1 //===- ConvertArrayConstructor.cpp -- Array Constructor ---------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Lower/ConvertArrayConstructor.h" 10 #include "flang/Evaluate/expression.h" 11 #include "flang/Lower/AbstractConverter.h" 12 #include "flang/Lower/ConvertExprToHLFIR.h" 13 #include "flang/Lower/ConvertType.h" 14 #include "flang/Lower/StatementContext.h" 15 #include "flang/Lower/SymbolMap.h" 16 #include "flang/Optimizer/Builder/HLFIRTools.h" 17 #include "flang/Optimizer/Builder/Runtime/RTBuilder.h" 18 #include "flang/Optimizer/Builder/Todo.h" 19 #include "flang/Optimizer/HLFIR/HLFIROps.h" 20 #include "flang/Runtime/array-constructor.h" 21 22 // Array constructors are lowered with three different strategies. 23 // All strategies are not possible with all array constructors. 24 // 25 // - Strategy 1: runtime approach (RuntimeTempStrategy). 26 // This strategy works will all array constructors, but will create more 27 // complex code that is harder to optimize. An allocatable temp is created, 28 // it may be unallocated if the array constructor length parameters or extent 29 // could not be computed. Then, the runtime is called to push lowered 30 // ac-value (array constructor elements) into the allocatable. The runtime 31 // will allocate or reallocate as needed while values are being pushed. 32 // In the end, the allocatable contain a temporary with all the array 33 // constructor evaluated elements. 34 // 35 // - Strategy 2: inlined temporary approach (InlinedTempStrategyImpl) 36 // This strategy can only be used if the array constructor extent and length 37 // parameters can be pre-computed without evaluating any ac-value, and if all 38 // of the ac-value are scalars (at least for now). 39 // A temporary is allocated inline in one go, and an index pointing at the 40 // current ac-value position in the array constructor element sequence is 41 // maintained and used to store ac-value as they are being lowered. 42 // 43 // - Strategy 3: "function of the indices" approach (AsElementalStrategy) 44 // This strategy can only be used if the array constructor extent and length 45 // parameters can be pre-computed and, if the array constructor is of the 46 // form "[(scalar_expr, ac-implied-do-control)]". In this case, it is lowered 47 // into an hlfir.elemental without creating any temporary in lowering. This 48 // form should maximize the chance of array temporary elision when assigning 49 // the array constructor, potentially reshaped, to an array variable. 50 // 51 // The array constructor lowering looks like: 52 // ``` 53 // strategy = selectArrayCtorLoweringStrategy(array-ctor-expr); 54 // for (ac-value : array-ctor-expr) 55 // if (ac-value is expression) { 56 // strategy.pushValue(ac-value); 57 // } else if (ac-value is implied-do) { 58 // strategy.startImpliedDo(lower, upper, stride); 59 // // lower nested values 60 // } 61 // result = strategy.finishArrayCtorLowering(); 62 // ``` 63 64 //===----------------------------------------------------------------------===// 65 // Definition of the lowering strategies. Each lowering strategy is defined 66 // as a class that implements "pushValue", "startImpliedDo", and 67 // "finishArrayCtorLowering". 68 //===----------------------------------------------------------------------===// 69 70 namespace { 71 /// Class that implements the "inlined temp strategy" to lower array 72 /// constructors. It must be further provided a CounterType class to specify how 73 /// the current ac-value insertion position is tracked. 74 template <typename CounterType> 75 class InlinedTempStrategyImpl { 76 /// Name that will be given to the temporary allocation and hlfir.declare in 77 /// the IR. 78 static constexpr char tempName[] = ".tmp.arrayctor"; 79 80 public: 81 /// Start lowering an array constructor according to the inline strategy. 