1 //===-- ConvertType.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Lower/ConvertType.h" 10 #include "flang/Lower/AbstractConverter.h" 11 #include "flang/Lower/CallInterface.h" 12 #include "flang/Lower/ConvertVariable.h" 13 #include "flang/Lower/Mangler.h" 14 #include "flang/Lower/PFTBuilder.h" 15 #include "flang/Lower/Support/Utils.h" 16 #include "flang/Optimizer/Builder/Todo.h" 17 #include "flang/Optimizer/Dialect/FIRType.h" 18 #include "flang/Semantics/tools.h" 19 #include "flang/Semantics/type.h" 20 #include "mlir/IR/Builders.h" 21 #include "mlir/IR/BuiltinTypes.h" 22 #include "llvm/Support/Debug.h" 23 24 #define DEBUG_TYPE "flang-lower-type" 25 26 using Fortran::common::VectorElementCategory; 27 28 //===--------------------------------------------------------------------===// 29 // Intrinsic type translation helpers 30 //===--------------------------------------------------------------------===// 31 32 static mlir::Type genRealType(mlir::MLIRContext *context, int kind) { 33 if (Fortran::evaluate::IsValidKindOfIntrinsicType( 34 Fortran::common::TypeCategory::Real, kind)) { 35 switch (kind) { 36 case 2: 37 return mlir::FloatType::getF16(context); 38 case 3: 39 return mlir::FloatType::getBF16(context); 40 case 4: 41 return mlir::FloatType::getF32(context); 42 case 8: 43 return mlir::FloatType::getF64(context); 44 case 10: 45 return mlir::FloatType::getF80(context); 46 case 16: 47 return mlir::FloatType::getF128(context); 48 } 49 } 50 llvm_unreachable("REAL type translation not implemented"); 51 } 52 53 template <int KIND> 54 int getIntegerBits() { 55 return Fortran::evaluate::Type<Fortran::common::TypeCategory::Integer, 56 KIND>::Scalar::bits; 57 } 58 static mlir::Type genIntegerType(mlir::MLIRContext *context, int kind, 59 bool isUnsigned = false) { 60 if (Fortran::evaluate::IsValidKindOfIntrinsicType( 61 Fortran::common::TypeCategory::Integer, kind)) { 62 mlir::IntegerType::SignednessSemantics signedness = 63 (isUnsigned ? mlir::IntegerType::SignednessSemantics::Unsigned 64 : mlir::IntegerType::SignednessSemantics::Signless); 65 66 switch (kind) { 67 case 1: 68 return mlir::IntegerType::get(context, getIntegerBits<1>(), signedness); 69 case 2: 70 return mlir::IntegerType::get(context, getIntegerBits<2>(), signedness); 71 case 4: 72 return mlir::IntegerType::get(context, getIntegerBits<4>(), signedness); 73 case 8: 74 return mlir::IntegerType::get(context, getIntegerBits<8>(), signedness); 75 case 16: 76 return mlir::IntegerType::get(context, getIntegerBits<16>(), signedness); 77 } 78 } 79 llvm_unreachable("INTEGER kind not translated"); 80 } 81 82 static mlir::Type genLogicalType(mlir::MLIRContext *context, int KIND) { 83 if (Fortran::evaluate::IsValidKindOfIntrinsicType( 84 Fortran::common::TypeCategory::Logical, KIND)) 85 return fir::LogicalType::get(context, KIND); 86 return {}; 87 } 88 89 static mlir::Type genCharacterType( 90 mlir::MLIRContext *context, int KIND, 91 Fortran::lower::LenParameterTy len = fir::CharacterType::unknownLen()) { 92 if (Fortran::evaluate::IsValidKindOfIntrinsicType( 93 Fortran::common::TypeCategory::Character, KIND)) 94 return fir::CharacterType::get(context, KIND, len); 95 return {}; 96 } 97 98 static mlir::Type genComplexType(mlir::MLIRContext *context, int KIND) { 99 if (Fortran::evaluate::IsValidKindOfIntrinsicType( 100 Fortran::common::TypeCategory::Complex, KIND)) 101 return fir::ComplexType::get(context, KIND); 102 return {}; 103 } 104 105 static mlir::Type 106 genFIRType(mlir::MLIRContext *context, Fortran::common::TypeCategory tc, 107 int kind, 108 llvm::ArrayRef<Fortran::lower::LenParameterTy> lenParameters) { 109 switch (tc) { 110 case Fortran::common::TypeCategory::Real: 111 return