1 //===-- lib/Evaluate/shape.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/shape.h" 10 #include "flang/Common/idioms.h" 11 #include "flang/Common/template.h" 12 #include "flang/Evaluate/characteristics.h" 13 #include "flang/Evaluate/check-expression.h" 14 #include "flang/Evaluate/fold.h" 15 #include "flang/Evaluate/intrinsics.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Evaluate/type.h" 18 #include "flang/Parser/message.h" 19 #include "flang/Semantics/symbol.h" 20 #include <functional> 21 22 using namespace std::placeholders; // _1, _2, &c. for std::bind() 23 24 namespace Fortran::evaluate { 25 26 bool IsImpliedShape(const Symbol &original) { 27 const Symbol &symbol{ResolveAssociations(original)}; 28 const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 29 return details && symbol.attrs().test(semantics::Attr::PARAMETER) && 30 details->shape().CanBeImpliedShape(); 31 } 32 33 bool IsExplicitShape(const Symbol &original) { 34 const Symbol &symbol{ResolveAssociations(original)}; 35 if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 36 const auto &shape{details->shape()}; 37 return shape.Rank() == 0 || 38 shape.IsExplicitShape(); // true when scalar, too 39 } else { 40 return symbol 41 .has<semantics::AssocEntityDetails>(); // exprs have explicit shape 42 } 43 } 44 45 Shape GetShapeHelper::ConstantShape(const Constant<ExtentType> &arrayConstant) { 46 CHECK(arrayConstant.Rank() == 1); 47 Shape result; 48 std::size_t dimensions{arrayConstant.size()}; 49 for (std::size_t j{0}; j < dimensions; ++j) { 50 Scalar<ExtentType> extent{arrayConstant.values().at(j)}; 51 result.emplace_back(MaybeExtentExpr{ExtentExpr{std::move(extent)}}); 52 } 53 return result; 54 } 55 56 auto GetShapeHelper::AsShapeResult(ExtentExpr &&arrayExpr) const -> Result { 57 if (context_) { 58 arrayExpr = Fold(*context_, std::move(arrayExpr)); 59 } 60 if (const auto *constArray{UnwrapConstantValue<ExtentType>(arrayExpr)}) { 61 return ConstantShape(*constArray); 62 } 63 if (auto *constructor{UnwrapExpr<ArrayConstructor<ExtentType>>(arrayExpr)}) { 64 Shape result; 65 for (auto &value : *constructor) { 66 auto *expr{std::get_if<ExtentExpr>(&value.u)}; 67 if (expr && expr->Rank() == 0) { 68 result.emplace_back(std::move(*expr)); 69 } else { 70 return std::nullopt; 71 } 72 } 73 return result; 74 } else { 75 return std::nullopt; 76 } 77 } 78 79 Shape GetShapeHelper::CreateShape(int rank, NamedEntity &base) { 80 Shape shape; 81 for (int dimension{0}; dimension < rank; ++dimension) { 82 shape.emplace_back(GetExtent(base, dimension)); 83 } 84 return shape; 85 } 86 87 std::optional<ExtentExpr> AsExtentArrayExpr(const Shape &shape) { 88 ArrayConstructorValues<ExtentType> values; 89 for (const auto &dim : shape) { 90 if (dim) { 91 values.Push(common::Clone(*dim)); 92 } else { 93 return std::nullopt; 94 } 95 } 96 return ExtentExpr{ArrayConstructor<ExtentType>{std::move(values)}}; 97 } 98 99 std::optional<Constant<ExtentType>> AsConstantShape( 100 FoldingContext &context, const Shape &shape) { 101 if (auto shapeArray{AsExtentArrayExpr(shape)}) { 102 auto folded{Fold(context, std::move(*shapeArray))}; 103 if (auto *p{UnwrapConstantValue<ExtentType>(folded)}) { 104 return std::move(*p); 105 } 106 } 107 return std::nullopt; 108 } 109 110 Constant<SubscriptInteger> AsConstantShape(const ConstantSubscripts &shape) { 111 using IntType = Scalar<SubscriptInteger>; 112 std::vector<IntType> result; 113 for (auto dim : shape) { 114 result.emplace_back(dim); 115 } 116 return {std::move(result), ConstantSubscripts{GetRank(shape)}}; 117 } 118 119 ConstantSubscripts AsConstantExtents(const Constant<ExtentType> &shape) { 120 ConstantSubscripts result; 121 for (const auto &extent : shape.values()) { 122 result.push_back(extent.ToInt64()); 123 } 124 return result; 125 } 126 127 std::optional<ConstantSubscripts> AsConstantExtents( 128 FoldingContext &context, const Shape &shape) { 129 if (auto shapeConstant{AsConstantShape(context, shape)}) { 130 return AsConstantExtents(*shapeConstant); 131 } else { 132 return std::nullopt; 133 } 134 } 135 136 Shape AsShape(const ConstantSubscripts &shape) { 137 Shape result; 138 for (const auto &extent : shape) { 139 result.emplace_back(ExtentExpr{extent}); 140 } 141 return result; 142 } 143 144 std::optional<Shape> AsShape(const std::optional<ConstantSubscripts> &shape) { 145 if (shape) { 146 return AsShape(*shape); 147 } else { 148 return std::nullopt; 149 } 150 } 151 152 Shape Fold(FoldingContext &context, Shape &&shape) { 153 for (auto &dim : shape) { 154 dim = Fold(context, std::move(dim)); 