82 /// The temporary is created right away. 83 InlinedTempStrategyImpl(mlir::Location loc, fir::FirOpBuilder &builder, 84 fir::SequenceType declaredType, mlir::Value extent, 85 llvm::ArrayRef<mlir::Value> lengths) 86 : one{builder.createIntegerConstant(loc, builder.getIndexType(), 1)}, 87 counter{loc, builder, one} { 88 // Allocate the temporary storage. 89 llvm::SmallVector<mlir::Value, 1> extents{extent}; 90 mlir::Value tempStorage = builder.createHeapTemporary( 91 loc, declaredType, tempName, extents, lengths); 92 mlir::Value shape = builder.genShape(loc, extents); 93 temp = 94 builder 95 .create<hlfir::DeclareOp>(loc, tempStorage, tempName, shape, 96 lengths, fir::FortranVariableFlagsAttr{}) 97 .getBase(); 98 } 99 100 /// Push a lowered ac-value into the current insertion point and 101 /// increment the insertion point. 102 void pushValue(mlir::Location loc, fir::FirOpBuilder &builder, 103 hlfir::Entity value) { 104 assert(value.isScalar() && "cannot use inlined temp with array values"); 105 mlir::Value indexValue = counter.getAndIncrementIndex(loc, builder, one); 106 hlfir::Entity tempElement = hlfir::getElementAt( 107 loc, builder, hlfir::Entity{temp}, mlir::ValueRange{indexValue}); 108 // TODO: "copy" would probably be better than assign to ensure there are no 109 // side effects (user assignments, temp, lhs finalization)? 110 // This only makes a difference for derived types, so for now derived types 111 // will use the runtime strategy to avoid any bad behaviors. 112 builder.create<hlfir::AssignOp>(loc, value, tempElement); 113 } 114 115 /// Start a fir.do_loop with the control from an implied-do and return 116 /// the loop induction variable that is the ac-do-variable value. 117 /// Only usable if the counter is able to track the position through loops. 118 mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder, 119 mlir::Value lower, mlir::Value upper, 120 mlir::Value stride) { 121 if constexpr (!CounterType::canCountThroughLoops) 122 fir::emitFatalError(loc, "array constructor lowering is inconsistent"); 123 auto loop = builder.create<fir::DoLoopOp>(loc, lower, upper, stride, 124 /*unordered=*/false, 125 /*finalCount=*/false); 126 builder.setInsertionPointToStart(loop.getBody()); 127 return loop.getInductionVar(); 128 } 129 130 /// Move the temporary to an hlfir.expr value (array constructors are not 131 /// variables and cannot be further modified). 132 hlfir::Entity finishArrayCtorLowering(mlir::Location loc, 133 fir::FirOpBuilder &builder) { 134 // Temp is created using createHeapTemporary. 135 mlir::Value mustFree = builder.createBool(loc, true); 136 auto hlfirExpr = builder.create<hlfir::AsExprOp>(loc, temp, mustFree); 137 return hlfir::Entity{hlfirExpr}; 138 } 139 140 private: 141 mlir::Value one; 142 CounterType counter; 143 mlir::Value temp; 144 }; 145 146 /// A simple SSA value counter to lower array constructors without any 147 /// implied-do in the "inlined temp strategy". 148 /// The SSA value being tracked by the counter (hence, this 149 /// cannot count through loops since the SSA value in the loop becomes 150 /// inaccessible after the loop). 151 /// Semantic analysis expression rewrites unroll implied do loop with 152 /// compile time constant bounds (even if huge). So this minimalistic 153 /// counter greatly reduces the generated IR for simple but big array 154 /// constructors [(i,i=1,constant-expr)] that are expected to be quite 155 /// common. 156 class ValueCounter { 157 public: 158 static constexpr bool canCountThroughLoops = false; 159 ValueCounter(mlir::Location loc, fir::FirOpBuilder &builder, 160 mlir::Value initialValue) { 161 indexValue = initialValue; 162 } 163 164 mlir::Value getAndIncrementIndex(mlir::Location loc, 165 fir::FirOpBuilder &builder, 166 mlir::Value increment) { 167 mlir::Value currentValue = indexValue; 168 indexValue = 169 builder.create<mlir::arith::AddIOp>(loc, indexValue, increment); 170 return currentValue; 171 } 172 173 private: 174 mlir::Value indexValue; 175 }; 176 using LooplessInlinedTempStrategy = InlinedTempStrategyImpl<ValueCounter>; 177 178 /// A generic memory based counter that can deal with all cases of 179 /// "inlined temp strategy". The counter value is stored in a temp 180 /// from which it is loaded, incremented, and stored every time an 181 /// ac-value is pushed. 