genRealType(context, kind); 112 case Fortran::common::TypeCategory::Integer: 113 return genIntegerType(context, kind); 114 case Fortran::common::TypeCategory::Complex: 115 return genComplexType(context, kind); 116 case Fortran::common::TypeCategory::Logical: 117 return genLogicalType(context, kind); 118 case Fortran::common::TypeCategory::Character: 119 if (!lenParameters.empty()) 120 return genCharacterType(context, kind, lenParameters[0]); 121 return genCharacterType(context, kind); 122 default: 123 break; 124 } 125 llvm_unreachable("unhandled type category"); 126 } 127 128 //===--------------------------------------------------------------------===// 129 // Symbol and expression type translation 130 //===--------------------------------------------------------------------===// 131 132 /// TypeBuilderImpl translates expression and symbol type taking into account 133 /// their shape and length parameters. For symbols, attributes such as 134 /// ALLOCATABLE or POINTER are reflected in the fir type. 135 /// It uses evaluate::DynamicType and evaluate::Shape when possible to 136 /// avoid re-implementing type/shape analysis here. 137 /// Do not use the FirOpBuilder from the AbstractConverter to get fir/mlir types 138 /// since it is not guaranteed to exist yet when we lower types. 139 namespace { 140 struct TypeBuilderImpl { 141 142 TypeBuilderImpl(Fortran::lower::AbstractConverter &converter) 143 : derivedTypeInConstruction{converter.getTypeConstructionStack()}, 144 converter{converter}, context{&converter.getMLIRContext()} {} 145 146 template <typename A> 147 mlir::Type genExprType(const A &expr) { 148 std::optional<Fortran::evaluate::DynamicType> dynamicType = expr.GetType(); 149 if (!dynamicType) 150 return genTypelessExprType(expr); 151 Fortran::common::TypeCategory category = dynamicType->category(); 152 153 mlir::Type baseType; 154 bool isPolymorphic = (dynamicType->IsPolymorphic() || 155 dynamicType->IsUnlimitedPolymorphic()) && 156 !dynamicType->IsAssumedType(); 157 if (dynamicType->IsUnlimitedPolymorphic()) { 158 baseType = mlir::NoneType::get(context); 159 } else if (category == Fortran::common::TypeCategory::Derived) { 160 baseType = genDerivedType(dynamicType->GetDerivedTypeSpec()); 161 } else { 162 // LOGICAL, INTEGER, REAL, COMPLEX, CHARACTER 163 llvm::SmallVector<Fortran::lower::LenParameterTy> params; 164 translateLenParameters(params, category, expr); 165 baseType = genFIRType(context, category, dynamicType->kind(), params); 166 } 167 std::optional<Fortran::evaluate::Shape> shapeExpr = 168 Fortran::evaluate::GetShape(converter.getFoldingContext(), expr); 169 fir::SequenceType::Shape shape; 170 if (shapeExpr) { 171 translateShape(shape, std::move(*shapeExpr)); 172 } else { 173 // Shape static analysis cannot return something useful for the shape. 174 // Use unknown extents. 175 int rank = expr.Rank(); 176 if (rank < 0) 177 TODO(converter.getCurrentLocation(), "assumed rank expression types"); 178 for (int dim = 0; dim < rank; ++dim) 179 shape.emplace_back(fir::SequenceType::getUnknownExtent()); 180 } 181 182 if (!shape.empty()) { 183 if (isPolymorphic) 184 return fir::ClassType::get(fir::SequenceType::get(shape, baseType)); 185 return fir::SequenceType::get(shape, baseType); 186 } 187 if (isPolymorphic) 188 return fir::ClassType::get(baseType); 189 return baseType; 190 } 191 192 template <typename A> 193 void translateShape(A &shape, Fortran::evaluate::Shape &&shapeExpr) { 194 for (Fortran::evaluate::MaybeExtentExpr extentExpr : shapeExpr) { 195 fir::SequenceType::Extent extent = fir::SequenceType::getUnknownExtent(); 196 if (std::optional<std::int64_t> constantExtent = 197 toInt64(std::move(extentExpr))) 198 extent = *constantExtent; 199 shape.push_back(extent); 200 } 201 } 202 203 template <typename A> 204 std::optional<std::int64_t> toInt64(A &&expr) { 205 return Fortran::evaluate::ToInt64(Fortran::evaluate::Fold( 206 converter.getFoldingContext(), std::move(expr))); 207 } 208 209 template <typename A> 210 mlir::Type genTypelessExprType(const A &expr) { 211 fir::emitFatalError(converter.getCurrentLocation(), "not a typeless expr"); 212 } 213 214 mlir::Type genTypelessExprType(const Fortran::lower::SomeExpr &expr) { 215 return Fortran::common::visit( 216 Fortran::common::visitors{ 217 [&](const Fortran::evaluate::BOZLiteralConstant &) -> mlir::Type { 218 return mlir::NoneType::get(context); 219 }, 220 [&](const Fortran::evaluate::NullPointer &) -> mlir::Type { 221 return fir::ReferenceType::get(mlir::NoneType::get(context)); 222 }, 223 [&](const Fortran::evaluate::ProcedureDesignator &proc) 224 -> mlir::Type { 225 return Fortran::lower::translateSignature(proc, converter); 226 }, 227 [&](const Fortran::evaluate::ProcedureRef &) -> mlir::Type { 228 return mlir::NoneType::get(context); 229 }, 230 [](const auto &x) -> mlir::Type { 231 using T = std::decay_t<decltype(x)>; 232 static_assert(!Fortran::common::HasMember< 233 T, Fortran::evaluate::TypelessExpression>, 234 "missing typeless expr handling"); 235 llvm::report_fatal_error("not a typeless expression"); 236 }, 237 }, 238 expr.u); 239 } 240 241 mlir::Type genSymbolType(const Fortran::semantics::Symbol &symbol, 242 bool isAlloc = false, bool isPtr = false) { 243 mlir::Location loc = converter.genLocation(symbol.name()); 244 mlir::Type ty; 245 // If the symbol is not the same as the ultimate one (i.e, it is host or use 246 // associated), all the symbol properties are the ones of the ultimate 247 // symbol but the volatile and asynchronous attributes that may differ. To 248 // avoid issues with helper functions that would not follow association 249 // links, the fir type is built based on the ultimate symbol. This relies 250 // on the fact volatile and asynchronous are not reflected in fir types. 251 const Fortran::semantics::Symbol &ultimate = symbol.GetUltimate(); 252 253 if (Fortran::semantics::IsProcedurePointer(ultimate)) { 254 Fortran::evaluate::ProcedureDesignator proc(ultimate); 255 auto procTy{Fortran::lower::translateSignature(proc, converter)}; 256 return fir::BoxProcType::get(context, procTy); 257 } 258 259 if (const Fortran::semantics::DeclTypeSpec *type = ultimate.GetType()) { 260 if (const Fortran::semantics::IntrinsicTypeSpec *tySpec = 261 type->AsIntrinsic()) { 262 int kind = toInt64(Fortran::common::Clone(tySpec->kind())).value(); 263 llvm::SmallVector<Fortran::lower::LenParameterTy> params; 264 translateLenParameters(params, tySpec->category(), ultimate); 265 ty = genFIRType(context, tySpec->category(), kind, params); 266 } else if (type->IsUnlimitedPolymorphic()) { 267 ty = mlir::NoneType::get(context); 268 } else if (const Fortran::semantics::DerivedTypeSpec *tySpec = 269 type->AsDerived()) { 270 ty = genDerivedType(*tySpec); 271 } else { 272 fir::emitFatalError(loc, "symbol's type must have a type spec"); 273 } 274 } else { 275 fir::emitFatalError(loc, "symbol must have a type"); 276 } 277 bool isPolymorphic = (Fortran::semantics::IsPolymorphic(symbol) || 278 Fortran::semantics::IsUnlimitedPolymorphic(symbol)) && 279 !Fortran::semantics::IsAssumedType(symbol); 280 if (ultimate.IsObjectArray()) { 281 auto shapeExpr = 282 Fortran::evaluate::GetShape(converter.getFoldingContext(), ultimate); 283 fir::SequenceType::Shape shape; 284 // If there is no shapExpr, this is an assumed-rank, and the empty shape 285 // will build the desired fir.array<*:T> type. 286 if (shapeExpr) 