1 //===-- lib/Evaluate/shape.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/shape.h" 10 #include "flang/Common/idioms.h" 11 #include "flang/Common/template.h" 12 #include "flang/Evaluate/characteristics.h" 13 #include "flang/Evaluate/check-expression.h" 14 #include "flang/Evaluate/fold.h" 15 #include "flang/Evaluate/intrinsics.h" 16 #include "flang/Evaluate/tools.h" 17 #include "flang/Evaluate/type.h" 18 #include "flang/Parser/message.h" 19 #include "flang/Semantics/symbol.h" 20 #include <functional> 21 22 using namespace std::placeholders; // _1, _2, &c. for std::bind() 23 24 namespace Fortran::evaluate { 25 26 bool IsImpliedShape(const Symbol &original) { 27 const Symbol &symbol{ResolveAssociations(original)}; 28 const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 29 return details && symbol.attrs().test(semantics::Attr::PARAMETER) && 30 details->shape().CanBeImpliedShape(); 31 } 32 33 bool IsExplicitShape(const Symbol &original) { 34 const Symbol &symbol{ResolveAssociations(original)}; 35 if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 36 const auto &shape{details->shape()}; 37 return shape.Rank() == 0 || 38 shape.IsExplicitShape(); // true when scalar, too 39 } else { 40 return symbol 41 .has<semantics::AssocEntityDetails>(); // exprs have explicit shape 42 } 43 } 44 45 Shape GetShapeHelper::ConstantShape(const Constant<ExtentType> &arrayConstant) { 46 CHECK(arrayConstant.Rank() == 1); 47 Shape result; 48 std::size_t dimensions{arrayConstant.size()}; 49 for (std::size_t j{0}; j < dimensions; ++j) { 50 Scalar<ExtentType> extent{arrayConstant.values().at(j)}; 51 result.emplace_back(MaybeExtentExpr{ExtentExpr{std::move(extent)}}); 52 } 53 return result; 54 } 55 56 auto GetShapeHelper::AsShapeResult(ExtentExpr &&arrayExpr) const -> Result { 57 if (context_) { 58 arrayExpr = Fold(*context_, std::move(arrayExpr)); 59 } 60 if (const auto *constArray{UnwrapConstantValue<ExtentType>(arrayExpr)}) { 61 return ConstantShape(*constArray); 62 } 63 if (auto *constructor{UnwrapExpr<ArrayConstructor<ExtentType>>(arrayExpr)}) { 64 Shape result; 65 for (auto &value : *constructor) { 66 auto *expr{std::get_if<ExtentExpr>(&value.u)}; 67 if (expr && expr->Rank() == 0) { 68 result.emplace_back(std::move(*expr)); 69 } else { 70 return std::nullopt; 71 } 72 } 73 return result; 74 } else { 75 return std::nullopt; 76 } 77 } 78 79 Shape GetShapeHelper::CreateShape(int rank, NamedEntity &base) const { 80 Shape shape; 81 for (int dimension{0}; dimension < rank; ++dimension) { 82 shape.emplace_back(GetExtent(base, dimension, invariantOnly_)); 83 } 84 return shape; 85 } 86 87 std::optional<ExtentExpr> AsExtentArrayExpr(const Shape &shape) { 88 ArrayConstructorValues<ExtentType> values; 89 for (const auto &dim : shape) { 90 if (dim) { 91 values.Push(common::Clone(*dim)); 92 } else { 93 return std::nullopt; 94 } 95 } 96 return ExtentExpr{ArrayConstructor<ExtentType>{std::move(values)}}; 97 } 98 99 std::optional<Constant<ExtentType>> AsConstantShape( 100 FoldingContext &context, const Shape &shape) { 101 if (auto shapeArray{AsExtentArrayExpr(shape)}) { 102 auto folded{Fold(context, std::move(*shapeArray))}; 103 if (auto *p{UnwrapConstantValue<ExtentType>(folded)}) { 104 return std::move(*p); 105 } 106 } 107 return std::nullopt; 108 } 109 110 Constant<SubscriptInteger> AsConstantShape(const ConstantSubscripts &shape) { 111 using IntType = Scalar<SubscriptInteger>; 112 std::vector<IntType> result; 113 for (auto dim : shape) { 114 result.emplace_back(dim); 115 } 116 return {std::move(result), ConstantSubscripts{GetRank(shape)}}; 117 } 118 119 ConstantSubscripts AsConstantExtents(const Constant<ExtentType> &shape) { 120 ConstantSubscripts result; 121 for (const auto &extent : shape.values()) { 122 result.push_back(extent.ToInt64()); 123 } 124 return result; 125 } 126 127 std::optional<ConstantSubscripts> AsConstantExtents( 128 FoldingContext &context, const Shape &shape) { 129 if (auto shapeConstant{AsConstantShape(context, shape)}) { 130 return AsConstantExtents(*shapeConstant); 131 } else { 132 return std::nullopt; 133 } 134 } 135 136 Shape AsShape(const ConstantSubscripts &shape) { 137 Shape result; 138 for (const auto &extent : shape) { 139 result.emplace_back(ExtentExpr{extent}); 140 } 141 return result; 142 } 143 144 std::optional<Shape> AsShape(const std::optional<ConstantSubscripts> &shape) { 145 if (shape) { 146 return AsShape(*shape); 147 } else { 148 return std::nullopt; 149 } 150 } 151 152 Shape Fold(FoldingContext &context, Shape &&shape) { 153 for (auto &dim : shape) { 154 dim = Fold(context, std::move(dim)); 155 } 156 return std::move(shape); 157 } 158 159 std::optional<Shape> Fold( 160 FoldingContext &context, std::optional<Shape> &&shape) { 161 if (shape) { 162 return Fold(context, std::move(*shape)); 163 } else { 164 return std::nullopt; 165 } 166 } 167 168 static ExtentExpr ComputeTripCount( 169 ExtentExpr &&lower, ExtentExpr &&upper, ExtentExpr &&stride) { 170 ExtentExpr