parser::EndLabel>; 654 if constexpr (common::HasMember<decltype(label), LabelNodes>) 655 markBranchTarget(eval, label.v); 656 }}, 657 spec.u); 658 } 659 }}; 660 661 using OtherIOStmts = 662 std::tuple<parser::BackspaceStmt, parser::CloseStmt, 663 parser::EndfileStmt, parser::FlushStmt, parser::OpenStmt, 664 parser::RewindStmt, parser::WaitStmt>; 665 666 if constexpr (std::is_same_v<A, parser::ReadStmt> || 667 std::is_same_v<A, parser::WriteStmt>) { 668 if (stmt.format) 669 analyzeFormatSpec(*stmt.format); 670 analyzeSpecs(stmt.controls); 671 } else if constexpr (std::is_same_v<A, parser::PrintStmt>) { 672 analyzeFormatSpec(std::get<parser::Format>(stmt.t)); 673 } else if constexpr (std::is_same_v<A, parser::InquireStmt>) { 674 if (const auto *specList = 675 std::get_if<std::list<parser::InquireSpec>>(&stmt.u)) 676 analyzeSpecs(*specList); 677 } else if constexpr (common::HasMember<A, OtherIOStmts>) { 678 analyzeSpecs(stmt.v); 679 } else { 680 // Always crash if this is instantiated 681 static_assert(!std::is_same_v<A, parser::ReadStmt>, 682 "Unexpected IO statement"); 683 } 684 } 685 686 /// Set the exit of a construct, possibly from multiple enclosing constructs. 687 void setConstructExit(lower::pft::Evaluation &eval) { 688 eval.constructExit = &eval.evaluationList->back().nonNopSuccessor(); 689 } 690 691 /// Mark the target of a branch as a new block. 692 void markBranchTarget(lower::pft::Evaluation &sourceEvaluation, 693 lower::pft::Evaluation &targetEvaluation) { 694 sourceEvaluation.isUnstructured = true; 695 if (!sourceEvaluation.controlSuccessor) 696 sourceEvaluation.controlSuccessor = &targetEvaluation; 697 targetEvaluation.isNewBlock = true; 698 // If this is a branch into the body of a construct (usually illegal, 699 // but allowed in some legacy cases), then the targetEvaluation and its 700 // ancestors must be marked as unstructured. 701 lower::pft::Evaluation *sourceConstruct = sourceEvaluation.parentConstruct; 702 lower::pft::Evaluation *targetConstruct = targetEvaluation.parentConstruct; 703 if (targetConstruct && 704 &targetConstruct->getFirstNestedEvaluation() == &targetEvaluation) 705 // A branch to an initial constructStmt is a branch to the construct. 706 targetConstruct = targetConstruct->parentConstruct; 707 if (targetConstruct) { 708 while (sourceConstruct && sourceConstruct != targetConstruct) 709 sourceConstruct = sourceConstruct->parentConstruct; 710 if (sourceConstruct != targetConstruct) // branch into a construct body 711 for (lower::pft::Evaluation *eval = &targetEvaluation; eval; 712 eval = eval->parentConstruct) { 713 eval->isUnstructured = true; 714 // If the branch is a backward branch into an already analyzed 715 // DO or IF construct, mark the construct exit as a new block. 716 // For a forward branch, the isUnstructured flag will cause this 717 // to be done when the construct is analyzed. 718 if (eval->constructExit && (eval->isA<parser::DoConstruct>() || 719 eval->isA<parser::IfConstruct>())) 720 eval->constructExit->isNewBlock = true; 721 } 722 } 723 } 724 void markBranchTarget(lower::pft::Evaluation &sourceEvaluation, 725 parser::Label label) { 726 assert(label && "missing branch target label"); 727 lower::pft::Evaluation *targetEvaluation{ 728 labelEvaluationMap->find(label)->second}; 729 assert(targetEvaluation && "missing branch target evaluation"); 730 markBranchTarget(sourceEvaluation, *targetEvaluation); 731 } 732 733 /// Mark the successor of an Evaluation as a new block. 734 void markSuccessorAsNewBlock(lower::pft::Evaluation &eval) { 735 eval.nonNopSuccessor().isNewBlock = true; 736 } 737 738 template <typename A> 739 inline std::string getConstructName(const A &stmt) { 740 using MaybeConstructNameWrapper = 741 std::tuple<parser::BlockStmt, parser::CycleStmt, parser::ElseStmt, 742 parser::ElsewhereStmt, parser::EndAssociateStmt, 743 parser::EndBlockStmt, parser::EndCriticalStmt, 744 parser::EndDoStmt, parser::EndForallStmt, parser::EndIfStmt, 745 parser::EndSelectStmt, parser::EndWhereStmt, 746 parser::ExitStmt>; 747 if constexpr (common::HasMember<A, MaybeConstructNameWrapper>) { 748 if (stmt.v) 749 return stmt.v->ToString(); 750 } 751 752 using MaybeConstructNameInTuple = std::tuple< 753 parser::AssociateStmt, parser::CaseStmt, parser::ChangeTeamStmt, 754 parser::CriticalStmt, parser::ElseIfStmt, parser::EndChangeTeamStmt, 755 parser::ForallConstructStmt, parser::IfThenStmt, parser::LabelDoStmt, 756 parser::MaskedElsewhereStmt, parser::NonLabelDoStmt, 757 parser::SelectCaseStmt, parser::SelectRankCaseStmt, 758 parser::TypeGuardStmt, parser::WhereConstructStmt>; 759 if constexpr (common::HasMember<A, MaybeConstructNameInTuple>) { 760 if (auto name = std::get<std::optional<parser::Name>>(stmt.t)) 761 return name->ToString(); 762 } 763 764 // These statements have multiple std::optional<parser::Name> elements. 765 if constexpr (std::is_same_v<A, parser::SelectRankStmt> || 766 std::is_same_v<A, parser::SelectTypeStmt>) { 767 if (auto name = std::get<0>(stmt.t)) 768 return name->ToString(); 769 } 770 771 return {}; 772 } 773 774 /// \p parentConstruct can be null if this statement is at the highest 775 /// level of a program. 776 template <typename A> 777 void insertConstructName(const A &stmt, 778 lower::pft::Evaluation *parentConstruct) { 779 std::string name = getConstructName(stmt); 780 if (!name.empty()) 781 constructNameMap[name] = parentConstruct; 782 } 783 784 /// Insert branch links for a list of Evaluations. 785 /// \p parentConstruct can be null if the evaluationList contains the 786 /// top-level statements of a program. 787 void analyzeBranches(lower::pft::Evaluation *parentConstruct, 788 std::list<lower::pft::Evaluation> &evaluationList) { 789 lower::pft::Evaluation *lastConstructStmtEvaluation{}; 790 for (auto &eval : evaluationList) { 791 eval.visit(common::visitors{ 792 // Action statements (except IO statements) 793 [&](const parser::CallStmt &s) { 794 // Look for alternate return specifiers. 