287 translateShape(shape, std::move(*shapeExpr)); 288 ty = fir::SequenceType::get(shape, ty); 289 } 290 if (Fortran::semantics::IsPointer(symbol)) 291 return fir::wrapInClassOrBoxType(fir::PointerType::get(ty), 292 isPolymorphic); 293 if (Fortran::semantics::IsAllocatable(symbol)) 294 return fir::wrapInClassOrBoxType(fir::HeapType::get(ty), isPolymorphic); 295 // isPtr and isAlloc are variable that were promoted to be on the 296 // heap or to be pointers, but they do not have Fortran allocatable 297 // or pointer semantics, so do not use box for them. 298 if (isPtr) 299 return fir::PointerType::get(ty); 300 if (isAlloc) 301 return fir::HeapType::get(ty); 302 if (isPolymorphic) 303 return fir::ClassType::get(ty); 304 return ty; 305 } 306 307 /// Does \p component has non deferred lower bounds that are not compile time 308 /// constant 1. 309 static bool componentHasNonDefaultLowerBounds( 310 const Fortran::semantics::Symbol &component) { 311 if (const auto *objDetails = 312 component.detailsIf<Fortran::semantics::ObjectEntityDetails>()) 313 for (const Fortran::semantics::ShapeSpec &bounds : objDetails->shape()) 314 if (auto lb = bounds.lbound().GetExplicit()) 315 if (auto constant = Fortran::evaluate::ToInt64(*lb)) 316 if (!constant || *constant != 1) 317 return true; 318 return false; 319 } 320 321 mlir::Type genVectorType(const Fortran::semantics::DerivedTypeSpec &tySpec) { 322 assert(tySpec.scope() && "Missing scope for Vector type"); 323 auto vectorSize{tySpec.scope()->size()}; 324 switch (tySpec.category()) { 325 SWITCH_COVERS_ALL_CASES 326 case (Fortran::semantics::DerivedTypeSpec::Category::IntrinsicVector): { 327 int64_t vecElemKind; 328 int64_t vecElemCategory; 329 330 for (const auto &pair : tySpec.parameters()) { 331 if (pair.first == "element_category") { 332 vecElemCategory = 333 Fortran::evaluate::ToInt64(pair.second.GetExplicit()) 334 .value_or(-1); 335 } else if (pair.first == "element_kind") { 336 vecElemKind = 337 Fortran::evaluate::ToInt64(pair.second.GetExplicit()).value_or(0); 338 } 339 } 340 341 assert((vecElemCategory >= 0 && 342 static_cast<size_t>(vecElemCategory) < 343 Fortran::common::VectorElementCategory_enumSize) && 344 "Vector element type is not specified"); 345 assert(vecElemKind && "Vector element kind is not specified"); 346 347 int64_t numOfElements = vectorSize / vecElemKind; 348 switch (static_cast<VectorElementCategory>(vecElemCategory)) { 349 SWITCH_COVERS_ALL_CASES 350 case VectorElementCategory::Integer: 351 return fir::VectorType::get(numOfElements, 352 genIntegerType(context, vecElemKind)); 353 case VectorElementCategory::Unsigned: 354 return fir::VectorType::get(numOfElements, 355 genIntegerType(context, vecElemKind, true)); 356 case VectorElementCategory::Real: 357 return fir::VectorType::get(numOfElements, 358 genRealType(context, vecElemKind)); 359 } 360 break; 361 } 362 case (Fortran::semantics::DerivedTypeSpec::Category::PairVector): 363 case (Fortran::semantics::DerivedTypeSpec::Category::QuadVector): 364 return fir::VectorType::get(vectorSize * 8, 365 mlir::IntegerType::get(context, 1)); 366 case (Fortran::semantics::DerivedTypeSpec::Category::DerivedType): 367 Fortran::common::die("Vector element type not implemented"); 368 } 369 } 370 371 mlir::Type genDerivedType(const Fortran::semantics::DerivedTypeSpec &tySpec) { 372 std::vector<std::pair<std::string, mlir::Type>> ps; 373 std::vector<std::pair<std::string, mlir::Type>> cs; 374 if (tySpec.IsVectorType()) { 375 return genVectorType(tySpec); 376 } 377 378 const Fortran::semantics::Symbol &typeSymbol = tySpec.typeSymbol(); 379 const Fortran::semantics::Scope &derivedScope = DEREF(tySpec.GetScope()); 380 if (mlir::Type ty = getTypeIfDerivedAlreadyInConstruction(derivedScope)) 381 return ty; 382 383 auto rec = fir::RecordType::get(context, converter.mangleName(tySpec)); 384 // Maintain the stack of types for recursive references and to speed-up 385 // the derived type constructions that can be expensive for derived type 386 // with dozens of components/parents (modern Fortran). 