strideCopy{common::Clone(stride)}; 171 ExtentExpr span{ 172 (std::move(upper) - std::move(lower) + std::move(strideCopy)) / 173 std::move(stride)}; 174 return ExtentExpr{ 175 Extremum<ExtentType>{Ordering::Greater, std::move(span), ExtentExpr{0}}}; 176 } 177 178 ExtentExpr CountTrips( 179 ExtentExpr &&lower, ExtentExpr &&upper, ExtentExpr &&stride) { 180 return ComputeTripCount( 181 std::move(lower), std::move(upper), std::move(stride)); 182 } 183 184 ExtentExpr CountTrips(const ExtentExpr &lower, const ExtentExpr &upper, 185 const ExtentExpr &stride) { 186 return ComputeTripCount( 187 common::Clone(lower), common::Clone(upper), common::Clone(stride)); 188 } 189 190 MaybeExtentExpr CountTrips(MaybeExtentExpr &&lower, MaybeExtentExpr &&upper, 191 MaybeExtentExpr &&stride) { 192 std::function<ExtentExpr(ExtentExpr &&, ExtentExpr &&, ExtentExpr &&)> bound{ 193 std::bind(ComputeTripCount, _1, _2, _3)}; 194 return common::MapOptional( 195 std::move(bound), std::move(lower), std::move(upper), std::move(stride)); 196 } 197 198 MaybeExtentExpr GetSize(Shape &&shape) { 199 ExtentExpr extent{1}; 200 for (auto &&dim : std::move(shape)) { 201 if (dim) { 202 extent = std::move(extent) * std::move(*dim); 203 } else { 204 return std::nullopt; 205 } 206 } 207 return extent; 208 } 209 210 ConstantSubscript GetSize(const ConstantSubscripts &shape) { 211 ConstantSubscript size{1}; 212 for (auto dim : shape) { 213 CHECK(dim >= 0); 214 size *= dim; 215 } 216 return size; 217 } 218 219 bool ContainsAnyImpliedDoIndex(const ExtentExpr &expr) { 220 struct MyVisitor : public AnyTraverse<MyVisitor> { 221 using Base = AnyTraverse<MyVisitor>; 222 MyVisitor() : Base{*this} {} 223 using Base::operator(); 224 bool operator()(const ImpliedDoIndex &) { return true; } 225 }; 226 return MyVisitor{}(expr); 227 } 228 229 // Determines lower bound on a dimension. This can be other than 1 only 230 // for a reference to a whole array object or component. (See LBOUND, 16.9.109). 231 // ASSOCIATE construct entities may require traversal of their referents. 232 template <typename RESULT, bool LBOUND_SEMANTICS> 233 class GetLowerBoundHelper 234 : public Traverse<GetLowerBoundHelper<RESULT, LBOUND_SEMANTICS>, RESULT> { 235 public: 236 using Result = RESULT; 237 using Base = Traverse<GetLowerBoundHelper, RESULT>; 238 using Base::operator(); 239 explicit GetLowerBoundHelper( 240 int d, FoldingContext *context, bool invariantOnly) 241 : Base{*this}, dimension_{d}, context_{context}, 242 invariantOnly_{invariantOnly} {} 243 static Result Default() { return Result{1}; } 244 static Result Combine(Result &&, Result &&) { 245 // Operator results and array references always have lower bounds == 1 246 return Result{1}; 247 } 248 249 Result GetLowerBound(const Symbol &symbol0, NamedEntity &&base) const { 250 const Symbol &symbol{symbol0.GetUltimate()}; 251 if (const auto *object{ 252 symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 253 int rank{object->shape().Rank()}; 254 if (dimension_ < rank) { 255 const semantics::ShapeSpec &shapeSpec{object->shape()[dimension_]}; 256 if (shapeSpec.lbound().isExplicit()) { 257 if (const auto &lbound{shapeSpec.lbound().GetExplicit()}) { 258 if constexpr (LBOUND_SEMANTICS) { 259 bool ok{false}; 260 auto lbValue{ToInt64(*lbound)}; 261 if (dimension_ == rank - 1 && 262 semantics::IsAssumedSizeArray(symbol)) { 263 // last dimension of assumed-size dummy array: don't worry 264 // about handling an empty dimension 265 ok = !invariantOnly_ || IsScopeInvariantExpr(*lbound); 266 } else if (lbValue.value_or(0) == 1) { 267 // Lower bound is 1, regardless of extent 268 ok = true; 269 } else if (const auto &ubound{shapeSpec.ubound().GetExplicit()}) { 270 // If we can't prove that the dimension is nonempty, 271 // we must be conservative. 272 // TODO: simple symbolic math in expression rewriting to 273 // cope with cases like A(J:J) 274 if (context_) { 275 auto extent{ToInt64(Fold(*context_, 276 ExtentExpr{*ubound} - ExtentExpr{*lbound} + 277 ExtentExpr{1}))}; 278 if (extent) { 279 if (extent <= 0) { 280 return Result{1}; 281 } 282 ok = true; 283 } else { 284 ok = false; 285 } 286 } else { 287 auto ubValue{ToInt64(*ubound)}; 288 if (lbValue && ubValue) { 289 if (*lbValue > *ubValue) { 290 return Result{1}; 291 } 292 ok = true; 293 } else { 294 ok = false; 295 } 296 } 297 } 298 return ok ? *lbound : Result{}; 299 } else { 300 return *lbound; 301 } 302 } else { 303 return Result{1}; 304 } 305 } 306 if (IsDescriptor(symbol)) { 307 return ExtentExpr{DescriptorInquiry{std::move(base), 308 DescriptorInquiry::Field::LowerBound, dimension_}}; 309 } 310 } 311 } else if (const auto *assoc{ 312 symbol.detailsIf<semantics::AssocEntityDetails>()}) { 313 if (assoc->IsAssumedSize()) { // RANK(*) 314 return Result{1}; 315 } else if (assoc->IsAssumedRank()) { // RANK DEFAULT 316 } else if (assoc->rank()) { // RANK(n) 317 const Symbol &resolved{ResolveAssociations(symbol)}; 318 if (IsDescriptor(resolved) && dimension_ < *assoc->rank()) { 319 return ExtentExpr{DescriptorInquiry{std::move(base), 320 DescriptorInquiry::Field::LowerBound, dimension_}}; 321 } 322 } else { 323 Result exprLowerBound{((*this)(assoc->expr()))}; 324 if (IsActuallyConstant(exprLowerBound)) { 325 return std::move(exprLowerBound); 326 } else { 327 // If the lower bound of the associated entity is not resolved to a 328 // constant expression at the time of the association, it is unsafe 329 // to re-evaluate it later in the associate construct. Statements 330 // in between may have modified its operands value. 