xref: /llvm-project/flang/lib/Lower/ConvertArrayConstructor.cpp (revision 9ac452b2864e2a4c5dbcba3c6c8ad66cb28476ec)
1 //===- ConvertArrayConstructor.cpp -- Array Constructor ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Lower/ConvertArrayConstructor.h"
10 #include "flang/Evaluate/expression.h"
11 #include "flang/Lower/AbstractConverter.h"
12 #include "flang/Lower/ConvertExprToHLFIR.h"
13 #include "flang/Lower/ConvertType.h"
14 #include "flang/Lower/StatementContext.h"
15 #include "flang/Lower/SymbolMap.h"
16 #include "flang/Optimizer/Builder/HLFIRTools.h"
17 #include "flang/Optimizer/Builder/Runtime/ArrayConstructor.h"
18 #include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
19 #include "flang/Optimizer/Builder/TemporaryStorage.h"
20 #include "flang/Optimizer/Builder/Todo.h"
21 #include "flang/Optimizer/HLFIR/HLFIROps.h"
22 
23 // Array constructors are lowered with three different strategies.
24 // All strategies are not possible with all array constructors.
25 //
26 // - Strategy 1: runtime approach (RuntimeTempStrategy).
27 //   This strategy works will all array constructors, but will create more
28 //   complex code that is harder to optimize. An allocatable temp is created,
29 //   it may be unallocated if the array constructor length parameters or extent
30 //   could not be computed. Then, the runtime is called to push lowered
31 //   ac-value (array constructor elements) into the allocatable. The runtime
32 //   will allocate or reallocate as needed while values are being pushed.
33 //   In the end, the allocatable contain a temporary with all the array
34 //   constructor evaluated elements.
35 //
36 // - Strategy 2: inlined temporary approach (InlinedTempStrategyImpl)
37 //   This strategy can only be used if the array constructor extent and length
38 //   parameters can be pre-computed without evaluating any ac-value, and if all
39 //   of the ac-value are scalars (at least for now).
40 //   A temporary is allocated inline in one go, and an index pointing at the
41 //   current ac-value position in the array constructor element sequence is
42 //   maintained and used to store ac-value as they are being lowered.
43 //
44 // - Strategy 3: "function of the indices" approach (AsElementalStrategy)
45 //   This strategy can only be used if the array constructor extent and length
46 //   parameters can be pre-computed and, if the array constructor is of the
47 //   form "[(scalar_expr, ac-implied-do-control)]". In this case, it is lowered
48 //   into an hlfir.elemental without creating any temporary in lowering. This
49 //   form should maximize the chance of array temporary elision when assigning
50 //   the array constructor, potentially reshaped, to an array variable.
51 //
52 //   The array constructor lowering looks like:
53 //   ```
54 //     strategy = selectArrayCtorLoweringStrategy(array-ctor-expr);
55 //     for (ac-value : array-ctor-expr)
56 //       if (ac-value is expression) {
57 //         strategy.pushValue(ac-value);
58 //       } else if (ac-value is implied-do) {
59 //         strategy.startImpliedDo(lower, upper, stride);
60 //         strategy.startImpliedDoScope();
61 //         // lower nested values
62 //         ...
63 //         strategy.endImpliedDoScope();
64 //       }
65 //     result = strategy.finishArrayCtorLowering();
66 //   ```
67 
68 //===----------------------------------------------------------------------===//
69 //   Definition of the lowering strategies. Each lowering strategy is defined
70 //   as a class that implements "pushValue", "startImpliedDo" and
71 //   "finishArrayCtorLowering". A strategy may optionally override
72 //   "startImpliedDoScope" and "endImpliedDoScope" virtual methods
73 //   of its base class StrategyBase.
74 //===----------------------------------------------------------------------===//
75 
76 namespace {
77 /// Class provides common implementation of scope push/pop methods
78 /// that update StatementContext scopes and SymMap bindings.
79 /// They might be overridden by the lowering strategies, e.g.
80 /// see AsElementalStrategy.
81 class StrategyBase {
82 public:
83   StrategyBase(Fortran::lower::StatementContext &stmtCtx,
84                Fortran::lower::SymMap &symMap)
85       : stmtCtx{stmtCtx}, symMap{symMap} {};
86   virtual ~StrategyBase() = default;
87 
88   virtual void startImpliedDoScope(llvm::StringRef doName,
89                                    mlir::Value indexValue) {
90     symMap.pushImpliedDoBinding(doName, indexValue);
91     stmtCtx.pushScope();
92   }
93 
94   virtual void endImpliedDoScope() {
95     stmtCtx.finalizeAndPop();
96     symMap.popImpliedDoBinding();
97   }
98 
99 protected:
100   Fortran::lower::StatementContext &stmtCtx;
101   Fortran::lower::SymMap &symMap;
102 };
103 
104 /// Class that implements the "inlined temp strategy" to lower array
105 /// constructors. It must be provided a boolean to indicate if the array
106 /// constructor has any implied-do-loop.