387 derivedTypeInConstruction.try_emplace(&derivedScope, rec); 388 389 // Gather the record type fields. 390 // (1) The data components. 391 if (converter.getLoweringOptions().getLowerToHighLevelFIR()) { 392 // In HLFIR the parent component is the first fir.type component. 393 for (const auto &componentName : 394 typeSymbol.get<Fortran::semantics::DerivedTypeDetails>() 395 .componentNames()) { 396 auto scopeIter = derivedScope.find(componentName); 397 assert(scopeIter != derivedScope.cend() && 398 "failed to find derived type component symbol"); 399 const Fortran::semantics::Symbol &component = scopeIter->second.get(); 400 mlir::Type ty = genSymbolType(component); 401 cs.emplace_back(converter.getRecordTypeFieldName(component), ty); 402 } 403 } else { 404 for (const auto &component : 405 Fortran::semantics::OrderedComponentIterator(tySpec)) { 406 // In the lowering to FIR the parent component does not appear in the 407 // fir.type and its components are inlined at the beginning of the 408 // fir.type<>. 409 // FIXME: this strategy leads to bugs because padding should be inserted 410 // after the component of the parents so that the next components do not 411 // end-up in the parent storage if the sum of the parent's component 412 // storage size is not a multiple of the parent type storage alignment. 413 414 // Lowering is assuming non deferred component lower bounds are 415 // always 1. Catch any situations where this is not true for now. 416 if (componentHasNonDefaultLowerBounds(component)) 417 TODO(converter.genLocation(component.name()), 418 "derived type components with non default lower bounds"); 419 if (IsProcedure(component)) 420 TODO(converter.genLocation(component.name()), "procedure components"); 421 mlir::Type ty = genSymbolType(component); 422 // Do not add the parent component (component of the parents are 423 // added and should be sufficient, the parent component would 424 // duplicate the fields). Note that genSymbolType must be called above 425 // on it so that the dispatch table for the parent type still gets 426 // emitted as needed. 427 if (component.test(Fortran::semantics::Symbol::Flag::ParentComp)) 428 continue; 429 cs.emplace_back(converter.getRecordTypeFieldName(component), ty); 430 } 431 } 432 433 mlir::Location loc = converter.genLocation(typeSymbol.name()); 434 // (2) The LEN type parameters. 435 for (const auto ¶m : 436 Fortran::semantics::OrderParameterDeclarations(typeSymbol)) 437 if (param->get<Fortran::semantics::TypeParamDetails>().attr() == 438 Fortran::common::TypeParamAttr::Len) { 439 TODO(loc, "parameterized derived types"); 440 // TODO: emplace in ps. Beware that param is the symbol in the type 441 // declaration, not instantiation: its kind may not be a constant. 442 // The instantiated symbol in tySpec.scope should be used instead. 443 ps.emplace_back(param->name().ToString(), genSymbolType(*param)); 444 } 445 446 rec.finalize(ps, cs); 447 448 if (!ps.empty()) { 449 // TODO: this type is a PDT (parametric derived type) with length 450 // parameter. Create the functions to use for allocation, dereferencing, 451 // and address arithmetic here. 452 } 453 LLVM_DEBUG(llvm::dbgs() << "derived type: " << rec << '\n'); 454 455 // Generate the type descriptor object if any 456 if (const Fortran::semantics::Symbol *typeInfoSym = 457 derivedScope.runtimeDerivedTypeDescription()) 458 converter.registerTypeInfo(loc, *typeInfoSym, tySpec, rec); 459 return rec; 460 } 461 462 // To get the character length from a symbol, make an fold a designator for 463 // the symbol to cover the case where the symbol is an assumed length named 464 // constant and its length comes from its init expression length. 