795 const auto &args = 796 std::get<std::list<parser::ActualArgSpec>>(s.call.t); 797 for (const auto &arg : args) { 798 const auto &actual = std::get<parser::ActualArg>(arg.t); 799 if (const auto *altReturn = 800 std::get_if<parser::AltReturnSpec>(&actual.u)) 801 markBranchTarget(eval, altReturn->v); 802 } 803 }, 804 [&](const parser::CycleStmt &s) { 805 std::string name = getConstructName(s); 806 lower::pft::Evaluation *construct{name.empty() 807 ? doConstructStack.back() 808 : constructNameMap[name]}; 809 assert(construct && "missing CYCLE construct"); 810 markBranchTarget(eval, construct->evaluationList->back()); 811 }, 812 [&](const parser::ExitStmt &s) { 813 std::string name = getConstructName(s); 814 lower::pft::Evaluation *construct{name.empty() 815 ? doConstructStack.back() 816 : constructNameMap[name]}; 817 assert(construct && "missing EXIT construct"); 818 markBranchTarget(eval, *construct->constructExit); 819 }, 820 [&](const parser::FailImageStmt &) { 821 eval.isUnstructured = true; 822 if (eval.lexicalSuccessor->lexicalSuccessor) 823 markSuccessorAsNewBlock(eval); 824 }, 825 [&](const parser::GotoStmt &s) { markBranchTarget(eval, s.v); }, 826 [&](const parser::IfStmt &) { 827 eval.lexicalSuccessor->isNewBlock = true; 828 lastConstructStmtEvaluation = &eval; 829 }, 830 [&](const parser::ReturnStmt &) { 831 eval.isUnstructured = true; 832 if (eval.lexicalSuccessor->lexicalSuccessor) 833 markSuccessorAsNewBlock(eval); 834 }, 835 [&](const parser::StopStmt &) { 836 eval.isUnstructured = true; 837 if (eval.lexicalSuccessor->lexicalSuccessor) 838 markSuccessorAsNewBlock(eval); 839 }, 840 [&](const parser::ComputedGotoStmt &s) { 841 for (auto &label : std::get<std::list<parser::Label>>(s.t)) 842 markBranchTarget(eval, label); 843 }, 844 [&](const parser::ArithmeticIfStmt &s) { 845 markBranchTarget(eval, std::get<1>(s.t)); 846 markBranchTarget(eval, std::get<2>(s.t)); 847 markBranchTarget(eval, std::get<3>(s.t)); 848 }, 849 [&](const parser::AssignStmt &s) { // legacy label assignment 850 auto &label = std::get<parser::Label>(s.t); 851 const auto *sym = std::get<parser::Name>(s.t).symbol; 852 assert(sym && "missing AssignStmt symbol"); 853 lower::pft::Evaluation *target{ 854 labelEvaluationMap->find(label)->second}; 855 assert(target && "missing branch target evaluation"); 856 if (!target->isA<parser::FormatStmt>()) 857 target->isNewBlock = true; 858 auto iter = assignSymbolLabelMap->find(*sym); 859 if (iter == assignSymbolLabelMap->end()) { 860 lower::pft::LabelSet labelSet{}; 861 labelSet.insert(label); 862 assignSymbolLabelMap->try_emplace(*sym, labelSet); 863 } else { 864 iter->second.insert(label); 865 } 866 }, 867 [&](const parser::AssignedGotoStmt &) { 868 // Although this statement is a branch, it doesn't have any 869 // explicit control successors. So the code at the end of the 870 // loop won't mark the successor. Do that here. 871 eval.isUnstructured = true; 872 markSuccessorAsNewBlock(eval); 873 }, 874 875 // The first executable statement after an EntryStmt is a new block. 876 [&](const parser::EntryStmt &) { 877 eval.lexicalSuccessor->isNewBlock = true; 878 }, 879 880 // Construct statements 881 [&](const parser::AssociateStmt &s) { 882 insertConstructName(s, parentConstruct); 883 }, 884 [&](const parser::BlockStmt &s) { 885 insertConstructName(s, parentConstruct); 886 }, 887 [&](const parser::SelectCaseStmt &s) { 888 insertConstructName(s, parentConstruct); 889 lastConstructStmtEvaluation = &eval; 890 }, 891 [&](const parser::CaseStmt &) { 892 eval.isNewBlock = true; 893 lastConstructStmtEvaluation->controlSuccessor = &eval; 894 lastConstructStmtEvaluation = &eval; 895 }, 896 [&](const parser::EndSelectStmt &) { 897 eval.isNewBlock = true; 898 lastConstructStmtEvaluation = nullptr; 899 }, 900 [&](const parser::ChangeTeamStmt &s) { 901 insertConstructName(s, parentConstruct); 902 }, 903 [&](const parser::CriticalStmt &s) { 904 insertConstructName(s, parentConstruct); 905 }, 906 [&](const parser::NonLabelDoStmt &s) { 907 insertConstructName(s, parentConstruct); 908 doConstructStack.push_back(parentConstruct); 909 const auto &loopControl = 910 std::get<std::optional<parser::LoopControl>>(s.t); 911 if (!loopControl.has_value()) { 912 eval.isUnstructured = true; // infinite loop 913 return; 914 } 915 eval.nonNopSuccessor().isNewBlock = true; 916 eval.controlSuccessor = &evaluationList.back(); 917 if (const auto *bounds = 918 std::get_if<parser::LoopControl::Bounds>(&loopControl->u)) { 919 if (bounds->name.thing.symbol->GetType()->IsNumeric( 920 common::TypeCategory::Real)) 921 eval.isUnstructured = true; // real-valued loop control 922 } else if (std::get_if<parser::ScalarLogicalExpr>( 923 &loopControl->u)) { 924 eval.isUnstructured = true; // while loop 925 } 926 }, 927 [&](const parser::EndDoStmt &) { 928 lower::pft::Evaluation &doEval = evaluationList.front(); 929 eval.controlSuccessor = &doEval; 930 doConstructStack.pop_back(); 931 if (parentConstruct->lowerAsStructured()) 932 return; 933 // The loop is unstructured, which wasn't known for all cases when 934 // visiting the NonLabelDoStmt. 935 parentConstruct->constructExit->isNewBlock = true; 936 const auto &doStmt = *doEval.getIf<parser::NonLabelDoStmt>(); 937 const auto &loopControl = 938 std::get<std::optional<parser::LoopControl>>(doStmt.t); 939 if (!loopControl.has_value()) 940 return; // infinite loop 941 if (const auto *concurrent = 942 std::get_if<parser::LoopControl::Concurrent>( 943 &loopControl->u)) { 944 // If there is a mask, the EndDoStmt starts a new block. 945 const auto &header = 946 std::get<parser::ConcurrentHeader>(concurrent->t); 947 eval.isNewBlock |= 948 std::get<std::optional<parser::ScalarLogicalExpr>>(header.t) 949 .has_value(); 950 } 951 }, 952 [&](const parser::IfThenStmt &s) { 953 insertConstructName(s, parentConstruct); 954 eval.lexicalSuccessor->isNewBlock = true; 955 lastConstructStmtEvaluation = &eval; 956 }, 957 [&](const parser::ElseIfStmt &) { 958 eval.isNewBlock = true; 959 eval.lexicalSuccessor->isNewBlock = true; 960 lastConstructStmtEvaluation->controlSuccessor = &eval; 961 lastConstructStmtEvaluation = &eval; 962 }, 963 [&](const parser::ElseStmt &) { 964 eval.isNewBlock = true; 965 lastConstructStmtEvaluation->controlSuccessor = &eval; 966 lastConstructStmtEvaluation = nullptr; 967 }, 968 [&](const parser::EndIfStmt &) { 969 if (parentConstruct->lowerAsUnstructured()) 970 parentConstruct->constructExit->isNewBlock = true; 971 if (lastConstructStmtEvaluation) { 972 lastConstructStmtEvaluation->controlSuccessor = 973 parentConstruct->constructExit; 974 lastConstructStmtEvaluation = nullptr; 975 } 976 }, 977 [&](const parser::SelectRankStmt &s) { 978 insertConstructName(s, parentConstruct); 979 lastConstructStmtEvaluation = &eval; 980 }, 981 [&](const parser::SelectRankCaseStmt &) { 982 eval.isNewBlock = true; 983 lastConstructStmtEvaluation->controlSuccessor = &eval; 984 lastConstructStmtEvaluation = &eval; 985 }, 986 [&](const parser::SelectTypeStmt &s) { 987 insertConstructName(s, parentConstruct); 988 lastConstructStmtEvaluation = &eval; 989 }, 990 [&](const parser::TypeGuardStmt &) { 991 eval.isNewBlock = true; 992 lastConstructStmtEvaluation->controlSuccessor = &eval; 993 lastConstructStmtEvaluation = &eval; 994 }, 995 996 // Constructs - set (unstructured) construct exit targets 997 [&](const parser::AssociateConstruct &) { 998 eval.constructExit = &eval.evaluationList->back(); 999 }, 1000 [&](const parser::BlockConstruct &) { 1001 eval.constructExit = &eval.evaluationList->back(); 1002 }, 1003 [&](const parser::CaseConstruct &) { 1004 eval.constructExit = &eval.evaluationList->back(); 1005 eval.isUnstructured = true; 1006 }, 1007 [&](const parser::ChangeTeamConstruct &) { 1008 eval.constructExit = &eval.evaluationList->back(); 1009 }, 1010 [&](const parser::CriticalConstruct &) { 1011 eval.constructExit = &eval.evaluationList->back(); 1012 }, 1013 [&](const parser::DoConstruct &) { setConstructExit(eval); }, 1014 [&](const parser::ForallConstruct &) { setConstructExit(eval); }, 1015 [&](const parser::IfConstruct &) { setConstructExit(eval); }, 1016 [&](const parser::SelectRankConstruct &) { 1017 eval.constructExit = &eval.evaluationList->back(); 1018 eval.isUnstructured = true; 1019 }, 1020 [&](const parser::SelectTypeConstruct &) { 1021 eval.constructExit = &eval.evaluationList->back(); 1022 eval.isUnstructured = true; 1023 }, 1024 [&](const parser::WhereConstruct &) { setConstructExit(eval); }, 1025 1026 // Default - Common analysis for IO statements; otherwise nop. 1027 [&](const auto &stmt) { 1028 using A = std::decay_t<decltype(stmt)>; 1029 using IoStmts = std::tuple< 1030 parser::BackspaceStmt, parser::CloseStmt, parser::EndfileStmt, 1031 parser::FlushStmt, parser::InquireStmt, parser::OpenStmt, 1032 parser::PrintStmt, parser::ReadStmt, parser::RewindStmt, 1033 parser::WaitStmt, parser::WriteStmt>; 1034 if constexpr (common::HasMember<A, IoStmts>) 1035 analyzeIoBranches(eval, stmt); 1036 }, 1037 }); 1038 1039 // Analyze construct evaluations. 1040 if (eval.evaluationList) 1041 analyzeBranches(&eval, *eval.evaluationList); 1042 1043 // Propagate isUnstructured flag to enclosing construct. 1044 if (parentConstruct && eval.isUnstructured) 1045 parentConstruct->isUnstructured = true; 1046 1047 // The successor of a branch starts a new block. 1048 if (eval.controlSuccessor && eval.isActionStmt() && 1049 eval.lowerAsUnstructured()) 1050 markSuccessorAsNewBlock(eval); 1051 } 1052 } 1053 1054 /// Do processing specific to subprograms with multiple entry points. 1055 void processEntryPoints() { 1056 lower::pft::Evaluation *initialEval = &evaluationListStack.back()->front(); 1057 lower::pft::FunctionLikeUnit *unit = initialEval->getOwningProcedure(); 1058 int entryCount = unit->entryPointList.size(); 1059 if (entryCount == 1) 1060 return; 1061 1062 // The first executable statement in the subprogram is preceded by a 1063 // branch to the entry point, so it starts a new block. 1064 if (initialEval->hasNestedEvaluations()) 1065 initialEval = &initialEval->getFirstNestedEvaluation(); 1066 else if (initialEval->isA<Fortran::parser::EntryStmt>()) 1067 initialEval = initialEval->lexicalSuccessor; 1068 initialEval->isNewBlock = true; 1069 1070 // All function entry points share a single result container. 1071 // Find one of the largest results. 1072 for (int entryIndex = 0; entryIndex < entryCount; ++entryIndex) { 1073 unit->setActiveEntry(entryIndex); 1074 const auto &details = 1075 unit->getSubprogramSymbol().get<semantics::SubprogramDetails>(); 1076 if (details.isFunction()) { 1077 const semantics::Symbol *resultSym = &details.result(); 1078 assert(resultSym && "missing result symbol"); 1079 if (!unit->primaryResult || 1080 unit->primaryResult->size() < resultSym->size()) 1081 unit->primaryResult = resultSym; 1082 } 1083 } 1084 unit->setActiveEntry(0); 1085 } 1086 1087 std::unique_ptr<lower::pft::Program> pgm; 1088 std::vector<lower::pft::PftNode> pftParentStack; 1089 const semantics::SemanticsContext &semanticsContext; 1090 1091 /// functionList points to the internal or module procedure function list 1092 /// of a FunctionLikeUnit or a ModuleLikeUnit. It may be null. 1093 std::list<lower::pft::FunctionLikeUnit> *functionList{}; 1094 std::vector<lower::pft::Evaluation *> constructAndDirectiveStack{}; 1095 std::vector<lower::pft::Evaluation *> doConstructStack{}; 1096 /// evaluationListStack is the current nested construct evaluationList state. 1097 std::vector<lower::pft::EvaluationList *> evaluationListStack{}; 1098 llvm::DenseMap<parser::Label, lower::pft::Evaluation *> *labelEvaluationMap{}; 1099 lower::pft::SymbolLabelMap *assignSymbolLabelMap{}; 1100 std::map<std::string, lower::pft::Evaluation *> constructNameMap{}; 1101 lower::pft::Evaluation *lastLexicalEvaluation{}; 1102 }; 1103 1104 #ifndef NDEBUG 1105 /// Dump all program scopes and symbols with addresses to disambiguate names. 1106 /// This is static, unchanging front end information, so dump it only once. 1107 void dumpScope(const semantics::Scope *scope, int depth) { 1108 static int initialVisitCounter = 0; 1109 if (depth < 0) { 1110 if (++initialVisitCounter != 1) 1111 return; 1112 while (!scope->IsGlobal()) 1113 scope = &scope->parent(); 1114 LLVM_DEBUG(llvm::dbgs() << "Full program scope information.\n" 1115 "Addresses in angle brackets are scopes. " 1116 "Unbracketed addresses are symbols.\n"); 1117 } 1118 static const std::string white{" ++"}; 1119 std::string w = white.substr(0, depth * 2); 1120 if (depth >= 0) { 1121 LLVM_DEBUG(llvm::dbgs() << w << "<" << scope << "> "); 1122 if (auto *sym{scope->symbol()}) { 1123 LLVM_DEBUG(llvm::dbgs() << sym << " " << *sym << "\n"); 1124 } else { 1125 if (scope->IsIntrinsicModules()) { 1126 LLVM_DEBUG(llvm::dbgs() << "IntrinsicModules (no detail)\n"); 1127 return; 1128 } 1129 if (scope->kind() == Fortran::semantics::Scope::Kind::BlockConstruct) 1130 LLVM_DEBUG(llvm::dbgs() << "[block]\n"); 1131 else 1132 LLVM_DEBUG(llvm::dbgs() << "[anonymous]\n"); 1133 } 1134 } 1135 for (const auto &scp : scope->children()) 1136 if (!scp.symbol()) 1137 dumpScope(&scp, depth + 1); 1138 for (auto iter = scope->begin(); iter != scope->end(); ++iter) { 1139 common::Reference<semantics::Symbol> sym = iter->second; 1140 if (auto scp = sym->scope()) 1141 dumpScope(scp, depth + 1); 1142 else 1143 LLVM_DEBUG(llvm::dbgs() << w + " " << &*sym << " " << *sym << "\n"); 1144 } 1145 } 1146 #endif // NDEBUG 1147 1148 class PFTDumper { 1149 public: 1150 void dumpPFT(llvm::raw_ostream &outputStream, 1151 const lower::pft::Program &pft) { 1152 for (auto &unit : pft.getUnits()) { 1153 std::visit(common::visitors{ 1154 [&](const lower::pft::BlockDataUnit &unit) { 1155 outputStream << getNodeIndex(unit) << " "; 1156 outputStream << "BlockData: "; 1157 outputStream << "\nEnd BlockData\n\n"; 1158 }, 1159 [&](const lower::pft::FunctionLikeUnit &func) { 1160 dumpFunctionLikeUnit(outputStream, func); 1161 }, 1162 [&](const lower::pft::ModuleLikeUnit &unit) { 1163 dumpModuleLikeUnit(outputStream, unit); 1164 }, 1165 [&](const lower::pft::CompilerDirectiveUnit &unit) { 1166 dumpCompilerDirectiveUnit(outputStream, unit); 1167 }, 1168 [&](const lower::pft::OpenACCDirectiveUnit &unit) { 1169 dumpOpenACCDirectiveUnit(outputStream, unit); 1170 }, 1171 }, 1172 unit); 1173 } 1174 } 1175 1176 llvm::StringRef evaluationName(const lower::pft::Evaluation &eval) { 1177 return eval.visit([](const auto &parseTreeNode) { 1178 return parser::ParseTreeDumper::GetNodeName(parseTreeNode); 1179 }); 1180 } 1181 1182 void dumpEvaluation(llvm::raw_ostream &outputStream, 1183 const lower::pft::Evaluation &eval, 1184 const std::string &indentString, int indent = 1) { 1185 llvm::StringRef name = evaluationName(eval); 1186 llvm::StringRef newBlock = eval.isNewBlock ? "^" : ""; 1187 llvm::StringRef bang = eval.isUnstructured ? "!" : ""; 1188 outputStream << indentString; 1189 if (eval.printIndex) 1190 outputStream << eval.printIndex << ' '; 1191 if (eval.hasNestedEvaluations()) 1192 outputStream << "<<" << newBlock << name << bang << ">>"; 1193 else 1194 outputStream << newBlock << name << bang; 1195 if (eval.negateCondition) 1196 outputStream << " [negate]"; 1197 if (eval.constructExit) 1198 outputStream << " -> " << eval.constructExit->printIndex; 1199 else if (eval.controlSuccessor) 1200 outputStream << " -> " << eval.controlSuccessor->printIndex; 1201 else if (eval.isA<parser::EntryStmt>() && eval.lexicalSuccessor) 1202 outputStream << " -> " << eval.lexicalSuccessor->printIndex; 1203 if (!eval.position.empty()) 1204 outputStream << ": " << eval.position.ToString(); 1205 else if (auto *dir = eval.getIf<Fortran::parser::CompilerDirective>()) 1206 outputStream << ": !" << dir->source.ToString(); 1207 outputStream << '\n'; 1208 if (eval.hasNestedEvaluations()) { 1209 dumpEvaluationList(outputStream, *eval.evaluationList, indent + 1); 1210 outputStream << indentString << "<<End " << name << bang << ">>\n"; 1211 } 1212 } 1213 1214 void dumpEvaluation(llvm::raw_ostream &ostream, 1215 const lower::pft::Evaluation &eval) { 1216 dumpEvaluation(ostream, eval, ""); 1217 } 1218 1219 void dumpEvaluationList(llvm::raw_ostream &outputStream, 1220 const lower::pft::EvaluationList &evaluationList, 1221 int indent = 1) { 1222 static const auto white = " ++"s; 1223 auto indentString = white.substr(0, indent * 2); 1224 for (const lower::pft::Evaluation &eval : evaluationList) 1225 dumpEvaluation(outputStream, eval, indentString, indent); 1226 } 1227 1228 void 1229 dumpFunctionLikeUnit(llvm::raw_ostream &outputStream, 1230 const lower::pft::FunctionLikeUnit &functionLikeUnit) { 1231 outputStream << getNodeIndex(functionLikeUnit) << " "; 1232 llvm::StringRef unitKind; 1233 llvm::StringRef name; 1234 llvm::StringRef header; 1235 if (functionLikeUnit.beginStmt) { 1236 functionLikeUnit.beginStmt->visit(common::visitors{ 1237 [&](const parser::Statement<parser::ProgramStmt> &stmt) { 1238 unitKind = "Program"; 1239 name = toStringRef(stmt.statement.v.source); 1240 }, 1241 [&](const parser::Statement<parser::FunctionStmt> &stmt) { 1242 unitKind = "Function"; 1243 name = toStringRef(std::get<parser::Name>(stmt.statement.t).source); 1244 header = toStringRef(stmt.source); 1245 }, 1246 [&](const parser::Statement<parser::SubroutineStmt> &stmt) { 1247 unitKind = "Subroutine"; 1248 name = toStringRef(std::get<parser::Name>(stmt.statement.t).source); 1249 header = toStringRef(stmt.source); 1250 }, 1251 [&](const parser::Statement<parser::MpSubprogramStmt> &stmt) { 1252 unitKind = "MpSubprogram"; 1253 name = toStringRef(stmt.statement.v.source); 1254 header = toStringRef(stmt.source); 1255 }, 1256 [&](const auto &) { llvm_unreachable("not a valid begin stmt"); }, 1257 }); 1258 } else { 1259 unitKind = "Program"; 1260 name = "<anonymous>"; 1261 } 1262 outputStream << unitKind << ' ' << name; 1263 if (!header.empty()) 1264 outputStream << ": " << header; 1265 outputStream << '\n'; 1266 dumpEvaluationList(outputStream, functionLikeUnit.evaluationList); 1267 if (!functionLikeUnit.nestedFunctions.empty()) { 1268 outputStream << "\nContains\n"; 1269 for (const lower::pft::FunctionLikeUnit &func : 1270 functionLikeUnit.nestedFunctions) 1271 dumpFunctionLikeUnit(outputStream, func); 1272 outputStream << "End Contains\n"; 1273 } 1274 outputStream << "End " << unitKind << ' ' << name << "\n\n"; 1275 } 1276 1277 void dumpModuleLikeUnit(llvm::raw_ostream &outputStream, 1278 const lower::pft::ModuleLikeUnit &moduleLikeUnit) { 1279 outputStream << getNodeIndex(moduleLikeUnit) << " "; 1280 llvm::StringRef unitKind; 1281 llvm::StringRef name; 1282 llvm::StringRef header; 1283 moduleLikeUnit.beginStmt.visit(common::visitors{ 1284 [&](const parser::Statement<parser::ModuleStmt> &stmt) { 1285 unitKind = "Module"; 1286 name = toStringRef(stmt.statement.v.source); 1287 header = toStringRef(stmt.source); 1288 }, 1289 [&](const parser::Statement<parser::SubmoduleStmt> &stmt) { 1290 unitKind = "Submodule"; 1291 name = toStringRef(std::get<parser::Name>(stmt.statement.t).source); 1292 header = toStringRef(stmt.source); 1293 }, 1294 [&](const auto &) { 1295 llvm_unreachable("not a valid module begin stmt"); 1296 }, 1297 }); 1298 outputStream << unitKind << ' ' << name << ": " << header << '\n'; 1299 dumpEvaluationList(outputStream, moduleLikeUnit.evaluationList); 1300 outputStream << "Contains\n"; 1301 for (const lower::pft::FunctionLikeUnit &func : 1302 moduleLikeUnit.nestedFunctions) 1303 dumpFunctionLikeUnit(outputStream, func); 1304 outputStream << "End Contains\nEnd " << unitKind << ' ' << name << "\n\n"; 1305 } 1306 1307 // Top level directives 1308 void dumpCompilerDirectiveUnit( 1309 llvm::raw_ostream &outputStream, 1310 const lower::pft::CompilerDirectiveUnit &directive) { 1311 outputStream << getNodeIndex(directive) << " "; 1312 outputStream << "CompilerDirective: !"; 1313 outputStream << directive.get<Fortran::parser::CompilerDirective>() 1314 .source.ToString(); 1315 outputStream << "\nEnd CompilerDirective\n\n"; 1316 } 1317 1318 void 1319 dumpOpenACCDirectiveUnit(llvm::raw_ostream &outputStream, 1320 const lower::pft::OpenACCDirectiveUnit &directive) { 1321 outputStream << getNodeIndex(directive) << " "; 1322 outputStream << "OpenACCDirective: !