107 template <bool hasLoops>
108 class InlinedTempStrategyImpl : public StrategyBase,
109                                 public fir::factory::HomogeneousScalarStack {
110   /// Name that will be given to the temporary allocation and hlfir.declare in
111   /// the IR.
112   static constexpr char tempName[] = ".tmp.arrayctor";
113 
114 public:
115   /// Start lowering an array constructor according to the inline strategy.
116   /// The temporary is created right away.
117   InlinedTempStrategyImpl(mlir::Location loc, fir::FirOpBuilder &builder,
118                           Fortran::lower::StatementContext &stmtCtx,
119                           Fortran::lower::SymMap &symMap,
120                           fir::SequenceType declaredType, mlir::Value extent,
121                           llvm::ArrayRef<mlir::Value> lengths)
122       : StrategyBase{stmtCtx, symMap},
123         fir::factory::HomogeneousScalarStack{
124             loc,      builder, declaredType,
125             extent,   lengths, /*allocateOnHeap=*/true,
126             hasLoops, tempName} {}
127 
128   /// Push a lowered ac-value into the current insertion point and
129   /// increment the insertion point.
130   using fir::factory::HomogeneousScalarStack::pushValue;
131 
132   /// Start a fir.do_loop with the control from an implied-do and return
133   /// the loop induction variable that is the ac-do-variable value.
134   /// Only usable if the counter is able to track the position through loops.
135   mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
136                              mlir::Value lower, mlir::Value upper,
137                              mlir::Value stride) {
138     if constexpr (!hasLoops)
139       fir::emitFatalError(loc, "array constructor lowering is inconsistent");
140     auto loop = builder.create<fir::DoLoopOp>(loc, lower, upper, stride,
141                                               /*unordered=*/false,
142                                               /*finalCount=*/false);
143     builder.setInsertionPointToStart(loop.getBody());
144     return loop.getInductionVar();
145   }
146 
147   /// Move the temporary to an hlfir.expr value (array constructors are not
148   /// variables and cannot be further modified).
149   hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
150                                         fir::FirOpBuilder &builder) {
151     return moveStackAsArrayExpr(loc, builder);
152   }
153 };
154 
155 /// Semantic analysis expression rewrites unroll implied do loop with
156 /// compile time constant bounds (even if huge). So using a minimalistic
157 /// counter greatly reduces the generated IR for simple but big array
158 /// constructors [(i,i=1,constant-expr)] that are expected to be quite
159 /// common.
160 using LooplessInlinedTempStrategy = InlinedTempStrategyImpl</*hasLoops=*/false>;
161 /// A generic memory based counter that can deal with all cases of
162 /// "inlined temp strategy". The counter value is stored in a temp
163 /// from which it is loaded, incremented, and stored every time an
164 /// ac-value is pushed.
165 using InlinedTempStrategy = InlinedTempStrategyImpl</*hasLoops=*/true>;
166 
167 /// Class that implements the "as function of the indices" lowering strategy.
168 /// It will lower [(scalar_expr(i), i=l,u,s)] to:
169 /// ```
170 ///   %extent = max((%u-%l+1)/%s, 0)
171 ///   %shape = fir.shape %extent
172 ///   %elem = hlfir.elemental %shape {
173 ///     ^bb0(%pos:index):
174 ///      %i = %l+(%i-1)*%s
175 ///      %value = scalar_expr(%i)
176 ///       hlfir.yield_element %value
177 ///    }
178 /// ```
179 /// That way, no temporary is created in lowering, and if the array constructor
180 /// is part of a more complex elemental expression, or an assignment, it will be
181 /// trivial to "inline" it in the expression or assignment loops if allowed by
182 /// alias analysis.
183 /// This lowering is however only possible for the form of array constructors as
184 /// in the illustration above. It could be extended to deeper independent
185 /// implied-do nest and wrapped in an hlfir.reshape to a rank 1 array. But this
186 /// op does not exist yet, so this is left for the future if it appears
187 /// profitable.
188 class AsElementalStrategy : public StrategyBase {
189 public:
190   /// The constructor only gathers the operands to create the hlfir.elemental.