331 return ExtentExpr{DescriptorInquiry{std::move(base), 332 DescriptorInquiry::Field::LowerBound, dimension_}}; 333 } 334 } 335 } 336 if constexpr (LBOUND_SEMANTICS) { 337 return Result{}; 338 } else { 339 return Result{1}; 340 } 341 } 342 343 Result operator()(const Symbol &symbol) const { 344 return GetLowerBound(symbol, NamedEntity{symbol}); 345 } 346 347 Result operator()(const Component &component) const { 348 if (component.base().Rank() == 0) { 349 return GetLowerBound( 350 component.GetLastSymbol(), NamedEntity{common::Clone(component)}); 351 } 352 return Result{1}; 353 } 354 355 template <typename T> Result operator()(const Expr<T> &expr) const { 356 if (const Symbol * whole{UnwrapWholeSymbolOrComponentDataRef(expr)}) { 357 return (*this)(*whole); 358 } else if constexpr (common::HasMember<Constant<T>, decltype(expr.u)>) { 359 if (const auto *con{std::get_if<Constant<T>>(&expr.u)}) { 360 ConstantSubscripts lb{con->lbounds()}; 361 if (dimension_ < GetRank(lb)) { 362 return Result{lb[dimension_]}; 363 } 364 } else { // operation 365 return Result{1}; 366 } 367 } else { 368 return (*this)(expr.u); 369 } 370 if constexpr (LBOUND_SEMANTICS) { 371 return Result{}; 372 } else { 373 return Result{1}; 374 } 375 } 376 377 private: 378 int dimension_; // zero-based 379 FoldingContext *context_{nullptr}; 380 bool invariantOnly_{false}; 381 }; 382 383 ExtentExpr GetRawLowerBound( 384 const NamedEntity &base, int dimension, bool invariantOnly) { 385 return GetLowerBoundHelper<ExtentExpr, false>{ 386 dimension, nullptr, invariantOnly}(base); 387 } 388 389 ExtentExpr GetRawLowerBound(FoldingContext &context, const NamedEntity &base, 390 int dimension, bool invariantOnly) { 391 return Fold(context, 392 GetLowerBoundHelper<ExtentExpr, false>{ 393 dimension, &context, invariantOnly}(base)); 394 } 395 396 MaybeExtentExpr GetLBOUND( 397 const NamedEntity &base, int dimension, bool invariantOnly) { 398 return GetLowerBoundHelper<MaybeExtentExpr, true>{ 399 dimension, nullptr, invariantOnly}(base); 400 } 401 402 MaybeExtentExpr GetLBOUND(FoldingContext &context, const NamedEntity &base, 403 int dimension, bool invariantOnly) { 404 return Fold(context, 405 GetLowerBoundHelper<MaybeExtentExpr, true>{ 406 dimension, &context, invariantOnly}(base)); 407 } 408 409 Shape GetRawLowerBounds(const NamedEntity &base, bool invariantOnly) { 410 Shape result; 411 int rank{base.Rank()}; 412 for (int dim{0}; dim < rank; ++dim) { 413 result.emplace_back(GetRawLowerBound(base, dim, invariantOnly)); 414 } 415 return result; 416 } 417 418 Shape GetRawLowerBounds( 419 FoldingContext &context, const NamedEntity &base, bool invariantOnly) { 420 Shape result; 421 int rank{base.Rank()}; 422 for (int dim{0}; dim < rank; ++dim) { 423 result.emplace_back(GetRawLowerBound(context, base, dim, invariantOnly)); 424 } 425 return result; 426 } 427 428 Shape GetLBOUNDs(const NamedEntity &base, bool invariantOnly) { 429 Shape result; 430 int rank{base.Rank()}; 431 for (int dim{0}; dim < rank; ++dim) { 432 result.emplace_back(GetLBOUND(base, dim, invariantOnly)); 433 } 434 return result; 435 } 436 437 Shape GetLBOUNDs( 438 FoldingContext &context, const NamedEntity &base, bool invariantOnly) { 439 Shape result; 440 int rank{base.Rank()}; 441 for (int dim{0}; dim < rank; ++dim) { 442 result.emplace_back(GetLBOUND(context, base, dim, invariantOnly)); 443 } 444 return result; 445 } 446 447 // If the upper and lower bounds are constant, return a constant expression for 448 // the extent. In particular, if the upper bound is less than the lower bound, 449 // return zero. 450 static MaybeExtentExpr GetNonNegativeExtent( 451 const semantics::ShapeSpec &shapeSpec, bool invariantOnly) { 452 const auto &ubound{shapeSpec.ubound().GetExplicit()}; 453 const auto &lbound{shapeSpec.lbound().GetExplicit()}; 454 std::optional<ConstantSubscript> uval{ToInt64(ubound)}; 455 std::optional<ConstantSubscript> lval{ToInt64(lbound)}; 456 if (uval && lval) { 457 if (*uval < *lval) { 458 return ExtentExpr{0}; 459 } else { 460 return ExtentExpr{*uval - *lval + 1}; 461 } 462 } else if (lbound && ubound && 463 (!invariantOnly || 464 (IsScopeInvariantExpr(*lbound) && IsScopeInvariantExpr(*ubound)))) { 465 // Apply effective IDIM (MAX calculation with 0) so thet the 466 // result is never negative 467 if (lval.value_or(0) == 1) { 468 return ExtentExpr{Extremum<SubscriptInteger>{ 469 