1 //===-- lib/Evaluate/real.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/real.h" 10 #include "int-power.h" 11 #include "flang/Common/idioms.h" 12 #include "flang/Decimal/decimal.h" 13 #include "flang/Parser/characters.h" 14 #include "llvm/Support/raw_ostream.h" 15 #include <limits> 16 17 namespace Fortran::evaluate::value { 18 19 template <typename W, int P> Relation Real<W, P>::Compare(const Real &y) const { 20 if (IsNotANumber() || y.IsNotANumber()) { // NaN vs x, x vs NaN 21 return Relation::Unordered; 22 } else if (IsInfinite()) { 23 if (y.IsInfinite()) { 24 if (IsNegative()) { // -Inf vs +/-Inf 25 return y.IsNegative() ? Relation::Equal : Relation::Less; 26 } else { // +Inf vs +/-Inf 27 return y.IsNegative() ? Relation::Greater : Relation::Equal; 28 } 29 } else { // +/-Inf vs finite 30 return IsNegative() ? Relation::Less : Relation::Greater; 31 } 32 } else if (y.IsInfinite()) { // finite vs +/-Inf 33 return y.IsNegative() ? Relation::Greater : Relation::Less; 34 } else { // two finite numbers 35 bool isNegative{IsNegative()}; 36 if (isNegative != y.IsNegative()) { 37 if (word_.IOR(y.word_).IBCLR(bits - 1).IsZero()) { 38 return Relation::Equal; // +/-0.0 == -/+0.0 39 } else { 40 return isNegative ? Relation::Less : Relation::Greater; 41 } 42 } else { 43 // same sign 44 Ordering order{evaluate::Compare(Exponent(), y.Exponent())}; 45 if (order == Ordering::Equal) { 46 order = GetSignificand().CompareUnsigned(y.GetSignificand()); 47 } 48 if (isNegative) { 49 order = Reverse(order); 50 } 51 return RelationFromOrdering(order); 52 } 53 } 54 } 55 56 template <typename W, int P> 57 ValueWithRealFlags<Real<W, P>> Real<W, P>::Add( 58 const Real &y, Rounding rounding) const { 59 ValueWithRealFlags<Real> result; 60 if (IsNotANumber() || y.IsNotANumber()) { 61 result.value = NotANumber(); // NaN + x -> NaN 62 if (IsSignalingNaN() || y.IsSignalingNaN()) { 63 result.flags.set(RealFlag::InvalidArgument); 64 } 65 return result; 66 } 67 bool isNegative{IsNegative()}; 68 bool yIsNegative{y.IsNegative()}; 69 if (IsInfinite()) { 70 if (y.IsInfinite()) { 71 if (isNegative == yIsNegative) { 72 result.value = *this; // +/-Inf + +/-Inf -> +/-Inf 73 } else { 74 result.value = NotANumber(); // +/-Inf + -/+Inf -> NaN 75 result.flags.set(RealFlag::InvalidArgument); 76 } 77 } else { 78 result.value = *this; // +/-Inf + x -> +/-Inf 79 } 80 return result; 81 } 82 if (y.IsInfinite()) { 83 result.value = y; // x + +/-Inf -> +/-Inf 84 return result; 85 } 86 int exponent{Exponent()}; 87 int yExponent{y.Exponent()}; 88 if (exponent < yExponent) { 89 // y is larger in magnitude; simplify by reversing operands 90 return y.Add(*this, rounding); 91 } 92 if (exponent == yExponent && isNegative != yIsNegative) { 93 Ordering order{GetSignificand().CompareUnsigned(y.GetSignificand())}; 94 if (order == Ordering::Less) { 95 // Same exponent, opposite signs, and y is larger in magnitude 96 return y.Add(*this, rounding); 97 } 98 if (order == Ordering::Equal) { 99 // x + (-x) -> +0.0 unless rounding is directed downwards 100 if (rounding.mode == common::RoundingMode::Down) { 101 result.value.word_ = result.value.word_.IBSET(bits - 1); // -0.0 102 } 103 return result; 104 } 105 } 106 // Our exponent is greater than y's, or the exponents match and y is not 107 // of the opposite sign and greater magnitude. So (x+y) will have the 108 // same sign as x. 109 Fraction fraction{GetFraction()}; 110 Fraction yFraction{y.GetFraction()}; 111 int rshift = exponent - yExponent; 112 if (exponent > 0 && yExponent == 0) { 113 --rshift; // correct overshift when only y is subnormal 114 } 115 RoundingBits roundingBits{yFraction, rshift}; 116 yFraction = yFraction.SHIFTR(rshift); 117 bool carry{false}; 118 if (isNegative != yIsNegative) { 119 // Opposite signs: subtract via addition of two's complement of y and 120 // the rounding bits. 121 yFraction = yFraction.NOT(); 122 carry = roundingBits.Negate(); 123 } 124 auto sum{fraction.AddUnsigned(yFraction, carry)}; 125 fraction = sum.value; 126 if (isNegative == yIsNegative && sum.carry) { 127 roundingBits.ShiftRight(sum.value.BTEST(0)); 128 fraction = fraction.SHIFTR(1).IBSET(fraction.bits - 1); 129 ++exponent; 130 } 131 NormalizeAndRound( 132 result, isNegative, exponent, fraction, rounding, roundingBits); 133 return result; 134 } 135 136 template <typename W, int P> 137 ValueWithRealFlags<Real<W, P>> Real<W, P>::Multiply( 138 const Real &y, Rounding rounding) const { 139 ValueWithRealFlags<Real> result; 140 if (IsNotANumber() || y.IsNotANumber()) { 141 result.value = NotANumber(); // NaN * x -> NaN 142 if (IsSignalingNaN() || y.IsSignalingNaN()) { 143 result.flags.set(RealFlag::InvalidArgument); 144 } 145 } else { 146 bool isNegative{IsNegative() != y.IsNegative()}; 147 if (IsInfinite() || y.IsInfinite()) { 148 if (IsZero() || y.IsZero()) { 149 result.value = NotANumber(); // 0 * Inf -> NaN 150 result.flags.set(RealFlag::InvalidArgument); 151 } else { 152 result.value = Infinity(isNegative); 153 } 154 } else { 155 auto product{GetFraction().MultiplyUnsigned(y.GetFraction())}; 156 std::int64_t exponent{CombineExponents(y, false)}; 157 if (exponent < 1) { 158 int rshift = 1 - exponent; 159 exponent = 1; 160 bool sticky{false}; 161 if (rshift >= product.upper.bits + product.lower.bits) { 162 sticky = !product.lower.IsZero() || !product.upper.IsZero(); 163 } else if (rshift >= product.lower.bits) { 164 sticky = !product.lower.IsZero() || 165 !product.upper 166 .IAND(product.upper.MASKR(rshift - product.lower.bits)) 167 .IsZero(); 168 } else { 169 sticky = !product.lower.IAND(product.lower.MASKR(rshift)).IsZero(); 170 } 171 product.lower = product.lower.SHIFTRWithFill(product.upper, rshift); 172 product.upper = product.upper.SHIFTR(rshift); 173 if (sticky) { 174 product.lower = product.lower.IBSET(0); 175 } 176 } 177 int leadz{product.upper.LEADZ()}; 178 if (leadz >= product.upper.bits) { 179 leadz += product.lower.LEADZ(); 180 } 181 int lshift{leadz}; 182 if (lshift > exponent - 1) { 183 lshift = exponent - 1; 184 } 185 exponent -= lshift; 186 product.upper = product.upper.SHIFTLWithFill(product.lower, lshift); 187 product.lower = product.lower.SHIFTL(lshift); 