191   AsElementalStrategy(mlir::Location loc, fir::FirOpBuilder &builder,
192                       Fortran::lower::StatementContext &stmtCtx,
193                       Fortran::lower::SymMap &symMap,
194                       fir::SequenceType declaredType, mlir::Value extent,
195                       llvm::ArrayRef<mlir::Value> lengths)
196       : StrategyBase{stmtCtx, symMap}, shape{builder.genShape(loc, {extent})},
197         lengthParams{lengths.begin(), lengths.end()},
198         exprType{getExprType(declaredType)} {}
199 
200   static hlfir::ExprType getExprType(fir::SequenceType declaredType) {
201     // Note: 7.8 point 4: the dynamic type of an array constructor is its static
202     // type, it is not polymorphic.
203     return hlfir::ExprType::get(declaredType.getContext(),
204                                 declaredType.getShape(),
205                                 declaredType.getEleTy(),
206                                 /*isPolymorphic=*/false);
207   }
208 
209   /// Create the hlfir.elemental and compute the ac-implied-do-index value
210   /// given the lower bound and stride (compute "%i" in the illustration above).
211   mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
212                              mlir::Value lower, mlir::Value upper,
213                              mlir::Value stride) {
214     assert(!elementalOp && "expected only one implied-do");
215     mlir::Value one =
216         builder.createIntegerConstant(loc, builder.getIndexType(), 1);
217     elementalOp =
218         builder.create<hlfir::ElementalOp>(loc, exprType, shape, lengthParams);
219     builder.setInsertionPointToStart(elementalOp.getBody());
220     // implied-do-index = lower+((i-1)*stride)
221     mlir::Value diff = builder.create<mlir::arith::SubIOp>(
222         loc, elementalOp.getIndices()[0], one);
223     mlir::Value mul = builder.create<mlir::arith::MulIOp>(loc, diff, stride);
224     mlir::Value add = builder.create<mlir::arith::AddIOp>(loc, lower, mul);
225     return add;
226   }
227 
228   /// Create the elemental hlfir.yield_element with the scalar ac-value.
229   void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
230                  hlfir::Entity value) {
231     assert(value.isScalar() && "cannot use hlfir.elemental with array values");
232     assert(elementalOp && "array constructor must contain an outer implied-do");
233     mlir::Value elementResult = value;
234     if (fir::isa_trivial(elementResult.getType()))
235       elementResult =
236           builder.createConvert(loc, exprType.getElementType(), elementResult);
237 
238     // The clean-ups associated with the implied-do body operations
239     // must be initiated before the YieldElementOp, so we have to pop the scope
240     // right now.
241     stmtCtx.finalizeAndPop();
242 
243     builder.create<hlfir::YieldElementOp>(loc, elementResult);
244   }
245 
246   // Override the default, because the context scope must be popped in
247   // pushValue().
248   virtual void endImpliedDoScope() override { symMap.popImpliedDoBinding(); }
249 
250   /// Return the created hlfir.elemental.
251   hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
252                                         fir::FirOpBuilder &builder) {
253     return hlfir::Entity{elementalOp};
254   }
255 
256 private:
257   mlir::Value shape;
258   llvm::SmallVector<mlir::Value> lengthParams;
259   hlfir::ExprType exprType;
260   hlfir::ElementalOp elementalOp{};
261 };
262 
263 /// Class that implements the "runtime temp strategy" to lower array
264 /// constructors.
265 class RuntimeTempStrategy : public StrategyBase {
266   /// Name that will be given to the temporary allocation and hlfir.declare in
267   /// the IR.
268   static constexpr char tempName[] = ".tmp.arrayctor";
269 
270 public:
271   /// Start lowering an array constructor according to the runtime strategy.
272   /// The temporary is only created if the extents and length parameters are
273   /// already known. Otherwise, the handling of the allocation (and
274   /// reallocation) is left up to the runtime.
275   /// \p extent is the pre-computed extent of the array constructor, if it could
276   /// be pre-computed. It is std::nullopt otherwise.
277   /// \p lengths are the pre-computed length parameters of the array
278   /// constructor, if they could be precomputed. \p missingLengthParameters is
279   /// set to true if the length parameters could not be precomputed.