Ordering::Greater, ExtentExpr{0}, common::Clone(*ubound)}}; 470 } else { 471 return ExtentExpr{ 472 Extremum<SubscriptInteger>{Ordering::Greater, ExtentExpr{0}, 473 common::Clone(*ubound) - common::Clone(*lbound) + ExtentExpr{1}}}; 474 } 475 } else { 476 return std::nullopt; 477 } 478 } 479 480 static MaybeExtentExpr GetAssociatedExtent( 481 const Symbol &symbol, int dimension) { 482 if (const auto *assoc{symbol.detailsIf<semantics::AssocEntityDetails>()}; 483 assoc && !assoc->rank()) { // not SELECT RANK case 484 if (auto shape{GetShape(assoc->expr())}; 485 shape && dimension < static_cast<int>(shape->size())) { 486 if (auto &extent{shape->at(dimension)}; 487 // Don't return a non-constant extent, as the variables that 488 // determine the shape of the selector's expression may change 489 // during execution of the construct. 490 extent && IsActuallyConstant(*extent)) { 491 return std::move(extent); 492 } 493 } 494 } 495 return ExtentExpr{DescriptorInquiry{ 496 NamedEntity{symbol}, DescriptorInquiry::Field::Extent, dimension}}; 497 } 498 499 MaybeExtentExpr GetExtent( 500 const NamedEntity &base, int dimension, bool invariantOnly) { 501 CHECK(dimension >= 0); 502 const Symbol &last{base.GetLastSymbol()}; 503 const Symbol &symbol{ResolveAssociations(last)}; 504 if (const auto *assoc{last.detailsIf<semantics::AssocEntityDetails>()}) { 505 if (assoc->IsAssumedSize() || assoc->IsAssumedRank()) { // RANK(*)/DEFAULT 506 return std::nullopt; 507 } else if (assoc->rank()) { // RANK(n) 508 if (semantics::IsDescriptor(symbol) && dimension < *assoc->rank()) { 509 return ExtentExpr{DescriptorInquiry{ 510 NamedEntity{base}, DescriptorInquiry::Field::Extent, dimension}}; 511 } else { 512 return std::nullopt; 513 } 514 } else { 515 return GetAssociatedExtent(last, dimension); 516 } 517 } 518 if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 519 if (IsImpliedShape(symbol) && details->init()) { 520 if (auto shape{GetShape(symbol, invariantOnly)}) { 521 if (dimension < static_cast<int>(shape->size())) { 522 return std::move(shape->at(dimension)); 523 } 524 } 525 } else { 526 int j{0}; 527 for (const auto &shapeSpec : details->shape()) { 528 if (j++ == dimension) { 529 if (auto extent{GetNonNegativeExtent(shapeSpec, invariantOnly)}) { 530 return extent; 531 } else if (semantics::IsAssumedSizeArray(symbol) && 532 j == symbol.Rank()) { 533 break; 534 } else if (semantics::IsDescriptor(symbol)) { 535 return ExtentExpr{DescriptorInquiry{NamedEntity{base}, 536 DescriptorInquiry::Field::Extent, dimension}}; 537 } else { 538 break; 539 } 540 } 541 } 542 } 543 } 544 return std::nullopt; 545 } 546 547 MaybeExtentExpr GetExtent(FoldingContext &context, const NamedEntity &base, 548 int dimension, bool invariantOnly) { 549 return Fold(context, GetExtent(base, dimension, invariantOnly)); 550 } 551 552 MaybeExtentExpr GetExtent(const Subscript &subscript, const NamedEntity &base, 553 int dimension, bool invariantOnly) { 554 return common::visit( 555 common::visitors{ 556 [&](const Triplet &triplet) -> MaybeExtentExpr { 557 MaybeExtentExpr upper{triplet.upper()}; 558 if (!upper) { 559 upper = GetUBOUND(base, dimension, invariantOnly); 560 } 561 MaybeExtentExpr lower{triplet.lower()}; 562 if (!lower) { 563 lower = GetLBOUND(base, dimension, invariantOnly); 564 } 565 return CountTrips(std::move(lower), std::move(upper), 566 MaybeExtentExpr{triplet.stride()}); 567 }, 568 [&](const IndirectSubscriptIntegerExpr &subs) -> MaybeExtentExpr { 569 if (auto shape{GetShape(subs.value())}) { 570 if (GetRank(*shape) > 0) { 571 CHECK(GetRank(*shape) == 1); // vector-valued subscript 572 return std::move(shape->at(0)); 573 } 574 } 575 return std::nullopt; 576 }, 577 }, 578 subscript.u); 579 } 580 581 MaybeExtentExpr GetExtent(FoldingContext &context, const Subscript &subscript, 582 const NamedEntity &base, int dimension, bool invariantOnly) { 583 return Fold(context, GetExtent(subscript, base, dimension, invariantOnly)); 584 } 585 586 MaybeExtentExpr ComputeUpperBound( 587 ExtentExpr &&lower, MaybeExtentExpr &&extent) { 588 if (extent) { 589 if (ToInt64(lower).value_or(0) == 1) { 590 return std::move(*extent); 591 } else { 592 return std::move(*extent) + std::move(lower) - ExtentExpr{1}; 593 } 594 } else { 595 return std::nullopt; 596 } 597 } 598 599 MaybeExtentExpr ComputeUpperBound( 600 FoldingContext &context, ExtentExpr &&lower, MaybeExtentExpr &&extent) { 601 return Fold(context, ComputeUpperBound(std::move(lower), std::move(extent))); 602 } 603 604 MaybeExtentExpr GetRawUpperBound( 605 const NamedEntity &base, int dimension, bool invariantOnly) { 606 const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())}; 607 if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 608 int rank{details->shape().Rank()}; 609 if (dimension < rank) { 610 const auto &bound{details->shape()[dimension].ubound().GetExplicit()}; 611 if (bound && (!invariantOnly || IsScopeInvariantExpr(*bound))) { 612 return *bound; 613 } else if (semantics::IsAssumedSizeArray(symbol) && 