155 } 156 return std::move(shape); 157 } 158 159 std::optional<Shape> Fold( 160 FoldingContext &context, std::optional<Shape> &&shape) { 161 if (shape) { 162 return Fold(context, std::move(*shape)); 163 } else { 164 return std::nullopt; 165 } 166 } 167 168 static ExtentExpr ComputeTripCount( 169 ExtentExpr &&lower, ExtentExpr &&upper, ExtentExpr &&stride) { 170 ExtentExpr strideCopy{common::Clone(stride)}; 171 ExtentExpr span{ 172 (std::move(upper) - std::move(lower) + std::move(strideCopy)) / 173 std::move(stride)}; 174 return ExtentExpr{ 175 Extremum<ExtentType>{Ordering::Greater, std::move(span), ExtentExpr{0}}}; 176 } 177 178 ExtentExpr CountTrips( 179 ExtentExpr &&lower, ExtentExpr &&upper, ExtentExpr &&stride) { 180 return ComputeTripCount( 181 std::move(lower), std::move(upper), std::move(stride)); 182 } 183 184 ExtentExpr CountTrips(const ExtentExpr &lower, const ExtentExpr &upper, 185 const ExtentExpr &stride) { 186 return ComputeTripCount( 187 common::Clone(lower), common::Clone(upper), common::Clone(stride)); 188 } 189 190 MaybeExtentExpr CountTrips(MaybeExtentExpr &&lower, MaybeExtentExpr &&upper, 191 MaybeExtentExpr &&stride) { 192 std::function<ExtentExpr(ExtentExpr &&, ExtentExpr &&, ExtentExpr &&)> bound{ 193 std::bind(ComputeTripCount, _1, _2, _3)}; 194 return common::MapOptional( 195 std::move(bound), std::move(lower), std::move(upper), std::move(stride)); 196 } 197 198 MaybeExtentExpr GetSize(Shape &&shape) { 199 ExtentExpr extent{1}; 200 for (auto &&dim : std::move(shape)) { 201 if (dim) { 202 extent = std::move(extent) * std::move(*dim); 203 } else { 204 return std::nullopt; 205 } 206 } 207 return extent; 208 } 209 210 ConstantSubscript GetSize(const ConstantSubscripts &shape) { 211 ConstantSubscript size{1}; 212 for (auto dim : shape) { 213 CHECK(dim >= 0); 214 size *= dim; 215 } 216 return size; 217 } 218 219 bool ContainsAnyImpliedDoIndex(const ExtentExpr &expr) { 220 struct MyVisitor : public AnyTraverse<MyVisitor> { 221 using Base = AnyTraverse<MyVisitor>; 222 MyVisitor() : Base{*this} {} 223 using Base::operator(); 224 bool operator()(const ImpliedDoIndex &) { return true; } 225 }; 226 return MyVisitor{}(expr); 227 } 228 229 // Determines lower bound on a dimension. This can be other than 1 only 230 // for a reference to a whole array object or component. (See LBOUND, 16.9.109). 231 // ASSOCIATE construct entities may require traversal of their referents. 232 template <typename RESULT, bool LBOUND_SEMANTICS> 233 class GetLowerBoundHelper 234 : public Traverse<GetLowerBoundHelper<RESULT, LBOUND_SEMANTICS>, RESULT> { 235 public: 236 using Result = RESULT; 237 using Base = Traverse<GetLowerBoundHelper, RESULT>; 238 using Base::operator(); 239 explicit GetLowerBoundHelper(int d, FoldingContext *context) 240 : Base{*this}, dimension_{d}, context_{context} {} 241 static Result Default() { return Result{1}; } 242 static Result Combine(Result &&, Result &&) { 243 // Operator results and array references always have lower bounds == 1 244 return Result{1}; 245 } 246 247 Result GetLowerBound(const Symbol &symbol0, NamedEntity &&base) const { 248 const Symbol &symbol{symbol0.GetUltimate()}; 249 if (const auto *details{ 250 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 251 int rank{details->shape().Rank()}; 252 if (dimension_ < rank) { 253 const semantics::ShapeSpec &shapeSpec{details->shape()[dimension_]}; 254 if (shapeSpec.lbound().isExplicit()) { 255 if (const auto &lbound{shapeSpec.lbound().GetExplicit()}) { 256 if constexpr (LBOUND_SEMANTICS) { 257 bool ok{false}; 258 auto lbValue{ToInt64(*lbound)}; 259 if (dimension_ == rank - 1 && details->IsAssumedSize()) { 260 // last dimension of assumed-size dummy array: don't worry 261 // about handling an empty dimension 262 ok = IsScopeInvariantExpr(*lbound); 263 } else if (lbValue.value_or(0) == 1) { 264 // Lower bound is 1, regardless of extent 265 ok = true; 266 } else if (const auto &ubound{shapeSpec.ubound().GetExplicit()}) { 267 // If we can't prove that the dimension is nonempty, 268 // we must be conservative. 