465 template <int Kind> 466 fir::SequenceType::Extent 467 getCharacterLengthHelper(const Fortran::semantics::Symbol &symbol) { 468 using TC = 469 Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, Kind>; 470 auto designator = Fortran::evaluate::Fold( 471 converter.getFoldingContext(), 472 Fortran::evaluate::Expr<TC>{Fortran::evaluate::Designator<TC>{symbol}}); 473 if (auto len = toInt64(std::move(designator.LEN()))) 474 return *len; 475 return fir::SequenceType::getUnknownExtent(); 476 } 477 478 template <typename T> 479 void translateLenParameters( 480 llvm::SmallVectorImpl<Fortran::lower::LenParameterTy> ¶ms, 481 Fortran::common::TypeCategory category, const T &exprOrSym) { 482 if (category == Fortran::common::TypeCategory::Character) 483 params.push_back(getCharacterLength(exprOrSym)); 484 else if (category == Fortran::common::TypeCategory::Derived) 485 TODO(converter.getCurrentLocation(), "derived type length parameters"); 486 } 487 Fortran::lower::LenParameterTy 488 getCharacterLength(const Fortran::semantics::Symbol &symbol) { 489 const Fortran::semantics::DeclTypeSpec *type = symbol.GetType(); 490 if (!type || 491 type->category() != Fortran::semantics::DeclTypeSpec::Character || 492 !type->AsIntrinsic()) 493 llvm::report_fatal_error("not a character symbol"); 494 int kind = 495 toInt64(Fortran::common::Clone(type->AsIntrinsic()->kind())).value(); 496 switch (kind) { 497 case 1: 498 return getCharacterLengthHelper<1>(symbol); 499 case 2: 500 return getCharacterLengthHelper<2>(symbol); 501 case 4: 502 return getCharacterLengthHelper<4>(symbol); 503 } 504 llvm_unreachable("unknown character kind"); 505 } 506 507 template <typename A> 508 Fortran::lower::LenParameterTy getCharacterLength(const A &expr) { 509 return fir::SequenceType::getUnknownExtent(); 510 } 511 512 template <typename T> 513 Fortran::lower::LenParameterTy 514 getCharacterLength(const Fortran::evaluate::FunctionRef<T> &funcRef) { 515 if (auto constantLen = toInt64(funcRef.LEN())) 516 return *constantLen; 517 return fir::SequenceType::getUnknownExtent(); 518 } 519 520 Fortran::lower::LenParameterTy 521 getCharacterLength(const Fortran::lower::SomeExpr &expr) { 522 // Do not use dynamic type length here. We would miss constant 523 // lengths opportunities because dynamic type only has the length 524 // if it comes from a declaration. 525 if (const auto *charExpr = std::get_if< 526 Fortran::evaluate::Expr<Fortran::evaluate::SomeCharacter>>( 527 &expr.u)) { 528 if (auto constantLen = toInt64(charExpr->LEN())) 529 return *constantLen; 530 } else if (auto dynamicType = expr.GetType()) { 531 // When generating derived type type descriptor as structure constructor, 532 // semantics wraps designators to data component initialization into 533 // CLASS(*), regardless of their actual type. 534 // GetType() will recover the actual symbol type as the dynamic type, so 535 // getCharacterLength may be reached even if expr is packaged as an 536 // Expr<SomeDerived> instead of an Expr<SomeChar>. 537 // Just use the dynamic type here again to retrieve the length. 538 if (auto constantLen = toInt64(dynamicType->GetCharLength())) 539 return *constantLen; 540 } 541 return fir::SequenceType::getUnknownExtent(); 542 } 543 544 mlir::Type genVariableType(const Fortran::lower::pft::Variable &var) { 545 return genSymbolType(var.getSymbol(), var.isHeapAlloc(), var.isPointer()); 546 } 547 548 /// Derived type can be recursive. That is, pointer components of a derived 549 /// type `t` have type `t`. This helper returns `t` if it is already being 550 /// lowered to avoid infinite loops. 