614 dimension + 1 == symbol.Rank()) { 615 return std::nullopt; 616 } else { 617 return ComputeUpperBound( 618 GetRawLowerBound(base, dimension), GetExtent(base, dimension)); 619 } 620 } 621 } else if (const auto *assoc{ 622 symbol.detailsIf<semantics::AssocEntityDetails>()}) { 623 if (assoc->IsAssumedSize() || assoc->IsAssumedRank()) { 624 return std::nullopt; 625 } else if (assoc->rank() && dimension >= *assoc->rank()) { 626 return std::nullopt; 627 } else if (auto extent{GetAssociatedExtent(symbol, dimension)}) { 628 return ComputeUpperBound( 629 GetRawLowerBound(base, dimension), std::move(extent)); 630 } 631 } 632 return std::nullopt; 633 } 634 635 MaybeExtentExpr GetRawUpperBound(FoldingContext &context, 636 const NamedEntity &base, int dimension, bool invariantOnly) { 637 return Fold(context, GetRawUpperBound(base, dimension, invariantOnly)); 638 } 639 640 static MaybeExtentExpr GetExplicitUBOUND(FoldingContext *context, 641 const semantics::ShapeSpec &shapeSpec, bool invariantOnly) { 642 const auto &ubound{shapeSpec.ubound().GetExplicit()}; 643 if (ubound && (!invariantOnly || IsScopeInvariantExpr(*ubound))) { 644 if (auto extent{GetNonNegativeExtent(shapeSpec, invariantOnly)}) { 645 if (auto cstExtent{ToInt64( 646 context ? Fold(*context, std::move(*extent)) : *extent)}) { 647 if (cstExtent > 0) { 648 return *ubound; 649 } else if (cstExtent == 0) { 650 return ExtentExpr{0}; 651 } 652 } 653 } 654 } 655 return std::nullopt; 656 } 657 658 static MaybeExtentExpr GetUBOUND(FoldingContext *context, 659 const NamedEntity &base, int dimension, bool invariantOnly) { 660 const Symbol &symbol{ResolveAssociations(base.GetLastSymbol())}; 661 if (const auto *details{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 662 int rank{details->shape().Rank()}; 663 if (dimension < rank) { 664 const semantics::ShapeSpec &shapeSpec{details->shape()[dimension]}; 665 if (auto ubound{GetExplicitUBOUND(context, shapeSpec, invariantOnly)}) { 666 return *ubound; 667 } else if (semantics::IsAssumedSizeArray(symbol) && 668 dimension + 1 == symbol.Rank()) { 669 return std::nullopt; // UBOUND() folding replaces with -1 670 } else if (auto lb{GetLBOUND(base, dimension, invariantOnly)}) { 671 return ComputeUpperBound( 672 std::move(*lb), GetExtent(base, dimension, invariantOnly)); 673 } 674 } 675 } else if (const auto *assoc{ 676 symbol.detailsIf<semantics::AssocEntityDetails>()}) { 677 if (assoc->IsAssumedSize() || assoc->IsAssumedRank()) { 678 return std::nullopt; 679 } else if (assoc->rank()) { // RANK (n) 680 const Symbol &resolved{ResolveAssociations(symbol)}; 681 if (IsDescriptor(resolved) && dimension < *assoc->rank()) { 682 ExtentExpr lb{DescriptorInquiry{NamedEntity{base}, 683 DescriptorInquiry::Field::LowerBound, dimension}}; 684 ExtentExpr extent{DescriptorInquiry{ 685 std::move(base), DescriptorInquiry::Field::Extent, dimension}}; 686 return ComputeUpperBound(std::move(lb), std::move(extent)); 687 } 688 } else if (auto extent{GetAssociatedExtent(symbol, dimension)}) { 689 if (auto lb{GetLBOUND(base, dimension, invariantOnly)}) { 690 return ComputeUpperBound(std::move(*lb), std::move(extent)); 691 } 692 } 693 } 694 return std::nullopt; 695 } 696 697 MaybeExtentExpr GetUBOUND( 698 const NamedEntity &base, int dimension, bool invariantOnly) { 699 return GetUBOUND(nullptr, base, dimension, invariantOnly); 700 } 701 702 MaybeExtentExpr GetUBOUND(FoldingContext &context, const NamedEntity &base, 703 int dimension, bool invariantOnly) { 704 return Fold(context, GetUBOUND(&context, base, dimension, invariantOnly)); 705 } 706 707 static Shape GetUBOUNDs( 708 FoldingContext *context, const NamedEntity &base, bool invariantOnly) { 709 Shape result; 710 int rank{base.Rank()}; 711 for (int dim{0}; dim < rank; ++dim) { 712 result.emplace_back(GetUBOUND(context, base, dim, invariantOnly)); 713 } 714 return result; 715 } 716 717 Shape GetUBOUNDs( 718 FoldingContext &context, const NamedEntity &base, bool invariantOnly) { 719 return Fold(context, GetUBOUNDs(&context, base, invariantOnly)); 720 } 721 722 Shape GetUBOUNDs(const NamedEntity &base, bool invariantOnly) { 723 return GetUBOUNDs(nullptr, base, invariantOnly); 724 } 725 726 auto GetShapeHelper::operator()(const Symbol &symbol) const -> Result { 727 return common::visit( 728 common::visitors{ 729 [&](const semantics::ObjectEntityDetails &object) { 730 if (IsImpliedShape(symbol) && object.init()) { 731 return (*this)(object.init()); 732 } else if (IsAssumedRank(symbol)) { 733 return Result{}; 734 } else { 735 int n{object.shape().Rank()}; 736 NamedEntity base{symbol}; 737 return Result{CreateShape(n, base)}; 738 } 739 }, 740 [](const semantics::EntityDetails &) { 741 return ScalarShape(); // no dimensions seen 742 }, 743 [&](const semantics::ProcEntityDetails &proc) { 744 if (const Symbol * interface{proc.procInterface()}) { 745 return (*this)(*interface); 746 } else { 747 return ScalarShape(); 748 } 749 }, 750 [&](const