182 class InMemoryCounter { 183 public: 184 static constexpr bool canCountThroughLoops = true; 185 InMemoryCounter(mlir::Location loc, fir::FirOpBuilder &builder, 186 mlir::Value initialValue) { 187 indexVar = builder.createTemporary(loc, initialValue.getType()); 188 builder.create<fir::StoreOp>(loc, initialValue, indexVar); 189 } 190 191 mlir::Value getAndIncrementIndex(mlir::Location loc, 192 fir::FirOpBuilder &builder, 193 mlir::Value increment) const { 194 mlir::Value indexValue = builder.create<fir::LoadOp>(loc, indexVar); 195 indexValue = 196 builder.create<mlir::arith::AddIOp>(loc, indexValue, increment); 197 builder.create<fir::StoreOp>(loc, indexValue, indexVar); 198 return indexValue; 199 } 200 201 private: 202 mlir::Value indexVar; 203 }; 204 using InlinedTempStrategy = InlinedTempStrategyImpl<InMemoryCounter>; 205 206 /// Class that implements the "as function of the indices" lowering strategy. 207 /// It will lower [(scalar_expr(i), i=l,u,s)] to: 208 /// ``` 209 /// %extent = max((%u-%l+1)/%s, 0) 210 /// %shape = fir.shape %extent 211 /// %elem = hlfir.elemental %shape { 212 /// ^bb0(%pos:index): 213 /// %i = %l+(%i-1)*%s 214 /// %value = scalar_expr(%i) 215 /// hlfir.yield_element %value 216 /// } 217 /// ``` 218 /// That way, no temporary is created in lowering, and if the array constructor 219 /// is part of a more complex elemental expression, or an assignment, it will be 220 /// trivial to "inline" it in the expression or assignment loops if allowed by 221 /// alias analysis. 222 /// This lowering is however only possible for the form of array constructors as 223 /// in the illustration above. It could be extended to deeper independent 224 /// implied-do nest and wrapped in an hlfir.reshape to a rank 1 array. But this 225 /// op does not exist yet, so this is left for the future if it appears 226 /// profitable. 227 class AsElementalStrategy { 228 public: 229 /// The constructor only gathers the operands to create the hlfir.elemental. 230 AsElementalStrategy(mlir::Location loc, fir::FirOpBuilder &builder, 231 fir::SequenceType declaredType, mlir::Value extent, 232 llvm::ArrayRef<mlir::Value> lengths) 233 : shape{builder.genShape(loc, {extent})}, 234 lengthParams{lengths.begin(), lengths.end()}, exprType{getExprType( 235 declaredType)} {} 236 237 static hlfir::ExprType getExprType(fir::SequenceType declaredType) { 238 // Note: 7.8 point 4: the dynamic type of an array constructor is its static 239 // type, it is not polymorphic. 240 return hlfir::ExprType::get(declaredType.getContext(), 241 declaredType.getShape(), 242 declaredType.getEleTy(), 243 /*isPolymorphic=*/false); 244 } 245 246 /// Create the hlfir.elemental and compute the ac-implied-do-index value 247 /// given the lower bound and stride (compute "%i" in the illustration above). 248 mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder, 249 mlir::Value lower, mlir::Value upper, 250 mlir::Value stride) { 251 assert(!elementalOp && "expected only one implied-do"); 252 mlir::Value one = 253 builder.createIntegerConstant(loc, builder.getIndexType(), 1); 254 elementalOp = 255 builder.create<hlfir::ElementalOp>(loc, exprType, shape, lengthParams); 256 builder.setInsertionPointToStart(elementalOp.getBody()); 257 // implied-do-index = lower+((i-1)*stride) 258 mlir::Value diff = builder.create<mlir::arith::SubIOp>( 259 loc, elementalOp.getIndices()[0], one); 260 mlir::Value mul = builder.create<mlir::arith::MulIOp>(loc, diff, stride); 261 mlir::Value add = builder.create<mlir::arith::AddIOp>(loc, lower, mul); 262 return add; 263 } 264 265 /// Create the elemental hlfir.yield_element with the scalar ac-value. 