269 // TODO: simple symbolic math in expression rewriting to 270 // cope with cases like A(J:J) 271 if (context_) { 272 auto extent{ToInt64(Fold(*context_, 273 ExtentExpr{*ubound} - ExtentExpr{*lbound} + 274 ExtentExpr{1}))}; 275 if (extent) { 276 if (extent <= 0) { 277 return Result{1}; 278 } 279 ok = true; 280 } else { 281 ok = false; 282 } 283 } else { 284 auto ubValue{ToInt64(*ubound)}; 285 if (lbValue && ubValue) { 286 if (*lbValue > *ubValue) { 287 return Result{1}; 288 } 289 ok = true; 290 } else { 291 ok = false; 292 } 293 } 294 } 295 return ok ? *lbound : Result{}; 296 } else { 297 return *lbound; 298 } 299 } else { 300 return Result{1}; 301 } 302 } 303 if (IsDescriptor(symbol)) { 304 return ExtentExpr{DescriptorInquiry{std::move(base), 305 DescriptorInquiry::Field::LowerBound, dimension_}}; 306 } 307 } 308 } else if (const auto *assoc{ 309 symbol.detailsIf<semantics::AssocEntityDetails>()}) { 310 if (assoc->rank()) { // SELECT RANK case 311 const Symbol &resolved{ResolveAssociations(symbol)}; 312 if (IsDescriptor(resolved) && dimension_ < *assoc->rank()) { 313 return ExtentExpr{DescriptorInquiry{std::move(base), 314 DescriptorInquiry::Field::LowerBound, dimension_}}; 315 } 316 } else { 317 auto exprLowerBound{((*this)(assoc->expr()))}; 318 if (IsActuallyConstant(exprLowerBound)) { 319 return std::move(exprLowerBound); 320 } else { 321 // If the lower bound of the associated entity is not resolved to 322 // constant expression at the time of the association, it is unsafe 323 // to re-evaluate it later in the associate construct. Statements 324 // in-between may have modified its operands value. 325 return ExtentExpr{DescriptorInquiry{std::move(base), 326 DescriptorInquiry::Field::LowerBound, dimension_}}; 327 } 328 } 329 } 330 if constexpr (LBOUND_SEMANTICS) { 331 return Result{}; 332 } else { 333 return Result{1}; 334 } 335 } 336 337 Result operator()(const Symbol &symbol0) const { 338 return GetLowerBound(symbol0, NamedEntity{symbol0}); 339 } 340 341 Result operator()(const Component &component) const { 342 if (component.base().Rank() == 0) { 343 return GetLowerBound( 344 component.GetLastSymbol(), NamedEntity{common::Clone(component)}); 345 } 346 return Result{1}; 347 } 348 349 private: 350 int dimension_; 351 FoldingContext *context_{nullptr}; 352 }; 353 354 ExtentExpr GetRawLowerBound(const NamedEntity &base, int dimension) { 355 return GetLowerBoundHelper<ExtentExpr, false>{dimension, nullptr}(base); 356 } 357 358 ExtentExpr GetRawLowerBound( 359 FoldingContext &context, const NamedEntity &base, int dimension) { 360 return Fold(context, 361 GetLowerBoundHelper<ExtentExpr, false>{dimension, &context}(base)); 362 } 363 364 MaybeExtentExpr GetLBOUND(const NamedEntity &base, int dimension) { 365 return GetLowerBoundHelper<MaybeExtentExpr, true>{dimension, nullptr}(base); 366 } 367 368 MaybeExtentExpr GetLBOUND( 369 FoldingContext &context, const NamedEntity &base, int dimension) { 370 return Fold(context, 371 GetLowerBoundHelper<MaybeExtentExpr, true>{dimension, &context}(base)); 372 } 373 374 Shape GetRawLowerBounds(const NamedEntity &base) { 375 Shape result; 376 int rank{base.Rank()}; 377 for (int dim{0}; dim < rank; ++dim) { 378 result.emplace_back(GetRawLowerBound(base, dim)); 379 } 380 return result; 381 } 382 383 Shape GetRawLowerBounds(FoldingContext &context, const NamedEntity &base) { 384 Shape result; 385 int rank{base.Rank()}; 386 for (int dim{0}; dim < rank; ++dim) { 387 result.emplace_back(GetRawLowerBound(context, base, dim)); 388 } 389 return result; 390 } 391 392 Shape GetLBOUNDs(const NamedEntity &base) { 393 Shape result; 394 int rank{base.Rank()}; 395 for (int dim{0}; dim < rank; ++dim) { 396 result.emplace_back(GetLBOUND(base, dim)); 397 } 398 return result; 399 } 400 401 Shape GetLBOUNDs(FoldingContext &context, const NamedEntity &base) { 402 Shape result; 403 int rank{base.Rank()}; 404 for (int dim{0}; dim < rank; ++dim) { 405 result.emplace_back(GetLBOUND(context, base, dim)); 406 } 407 return result; 408 } 409 410 // If the upper and lower bounds are constant, return a constant expression for 411 // the extent. In particular, if the upper bound is less than the lower bound, 412 // return zero. 413 static MaybeExtentExpr GetNonNegativeExtent( 414 const semantics::ShapeSpec &shapeSpec) { 415 const auto &ubound{shapeSpec.ubound().GetExplicit()}; 416 const auto &lbound{shapeSpec.lbound().GetExplicit()}; 417 std::optional<ConstantSubscript> uval{ToInt64(ubound)}; 418 std::optional<ConstantSubscript> lval{ToInt64(lbound)}; 419 if (uval && lval) { 420 if (*uval < *lval) { 421 return ExtentExpr{0}; 422 } else { 423 return ExtentExpr{*uval - *lval + 1}; 424 } 425 } else if (lbound && ubound && IsScopeInvariantExpr(*lbound) && 426 IsScopeInvariantExpr(*ubound)) { 427 // Apply effective IDIM (MAX calculation with 0) so thet the 428 // result is never negative 429 if (lval.value_or(0) == 1) { 430 return ExtentExpr{Extremum<SubscriptInteger>{ 431 Ordering::Greater, ExtentExpr{0}, common::Clone(*ubound)}}; 432 } else { 433 return ExtentExpr{ 434 