280   RuntimeTempStrategy(mlir::Location loc, fir::FirOpBuilder &builder,
281                       Fortran::lower::StatementContext &stmtCtx,
282                       Fortran::lower::SymMap &symMap,
283                       fir::SequenceType declaredType,
284                       std::optional<mlir::Value> extent,
285                       llvm::ArrayRef<mlir::Value> lengths,
286                       bool missingLengthParameters)
287       : StrategyBase{stmtCtx, symMap},
288         arrayConstructorElementType{declaredType.getEleTy()} {
289     mlir::Type heapType = fir::HeapType::get(declaredType);
290     mlir::Type boxType = fir::BoxType::get(heapType);
291     allocatableTemp = builder.createTemporary(loc, boxType, tempName);
292     mlir::Value initialBoxValue;
293     if (extent && !missingLengthParameters) {
294       llvm::SmallVector<mlir::Value, 1> extents{*extent};
295       mlir::Value tempStorage = builder.createHeapTemporary(
296           loc, declaredType, tempName, extents, lengths);
297       mlir::Value shape = builder.genShape(loc, extents);
298       declare = builder.create<hlfir::DeclareOp>(
299           loc, tempStorage, tempName, shape, lengths,
300           fir::FortranVariableFlagsAttr{});
301       initialBoxValue =
302           builder.createBox(loc, boxType, declare->getOriginalBase(), shape,
303                             /*slice=*/mlir::Value{}, lengths, /*tdesc=*/{});
304     } else {
305       // The runtime will have to do the initial allocation.
306       // The declare operation cannot be emitted in this case since the final
307       // array constructor has not yet been allocated. Instead, the resulting
308       // temporary variable will be extracted from the allocatable descriptor
309       // after all the API calls.
310       // Prepare the initial state of the allocatable descriptor with a
311       // deallocated status and all the available knowledge about the extent
312       // and length parameters.
313       llvm::SmallVector<mlir::Value> emboxLengths(lengths.begin(),
314                                                   lengths.end());
315       if (!extent)
316         extent = builder.createIntegerConstant(loc, builder.getIndexType(), 0);
317       if (missingLengthParameters) {
318         if (declaredType.getEleTy().isa<fir::CharacterType>())
319           emboxLengths.push_back(builder.createIntegerConstant(
320               loc, builder.getCharacterLengthType(), 0));
321         else
322           TODO(loc,
323                "parametrized derived type array constructor without type-spec");
324       }
325       mlir::Value nullAddr = builder.createNullConstant(loc, heapType);
326       mlir::Value shape = builder.genShape(loc, {*extent});
327       initialBoxValue = builder.createBox(loc, boxType, nullAddr, shape,
328                                           /*slice=*/mlir::Value{}, emboxLengths,
329                                           /*tdesc=*/{});
330     }
331     builder.create<fir::StoreOp>(loc, initialBoxValue, allocatableTemp);
332     arrayConstructorVector = fir::runtime::genInitArrayConstructorVector(
333         loc, builder, allocatableTemp,
334         builder.createBool(loc, missingLengthParameters));
335   }
336 
337   bool useSimplePushRuntime(hlfir::Entity value) {
338     return value.isScalar() &&
339            !arrayConstructorElementType.isa<fir::CharacterType>() &&
340            !fir::isRecordWithAllocatableMember(arrayConstructorElementType) &&
341            !fir::isRecordWithTypeParameters(arrayConstructorElementType);
342   }
343 
344   /// Push a lowered ac-value into the array constructor vector using
345   /// the runtime API.
346   void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
347                  hlfir::Entity value) {
348     if (useSimplePushRuntime(value)) {
349       auto [addrExv, cleanUp] = hlfir::convertToAddress(
350           loc, builder, value, arrayConstructorElementType);
351       mlir::Value addr = fir::getBase(addrExv);
352       if (addr.getType().isa<fir::BaseBoxType>())
353         addr = builder.create<fir::BoxAddrOp>(loc, addr);
354       fir::runtime::genPushArrayConstructorSimpleScalar(
355           loc, builder, arrayConstructorVector, addr);
356       if (cleanUp)
357         (*cleanUp)();
358       return;
359     }
360     auto [boxExv, cleanUp] =
361         hlfir::convertToBox(loc, builder, value, arrayConstructorElementType);
362     fir::runtime::genPushArrayConstructorValue(
363         loc, builder, arrayConstructorVector, fir::getBase(boxExv));
364     if (cleanUp)
365       (*cleanUp)();
366   }
367 
368   /// Start a fir.do_loop with the control from an implied-do and return
369   /// the loop induction variable that is the ac-do-variable value.
370   mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
371                              mlir::Value lower, mlir::Value upper,
372                              mlir::Value stride) {
373     auto loop = builder.create<fir::DoLoopOp>(loc, lower, upper, stride,
374                                               /*unordered=*/false,
375                                               /*finalCount=*/false);
376     builder.setInsertionPointToStart(loop.getBody());
377     return loop.getInductionVar();
378   }
379 
380   /// Move the temporary to an hlfir.expr value (array constructors are not
381   /// variables and cannot be further modified).
382   hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
383                                         fir::FirOpBuilder &builder) {
384     // Temp is created using createHeapTemporary, or allocated on the heap
385     // by the runtime.