266 void pushValue(mlir::Location loc, fir::FirOpBuilder &builder, 267 hlfir::Entity value) { 268 assert(value.isScalar() && "cannot use hlfir.elemental with array values"); 269 assert(elementalOp && "array constructor must contain an outer implied-do"); 270 mlir::Value elementResult = value; 271 if (fir::isa_trivial(elementResult.getType())) 272 elementResult = 273 builder.createConvert(loc, exprType.getElementType(), elementResult); 274 builder.create<hlfir::YieldElementOp>(loc, elementResult); 275 } 276 277 /// Return the created hlfir.elemental. 278 hlfir::Entity finishArrayCtorLowering(mlir::Location loc, 279 fir::FirOpBuilder &builder) { 280 return hlfir::Entity{elementalOp}; 281 } 282 283 private: 284 mlir::Value shape; 285 llvm::SmallVector<mlir::Value> lengthParams; 286 hlfir::ExprType exprType; 287 hlfir::ElementalOp elementalOp{}; 288 }; 289 290 // TODO: add and implement RuntimeTempStrategy. 291 292 /// Wrapper class that dispatch to the selected array constructor lowering 293 /// strategy and does nothing else. 294 class ArrayCtorLoweringStrategy { 295 public: 296 template <typename A> 297 ArrayCtorLoweringStrategy(A &&impl) : implVariant{std::forward<A>(impl)} {} 298 299 void pushValue(mlir::Location loc, fir::FirOpBuilder &builder, 300 hlfir::Entity value) { 301 return std::visit( 302 [&](auto &impl) { return impl.pushValue(loc, builder, value); }, 303 implVariant); 304 } 305 306 mlir::Value startImpliedDo(mlir::Location loc, fir::FirOpBuilder &builder, 307 mlir::Value lower, mlir::Value upper, 308 mlir::Value stride) { 309 return std::visit( 310 [&](auto &impl) { 311 return impl.startImpliedDo(loc, builder, lower, upper, stride); 312 }, 313 implVariant); 314 } 315 316 hlfir::Entity finishArrayCtorLowering(mlir::Location loc, 317 fir::FirOpBuilder &builder) { 318 return std::visit( 319 [&](auto &impl) { return impl.finishArrayCtorLowering(loc, builder); }, 320 implVariant); 321 } 322 323 private: 324 std::variant<InlinedTempStrategy, LooplessInlinedTempStrategy, 325 AsElementalStrategy> 326 implVariant; 327 }; 328 } // namespace 329 330 //===----------------------------------------------------------------------===// 331 // Definition of selectArrayCtorLoweringStrategy and its helpers. 332 // This is the code that analyses the evaluate::ArrayConstructor<T>, 333 // pre-lowers the array constructor extent and length parameters if it can, 334 // and chooses the lowering strategy. 335 //===----------------------------------------------------------------------===// 336 337 namespace { 338 /// Helper class to lower the array constructor type and its length parameters. 339 /// The length parameters, if any, are only lowered if this does not require 340 /// evaluating an ac-value. 341 template <typename T> 342 struct LengthAndTypeCollector { 343 static mlir::Type collect(mlir::Location, 344 Fortran::lower::AbstractConverter &converter, 345 const Fortran::evaluate::ArrayConstructor<T> &, 346 Fortran::lower::SymMap &, 347 Fortran::lower::StatementContext &, 348 mlir::SmallVectorImpl<mlir::Value> &) { 349 // Numerical and Logical types. 350 return Fortran::lower::getFIRType(&converter.getMLIRContext(), T::category, 351 T::kind, /*lenParams*/ {}); 352 } 353 }; 354 355 template <> 356 struct LengthAndTypeCollector<Fortran::evaluate::SomeDerived> { 357 static mlir::Type collect( 358 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 359 const Fortran::evaluate::ArrayConstructor<Fortran::evaluate::SomeDerived> 360 &arrayCtorExpr, 361 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 362 mlir::SmallVectorImpl<mlir::Value> &lengths) { 363 TODO(loc, "collect derived type and length"); 364 } 365 }; 366 367 template <int Kind> 368 using Character = 369 Fortran::evaluate::Type<Fortran::common::TypeCategory::Character, Kind>; 370 template <int Kind> 371 struct LengthAndTypeCollector<Character<Kind>> { 372 static mlir::Type collect( 373 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 374 const Fortran::evaluate::ArrayConstructor<Character<Kind>> &arrayCtorExpr, 375 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx, 376 mlir::SmallVectorImpl<mlir::Value> &lengths) { 377 TODO(loc, "collect character type and length"); 378 } 379 }; 380 } // namespace 381 382 /// Does the array constructor have length parameters that 383 /// LengthAndTypeCollector::collect could not lower because this requires 384 /// lowering an ac-value and must be delayed? 