Extremum<SubscriptInteger>{Ordering::Greater, ExtentExpr{0}, 435 common::Clone(*ubound) - common::Clone(*lbound) + ExtentExpr{1}}}; 436 } 437 } else { 438 return std::nullopt; 439 } 440 } 441 442 MaybeExtentExpr GetAssociatedExtent(const NamedEntity &base, 443 const semantics::AssocEntityDetails &assoc, int dimension) { 444 if (auto shape{GetShape(assoc.expr())}) { 445 if (dimension < static_cast<int>(shape->size())) { 446 auto &extent{shape->at(dimension)}; 447 if (extent && IsActuallyConstant(*extent)) { 448 return std::move(extent); 449 } else { 450 // Otherwise, evaluating the associated expression extent expression 451 // after the associate statement is unsafe given statements inside the 452 // associate may have modified the associated expression operands 453 // values. 454 return ExtentExpr{DescriptorInquiry{ 455 NamedEntity{base}, DescriptorInquiry::Field::Extent, dimension}}; 456 } 457 } 458 } 459 return std::nullopt; 460 } 461 462 MaybeExtentExpr GetExtent(const NamedEntity &base, int dimension) { 463 CHECK(dimension >= 0); 464 const Symbol &last{base.GetLastSymbol()}; 465 const Symbol &symbol{ResolveAssociations(last)}; 466 if (const auto *assoc{last.detailsIf<semantics::AssocEntityDetails>()}) { 467 if (assoc->rank()) { // SELECT RANK case 468 if (semantics::IsDescriptor(symbol) && dimension < *assoc->rank()) { 469 return ExtentExpr{DescriptorInquiry{ 470 NamedEntity{base}, DescriptorInquiry::Field::Extent, dimension}}; 471 } 472 } else { 473 return GetAssociatedExtent(base, *assoc, dimension); 474 } 475 } 476 if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 477 if (IsImpliedShape(symbol) && details->init()) { 478 if (auto shape{GetShape(symbol)}) { 479 if (dimension < static_cast<int>(shape->size())) { 480 return std::move(shape->at(dimension)); 481 } 482 } 483 } else { 484 int j{0}; 485 for (const auto &shapeSpec : details->shape()) { 486 if (j++ == dimension) { 487 if (auto extent{GetNonNegativeExtent(shapeSpec)}) { 488 return extent; 489 } else if (details->IsAssumedSize() && j == symbol.Rank()) { 490 return std::nullopt; 491 } else if (semantics::IsDescriptor(symbol)) { 492 return ExtentExpr{DescriptorInquiry{NamedEntity{base}, 493 DescriptorInquiry::Field::Extent, dimension}}; 494 } else { 495 break; 496 } 497 } 498 } 499 } 500 } 501 return std::nullopt; 502 } 503 504 MaybeExtentExpr GetExtent( 505 FoldingContext &context, const NamedEntity &base, int dimension) { 506 return Fold(context, GetExtent(base, dimension)); 507 } 508 509 MaybeExtentExpr GetExtent( 510 const Subscript &subscript, const NamedEntity &base, int dimension) { 511 return common::visit( 512 common::visitors{ 513 [&](const Triplet &triplet) -> MaybeExtentExpr { 514 MaybeExtentExpr upper{triplet.upper()}; 515 if (!upper) { 516 upper = GetUBOUND(base, dimension); 517 } 518 MaybeExtentExpr lower{triplet.lower()}; 519 if (!lower) { 520 lower = GetLBOUND(base, dimension); 521 } 522 return CountTrips(std::move(lower), std::move(upper), 523 MaybeExtentExpr{triplet.stride()}); 524 }, 525 [&](const IndirectSubscriptIntegerExpr &subs) -> MaybeExtentExpr { 526 if (auto shape{GetShape(subs.value())}) { 527 if (GetRank(*shape) > 0) { 528 CHECK(GetRank(*shape) == 1); // vector-valued subscript 529 return std::move(shape->at(0)); 530 } 531 } 532 return std::nullopt; 533 }, 534 }, 535 subscript.u); 536 } 537 538 MaybeExtentExpr GetExtent(FoldingContext &context, const Subscript &subscript, 539 const NamedEntity &base, int dimension) { 540 return Fold(context, GetExtent(subscript, base, dimension)); 541 } 542 543 MaybeExtentExpr ComputeUpperBound( 544 ExtentExpr &&lower, MaybeExtentExpr &&extent) { 545 if (extent) { 546 if (ToInt64(lower).value_or(0) == 1) { 547 return std::move(*extent); 548 } else { 549 return std::move(*extent) + std::move(lower) - ExtentExpr{1}; 550 } 551 } else { 552 return std::nullopt; 553 } 554 } 555 556 MaybeExtentExpr ComputeUpperBound( 557 FoldingContext &context, ExtentExpr &&lower, MaybeExtentExpr &&extent) { 558 return Fold(context, ComputeUpperBound(std::move(lower), std::move(extent))); 559 } 560 561 MaybeExtentExpr GetRawUpperBound(const NamedEntity &base, int dimension) { 562 const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())}; 563 if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 564 int rank{details->shape().Rank()}; 565 if (dimension < rank) { 566 const auto &bound{details->shape()[dimension].ubound().GetExplicit()}; 567 if (bound && IsScopeInvariantExpr(*bound)) { 568 return *bound; 569 } else if (details->IsAssumedSize() && dimension + 1 == symbol.Rank()) { 570 return