$acc "; 1323 outputStream << directive.get<Fortran::parser::OpenACCRoutineConstruct>() 1324 .source.ToString(); 1325 outputStream << "\nEnd OpenACCDirective\n\n"; 1326 } 1327 1328 template <typename T> 1329 std::size_t getNodeIndex(const T &node) { 1330 auto addr = static_cast<const void *>(&node); 1331 auto it = nodeIndexes.find(addr); 1332 if (it != nodeIndexes.end()) 1333 return it->second; 1334 nodeIndexes.try_emplace(addr, nextIndex); 1335 return nextIndex++; 1336 } 1337 std::size_t getNodeIndex(const lower::pft::Program &) { return 0; } 1338 1339 private: 1340 llvm::DenseMap<const void *, std::size_t> nodeIndexes; 1341 std::size_t nextIndex{1}; // 0 is the root 1342 }; 1343 1344 } // namespace 1345 1346 template <typename A, typename T> 1347 static lower::pft::FunctionLikeUnit::FunctionStatement 1348 getFunctionStmt(const T &func) { 1349 lower::pft::FunctionLikeUnit::FunctionStatement result{ 1350 std::get<parser::Statement<A>>(func.t)}; 1351 return result; 1352 } 1353 1354 template <typename A, typename T> 1355 static lower::pft::ModuleLikeUnit::ModuleStatement getModuleStmt(const T &mod) { 1356 lower::pft::ModuleLikeUnit::ModuleStatement result{ 1357 std::get<parser::Statement<A>>(mod.t)}; 1358 return result; 1359 } 1360 1361 template <typename A> 1362 static const semantics::Symbol *getSymbol(A &beginStmt) { 1363 const auto *symbol = beginStmt.visit(common::visitors{ 1364 [](const parser::Statement<parser::ProgramStmt> &stmt) 1365 -> const semantics::Symbol * { return stmt.statement.v.symbol; }, 1366 [](const parser::Statement<parser::FunctionStmt> &stmt) 1367 -> const semantics::Symbol * { 1368 return std::get<parser::Name>(stmt.statement.t).symbol; 1369 }, 1370 [](const parser::Statement<parser::SubroutineStmt> &stmt) 1371 -> const semantics::Symbol * { 1372 return std::get<parser::Name>(stmt.statement.t).symbol; 1373 }, 1374 [](const parser::Statement<parser::MpSubprogramStmt> &stmt) 1375 -> const semantics::Symbol * { return stmt.statement.v.symbol; }, 1376 [](const parser::Statement<parser::ModuleStmt> &stmt) 1377 -> const semantics::Symbol * { return stmt.statement.v.symbol; }, 1378 [](const parser::Statement<parser::SubmoduleStmt> &stmt) 1379 -> const semantics::Symbol * { 1380 return std::get<parser::Name>(stmt.statement.t).symbol; 1381 }, 1382 [](const auto &) -> const semantics::Symbol * { 1383 llvm_unreachable("unknown FunctionLike or ModuleLike beginStmt"); 1384 return nullptr; 1385 }}); 1386 assert(symbol && "parser::Name must have resolved symbol"); 1387 return symbol; 1388 } 1389 1390 bool Fortran::lower::pft::Evaluation::lowerAsStructured() const { 1391 return !lowerAsUnstructured(); 1392 } 1393 1394 bool Fortran::lower::pft::Evaluation::lowerAsUnstructured() const { 1395 return isUnstructured || clDisableStructuredFir; 1396 } 1397 1398 bool Fortran::lower::pft::Evaluation::forceAsUnstructured() const { 1399 return clDisableStructuredFir; 1400 } 1401 1402 lower::pft::FunctionLikeUnit * 1403 Fortran::lower::pft::Evaluation::getOwningProcedure() const { 1404 return parent.visit(common::visitors{ 1405 [](lower::pft::FunctionLikeUnit &c) { return &c; }, 1406 [&](lower::pft::Evaluation &c) { return c.getOwningProcedure(); }, 1407 [](auto &) -> lower::pft::FunctionLikeUnit * { return nullptr; }, 1408 }); 1409 } 1410 1411 bool Fortran::lower::definedInCommonBlock(const semantics::Symbol &sym) { 1412 return semantics::FindCommonBlockContaining(sym); 1413 } 1414 1415 /// Is the symbol `sym` a global? 1416 bool Fortran::lower::symbolIsGlobal(const semantics::Symbol &sym) { 1417 return semantics::IsSaved(sym) || lower::definedInCommonBlock(sym) || 1418 semantics::IsNamedConstant(sym); 1419 } 1420 1421 namespace { 1422 /// This helper class sorts the symbols in a scope such that a symbol will 1423 /// be placed after those it depends upon. Otherwise the sort is stable and 1424 /// preserves the order of the symbol table, which is sorted by name. This 1425 /// analysis may also be done for an individual symbol. 1426 struct SymbolDependenceAnalysis { 1427 explicit SymbolDependenceAnalysis(const semantics::Scope &scope) { 1428 analyzeEquivalenceSets(scope); 1429 for (const auto &iter : scope) 1430 analyze(iter.second.get()); 1431 finalize(); 1432 } 1433 explicit SymbolDependenceAnalysis(const semantics::Symbol &symbol) { 1434 analyzeEquivalenceSets(symbol.owner()); 1435 analyze(symbol); 1436 finalize(); 1437 } 1438 Fortran::lower::pft::VariableList getVariableList() { 1439 return std::move(layeredVarList[0]); 1440 } 1441 1442 private: 1443 /// Analyze the equivalence sets defined in \p scope, plus the equivalence 1444 /// sets in host module, submodule, and procedure scopes that may define 1445 /// symbols referenced in \p scope. This analysis excludes equivalence sets 1446 /// involving common blocks, which are handled elsewhere. 1447 void analyzeEquivalenceSets(const semantics::Scope &scope) { 1448 // FIXME: When this function is called on the scope of an internal 1449 // procedure whose parent contains an EQUIVALENCE set and the internal 1450 // procedure uses variables from that EQUIVALENCE set, we end up creating 1451 // an AggregateStore for those variables unnecessarily. 1452 1453 // A function defined in a [sub]module has no explicit USE of its ancestor 1454 // [sub]modules. Analyze those scopes here to accommodate references to 1455 // symbols in them. 1456 for (auto *scp = &scope.parent(); !scp->IsGlobal(); scp = &scp->parent()) 1457 if (scp->kind() == Fortran::semantics::Scope::Kind::Module) 1458 analyzeLocalEquivalenceSets(*scp); 1459 // Analyze local, USEd, and host procedure scope equivalences. 1460 for (const auto &iter : scope) { 1461 const semantics::Symbol &ultimate = iter.second.get().GetUltimate(); 1462 if (!skipSymbol(ultimate)) 1463 analyzeLocalEquivalenceSets(ultimate.owner()); 1464 } 1465 // Add all aggregate stores to the front of the variable list. 1466 adjustSize(1); 1467 // The copy in the loop matters, 'stores' will still be used. 1468 for (auto st : stores) 1469 layeredVarList[0].emplace_back(std::move(st)); 1470 } 1471 1472 /// Analyze the equivalence sets defined locally in \p scope that don't 1473 /// involve common blocks. 1474 void analyzeLocalEquivalenceSets(const semantics::Scope &scope) { 1475 if (scope.equivalenceSets().empty()) 1476 return; // no equivalence sets to analyze 1477 if (analyzedScopes.contains(&scope)) 1478 return; // equivalence sets already analyzed 1479 1480 analyzedScopes.insert(&scope); 1481 std::list<std::list<semantics::SymbolRef>> aggregates = 1482 Fortran::semantics::GetStorageAssociations(scope); 1483 for (std::list<semantics::SymbolRef> aggregate : aggregates) { 1484 const Fortran::semantics::Symbol *aggregateSym = nullptr; 1485 bool isGlobal = false; 1486 const semantics::Symbol &first = *aggregate.front(); 1487 // Exclude equivalence sets involving common blocks. 1488 // Those are handled in instantiateCommon. 1489 if (lower::definedInCommonBlock(first)) 1490 continue; 1491 std::size_t start = first.offset(); 1492 std::size_t end = first.offset() + first.size(); 1493 const Fortran::semantics::Symbol *namingSym = nullptr; 1494 for (semantics::SymbolRef symRef : aggregate) { 1495 const semantics::Symbol &sym = *symRef; 1496 aliasSyms.insert(&sym); 1497 if (sym.test(Fortran::semantics::Symbol::Flag::CompilerCreated)) { 1498 aggregateSym = &sym; 1499 } else { 1500 isGlobal |= lower::symbolIsGlobal(sym); 1501 start = std::min(sym.offset(), start); 1502 end = std::max(sym.offset() + sym.size(), end); 1503 if (!namingSym || (sym.name() < namingSym->name())) 1504 namingSym = &sym; 1505 } 1506 } 1507 assert(namingSym && "must contain at least one user symbol"); 1508 if (!aggregateSym) { 1509 stores.emplace_back( 1510 Fortran::lower::pft::Variable::Interval{start, end - start}, 1511 *namingSym, isGlobal); 1512 } else { 1513 stores.emplace_back(*aggregateSym, *namingSym, isGlobal); 1514 } 1515 } 1516 } 1517 1518 // Recursively visit each symbol to determine the height of its dependence on 1519 // other symbols. 