385 static bool 386 failedToGatherLengthParameters(mlir::Type elementType, 387 llvm::ArrayRef<mlir::Value> lengths) { 388 return (elementType.isa<fir::CharacterType>() || 389 fir::isRecordWithTypeParameters(elementType)) && 390 lengths.empty(); 391 } 392 393 namespace { 394 /// Structure that analyses the ac-value and implied-do of 395 /// evaluate::ArrayConstructor before they are lowered. It does not generate any 396 /// IR. The result of this analysis pass is used to select the lowering 397 /// strategy. 398 struct ArrayCtorAnalysis { 399 template <typename T> 400 ArrayCtorAnalysis( 401 Fortran::evaluate::FoldingContext &, 402 const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr); 403 404 // Can the array constructor easily be rewritten into an hlfir.elemental ? 405 bool isSingleImpliedDoWithOneScalarPureExpr() const { 406 return !anyArrayExpr && isPerfectLoopNest && 407 innerNumberOfExprIfPrefectNest == 1 && depthIfPerfectLoopNest == 1 && 408 innerExprIsPureIfPerfectNest; 409 } 410 411 bool anyImpliedDo = false; 412 bool anyArrayExpr = false; 413 bool isPerfectLoopNest = true; 414 bool innerExprIsPureIfPerfectNest = false; 415 std::int64_t innerNumberOfExprIfPrefectNest = 0; 416 std::int64_t depthIfPerfectLoopNest = 0; 417 }; 418 } // namespace 419 420 template <typename T> 421 ArrayCtorAnalysis::ArrayCtorAnalysis( 422 Fortran::evaluate::FoldingContext &foldingContext, 423 const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr) { 424 llvm::SmallVector<const Fortran::evaluate::ArrayConstructorValues<T> *> 425 arrayValueListStack{&arrayCtorExpr}; 426 // Loop through the ac-value-list(s) of the array constructor. 427 while (!arrayValueListStack.empty()) { 428 std::int64_t localNumberOfImpliedDo = 0; 429 std::int64_t localNumberOfExpr = 0; 430 // Loop though the ac-value of an ac-value list, and add any nested 431 // ac-value-list of ac-implied-do to the stack. 432 const Fortran::evaluate::ArrayConstructorValues<T> *currentArrayValueList = 433 arrayValueListStack.pop_back_val(); 434 for (const Fortran::evaluate::ArrayConstructorValue<T> &acValue : 435 *currentArrayValueList) 436 std::visit(Fortran::common::visitors{ 437 [&](const Fortran::evaluate::ImpliedDo<T> &impledDo) { 438 arrayValueListStack.push_back(&impledDo.values()); 439 localNumberOfImpliedDo++; 440 }, 441 [&](const Fortran::evaluate::Expr<T> &expr) { 442 localNumberOfExpr++; 443 anyArrayExpr = anyArrayExpr || expr.Rank() > 0; 444 }}, 445 acValue.u); 446 anyImpliedDo = anyImpliedDo || localNumberOfImpliedDo > 0; 447 448 if (localNumberOfImpliedDo == 0) { 449 // Leaf ac-value-list in the array constructor ac-value tree. 450 if (isPerfectLoopNest) { 451 // This this the only leaf of the array-constructor (the array 452 // constructor is a nest of single implied-do with a list of expression 453 // in the last deeper implied do). e.g: "[((i+j, i=1,n)j=1,m)]". 454 innerNumberOfExprIfPrefectNest = localNumberOfExpr; 455 if (localNumberOfExpr == 1) 456 innerExprIsPureIfPerfectNest = !Fortran::evaluate::FindImpureCall( 457 foldingContext, toEvExpr(std::get<Fortran::evaluate::Expr<T>>( 458 currentArrayValueList->begin()->u))); 459 } 460 } else if (localNumberOfImpliedDo == 1 && localNumberOfExpr == 0) { 461 // Perfect implied-do nest new level. 462 ++depthIfPerfectLoopNest; 463 } else { 464 // More than one implied-do, or at least one implied-do and an expr 465 // at that level. This will not form a perfect nest. Examples: 466 // "[a, (i, i=1,n)]" or "[(i, i=1,n), (j, j=1,m)]". 