std::nullopt; 571 } else { 572 return ComputeUpperBound( 573 GetRawLowerBound(base, dimension), GetExtent(base, dimension)); 574 } 575 } 576 } else if (const auto *assoc{ 577 symbol.detailsIf<semantics::AssocEntityDetails>()}) { 578 if (auto extent{GetAssociatedExtent(base, *assoc, dimension)}) { 579 return ComputeUpperBound( 580 GetRawLowerBound(base, dimension), std::move(extent)); 581 } 582 } 583 return std::nullopt; 584 } 585 586 MaybeExtentExpr GetRawUpperBound( 587 FoldingContext &context, const NamedEntity &base, int dimension) { 588 return Fold(context, GetRawUpperBound(base, dimension)); 589 } 590 591 static MaybeExtentExpr GetExplicitUBOUND( 592 FoldingContext *context, const semantics::ShapeSpec &shapeSpec) { 593 const auto &ubound{shapeSpec.ubound().GetExplicit()}; 594 if (ubound && IsScopeInvariantExpr(*ubound)) { 595 if (auto extent{GetNonNegativeExtent(shapeSpec)}) { 596 if (auto cstExtent{ToInt64( 597 context ? Fold(*context, std::move(*extent)) : *extent)}) { 598 if (cstExtent > 0) { 599 return *ubound; 600 } else if (cstExtent == 0) { 601 return ExtentExpr{0}; 602 } 603 } 604 } 605 } 606 return std::nullopt; 607 } 608 609 static MaybeExtentExpr GetUBOUND( 610 FoldingContext *context, const NamedEntity &base, int dimension) { 611 const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())}; 612 if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 613 int rank{details->shape().Rank()}; 614 if (dimension < rank) { 615 const semantics::ShapeSpec &shapeSpec{details->shape()[dimension]}; 616 if (auto ubound{GetExplicitUBOUND(context, shapeSpec)}) { 617 return *ubound; 618 } else if (details->IsAssumedSize() && dimension + 1 == symbol.Rank()) { 619 return std::nullopt; 620 } else if (auto lb{GetLBOUND(base, dimension)}) { 621 return ComputeUpperBound(std::move(*lb), GetExtent(base, dimension)); 622 } 623 } 624 } else if (const auto *assoc{ 625 symbol.detailsIf<semantics::AssocEntityDetails>()}) { 626 if (auto extent{GetAssociatedExtent(base, *assoc, dimension)}) { 627 if (auto lb{GetLBOUND(base, dimension)}) { 628 return ComputeUpperBound(std::move(*lb), std::move(extent)); 629 } 630 } 631 } 632 return std::nullopt; 633 } 634 635 MaybeExtentExpr GetUBOUND(const NamedEntity &base, int dimension) { 636 return GetUBOUND(nullptr, base, dimension); 637 } 638 639 MaybeExtentExpr GetUBOUND( 640 FoldingContext &context, const NamedEntity &base, int dimension) { 641 return Fold(context, GetUBOUND(&context, base, dimension)); 642 } 643 644 static Shape GetUBOUNDs(FoldingContext *context, const NamedEntity &base) { 645 const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())}; 646 if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 647 Shape result; 648 int dim{0}; 649 for (const auto &shapeSpec : details->shape()) { 650 if (auto ubound{GetExplicitUBOUND(context, shapeSpec)}) { 651 result.emplace_back(*ubound); 652 } else if (details->IsAssumedSize() && dim + 1 == base.Rank()) { 653 result.emplace_back(std::nullopt); // UBOUND folding replaces with -1 654 } else if (auto lb{GetLBOUND(base, dim)}) { 655 result.emplace_back( 656 ComputeUpperBound(std::move(*lb), GetExtent(base, dim))); 657 } else { 658 result.emplace_back(); // unknown 659 } 660 ++dim; 661 } 662 CHECK(GetRank(result) == symbol.Rank()); 663 return result; 664 } else { 665 return std::move(GetShape(symbol).value()); 666 } 667 } 668 669 Shape GetUBOUNDs(FoldingContext &context, const NamedEntity &base) { 670 return Fold(context, GetUBOUNDs(&context, base)); 671 } 672 673 Shape GetUBOUNDs(const NamedEntity &base) { return GetUBOUNDs(nullptr, base); } 674 675 auto GetShapeHelper::operator()(const Symbol &symbol) const -> Result { 676 return common::visit( 677 common::visitors{ 678 [&](const semantics::ObjectEntityDetails &object) { 679 if (IsImpliedShape(symbol) && object.init()) { 680 return (*this)(object.init()); 681 } else if (IsAssumedRank(symbol)) { 682 return Result{}; 683 } else { 684 int n{object.shape().Rank()}; 685 NamedEntity base{symbol}; 686 return Result{CreateShape(n, base)}; 687 } 688 }, 689 [](const semantics::EntityDetails &) { 690 return ScalarShape(); // no dimensions seen 691 }, 692 [&](const semantics::ProcEntityDetails &proc) { 693 if (const Symbol * interface{proc.procInterface()}) { 694 return (*this)(*interface); 695 } else { 696 return ScalarShape(); 697 } 698 }, 699 [&](const semantics::AssocEntityDetails &assoc) { 700 NamedEntity base{symbol}; 701 if (assoc.rank()) { // SELECT RANK case 702 int n{assoc.rank().value()}; 703 return Result{CreateShape(n, base)}; 704 } else { 705 