semantics::AssocEntityDetails &assoc) { 751 NamedEntity base{symbol}; 752 if (assoc.rank()) { // SELECT RANK case 753 int n{assoc.rank().value()}; 754 return Result{CreateShape(n, base)}; 755 } else { 756 auto exprShape{((*this)(assoc.expr()))}; 757 if (exprShape) { 758 int rank{static_cast<int>(exprShape->size())}; 759 for (int dimension{0}; dimension < rank; ++dimension) { 760 auto &extent{(*exprShape)[dimension]}; 761 if (extent && !IsActuallyConstant(*extent)) { 762 extent = GetExtent(base, dimension); 763 } 764 } 765 } 766 return exprShape; 767 } 768 }, 769 [&](const semantics::SubprogramDetails &subp) -> Result { 770 if (subp.isFunction()) { 771 auto resultShape{(*this)(subp.result())}; 772 if (resultShape && !useResultSymbolShape_) { 773 // Ensure the shape is constant. Otherwise, it may be referring 774 // to symbols that belong to the function's scope and are 775 // meaningless on the caller side without the related call 776 // expression. 777 for (auto &extent : *resultShape) { 778 if (extent && !IsActuallyConstant(*extent)) { 779 extent.reset(); 780 } 781 } 782 } 783 return resultShape; 784 } else { 785 return Result{}; 786 } 787 }, 788 [&](const semantics::ProcBindingDetails &binding) { 789 return (*this)(binding.symbol()); 790 }, 791 [](const semantics::TypeParamDetails &) { return ScalarShape(); }, 792 [](const auto &) { return Result{}; }, 793 }, 794 symbol.GetUltimate().details()); 795 } 796 797 auto GetShapeHelper::operator()(const Component &component) const -> Result { 798 const Symbol &symbol{component.GetLastSymbol()}; 799 int rank{symbol.Rank()}; 800 if (rank == 0) { 801 return (*this)(component.base()); 802 } else if (symbol.has<semantics::ObjectEntityDetails>()) { 803 NamedEntity base{Component{component}}; 804 return CreateShape(rank, base); 805 } else { 806 return (*this)(symbol); 807 } 808 } 809 810 auto GetShapeHelper::operator()(const ArrayRef &arrayRef) const -> Result { 811 Shape shape; 812 int dimension{0}; 813 const NamedEntity &base{arrayRef.base()}; 814 for (const Subscript &ss : arrayRef.subscript()) { 815 if (ss.Rank() > 0) { 816 shape.emplace_back(GetExtent(ss, base, dimension)); 817 } 818 ++dimension; 819 } 820 if (shape.empty()) { 821 if (const Component * component{base.UnwrapComponent()}) { 822 return (*this)(component->base()); 823 } 824 } 825 return shape; 826 } 827 828 auto GetShapeHelper::operator()(const CoarrayRef &coarrayRef) const -> Result { 829 NamedEntity base{coarrayRef.GetBase()}; 830 if (coarrayRef.subscript().empty()) { 831 return (*this)(base); 832 } else { 833 Shape shape; 834 int dimension{0}; 835 for (const Subscript &ss : coarrayRef.subscript()) { 836 if (ss.Rank() > 0) { 837 shape.emplace_back(GetExtent(ss, base, dimension)); 838 } 839 ++dimension; 840 } 841 return shape; 842 } 843 } 844 845 auto GetShapeHelper::operator()(const Substring &substring) const -> Result { 846 return (*this)(substring.parent()); 847 } 848 849 auto GetShapeHelper::operator()(const ProcedureRef &call) const -> Result { 850 if (call.Rank() == 0) { 851 return ScalarShape(); 852 } else if (call.IsElemental()) { 853 // Use the shape of an actual array argument associated with a 854 // non-OPTIONAL dummy object argument. 855 if (context_) { 856 if (auto chars{characteristics::Procedure::FromActuals( 857 call.proc(), call.arguments(), *context_)}) { 858 std::size_t j{0}; 859 std::size_t anyArrayArgRank{0}; 860 for (const auto &arg : call.arguments()) { 861 if (arg && arg->Rank() > 0 && j < chars->dummyArguments.size()) { 862 anyArrayArgRank = arg->Rank(); 863 if (!chars->dummyArguments[j].IsOptional()) { 864 return (*this)(*arg); 865 } 866 } 867 ++j; 868 } 869 if (anyArrayArgRank) { 870 // All dummy array arguments of the procedure are OPTIONAL. 871 // We cannot take the shape from just any array argument, 872 // because all of them might be OPTIONAL dummy arguments 873 // of the caller. Return unknown shape ranked according 874 // to the last actual array argument. 875 return Shape(anyArrayArgRank, MaybeExtentExpr{}); 876 } 877 } 878 } 879 return ScalarShape(); 880 } else if (const Symbol * symbol{call.proc().GetSymbol()}) { 881 auto restorer{common::ScopedSet(useResultSymbolShape_, false)}; 882 return (*this)(*symbol); 883 } else if (const auto *intrinsic{call.proc().GetSpecificIntrinsic()}) { 884 if (intrinsic->name == "shape" || intrinsic->name == "lbound" || 885 intrinsic->name == "ubound") { 886 // For LBOUND/UBOUND, these are the array-valued cases (no DIM=) 887 if (!call.arguments().empty() && call.arguments().front()) { 888 return Shape{ 889 MaybeExtentExpr{ExtentExpr{call.arguments().front()->Rank()}}}; 890 } 891 } else if (intrinsic->name == "all" || intrinsic->name == "any" || 892 intrinsic->name == "count" || intrinsic->name == "iall" || 893 intrinsic->name == "iany" || intrinsic->name == "iparity" || 894 intrinsic->name == "maxval" || intrinsic->name == "minval" || 895 intrinsic->name == "norm2" || intrinsic->name == "parity" || 896 intrinsic->name == "product" || intrinsic->name == "sum") { 897 // Reduction with DIM= 898 if (call.arguments().size() >= 2) { 899 auto arrayShape{ 900 (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}; 901 const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))}; 902 if (arrayShape && dimArg) { 903 if (auto dim{ToInt64(*dimArg)}) { 904 if (*dim >= 1 && 905 static_cast<std::size_t>(*dim) <= arrayShape->size()) { 906 arrayShape->erase(arrayShape->begin() + (*dim - 1)); 907 return std::move(*arrayShape); 908 } 909 } 910 } 911 } 912 } else if (intrinsic->name == "findloc" || intrinsic->name == "maxloc" || 913 intrinsic->name == "minloc") { 914 std::size_t dimIndex{intrinsic->name == "findloc" ? 