467 isPerfectLoopNest = false; 468 } 469 } 470 } 471 472 /// Helper to lower a scalar extent expression (like implied-do bounds). 473 static mlir::Value lowerExtentExpr(mlir::Location loc, 474 Fortran::lower::AbstractConverter &converter, 475 Fortran::lower::SymMap &symMap, 476 Fortran::lower::StatementContext &stmtCtx, 477 const Fortran::evaluate::ExtentExpr &expr) { 478 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 479 mlir::IndexType idxTy = builder.getIndexType(); 480 hlfir::Entity value = Fortran::lower::convertExprToHLFIR( 481 loc, converter, toEvExpr(expr), symMap, stmtCtx); 482 value = hlfir::loadTrivialScalar(loc, builder, value); 483 return builder.createConvert(loc, idxTy, value); 484 } 485 486 /// Does \p expr contain no calls to user function? 487 static bool isCallFreeExpr(const Fortran::evaluate::ExtentExpr &expr) { 488 for (const Fortran::semantics::Symbol &symbol : 489 Fortran::evaluate::CollectSymbols(expr)) 490 if (Fortran::semantics::IsProcedure(symbol)) 491 return false; 492 return true; 493 } 494 495 /// Core function that pre-lowers the extent and length parameters of 496 /// array constructors if it can, runs the ac-value analysis and 497 /// select the lowering strategy accordingly. 498 template <typename T> 499 static ArrayCtorLoweringStrategy selectArrayCtorLoweringStrategy( 500 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 501 const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr, 502 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 503 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 504 mlir::Type idxType = builder.getIndexType(); 505 // Try to gather the array constructor extent. 506 mlir::Value extent; 507 fir::SequenceType::Extent typeExtent = fir::SequenceType::getUnknownExtent(); 508 auto shapeExpr = 509 Fortran::evaluate::GetShape(converter.getFoldingContext(), arrayCtorExpr); 510 if (shapeExpr && shapeExpr->size() == 1 && (*shapeExpr)[0]) { 511 const Fortran::evaluate::ExtentExpr &extentExpr = *(*shapeExpr)[0]; 512 if (auto constantExtent = Fortran::evaluate::ToInt64(extentExpr)) { 513 typeExtent = *constantExtent; 514 extent = builder.createIntegerConstant(loc, idxType, typeExtent); 515 } else if (isCallFreeExpr(extentExpr)) { 516 // The expression built by expression analysis for the array constructor 517 // extent does not contain procedure symbols. It is side effect free. 518 // This could be relaxed to allow pure procedure, but some care must 519 // be taken to not bring in "unmapped" symbols from callee scopes. 520 extent = lowerExtentExpr(loc, converter, symMap, stmtCtx, extentExpr); 521 } 522 // Otherwise, the temporary will have to be built step by step with 523 // reallocation and the extent will only be known at the end of the array 524 // constructor evaluation. 525 } 526 // Convert the array constructor type and try to gather its length parameter 527 // values, if any. 528 mlir::SmallVector<mlir::Value> lengths; 529 mlir::Type elementType = LengthAndTypeCollector<T>::collect( 530 loc, converter, arrayCtorExpr, symMap, stmtCtx, lengths); 531 // Run an analysis of the array constructor ac-value. 532 ArrayCtorAnalysis analysis(converter.getFoldingContext(), arrayCtorExpr); 533 bool needToEvaluateOneExprToGetLengthParameters = 534 failedToGatherLengthParameters(elementType, lengths); 535 536 // Based on what was gathered and the result of the analysis, select and 537 // instantiate the right lowering strategy for the array constructor. 