auto exprShape{((*this)(assoc.expr()))}; 706 if (exprShape) { 707 int rank{static_cast<int>(exprShape->size())}; 708 for (int dimension{0}; dimension < rank; ++dimension) { 709 auto &extent{(*exprShape)[dimension]}; 710 if (extent && !IsActuallyConstant(*extent)) { 711 extent = GetExtent(base, dimension); 712 } 713 } 714 } 715 return exprShape; 716 } 717 }, 718 [&](const semantics::SubprogramDetails &subp) -> Result { 719 if (subp.isFunction()) { 720 auto resultShape{(*this)(subp.result())}; 721 if (resultShape && !useResultSymbolShape_) { 722 // Ensure the shape is constant. Otherwise, it may be referring 723 // to symbols that belong to the subroutine scope and are 724 // meaningless on the caller side without the related call 725 // expression. 726 for (auto &extent : *resultShape) { 727 if (extent && !IsActuallyConstant(*extent)) { 728 extent.reset(); 729 } 730 } 731 } 732 return resultShape; 733 } else { 734 return Result{}; 735 } 736 }, 737 [&](const semantics::ProcBindingDetails &binding) { 738 return (*this)(binding.symbol()); 739 }, 740 [](const semantics::TypeParamDetails &) { return ScalarShape(); }, 741 [](const auto &) { return Result{}; }, 742 }, 743 symbol.GetUltimate().details()); 744 } 745 746 auto GetShapeHelper::operator()(const Component &component) const -> Result { 747 const Symbol &symbol{component.GetLastSymbol()}; 748 int rank{symbol.Rank()}; 749 if (rank == 0) { 750 return (*this)(component.base()); 751 } else if (symbol.has<semantics::ObjectEntityDetails>()) { 752 NamedEntity base{Component{component}}; 753 return CreateShape(rank, base); 754 } else if (symbol.has<semantics::AssocEntityDetails>()) { 755 NamedEntity base{Component{component}}; 756 return Result{CreateShape(rank, base)}; 757 } else { 758 return (*this)(symbol); 759 } 760 } 761 762 auto GetShapeHelper::operator()(const ArrayRef &arrayRef) const -> Result { 763 Shape shape; 764 int dimension{0}; 765 const NamedEntity &base{arrayRef.base()}; 766 for (const Subscript &ss : arrayRef.subscript()) { 767 if (ss.Rank() > 0) { 768 shape.emplace_back(GetExtent(ss, base, dimension)); 769 } 770 ++dimension; 771 } 772 if (shape.empty()) { 773 if (const Component * component{base.UnwrapComponent()}) { 774 return (*this)(component->base()); 775 } 776 } 777 return shape; 778 } 779 780 auto GetShapeHelper::operator()(const CoarrayRef &coarrayRef) const -> Result { 781 NamedEntity base{coarrayRef.GetBase()}; 782 if (coarrayRef.subscript().empty()) { 783 return (*this)(base); 784 } else { 785 Shape shape; 786 int dimension{0}; 787 for (const Subscript &ss : coarrayRef.subscript()) { 788 if (ss.Rank() > 0) { 789 shape.emplace_back(GetExtent(ss, base, dimension)); 790 } 791 ++dimension; 792 } 793 return shape; 794 } 795 } 796 797 auto GetShapeHelper::operator()(const Substring &substring) const -> Result { 798 return (*this)(substring.parent()); 799 } 800 801 auto GetShapeHelper::operator()(const ProcedureRef &call) const -> Result { 802 if (call.Rank() == 0) { 803 return ScalarShape(); 804 } else if (call.IsElemental()) { 805 for (const auto &arg : call.arguments()) { 806 if (arg && arg->Rank() > 0) { 807 return (*this)(*arg); 808 } 809 } 810 return ScalarShape(); 811 } else if (const Symbol * symbol{call.proc().GetSymbol()}) { 812 return (*this)(*symbol); 813 } else if (const auto *intrinsic{call.proc().GetSpecificIntrinsic()}) { 814 if (intrinsic->name == "shape" || intrinsic->name == "lbound" || 815 intrinsic->name == "ubound") { 816 // For LBOUND/UBOUND, these are the array-valued cases (no DIM=) 817 if (!call.arguments().empty() && call.arguments().front()) { 818 return Shape{ 819 MaybeExtentExpr{ExtentExpr{call.arguments().front()->Rank()}}}; 820 } 821 } else if (intrinsic->name == "all" || intrinsic->name == "any" || 822 intrinsic->name == "count" || intrinsic->name == "iall" || 823 intrinsic->name == "iany" || intrinsic->name == "iparity" || 824 intrinsic->name == "maxval" || intrinsic->name == "minval" || 825 intrinsic->name == "norm2" || intrinsic->name == "parity" || 826 intrinsic->name == "product" || intrinsic->name == "sum") { 827 // Reduction with DIM= 828 if (call.arguments().size() >= 2) { 829 auto arrayShape{ 830 (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}; 831 const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))}; 832 if (arrayShape && dimArg) { 833 if (auto dim{ToInt64(*dimArg)}) { 834 if (*dim >= 1 && 835 static_cast<std::size_t>(*dim) <= arrayShape->size()) { 836 arrayShape->erase(arrayShape->begin() + (*dim - 1)); 837 return std::move(*arrayShape); 838 } 839 } 840 } 841 } 842 } else if (intrinsic->name == "findloc" || intrinsic->name == "maxloc" || 843 intrinsic->name == "minloc") { 844 std::size_t dimIndex{intrinsic->name == "findloc" ? 