1520 int analyze(const semantics::Symbol &sym) { 1521 auto done = seen.insert(&sym); 1522 if (!done.second) 1523 return 0; 1524 LLVM_DEBUG(llvm::dbgs() << "analyze symbol " << &sym << " in <" 1525 << &sym.owner() << ">: " << sym << '\n'); 1526 const bool isProcedurePointerOrDummy = 1527 semantics::IsProcedurePointer(sym) || 1528 (semantics::IsProcedure(sym) && IsDummy(sym)); 1529 // A procedure argument in a subprogram with multiple entry points might 1530 // need a layeredVarList entry to trigger creation of a symbol map entry 1531 // in some cases. Non-dummy procedures don't. 1532 if (semantics::IsProcedure(sym) && !isProcedurePointerOrDummy) 1533 return 0; 1534 // Derived type component symbols may be collected by "CollectSymbols" 1535 // below when processing something like "real :: x(derived%component)". The 1536 // symbol "component" has "ObjectEntityDetails", but it should not be 1537 // instantiated: it is part of "derived" that should be the only one to 1538 // be instantiated. 1539 if (sym.owner().IsDerivedType()) 1540 return 0; 1541 1542 semantics::Symbol ultimate = sym.GetUltimate(); 1543 if (const auto *details = 1544 ultimate.detailsIf<semantics::NamelistDetails>()) { 1545 // handle namelist group symbols 1546 for (const semantics::SymbolRef &s : details->objects()) 1547 analyze(s); 1548 return 0; 1549 } 1550 if (!ultimate.has<semantics::ObjectEntityDetails>() && 1551 !isProcedurePointerOrDummy) 1552 return 0; 1553 1554 if (sym.has<semantics::DerivedTypeDetails>()) 1555 llvm_unreachable("not yet implemented - derived type analysis"); 1556 1557 // Symbol must be something lowering will have to allocate. 1558 int depth = 0; 1559 // Analyze symbols appearing in object entity specification expressions. 1560 // This ensures these symbols will be instantiated before the current one. 1561 // This is not done for object entities that are host associated because 1562 // they must be instantiated from the value of the host symbols. 1563 // (The specification expressions should not be re-evaluated.) 1564 if (const auto *details = sym.detailsIf<semantics::ObjectEntityDetails>()) { 1565 const semantics::DeclTypeSpec *symTy = sym.GetType(); 1566 assert(symTy && "symbol must have a type"); 1567 // check CHARACTER's length 1568 if (symTy->category() == semantics::DeclTypeSpec::Character) 1569 if (auto e = symTy->characterTypeSpec().length().GetExplicit()) 1570 for (const auto &s : evaluate::CollectSymbols(*e)) 1571 depth = std::max(analyze(s) + 1, depth); 1572 1573 auto doExplicit = [&](const auto &bound) { 1574 if (bound.isExplicit()) { 1575 semantics::SomeExpr e{*bound.GetExplicit()}; 1576 for (const auto &s : evaluate::CollectSymbols(e)) 1577 depth = std::max(analyze(s) + 1, depth); 1578 } 1579 }; 1580 // Handle any symbols in array bound declarations. 1581 for (const semantics::ShapeSpec &subs : details->shape()) { 1582 doExplicit(subs.lbound()); 1583 doExplicit(subs.ubound()); 1584 } 1585 // Handle any symbols in coarray bound declarations. 1586 for (const semantics::ShapeSpec &subs : details->coshape()) { 1587 doExplicit(subs.lbound()); 1588 doExplicit(subs.ubound()); 1589 } 1590 // Handle any symbols in initialization expressions. 1591 if (auto e = details->init()) 1592 for (const auto &s : evaluate::CollectSymbols(*e)) 1593 if (!s->has<semantics::DerivedTypeDetails>()) 1594 depth = std::max(analyze(s) + 1, depth); 1595 } 1596 adjustSize(depth + 1); 1597 bool global = lower::symbolIsGlobal(sym); 1598 layeredVarList[depth].emplace_back(sym, global, depth); 1599 if (semantics::IsAllocatable(sym)) 1600 layeredVarList[depth].back().setHeapAlloc(); 1601 if (semantics::IsPointer(sym)) 1602 layeredVarList[depth].back().setPointer(); 1603 if (ultimate.attrs().test(semantics::Attr::TARGET)) 1604 layeredVarList[depth].back().setTarget(); 1605 1606 // If there are alias sets, then link the participating variables to their 1607 // aggregate stores when constructing the new variable on the list. 1608 if (lower::pft::Variable::AggregateStore *store = findStoreIfAlias(sym)) 1609 layeredVarList[depth].back().setAlias(store->getOffset()); 1610 return depth; 1611 } 1612 1613 /// Skip symbol in alias analysis. 1614 bool skipSymbol(const semantics::Symbol &sym) { 1615 // Common block equivalences are largely managed by the front end. 1616 // Compiler generated symbols ('.' names) cannot be equivalenced. 1617 // FIXME: Equivalence code generation may need to be revisited. 1618 return !sym.has<semantics::ObjectEntityDetails>() || 1619 lower::definedInCommonBlock(sym) || sym.name()[0] == '.'; 1620 } 1621 1622 // Make sure the table is of appropriate size. 1623 void adjustSize(std::size_t size) { 1624 if (layeredVarList.size() < size) 1625 layeredVarList.resize(size); 1626 } 1627 1628 Fortran::lower::pft::Variable::AggregateStore * 1629 findStoreIfAlias(const Fortran::evaluate::Symbol &sym) { 1630 const semantics::Symbol &ultimate = sym.GetUltimate(); 1631 const semantics::Scope &scope = ultimate.owner(); 1632 // Expect the total number of EQUIVALENCE sets to be small for a typical 1633 // Fortran program. 1634 if (aliasSyms.contains(&ultimate)) { 1635 LLVM_DEBUG(llvm::dbgs() << "found aggregate containing " << &ultimate 1636 << " " << ultimate.name() << " in <" << &scope 1637 << "> " << scope.GetName() << '\n'); 1638 std::size_t off = ultimate.offset(); 1639 std::size_t symSize = ultimate.size(); 1640 for (lower::pft::Variable::AggregateStore &v : stores) { 1641 if (&v.getOwningScope() == &scope) { 1642 auto intervalOff = std::get<0>(v.interval); 1643 auto intervalSize = std::get<1>(v.interval); 1644 if (off >= intervalOff && off < intervalOff + intervalSize) 1645 return &v; 1646 // Zero sized symbol in zero sized equivalence. 1647 if (off == intervalOff && symSize == 0) 1648 return &v; 1649 } 1650 } 1651 // clang-format off 1652 LLVM_DEBUG( 1653 llvm::dbgs() << "looking for " << off << "\n{\n"; 1654 for (lower::pft::Variable::AggregateStore &v : stores) { 1655 llvm::dbgs() << " in scope: " << &v.getOwningScope() << "\n"; 1656 llvm::dbgs() << " i = [" << std::get<0>(v.interval) << ".." 1657 << std::get<0>(v.interval) + std::get<1>(v.interval) 1658 << "]\n"; 1659 } 1660 llvm::dbgs() << "}\n"); 1661 // clang-format on 1662 llvm_unreachable("the store must be present"); 1663 } 1664 return nullptr; 1665 } 1666 1667 /// Flatten the result VariableList. 