386     mlir::Value mustFree = builder.createBool(loc, true);
387     mlir::Value temp;
388     if (declare)
389       temp = declare->getBase();
390     else
391       temp = hlfir::derefPointersAndAllocatables(
392           loc, builder, hlfir::Entity{allocatableTemp});
393     auto hlfirExpr = builder.create<hlfir::AsExprOp>(loc, temp, mustFree);
394     return hlfir::Entity{hlfirExpr};
395   }
396 
397 private:
398   /// Element type of the array constructor being built.
399   mlir::Type arrayConstructorElementType;
400   /// Allocatable descriptor for the storage of the array constructor being
401   /// built.
402   mlir::Value allocatableTemp;
403   /// Structure that allows the runtime API to maintain the status of
404   /// of the array constructor being built between two API calls.
405   mlir::Value arrayConstructorVector;
406   /// DeclareOp for the array constructor storage, if it was possible to
407   /// allocate it before any API calls.
408   std::optional<hlfir::DeclareOp> declare;
409 };
410 
411 /// Wrapper class that dispatch to the selected array constructor lowering
412 /// strategy and does nothing else.
413 class ArrayCtorLoweringStrategy {
414 public:
415   template <typename A>
416   ArrayCtorLoweringStrategy(A &&impl) : implVariant{std::forward<A>(impl)} {}
417 
418   void pushValue(mlir::Location loc, fir::FirOpBuilder &builder,
419                  hlfir::Entity value) {
420     return std::visit(
421         [&](auto &impl) { return impl.pushValue(loc, builder, value); },
422         implVariant);
423   }
424 
425   mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder,
426                              mlir::Value lower, mlir::Value upper,
427                              mlir::Value stride) {
428     return std::visit(
429         [&](auto &impl) {
430           return impl.startImpliedDo(loc, builder, lower, upper, stride);
431         },
432         implVariant);
433   }
434 
435   hlfir::Entity finishArrayCtorLowering(mlir::Location loc,
436                                         fir::FirOpBuilder &builder) {
437     return std::visit(
438         [&](auto &impl) { return impl.finishArrayCtorLowering(loc, builder); },
439         implVariant);
440   }
441 
442   void startImpliedDoScope(llvm::StringRef doName, mlir::Value indexValue) {
443     std::visit(
444         [&](auto &impl) {
445           return impl.startImpliedDoScope(doName, indexValue);
446         },
447         implVariant);
448   }
449 
450   void endImpliedDoScope() {
451     std::visit([&](auto &impl) { return impl.endImpliedDoScope(); },
452                implVariant);
453   }
454 
455 private:
456   std::variant<InlinedTempStrategy, LooplessInlinedTempStrategy,
457                AsElementalStrategy, RuntimeTempStrategy>
458       implVariant;
459 };
460 } // namespace
461 
462 //===----------------------------------------------------------------------===//
463 //   Definition of selectArrayCtorLoweringStrategy and its helpers.
464 //   This is the code that analyses the evaluate::ArrayConstructor<T>,
465 //   pre-lowers the array constructor extent and length parameters if it can,
466 //   and chooses the lowering strategy.
467 //===----------------------------------------------------------------------===//
468 
469 /// Helper to lower a scalar extent expression (like implied-do bounds).
470 static mlir::Value lowerExtentExpr(mlir::Location loc,
471                                    Fortran::lower::AbstractConverter &converter,
472                                    Fortran::lower::SymMap &symMap,
473                                    Fortran::lower::StatementContext &stmtCtx,
474                                    const Fortran::evaluate::ExtentExpr &expr) {
475   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
476   mlir::IndexType idxTy = builder.getIndexType();
477   hlfir::Entity value = Fortran::lower::convertExprToHLFIR(
478       loc, converter, toEvExpr(expr), symMap, stmtCtx);
479   value = hlfir::loadTrivialScalar(loc, builder, value);
480   return builder.createConvert(loc, idxTy, value);
481 }
482 
483 namespace {
484 /// Helper class to lower the array constructor type and its length parameters.
485 /// The length parameters, if any, are only lowered if this does not require
486 /// evaluating an ac-value.
487 template <typename T>
488 struct LengthAndTypeCollector {
489   static mlir::Type collect(mlir::Location,
490                             Fortran::lower::AbstractConverter &converter,
491                             const Fortran::evaluate::ArrayConstructor<T> &,
492                             Fortran::lower::SymMap &,
493                             Fortran::lower::StatementContext &,
494                             mlir::SmallVectorImpl<mlir::Value> &) {
495     // Numerical and Logical types.