2u : 1u}; 845 if (call.arguments().size() > dimIndex) { 846 if (auto arrayShape{ 847 (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}) { 848 auto rank{static_cast<int>(arrayShape->size())}; 849 if (const auto *dimArg{ 850 UnwrapExpr<Expr<SomeType>>(call.arguments()[dimIndex])}) { 851 auto dim{ToInt64(*dimArg)}; 852 if (dim && *dim >= 1 && *dim <= rank) { 853 arrayShape->erase(arrayShape->begin() + (*dim - 1)); 854 return std::move(*arrayShape); 855 } 856 } else { 857 // xxxLOC(no DIM=) result is vector(1:RANK(ARRAY=)) 858 return Shape{ExtentExpr{rank}}; 859 } 860 } 861 } 862 } else if (intrinsic->name == "cshift" || intrinsic->name == "eoshift") { 863 if (!call.arguments().empty()) { 864 return (*this)(call.arguments()[0]); 865 } 866 } else if (intrinsic->name == "matmul") { 867 if (call.arguments().size() == 2) { 868 if (auto ashape{(*this)(call.arguments()[0])}) { 869 if (auto bshape{(*this)(call.arguments()[1])}) { 870 if (ashape->size() == 1 && bshape->size() == 2) { 871 bshape->erase(bshape->begin()); 872 return std::move(*bshape); // matmul(vector, matrix) 873 } else if (ashape->size() == 2 && bshape->size() == 1) { 874 ashape->pop_back(); 875 return std::move(*ashape); // matmul(matrix, vector) 876 } else if (ashape->size() == 2 && bshape->size() == 2) { 877 (*ashape)[1] = std::move((*bshape)[1]); 878 return std::move(*ashape); // matmul(matrix, matrix) 879 } 880 } 881 } 882 } 883 } else if (intrinsic->name == "pack") { 884 if (call.arguments().size() >= 3 && call.arguments().at(2)) { 885 // SHAPE(PACK(,,VECTOR=v)) -> SHAPE(v) 886 return (*this)(call.arguments().at(2)); 887 } else if (call.arguments().size() >= 2 && context_) { 888 if (auto maskShape{(*this)(call.arguments().at(1))}) { 889 if (maskShape->size() == 0) { 890 // Scalar MASK= -> [MERGE(SIZE(ARRAY=), 0, mask)] 891 if (auto arrayShape{(*this)(call.arguments().at(0))}) { 892 auto arraySize{GetSize(std::move(*arrayShape))}; 893 CHECK(arraySize); 894 ActualArguments toMerge{ 895 ActualArgument{AsGenericExpr(std::move(*arraySize))}, 896 ActualArgument{AsGenericExpr(ExtentExpr{0})}, 897 common::Clone(call.arguments().at(1))}; 898 auto specific{context_->intrinsics().Probe( 899 CallCharacteristics{"merge"}, toMerge, *context_)}; 900 CHECK(specific); 901 return Shape{ExtentExpr{FunctionRef<ExtentType>{ 902 ProcedureDesignator{std::move(specific->specificIntrinsic)}, 903 std::move(specific->arguments)}}}; 904 } 905 } else { 906 // Non-scalar MASK= -> [COUNT(mask)] 907 ActualArguments toCount{ActualArgument{common::Clone( 908 DEREF(call.arguments().at(1).value().UnwrapExpr()))}}; 909 auto specific{context_->intrinsics().Probe( 910 CallCharacteristics{"count"}, toCount, *context_)}; 911 CHECK(specific); 912 return Shape{ExtentExpr{FunctionRef<ExtentType>{ 913 ProcedureDesignator{std::move(specific->specificIntrinsic)}, 914 std::move(specific->arguments)}}}; 915 } 916 } 917 } 918 } else if (intrinsic->name == "reshape") { 919 if (call.arguments().size() >= 2 && call.arguments().at(1)) { 920 // SHAPE(RESHAPE(array,shape)) -> shape 921 if (const auto *shapeExpr{ 922 call.arguments().at(1).value().UnwrapExpr()}) { 923 auto shapeArg{std::get<Expr<SomeInteger>>(shapeExpr->u)}; 924 if (auto result{AsShapeResult( 925 ConvertToType<ExtentType>(std::move(shapeArg)))}) { 926 return result; 927 } 928 } 929 } 930 } else if (intrinsic->name == "spread") { 931 // SHAPE(SPREAD(ARRAY,DIM,NCOPIES)) = SHAPE(ARRAY) with NCOPIES inserted 932 // at position DIM. 933 if (call.arguments().size() == 3) { 934 auto arrayShape{ 935 (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}; 936 const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))}; 937 const auto *nCopies{ 938 UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))}; 939 if (arrayShape && dimArg && nCopies) { 940 if (auto dim{ToInt64(*dimArg)}) { 941 if (*dim >= 1 && 942 static_cast<std::size_t>(*dim) <= arrayShape->size() + 1) { 943 arrayShape->emplace(arrayShape->begin() + *dim - 1, 944 ConvertToType<ExtentType>(common::Clone(*nCopies))); 945 return std::move(*arrayShape); 946 } 947 } 948 } 949 } 950 } else if (intrinsic->name == "transfer") { 951 if (call.arguments().size() == 3 && call.arguments().at(2)) { 952 // SIZE= is present; shape is vector [SIZE=] 953 if (const auto *size{ 954 UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))}) { 955 return Shape{ 956 MaybeExtentExpr{ConvertToType<ExtentType>(common::Clone(*size))}}; 957 } 958 } else if (context_) { 959 if (auto moldTypeAndShape{characteristics::TypeAndShape::Characterize( 960 call.arguments().at(1), *context_)}) { 961 if (GetRank(moldTypeAndShape->shape()) == 0) { 962 // SIZE= is absent and MOLD= is scalar: result is scalar 963 return ScalarShape(); 964 } else { 965 // SIZE= is absent and MOLD= is array: result is vector whose 966 // length is determined by sizes of types. See 16.9.193p4 case(ii). 