1668 void finalize() { 1669 for (int i = 1, end = layeredVarList.size(); i < end; ++i) 1670 layeredVarList[0].insert(layeredVarList[0].end(), 1671 layeredVarList[i].begin(), 1672 layeredVarList[i].end()); 1673 } 1674 1675 llvm::SmallSet<const semantics::Symbol *, 32> seen; 1676 std::vector<Fortran::lower::pft::VariableList> layeredVarList; 1677 llvm::SmallSet<const semantics::Symbol *, 32> aliasSyms; 1678 /// Set of scopes that have been analyzed for aliases. 1679 llvm::SmallSet<const semantics::Scope *, 4> analyzedScopes; 1680 std::vector<Fortran::lower::pft::Variable::AggregateStore> stores; 1681 }; 1682 } // namespace 1683 1684 //===----------------------------------------------------------------------===// 1685 // FunctionLikeUnit implementation 1686 //===----------------------------------------------------------------------===// 1687 1688 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit( 1689 const parser::MainProgram &func, const lower::pft::PftNode &parent, 1690 const semantics::SemanticsContext &semanticsContext) 1691 : ProgramUnit{func, parent}, 1692 endStmt{getFunctionStmt<parser::EndProgramStmt>(func)} { 1693 const auto &programStmt = 1694 std::get<std::optional<parser::Statement<parser::ProgramStmt>>>(func.t); 1695 if (programStmt.has_value()) { 1696 beginStmt = FunctionStatement(programStmt.value()); 1697 const semantics::Symbol *symbol = getSymbol(*beginStmt); 1698 entryPointList[0].first = symbol; 1699 scope = symbol->scope(); 1700 } else { 1701 scope = &semanticsContext.FindScope( 1702 std::get<parser::Statement<parser::EndProgramStmt>>(func.t).source); 1703 } 1704 } 1705 1706 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit( 1707 const parser::FunctionSubprogram &func, const lower::pft::PftNode &parent, 1708 const semantics::SemanticsContext &) 1709 : ProgramUnit{func, parent}, 1710 beginStmt{getFunctionStmt<parser::FunctionStmt>(func)}, 1711 endStmt{getFunctionStmt<parser::EndFunctionStmt>(func)} { 1712 const semantics::Symbol *symbol = getSymbol(*beginStmt); 1713 entryPointList[0].first = symbol; 1714 scope = symbol->scope(); 1715 } 1716 1717 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit( 1718 const parser::SubroutineSubprogram &func, const lower::pft::PftNode &parent, 1719 const semantics::SemanticsContext &) 1720 : ProgramUnit{func, parent}, 1721 beginStmt{getFunctionStmt<parser::SubroutineStmt>(func)}, 1722 endStmt{getFunctionStmt<parser::EndSubroutineStmt>(func)} { 1723 const semantics::Symbol *symbol = getSymbol(*beginStmt); 1724 entryPointList[0].first = symbol; 1725 scope = symbol->scope(); 1726 } 1727 1728 Fortran::lower::pft::FunctionLikeUnit::FunctionLikeUnit( 1729 const parser::SeparateModuleSubprogram &func, 1730 const lower::pft::PftNode &parent, const semantics::SemanticsContext &) 1731 : ProgramUnit{func, parent}, 1732 beginStmt{getFunctionStmt<parser::MpSubprogramStmt>(func)}, 1733 endStmt{getFunctionStmt<parser::EndMpSubprogramStmt>(func)} { 1734 const semantics::Symbol *symbol = getSymbol(*beginStmt); 1735 entryPointList[0].first = symbol; 1736 scope = symbol->scope(); 1737 } 1738 1739 Fortran::lower::HostAssociations & 1740 Fortran::lower::pft::FunctionLikeUnit::parentHostAssoc() { 1741 if (auto *par = parent.getIf<FunctionLikeUnit>()) 1742 return par->hostAssociations; 1743 llvm::report_fatal_error("parent is not a function"); 1744 } 1745 1746 bool Fortran::lower::pft::FunctionLikeUnit::parentHasTupleHostAssoc() { 1747 if (auto *par = parent.getIf<FunctionLikeUnit>()) 1748 return par->hostAssociations.hasTupleAssociations(); 1749 return false; 1750 } 1751 1752 bool Fortran::lower::pft::FunctionLikeUnit::parentHasHostAssoc() { 1753 if (auto *par = parent.getIf<FunctionLikeUnit>()) 1754 return !par->hostAssociations.empty(); 1755 return false; 1756 } 1757 1758 parser::CharBlock 1759 Fortran::lower::pft::FunctionLikeUnit::getStartingSourceLoc() const { 1760 if (beginStmt) 1761 return stmtSourceLoc(*beginStmt); 1762 return scope->sourceRange(); 1763 } 1764 1765 //===----------------------------------------------------------------------===// 1766 // ModuleLikeUnit implementation 1767 //===----------------------------------------------------------------------===// 1768 1769 Fortran::lower::pft::ModuleLikeUnit::ModuleLikeUnit( 1770 const parser::Module &m, const lower::pft::PftNode &parent) 1771 : ProgramUnit{m, parent}, beginStmt{getModuleStmt<parser::ModuleStmt>(m)}, 1772 endStmt{getModuleStmt<parser::EndModuleStmt>(m)} {} 1773 1774 Fortran::lower::pft::ModuleLikeUnit::ModuleLikeUnit( 1775 const parser::Submodule &m, const lower::pft::PftNode &parent) 1776 : ProgramUnit{m, parent}, 1777 beginStmt{getModuleStmt<parser::SubmoduleStmt>(m)}, 1778 endStmt{getModuleStmt<parser::EndSubmoduleStmt>(m)} {} 1779 1780 parser::CharBlock 1781 Fortran::lower::pft::ModuleLikeUnit::getStartingSourceLoc() const { 1782 return stmtSourceLoc(beginStmt); 1783 } 1784 const Fortran::semantics::Scope & 1785 Fortran::lower::pft::ModuleLikeUnit::getScope() const { 1786 const Fortran::semantics::Symbol *symbol = getSymbol(beginStmt); 1787 assert(symbol && symbol->scope() && 1788 "Module statement must have a symbol with a scope"); 1789 return *symbol->scope(); 1790 } 1791 1792 //===----------------------------------------------------------------------===// 1793 // BlockDataUnit implementation 1794 //===----------------------------------------------------------------------===// 1795 1796 Fortran::lower::pft::BlockDataUnit::BlockDataUnit( 1797 const parser::BlockData &bd, const lower::pft::PftNode &parent, 1798 const semantics::SemanticsContext &semanticsContext) 1799 : ProgramUnit{bd, parent}, 1800 symTab{semanticsContext.FindScope( 1801 std::get<parser::Statement<parser::EndBlockDataStmt>>(bd.t).source)} { 1802 } 1803 1804 std::unique_ptr<lower::pft::Program> 1805 Fortran::lower::createPFT(const parser::Program &root, 1806 const semantics::SemanticsContext &semanticsContext) { 1807 PFTBuilder walker(semanticsContext); 1808 Walk(root, walker); 1809 return walker.result(); 1810 } 1811 1812 void Fortran::lower::dumpPFT(llvm::raw_ostream &outputStream, 1813 const lower::pft::Program &pft) { 1814 PFTDumper{}.dumpPFT(outputStream, pft); 1815 } 1816 1817 void Fortran::lower::pft::Program::dump() const { 1818 dumpPFT(llvm::errs(), *this); 1819 } 1820 1821 void Fortran::lower::pft::Evaluation::dump() const { 1822 PFTDumper{}.dumpEvaluation(llvm::errs(), *this); 1823 } 1824 1825 void Fortran::lower::pft::Variable::dump() const { 1826 if (auto *s = std::get_if<Nominal>(&var)) { 1827 llvm::errs() << s->symbol << " " << *s->symbol; 1828 llvm::errs() << " (depth: " << s->depth << ')'; 1829 if (s->global) 1830 llvm::errs() << ", global"; 1831 if (s->heapAlloc) 1832 llvm::errs() << ", allocatable"; 1833 