2u : 1u}; 915 if (call.arguments().size() > dimIndex) { 916 if (auto arrayShape{ 917 (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}) { 918 auto rank{static_cast<int>(arrayShape->size())}; 919 if (const auto *dimArg{ 920 UnwrapExpr<Expr<SomeType>>(call.arguments()[dimIndex])}) { 921 auto dim{ToInt64(*dimArg)}; 922 if (dim && *dim >= 1 && *dim <= rank) { 923 arrayShape->erase(arrayShape->begin() + (*dim - 1)); 924 return std::move(*arrayShape); 925 } 926 } else { 927 // xxxLOC(no DIM=) result is vector(1:RANK(ARRAY=)) 928 return Shape{ExtentExpr{rank}}; 929 } 930 } 931 } 932 } else if (intrinsic->name == "cshift" || intrinsic->name == "eoshift") { 933 if (!call.arguments().empty()) { 934 return (*this)(call.arguments()[0]); 935 } 936 } else if (intrinsic->name == "matmul") { 937 if (call.arguments().size() == 2) { 938 if (auto ashape{(*this)(call.arguments()[0])}) { 939 if (auto bshape{(*this)(call.arguments()[1])}) { 940 if (ashape->size() == 1 && bshape->size() == 2) { 941 bshape->erase(bshape->begin()); 942 return std::move(*bshape); // matmul(vector, matrix) 943 } else if (ashape->size() == 2 && bshape->size() == 1) { 944 ashape->pop_back(); 945 return std::move(*ashape); // matmul(matrix, vector) 946 } else if (ashape->size() == 2 && bshape->size() == 2) { 947 (*ashape)[1] = std::move((*bshape)[1]); 948 return std::move(*ashape); // matmul(matrix, matrix) 949 } 950 } 951 } 952 } 953 } else if (intrinsic->name == "pack") { 954 if (call.arguments().size() >= 3 && call.arguments().at(2)) { 955 // SHAPE(PACK(,,VECTOR=v)) -> SHAPE(v) 956 return (*this)(call.arguments().at(2)); 957 } else if (call.arguments().size() >= 2 && context_) { 958 if (auto maskShape{(*this)(call.arguments().at(1))}) { 959 if (maskShape->size() == 0) { 960 // Scalar MASK= -> [MERGE(SIZE(ARRAY=), 0, mask)] 961 if (auto arrayShape{(*this)(call.arguments().at(0))}) { 962 if (auto arraySize{GetSize(std::move(*arrayShape))}) { 963 ActualArguments toMerge{ 964 ActualArgument{AsGenericExpr(std::move(*arraySize))}, 965 ActualArgument{AsGenericExpr(ExtentExpr{0})}, 966 common::Clone(call.arguments().at(1))}; 967 auto specific{context_->intrinsics().Probe( 968 CallCharacteristics{"merge"}, toMerge, *context_)}; 969 CHECK(specific); 970 return Shape{ExtentExpr{FunctionRef<ExtentType>{ 971 ProcedureDesignator{std::move(specific->specificIntrinsic)}, 972 std::move(specific->arguments)}}}; 973 } 974 } 975 } else { 976 // Non-scalar MASK= -> [COUNT(mask, KIND=extent_kind)] 977 ActualArgument kindArg{ 978 AsGenericExpr(Constant<ExtentType>{ExtentType::kind})}; 979 kindArg.set_keyword(context_->SaveTempName("kind")); 980 ActualArguments toCount{ 981 ActualArgument{common::Clone( 982 DEREF(call.arguments().at(1).value().UnwrapExpr()))}, 983 std::move(kindArg)}; 984 auto specific{context_->intrinsics().Probe( 985 CallCharacteristics{"count"}, toCount, *context_)}; 986 CHECK(specific); 987 return Shape{ExtentExpr{FunctionRef<ExtentType>{ 988 ProcedureDesignator{std::move(specific->specificIntrinsic)}, 989 std::move(specific->arguments)}}}; 990 } 991 } 992 } 993 } else if (intrinsic->name == "reshape") { 994 if (call.arguments().size() >= 2 && call.arguments().at(1)) { 995 // SHAPE(RESHAPE(array,shape)) -> shape 996 if (const auto *shapeExpr{ 997 call.arguments().at(1).value().UnwrapExpr()}) { 998 auto shapeArg{std::get<Expr<SomeInteger>>(shapeExpr->u)}; 999 if (auto result{AsShapeResult( 1000 ConvertToType<ExtentType>(std::move(shapeArg)))}) { 1001 return result; 1002 } 1003 } 1004 } 1005 } else if (intrinsic->name == "spread") { 1006 // SHAPE(SPREAD(ARRAY,DIM,NCOPIES)) = SHAPE(ARRAY) with NCOPIES inserted 1007 // at position DIM. 1008 if (call.arguments().size() == 3) { 1009 auto arrayShape{ 1010 (*this)(UnwrapExpr<Expr<SomeType>>(call.arguments().at(0)))}; 1011 const auto *dimArg{UnwrapExpr<Expr<SomeType>>(call.arguments().at(1))}; 1012 const auto *nCopies{ 1013 UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))}; 1014 if (arrayShape && dimArg && nCopies) { 1015 if (auto dim{ToInt64(*dimArg)}) { 1016 if (*dim >= 1 && 1017 static_cast<std::size_t>(*dim) <= arrayShape->size() + 1) { 1018 arrayShape->emplace(arrayShape->begin() + *dim - 1, 1019 ConvertToType<ExtentType>(common::Clone(*nCopies))); 1020 return std::move(*arrayShape); 