496     return Fortran::lower::getFIRType(&converter.getMLIRContext(), T::category,
497                                       T::kind, /*lenParams*/ {});
498   }
499 };
500 
501 template <>
502 struct LengthAndTypeCollector<Fortran::evaluate::SomeDerived> {
503   static mlir::Type collect(
504       mlir::Location loc, Fortran::lower::AbstractConverter &converter,
505       const Fortran::evaluate::ArrayConstructor<Fortran::evaluate::SomeDerived>
506           &arrayCtorExpr,
507       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
508       mlir::SmallVectorImpl<mlir::Value> &lengths) {
509     // Array constructors cannot be unlimited polymorphic (C7113), so there must
510     // be a derived type spec available.
511     return Fortran::lower::translateDerivedTypeToFIRType(
512         converter, arrayCtorExpr.result().derivedTypeSpec());
513   }
514 };
515 
516 template <int Kind>
517 using Character =
518     Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, Kind>;
519 template <int Kind>
520 struct LengthAndTypeCollector<Character<Kind>> {
521   static mlir::Type collect(
522       mlir::Location loc, Fortran::lower::AbstractConverter &converter,
523       const Fortran::evaluate::ArrayConstructor<Character<Kind>> &arrayCtorExpr,
524       Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
525       mlir::SmallVectorImpl<mlir::Value> &lengths) {
526     llvm::SmallVector<Fortran::lower::LenParameterTy> typeLengths;
527     if (const Fortran::evaluate::ExtentExpr *lenExpr = arrayCtorExpr.LEN()) {
528       lengths.push_back(
529           lowerExtentExpr(loc, converter, symMap, stmtCtx, *lenExpr));
530       if (std::optional<std::int64_t> cstLen =
531               Fortran::evaluate::ToInt64(*lenExpr))
532         typeLengths.push_back(*cstLen);
533     }
534     return Fortran::lower::getFIRType(&converter.getMLIRContext(),
535                                       Fortran::common::TypeCategory::Character,
536                                       Kind, typeLengths);
537   }
538 };
539 } // namespace
540 
541 /// Does the array constructor have length parameters that
542 /// LengthAndTypeCollector::collect could not lower because this requires
543 /// lowering an ac-value and must be delayed?
544 static bool missingLengthParameters(mlir::Type elementType,
545                                     llvm::ArrayRef<mlir::Value> lengths) {
546   return (elementType.isa<fir::CharacterType>() ||
547           fir::isRecordWithTypeParameters(elementType)) &&
548          lengths.empty();
549 }
550 
551 namespace {
552 /// Structure that analyses the ac-value and implied-do of
553 /// evaluate::ArrayConstructor before they are lowered. It does not generate any
554 /// IR. The result of this analysis pass is used to select the lowering
555 /// strategy.
556 struct ArrayCtorAnalysis {
557   template <typename T>
558   ArrayCtorAnalysis(
559       Fortran::evaluate::FoldingContext &,
560       const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr);
561 
562   // Can the array constructor easily be rewritten into an hlfir.elemental ?
563   bool isSingleImpliedDoWithOneScalarPureExpr() const {
564     return !anyArrayExpr && isPerfectLoopNest &&
565            innerNumberOfExprIfPrefectNest == 1 && depthIfPerfectLoopNest == 1 &&
566            innerExprIsPureIfPerfectNest;
567   }
568 
569   bool anyImpliedDo = false;
570   bool anyArrayExpr = false;
571   bool isPerfectLoopNest = true;
572   bool innerExprIsPureIfPerfectNest = false;
573   std::int64_t innerNumberOfExprIfPrefectNest = 0;
574   std::int64_t depthIfPerfectLoopNest = 0;
575 };
576 } // namespace
577 
578 template <typename T>
579 ArrayCtorAnalysis::ArrayCtorAnalysis(
580     Fortran::evaluate::FoldingContext &foldingContext,
581     const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr) {
582   llvm::SmallVector<const Fortran::evaluate::ArrayConstructorValues<T> *>
583       arrayValueListStack{&arrayCtorExpr};
584   // Loop through the ac-value-list(s) of the array constructor.
585   while (!arrayValueListStack.empty()) {
586     std::int64_t localNumberOfImpliedDo = 0;
587     std::int64_t localNumberOfExpr = 0;
588     // Loop though the ac-value of an ac-value list, and add any nested
589     // ac-value-list of ac-implied-do to the stack.
590     const Fortran::evaluate::ArrayConstructorValues<T> *currentArrayValueList =
591         arrayValueListStack.pop_back_val();
592     for (const Fortran::evaluate::ArrayConstructorValue<T> &acValue :
593          *currentArrayValueList)
594       std::visit(Fortran::common::visitors{
595                      [&](const Fortran::evaluate::ImpliedDo<T> &impledDo) {
596                        arrayValueListStack.push_back(&impledDo.values());
597                        localNumberOfImpliedDo++;
598                      },
599                      [&](const Fortran::evaluate::Expr<T> &expr) {
600                        localNumberOfExpr++;
601                        anyArrayExpr = anyArrayExpr || expr.Rank() > 0;
602                      }},
603                  acValue.u);
604     anyImpliedDo = anyImpliedDo || localNumberOfImpliedDo > 0;
605 
606     if (localNumberOfImpliedDo == 0) {
607       // Leaf ac-value-list in the array constructor ac-value tree.