967 // Note that if sourceBytes is not known to be empty, we 968 // can fold only when moldElementBytes is known to not be zero; 969 // the most general case risks a division by zero otherwise. 970 if (auto sourceTypeAndShape{ 971 characteristics::TypeAndShape::Characterize( 972 call.arguments().at(0), *context_)}) { 973 if (auto sourceBytes{ 974 sourceTypeAndShape->MeasureSizeInBytes(*context_)}) { 975 *sourceBytes = Fold(*context_, std::move(*sourceBytes)); 976 if (auto sourceBytesConst{ToInt64(*sourceBytes)}) { 977 if (*sourceBytesConst == 0) { 978 return Shape{ExtentExpr{0}}; 979 } 980 } 981 if (auto moldElementBytes{ 982 moldTypeAndShape->MeasureElementSizeInBytes( 983 *context_, true)}) { 984 *moldElementBytes = 985 Fold(*context_, std::move(*moldElementBytes)); 986 auto moldElementBytesConst{ToInt64(*moldElementBytes)}; 987 if (moldElementBytesConst && *moldElementBytesConst != 0) { 988 ExtentExpr extent{Fold(*context_, 989 (std::move(*sourceBytes) + 990 common::Clone(*moldElementBytes) - ExtentExpr{1}) / 991 common::Clone(*moldElementBytes))}; 992 return Shape{MaybeExtentExpr{std::move(extent)}}; 993 } 994 } 995 } 996 } 997 } 998 } 999 } 1000 } else if (intrinsic->name == "transpose") { 1001 if (call.arguments().size() >= 1) { 1002 if (auto shape{(*this)(call.arguments().at(0))}) { 1003 if (shape->size() == 2) { 1004 std::swap((*shape)[0], (*shape)[1]); 1005 return shape; 1006 } 1007 } 1008 } 1009 } else if (intrinsic->name == "unpack") { 1010 if (call.arguments().size() >= 2) { 1011 return (*this)(call.arguments()[1]); // MASK= 1012 } 1013 } else if (intrinsic->characteristics.value().attrs.test(characteristics:: 1014 Procedure::Attr::NullPointer)) { // NULL(MOLD=) 1015 return (*this)(call.arguments()); 1016 } else { 1017 // TODO: shapes of other non-elemental intrinsic results 1018 } 1019 } 1020 // The rank is always known even if the extents are not. 1021 return Shape(static_cast<std::size_t>(call.Rank()), MaybeExtentExpr{}); 1022 } 1023 1024 void GetShapeHelper::AccumulateExtent( 1025 ExtentExpr &result, ExtentExpr &&n) const { 1026 result = std::move(result) + std::move(n); 1027 if (context_) { 1028 // Fold during expression creation to avoid creating an expression so 1029 // large we can't evalute it without overflowing the stack. 1030 result = Fold(*context_, std::move(result)); 1031 } 1032 } 1033 1034 // Check conformance of the passed shapes. 1035 std::optional<bool> CheckConformance(parser::ContextualMessages &messages, 1036 const Shape &left, const Shape &right, CheckConformanceFlags::Flags flags, 1037 const char *leftIs, const char *rightIs) { 1038 int n{GetRank(left)}; 1039 if (n == 0 && (flags & CheckConformanceFlags::LeftScalarExpandable)) { 1040 return true; 1041 } 1042 int rn{GetRank(right)}; 1043 if (rn == 0 && (flags & CheckConformanceFlags::RightScalarExpandable)) { 1044 return true; 1045 } 1046 if (n != rn) { 1047 messages.Say("Rank of %1$s is %2$d, but %3$s has rank %4$d"_err_en_US, 1048 leftIs, n, rightIs, rn); 1049 return false; 1050 } 1051 for (int j{0}; j < n; ++j) { 1052 if (auto leftDim{ToInt64(left[j])}) { 1053 if (auto rightDim{ToInt64(right[j])}) { 1054 if (*leftDim != *rightDim) { 1055 messages.Say("Dimension %1$d of %2$s has extent %3$jd, " 1056 "but %4$s has extent %5$jd"_err_en_US, 1057 j + 1, leftIs, *leftDim, rightIs, *rightDim); 1058 return false; 1059 } 1060 } else if (!(flags & CheckConformanceFlags::RightIsDeferredShape)) { 1061 return std::nullopt; 1062 } 1063 } else if (!(flags & CheckConformanceFlags::LeftIsDeferredShape)) { 1064 return std::nullopt; 1065 } 1066 } 1067 return true; 1068 } 1069 1070 bool IncrementSubscripts( 1071 ConstantSubscripts &indices, const ConstantSubscripts &extents) { 1072 std::size_t rank(indices.size()); 1073 CHECK(rank <= extents.size()); 1074 for (std::size_t j{0}; j < rank; ++j) { 1075 if (extents[j] < 1) { 1076 return false; 1077 } 1078 } 1079 for (std::size_t j{0}; j < rank; ++j) { 1080 if (indices[j]++ < extents[j]) { 1081 return true; 1082 } 1083 indices[j] = 1; 1084 } 1085 return false; 1086 } 1087 1088 } // namespace Fortran::evaluate 1089