538 if (!extent || needToEvaluateOneExprToGetLengthParameters || 539 analysis.anyArrayExpr) 540 TODO(loc, "Lowering of array constructor requiring the runtime"); 541 542 auto declaredType = fir::SequenceType::get({typeExtent}, elementType); 543 // Note: array constructors containing impure ac-value expr are currently not 544 // rewritten to hlfir.elemental because impure expressions should be evaluated 545 // in order, and hlfir.elemental currently misses a way to indicate that. 546 if (analysis.isSingleImpliedDoWithOneScalarPureExpr()) 547 return AsElementalStrategy(loc, builder, declaredType, extent, lengths); 548 549 if (analysis.anyImpliedDo) 550 return InlinedTempStrategy(loc, builder, declaredType, extent, lengths); 551 552 return LooplessInlinedTempStrategy(loc, builder, declaredType, extent, 553 lengths); 554 } 555 556 /// Lower an ac-value expression \p expr and forward it to the selected 557 /// lowering strategy \p arrayBuilder, 558 template <typename T> 559 static void genAcValue(mlir::Location loc, 560 Fortran::lower::AbstractConverter &converter, 561 const Fortran::evaluate::Expr<T> &expr, 562 Fortran::lower::SymMap &symMap, 563 Fortran::lower::StatementContext &stmtCtx, 564 ArrayCtorLoweringStrategy &arrayBuilder) { 565 if (expr.Rank() != 0) 566 TODO(loc, "array constructor with array ac-value in HLFIR"); 567 // TODO: get rid of the toEvExpr indirection. 568 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 569 hlfir::Entity value = Fortran::lower::convertExprToHLFIR( 570 loc, converter, toEvExpr(expr), symMap, stmtCtx); 571 value = hlfir::loadTrivialScalar(loc, builder, value); 572 arrayBuilder.pushValue(loc, builder, value); 573 } 574 575 /// Lowers an ac-value implied-do \p impledDo according to the selected 576 /// lowering strategy \p arrayBuilder. 577 template <typename T> 578 static void genAcValue(mlir::Location loc, 579 Fortran::lower::AbstractConverter &converter, 580 const Fortran::evaluate::ImpliedDo<T> &impledDo, 581 Fortran::lower::SymMap &symMap, 582 Fortran::lower::StatementContext &stmtCtx, 583 ArrayCtorLoweringStrategy &arrayBuilder) { 584 auto lowerIndex = 585 [&](const Fortran::evaluate::ExtentExpr expr) -> mlir::Value { 586 return lowerExtentExpr(loc, converter, symMap, stmtCtx, expr); 587 }; 588 mlir::Value lower = lowerIndex(impledDo.lower()); 589 mlir::Value upper = lowerIndex(impledDo.upper()); 590 mlir::Value stride = lowerIndex(impledDo.stride()); 591 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 592 mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint(); 593 mlir::Value impliedDoIndexValue = 594 arrayBuilder.startImpliedDo(loc, builder, lower, upper, stride); 595 symMap.pushImpliedDoBinding(toStringRef(impledDo.name()), 596 impliedDoIndexValue); 597 stmtCtx.pushScope(); 598 599 for (const auto &acValue : impledDo.values()) 600 std::visit( 601 [&](const auto &x) { 602 genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder); 603 }, 604 acValue.u); 605 606 stmtCtx.finalizeAndPop(); 607 symMap.popImpliedDoBinding(); 608 builder.restoreInsertionPoint(insertPt); 609 } 610 611 /// Entry point for evaluate::ArrayConstructor lowering. 612 template <typename T> 613 hlfir::EntityWithAttributes Fortran::lower::ArrayConstructorBuilder<T>::gen( 614 mlir::Location loc, Fortran::lower::AbstractConverter &converter, 615 const Fortran::evaluate::ArrayConstructor<T> &arrayCtorExpr, 616 Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) { 617 fir::FirOpBuilder &builder = converter.getFirOpBuilder(); 618 // Select the lowering strategy given the array constructor. 619 auto arrayBuilder = selectArrayCtorLoweringStrategy( 620 loc, converter, arrayCtorExpr, symMap, stmtCtx); 621 // Run the array lowering strategy through the ac-values. 622 for (const auto &acValue : arrayCtorExpr) 623 std::visit( 624 [&](const auto &x) { 625 genAcValue(loc, converter, x, symMap, stmtCtx, arrayBuilder); 626 }, 627 acValue.u); 628 hlfir::Entity hlfirExpr = arrayBuilder.finishArrayCtorLowering(loc, builder); 629 // Insert the clean-up for the created hlfir.expr. 630 fir::FirOpBuilder *bldr = &builder; 631 stmtCtx.attachCleanup( 632 [=]() { bldr->create<hlfir::DestroyOp>(loc, hlfirExpr); }); 633 return hlfir::EntityWithAttributes{hlfirExpr}; 634 } 635 636 using namespace Fortran::evaluate; 637 using namespace Fortran::common; 638 FOR_EACH_SPECIFIC_TYPE(template class Fortran::lower::ArrayConstructorBuilder, ) 639