608       if (isPerfectLoopNest) {
609         // This this the only leaf of the array-constructor (the array
610         // constructor is a nest of single implied-do with a list of expression
611         // in the last deeper implied do). e.g: "[((i+j, i=1,n)j=1,m)]".
612         innerNumberOfExprIfPrefectNest = localNumberOfExpr;
613         if (localNumberOfExpr == 1)
614           innerExprIsPureIfPerfectNest = !Fortran::evaluate::FindImpureCall(
615               foldingContext, toEvExpr(std::get<Fortran::evaluate::Expr<T>>(
616                                   currentArrayValueList->begin()->u)));
617       }
618     } else if (localNumberOfImpliedDo == 1 && localNumberOfExpr == 0) {
619       // Perfect implied-do nest new level.
620       ++depthIfPerfectLoopNest;
621     } else {
622       // More than one implied-do, or at least one implied-do and an expr
623       // at that level. This will not form a perfect nest. Examples:
624       // "[a, (i, i=1,n)]" or "[(i, i=1,n), (j, j=1,m)]".
625       isPerfectLoopNest = false;
626     }
627   }
628 }
629 
630 /// Does \p expr contain no calls to user function?
631 static bool isCallFreeExpr(const Fortran::evaluate::ExtentExpr &expr) {
632   for (const Fortran::semantics::Symbol &symbol :
633        Fortran::evaluate::CollectSymbols(expr))
634     if (Fortran::semantics::IsProcedure(symbol))
635       return false;
636   return true;
637 }
638 
639 /// Core function that pre-lowers the extent and length parameters of
640 /// array constructors if it can, runs the ac-value analysis and
641 /// select the lowering strategy accordingly.
642 template <typename T>
643 static ArrayCtorLoweringStrategy selectArrayCtorLoweringStrategy(
644     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
645     const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr,
646     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
647   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
648   mlir::Type idxType = builder.getIndexType();
649   // Try to gather the array constructor extent.
650   mlir::Value extent;
651   fir::SequenceType::Extent typeExtent = fir::SequenceType::getUnknownExtent();
652   auto shapeExpr = Fortran::evaluate::GetContextFreeShape(
653       converter.getFoldingContext(), arrayCtorExpr);
654   if (shapeExpr && shapeExpr->size() == 1 && (*shapeExpr)[0]) {
655     const Fortran::evaluate::ExtentExpr &extentExpr = *(*shapeExpr)[0];
656     if (auto constantExtent = Fortran::evaluate::ToInt64(extentExpr)) {
657       typeExtent = *constantExtent;
658       extent = builder.createIntegerConstant(loc, idxType, typeExtent);
659     } else if (isCallFreeExpr(extentExpr)) {
660       // The expression built by expression analysis for the array constructor
661       // extent does not contain procedure symbols. It is side effect free.
662       // This could be relaxed to allow pure procedure, but some care must
663       // be taken to not bring in "unmapped" symbols from callee scopes.
664       extent = lowerExtentExpr(loc, converter, symMap, stmtCtx, extentExpr);
665     }
666     // Otherwise, the temporary will have to be built step by step with
667     // reallocation and the extent will only be known at the end of the array
668     // constructor evaluation.
669   }
670   // Convert the array constructor type and try to gather its length parameter
671   // values, if any.
672   mlir::SmallVector<mlir::Value> lengths;
673   mlir::Type elementType = LengthAndTypeCollector<T>::collect(
674       loc, converter, arrayCtorExpr, symMap, stmtCtx, lengths);
675   // Run an analysis of the array constructor ac-value.
676   ArrayCtorAnalysis analysis(converter.getFoldingContext(), arrayCtorExpr);
677   bool needToEvaluateOneExprToGetLengthParameters =
678       missingLengthParameters(elementType, lengths);
679   auto declaredType = fir::SequenceType::get({typeExtent}, elementType);
680 
681   // Based on what was gathered and the result of the analysis, select and
682   // instantiate the right lowering strategy for the array constructor.