1021 } 1022 } 1023 } 1024 } 1025 } else if (intrinsic->name == "transfer") { 1026 if (call.arguments().size() == 3 && call.arguments().at(2)) { 1027 // SIZE= is present; shape is vector [SIZE=] 1028 if (const auto *size{ 1029 UnwrapExpr<Expr<SomeInteger>>(call.arguments().at(2))}) { 1030 return Shape{ 1031 MaybeExtentExpr{ConvertToType<ExtentType>(common::Clone(*size))}}; 1032 } 1033 } else if (context_) { 1034 if (auto moldTypeAndShape{characteristics::TypeAndShape::Characterize( 1035 call.arguments().at(1), *context_)}) { 1036 if (GetRank(moldTypeAndShape->shape()) == 0) { 1037 // SIZE= is absent and MOLD= is scalar: result is scalar 1038 return ScalarShape(); 1039 } else { 1040 // SIZE= is absent and MOLD= is array: result is vector whose 1041 // length is determined by sizes of types. See 16.9.193p4 case(ii). 1042 // Note that if sourceBytes is not known to be empty, we 1043 // can fold only when moldElementBytes is known to not be zero; 1044 // the most general case risks a division by zero otherwise. 1045 if (auto sourceTypeAndShape{ 1046 characteristics::TypeAndShape::Characterize( 1047 call.arguments().at(0), *context_)}) { 1048 if (auto sourceBytes{ 1049 sourceTypeAndShape->MeasureSizeInBytes(*context_)}) { 1050 *sourceBytes = Fold(*context_, std::move(*sourceBytes)); 1051 if (auto sourceBytesConst{ToInt64(*sourceBytes)}) { 1052 if (*sourceBytesConst == 0) { 1053 return Shape{ExtentExpr{0}}; 1054 } 1055 } 1056 if (auto moldElementBytes{ 1057 moldTypeAndShape->MeasureElementSizeInBytes( 1058 *context_, true)}) { 1059 *moldElementBytes = 1060 Fold(*context_, std::move(*moldElementBytes)); 1061 auto moldElementBytesConst{ToInt64(*moldElementBytes)}; 1062 if (moldElementBytesConst && *moldElementBytesConst != 0) { 1063 ExtentExpr extent{Fold(*context_, 1064 (std::move(*sourceBytes) + 1065 common::Clone(*moldElementBytes) - ExtentExpr{1}) / 1066 common::Clone(*moldElementBytes))}; 1067 return Shape{MaybeExtentExpr{std::move(extent)}}; 1068 } 1069 } 1070 } 1071 } 1072 } 1073 } 1074 } 1075 } else if (intrinsic->name == "transpose") { 1076 if (call.arguments().size() >= 1) { 1077 if (auto shape{(*this)(call.arguments().at(0))}) { 1078 if (shape->size() == 2) { 1079 std::swap((*shape)[0], (*shape)[1]); 1080 return shape; 1081 } 1082 } 1083 } 1084 } else if (intrinsic->name == "unpack") { 1085 if (call.arguments().size() >= 2) { 1086 return (*this)(call.arguments()[1]); // MASK= 1087 } 1088 } else if (intrinsic->characteristics.value().attrs.test(characteristics:: 1089 Procedure::Attr::NullPointer)) { // NULL(MOLD=) 1090 return (*this)(call.arguments()); 1091 } else { 1092 // TODO: shapes of other non-elemental intrinsic results 1093 } 1094 } 1095 // The rank is always known even if the extents are not. 1096 return Shape(static_cast<std::size_t>(call.Rank()), MaybeExtentExpr{}); 1097 } 1098 1099 void GetShapeHelper::AccumulateExtent( 1100 ExtentExpr &result, ExtentExpr &&n) const { 1101 result = std::move(result) + std::move(n); 1102 if (context_) { 1103 // Fold during expression creation to avoid creating an expression so 1104 // large we can't evaluate it without overflowing the stack. 1105 result = Fold(*context_, std::move(result)); 1106 } 1107 } 1108 1109 // Check conformance of the passed shapes. 1110 std::optional<bool> CheckConformance(parser::ContextualMessages &messages, 1111 const Shape &left, const Shape &right, CheckConformanceFlags::Flags flags, 1112 const char *leftIs, const char *rightIs) { 1113 int n{GetRank(left)}; 1114 if (n == 0 && (flags & CheckConformanceFlags::LeftScalarExpandable)) { 1115 return true; 1116 } 1117 int rn{GetRank(right)}; 1118 if (rn == 0 && (flags & CheckConformanceFlags::RightScalarExpandable)) { 1119 return true; 1120 } 1121 if (n != rn) { 1122 messages.Say("Rank of %1$s is %2$d, but %3$s has rank %4$d"_err_en_US, 1123 leftIs, n, rightIs, rn); 1124 return false; 1125 } 1126 for (int j{0}; j < n; ++j) { 1127 if (auto leftDim{ToInt64(left[j])}) { 1128 if (auto rightDim{ToInt64(right[j])}) { 1129 if (*leftDim != *rightDim) { 1130 messages.Say("Dimension %1$d of %2$s has extent %3$jd, " 1131 "but %4$s has extent %5$jd"_err_en_US, 1132 j + 1, leftIs, *leftDim, rightIs, *rightDim); 1133 return false; 1134 } 1135 } else if (!(flags & CheckConformanceFlags::RightIsDeferredShape)) { 1136 return std::nullopt; 1137 } 1138 } else if (!(flags & CheckConformanceFlags::LeftIsDeferredShape)) { 1139 return std::nullopt; 1140 } 1141 } 1142 return true; 1143 } 1144 1145 bool IncrementSubscripts( 1146 ConstantSubscripts &indices, const ConstantSubscripts &extents) { 1147 std::size_t rank(indices.size()); 1148 CHECK(rank <= extents.size()); 1149 for (std::size_t j{0}; j < rank; ++j) { 1150 if (extents[j] < 1) { 1151 return false; 1152 } 1153 } 1154 for (std::size_t j{0}; j < rank; ++j) { 1155 if (indices[j]++ < extents[j]) { 1156 return true; 1157 } 1158 indices[j] = 1; 1159 } 1160 return false; 1161 } 1162 1163 } // namespace Fortran::evaluate 1164