if (s->pointer) 1834 llvm::errs() << ", pointer"; 1835 if (s->target) 1836 llvm::errs() << ", target"; 1837 if (s->aliaser) 1838 llvm::errs() << ", equivalence(" << s->aliasOffset << ')'; 1839 } else if (auto *s = std::get_if<AggregateStore>(&var)) { 1840 llvm::errs() << "interval[" << std::get<0>(s->interval) << ", " 1841 << std::get<1>(s->interval) << "]:"; 1842 llvm::errs() << " name: " << toStringRef(s->getNamingSymbol().name()); 1843 if (s->isGlobal()) 1844 llvm::errs() << ", global"; 1845 if (s->initialValueSymbol) 1846 llvm::errs() << ", initial value: {" << *s->initialValueSymbol << "}"; 1847 } else { 1848 llvm_unreachable("not a Variable"); 1849 } 1850 llvm::errs() << '\n'; 1851 } 1852 1853 void Fortran::lower::pft::dump(Fortran::lower::pft::VariableList &variableList, 1854 std::string s) { 1855 llvm::errs() << (s.empty() ? "VariableList" : s) << " " << &variableList 1856 << " size=" << variableList.size() << "\n"; 1857 for (auto var : variableList) { 1858 llvm::errs() << " "; 1859 var.dump(); 1860 } 1861 } 1862 1863 void Fortran::lower::pft::FunctionLikeUnit::dump() const { 1864 PFTDumper{}.dumpFunctionLikeUnit(llvm::errs(), *this); 1865 } 1866 1867 void Fortran::lower::pft::ModuleLikeUnit::dump() const { 1868 PFTDumper{}.dumpModuleLikeUnit(llvm::errs(), *this); 1869 } 1870 1871 /// The BlockDataUnit dump is just the associated symbol table. 1872 void Fortran::lower::pft::BlockDataUnit::dump() const { 1873 llvm::errs() << "block data {\n" << symTab << "\n}\n"; 1874 } 1875 1876 /// Find or create an ordered list of equivalences and variables in \p scope. 1877 /// The result is cached in \p map. 1878 const lower::pft::VariableList & 1879 lower::pft::getScopeVariableList(const semantics::Scope &scope, 1880 ScopeVariableListMap &map) { 1881 LLVM_DEBUG(llvm::dbgs() << "\ngetScopeVariableList of [sub]module scope <" 1882 << &scope << "> " << scope.GetName() << "\n"); 1883 auto iter = map.find(&scope); 1884 if (iter == map.end()) { 1885 SymbolDependenceAnalysis sda(scope); 1886 map.emplace(&scope, sda.getVariableList()); 1887 iter = map.find(&scope); 1888 } 1889 return iter->second; 1890 } 1891 1892 /// Create an ordered list of equivalences and variables in \p scope. 1893 /// The result is not cached. 1894 lower::pft::VariableList 1895 lower::pft::getScopeVariableList(const semantics::Scope &scope) { 1896 LLVM_DEBUG( 1897 llvm::dbgs() << "\ngetScopeVariableList of [sub]program|block scope <" 1898 << &scope << "> " << scope.GetName() << "\n"); 1899 SymbolDependenceAnalysis sda(scope); 1900 return sda.getVariableList(); 1901 } 1902 1903 /// Create an ordered list of equivalences and variables that \p symbol 1904 /// depends on (no caching). Include \p symbol at the end of the list. 1905 lower::pft::VariableList 1906 lower::pft::getDependentVariableList(const semantics::Symbol &symbol) { 1907 LLVM_DEBUG(llvm::dbgs() << "\ngetDependentVariableList of " << &symbol 1908 << " - " << symbol << "\n"); 1909 SymbolDependenceAnalysis sda(symbol); 1910 return sda.getVariableList(); 1911 } 1912 1913 namespace { 1914 /// Helper class to find all the symbols referenced in a FunctionLikeUnit. 1915 /// It defines a parse tree visitor doing a deep visit in all nodes with 1916 /// symbols (including evaluate::Expr). 1917 struct SymbolVisitor { 1918 template <typename A> 1919 bool Pre(const A &x) { 1920 if constexpr (Fortran::parser::HasTypedExpr<A>::value) 1921 // Some parse tree Expr may legitimately be un-analyzed after semantics 1922 // (for instance PDT component initial value in the PDT definition body). 1923 if (const auto *expr = Fortran::semantics::GetExpr(nullptr, x)) 1924 visitExpr(*expr); 1925 return true; 1926 } 1927 1928 bool Pre(const Fortran::parser::Name &name) { 1929 if (const semantics::Symbol *symbol = name.symbol) 1930 visitSymbol(*symbol); 1931 return false; 1932 } 1933 1934 template <typename T> 1935 void visitExpr(const Fortran::evaluate::Expr<T> &expr) { 1936 for (const semantics::Symbol &symbol : 1937 Fortran::evaluate::CollectSymbols(expr)) 1938 visitSymbol(symbol); 1939 } 1940 1941 void visitSymbol(const Fortran::semantics::Symbol &symbol) { 1942 callBack(symbol); 1943 // - Visit statement function body since it will be inlined in lowering. 1944 // - Visit function results specification expressions because allocations 1945 // happens on the caller side. 1946 if (const auto *subprogramDetails = 1947 symbol.detailsIf<Fortran::semantics::SubprogramDetails>()) { 1948 if (const auto &maybeExpr = subprogramDetails->stmtFunction()) { 1949 visitExpr(*maybeExpr); 1950 } else { 1951 if (subprogramDetails->isFunction()) { 1952 // Visit result extents expressions that are explicit. 1953 const Fortran::semantics::Symbol &result = 1954 subprogramDetails->result(); 1955 if (const auto *objectDetails = 1956 result.detailsIf<Fortran::semantics::ObjectEntityDetails>()) 1957 if (objectDetails->shape().IsExplicitShape()) 1958 for (const Fortran::semantics::ShapeSpec &shapeSpec : 1959 objectDetails->shape()) { 1960 visitExpr(shapeSpec.lbound().GetExplicit().value()); 1961 visitExpr(shapeSpec.ubound().GetExplicit().value()); 1962 } 1963 } 1964 } 1965 } 1966 if (Fortran::semantics::IsProcedure(symbol)) { 1967 if (auto dynamicType = Fortran::evaluate::DynamicType::From(symbol)) { 1968 // Visit result length specification expressions that are explicit. 1969 if (dynamicType->category() == 1970 Fortran::common::TypeCategory::Character) { 1971 if (std::optional<Fortran::evaluate::ExtentExpr> length = 1972 dynamicType->GetCharLength()) 1973 visitExpr(*length); 1974 } else if (const Fortran::semantics::DerivedTypeSpec *derivedTypeSpec = 1975 Fortran::evaluate::GetDerivedTypeSpec(dynamicType)) { 1976 for (const auto &[_, param] : derivedTypeSpec->parameters()) 1977 if (const Fortran::semantics::MaybeIntExpr &expr = 1978 param.GetExplicit()) 1979 visitExpr(expr.value()); 1980 } 1981 } 1982 } 1983 } 1984 1985 template <typename A> 1986 constexpr void Post(const A &) {} 1987 1988 const std::function<void(const Fortran::semantics::Symbol &)> &callBack; 1989 }; 1990 } // namespace 1991 1992 void Fortran::lower::pft::visitAllSymbols( 1993 const Fortran::lower::pft::FunctionLikeUnit &funit, 1994 const std::function<void(const Fortran::semantics::Symbol &)> callBack) { 1995 SymbolVisitor visitor{callBack}; 1996 funit.visit([&](const auto &functionParserNode) { 1997 parser::Walk(functionParserNode, visitor); 1998 }); 1999 } 2000 2001 void Fortran::lower::pft::visitAllSymbols( 2002 const Fortran::lower::pft::Evaluation &eval, 2003 const std::function<void(const Fortran::semantics::Symbol &)> callBack) { 2004 SymbolVisitor visitor{callBack}; 2005 eval.visit([&](const auto &functionParserNode) { 2006 parser::Walk(functionParserNode, visitor); 2007 }); 2008 } 2009