683   if (!extent || needToEvaluateOneExprToGetLengthParameters ||
684       analysis.anyArrayExpr || declaredType.getEleTy().isa<fir::RecordType>())
685     return RuntimeTempStrategy(
686         loc, builder, stmtCtx, symMap, declaredType,
687         extent ? std::optional<mlir::Value>(extent) : std::nullopt, lengths,
688         needToEvaluateOneExprToGetLengthParameters);
689   // Note: array constructors containing impure ac-value expr are currently not
690   // rewritten to hlfir.elemental because impure expressions should be evaluated
691   // in order, and hlfir.elemental currently misses a way to indicate that.
692   if (analysis.isSingleImpliedDoWithOneScalarPureExpr())
693     return AsElementalStrategy(loc, builder, stmtCtx, symMap, declaredType,
694                                extent, lengths);
695 
696   if (analysis.anyImpliedDo)
697     return InlinedTempStrategy(loc, builder, stmtCtx, symMap, declaredType,
698                                extent, lengths);
699 
700   return LooplessInlinedTempStrategy(loc, builder, stmtCtx, symMap,
701                                      declaredType, extent, lengths);
702 }
703 
704 /// Lower an ac-value expression \p expr and forward it to the selected
705 /// lowering strategy \p arrayBuilder,
706 template <typename T>
707 static void genAcValue(mlir::Location loc,
708                        Fortran::lower::AbstractConverter &converter,
709                        const Fortran::evaluate::Expr<T> &expr,
710                        Fortran::lower::SymMap &symMap,
711                        Fortran::lower::StatementContext &stmtCtx,
712                        ArrayCtorLoweringStrategy &arrayBuilder) {
713   // TODO: get rid of the toEvExpr indirection.
714   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
715   hlfir::Entity value = Fortran::lower::convertExprToHLFIR(
716       loc, converter, toEvExpr(expr), symMap, stmtCtx);
717   value = hlfir::loadTrivialScalar(loc, builder, value);
718   arrayBuilder.pushValue(loc, builder, value);
719 }
720 
721 /// Lowers an ac-value implied-do \p impledDo according to the selected
722 /// lowering strategy \p arrayBuilder.
723 template <typename T>
724 static void genAcValue(mlir::Location loc,
725                        Fortran::lower::AbstractConverter &converter,
726                        const Fortran::evaluate::ImpliedDo<T> &impledDo,
727                        Fortran::lower::SymMap &symMap,
728                        Fortran::lower::StatementContext &stmtCtx,
729                        ArrayCtorLoweringStrategy &arrayBuilder) {
730   auto lowerIndex =
731       [&](const Fortran::evaluate::ExtentExpr expr) -> mlir::Value {
732     return lowerExtentExpr(loc, converter, symMap, stmtCtx, expr);
733   };
734   mlir::Value lower = lowerIndex(impledDo.lower());
735   mlir::Value upper = lowerIndex(impledDo.upper());
736   mlir::Value stride = lowerIndex(impledDo.stride());
737   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
738   mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
739   mlir::Value impliedDoIndexValue =
740       arrayBuilder.startImpliedDo(loc, builder, lower, upper, stride);
741   arrayBuilder.startImpliedDoScope(toStringRef(impledDo.name()),
742                                    impliedDoIndexValue);
743 
744   for (const auto &acValue : impledDo.values())
745     std::visit(
746         [&](const auto &x) {
747           genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder);
748         },
749         acValue.u);
750 
751   arrayBuilder.endImpliedDoScope();
752   builder.restoreInsertionPoint(insertPt);
753 }
754 
755 /// Entry point for evaluate::ArrayConstructor lowering.
756 template <typename T>
757 hlfir::EntityWithAttributes Fortran::lower::ArrayConstructorBuilder<T>::gen(
758     mlir::Location loc, Fortran::lower::AbstractConverter &converter,
759     const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr,
760     Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
761   fir::FirOpBuilder &builder = converter.getFirOpBuilder();
762   // Select the lowering strategy given the array constructor.
763   auto arrayBuilder = selectArrayCtorLoweringStrategy(
764       loc, converter, arrayCtorExpr, symMap, stmtCtx);
765   // Run the array lowering strategy through the ac-values.
766   for (const auto &acValue : arrayCtorExpr)
767     std::visit(
768         [&](const auto &x) {
769           genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder);
770         },
771         acValue.u);
772   hlfir::Entity hlfirExpr = arrayBuilder.finishArrayCtorLowering(loc, builder);
773   // Insert the clean-up for the created hlfir.expr.
774   fir::FirOpBuilder *bldr = &builder;
775   stmtCtx.attachCleanup(
776       [=]() { bldr->create<hlfir::DestroyOp>(loc, hlfirExpr); });
777   return hlfir::EntityWithAttributes{hlfirExpr};
778 }
779 
780 using namespace Fortran::evaluate;
781 using namespace Fortran::common;
782 FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::ArrayConstructorBuilder, )
783