551 mlir::Type getTypeIfDerivedAlreadyInConstruction( 552 const Fortran::semantics::Scope &derivedScope) const { 553 return derivedTypeInConstruction.lookup(&derivedScope); 554 } 555 556 /// Stack derived type being processed to avoid infinite loops in case of 557 /// recursive derived types. The depth of derived types is expected to be 558 /// shallow (<10), so a SmallVector is sufficient. 559 Fortran::lower::TypeConstructionStack &derivedTypeInConstruction; 560 Fortran::lower::AbstractConverter &converter; 561 mlir::MLIRContext *context; 562 }; 563 } // namespace 564 565 mlir::Type Fortran::lower::getFIRType(mlir::MLIRContext *context, 566 Fortran::common::TypeCategory tc, 567 int kind, 568 llvm::ArrayRef<LenParameterTy> params) { 569 return genFIRType(context, tc, kind, params); 570 } 571 572 mlir::Type Fortran::lower::translateDerivedTypeToFIRType( 573 Fortran::lower::AbstractConverter &converter, 574 const Fortran::semantics::DerivedTypeSpec &tySpec) { 575 return TypeBuilderImpl{converter}.genDerivedType(tySpec); 576 } 577 578 mlir::Type Fortran::lower::translateSomeExprToFIRType( 579 Fortran::lower::AbstractConverter &converter, const SomeExpr &expr) { 580 return TypeBuilderImpl{converter}.genExprType(expr); 581 } 582 583 mlir::Type Fortran::lower::translateSymbolToFIRType( 584 Fortran::lower::AbstractConverter &converter, const SymbolRef symbol) { 585 return TypeBuilderImpl{converter}.genSymbolType(symbol); 586 } 587 588 mlir::Type Fortran::lower::translateVariableToFIRType( 589 Fortran::lower::AbstractConverter &converter, 590 const Fortran::lower::pft::Variable &var) { 591 return TypeBuilderImpl{converter}.genVariableType(var); 592 } 593 594 mlir::Type Fortran::lower::convertReal(mlir::MLIRContext *context, int kind) { 595 return genRealType(context, kind); 596 } 597 598 bool Fortran::lower::isDerivedTypeWithLenParameters( 599 const Fortran::semantics::Symbol &sym) { 600 if (const Fortran::semantics::DeclTypeSpec *declTy = sym.GetType()) 601 if (const Fortran::semantics::DerivedTypeSpec *derived = 602 declTy->AsDerived()) 603 return Fortran::semantics::CountLenParameters(*derived) > 0; 604 return false; 605 } 606 607 template <typename T> 608 mlir::Type Fortran::lower::TypeBuilder<T>::genType( 609 Fortran::lower::AbstractConverter &converter, 610 const Fortran::evaluate::FunctionRef<T> &funcRef) { 611 return TypeBuilderImpl{converter}.genExprType(funcRef); 612 } 613 614 const Fortran::semantics::DerivedTypeSpec & 615 Fortran::lower::ComponentReverseIterator::advanceToParentType() { 616 const Fortran::semantics::Scope *scope = currentParentType->GetScope(); 617 auto parentComp = 618 DEREF(scope).find(currentTypeDetails->GetParentComponentName().value()); 619 assert(parentComp != scope->cend() && "failed to get parent component"); 620 setCurrentType(parentComp->second->GetType()->derivedTypeSpec()); 621 return *currentParentType; 622 } 623 624 void Fortran::lower::ComponentReverseIterator::setCurrentType( 625 const Fortran::semantics::DerivedTypeSpec &derived) { 626 currentParentType = &derived; 627 currentTypeDetails = ¤tParentType->typeSymbol() 628 .get<Fortran::semantics::DerivedTypeDetails>(); 629 componentIt = currentTypeDetails->componentNames().crbegin(); 630 componentItEnd = currentTypeDetails->componentNames().crend(); 631 } 632 633 using namespace Fortran::evaluate; 634 using namespace Fortran::common; 635 FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::TypeBuilder, ) 636