188 RoundingBits roundingBits{product.lower, product.lower.bits}; 189 NormalizeAndRound(result, isNegative, exponent, product.upper, rounding, 190 roundingBits, true /*multiply*/); 191 } 192 } 193 return result; 194 } 195 196 template <typename W, int P> 197 ValueWithRealFlags<Real<W, P>> Real<W, P>::Divide( 198 const Real &y, Rounding rounding) const { 199 ValueWithRealFlags<Real> result; 200 if (IsNotANumber() || y.IsNotANumber()) { 201 result.value = NotANumber(); // NaN / x -> NaN, x / NaN -> NaN 202 if (IsSignalingNaN() || y.IsSignalingNaN()) { 203 result.flags.set(RealFlag::InvalidArgument); 204 } 205 } else { 206 bool isNegative{IsNegative() != y.IsNegative()}; 207 if (IsInfinite()) { 208 if (y.IsInfinite()) { 209 result.value = NotANumber(); // Inf/Inf -> NaN 210 result.flags.set(RealFlag::InvalidArgument); 211 } else { // Inf/x -> Inf, Inf/0 -> Inf 212 result.value = Infinity(isNegative); 213 } 214 } else if (y.IsZero()) { 215 if (IsZero()) { // 0/0 -> NaN 216 result.value = NotANumber(); 217 result.flags.set(RealFlag::InvalidArgument); 218 } else { // x/0 -> Inf, Inf/0 -> Inf 219 result.value = Infinity(isNegative); 220 result.flags.set(RealFlag::DivideByZero); 221 } 222 } else if (IsZero() || y.IsInfinite()) { // 0/x, x/Inf -> 0 223 if (isNegative) { 224 result.value.word_ = result.value.word_.IBSET(bits - 1); 225 } 226 } else { 227 // dividend and divisor are both finite and nonzero numbers 228 Fraction top{GetFraction()}, divisor{y.GetFraction()}; 229 std::int64_t exponent{CombineExponents(y, true)}; 230 Fraction quotient; 231 bool msb{false}; 232 if (!top.BTEST(top.bits - 1) || !divisor.BTEST(divisor.bits - 1)) { 233 // One or two subnormals 234 int topLshift{top.LEADZ()}; 235 top = top.SHIFTL(topLshift); 236 int divisorLshift{divisor.LEADZ()}; 237 divisor = divisor.SHIFTL(divisorLshift); 238 exponent += divisorLshift - topLshift; 239 } 240 for (int j{1}; j <= quotient.bits; ++j) { 241 if (NextQuotientBit(top, msb, divisor)) { 242 quotient = quotient.IBSET(quotient.bits - j); 243 } 244 } 245 bool guard{NextQuotientBit(top, msb, divisor)}; 246 bool round{NextQuotientBit(top, msb, divisor)}; 247 bool sticky{msb || !top.IsZero()}; 248 RoundingBits roundingBits{guard, round, sticky}; 249 if (exponent < 1) { 250 std::int64_t rshift{1 - exponent}; 251 for (; rshift > 0; --rshift) { 252 roundingBits.ShiftRight(quotient.BTEST(0)); 253 quotient = quotient.SHIFTR(1); 254 } 255 exponent = 1; 256 } 257 NormalizeAndRound( 258 result, isNegative, exponent, quotient, rounding, roundingBits); 259 } 260 } 261 return result; 262 } 263 264 template <typename W, int P> 265 ValueWithRealFlags<Real<W, P>> Real<W, P>::SQRT(Rounding rounding) const { 266 ValueWithRealFlags<Real> result; 267 if (IsNotANumber()) { 268 result.value = NotANumber(); 269 if (IsSignalingNaN()) { 270 result.flags.set(RealFlag::InvalidArgument); 271 } 272 } else if (IsNegative()) { 273 if (IsZero()) { 274 // SQRT(-0) == -0 in IEEE-754. 275 result.value.word_ = result.value.word_.IBSET(bits - 1); 276 } else { 277 result.value = NotANumber(); 278 } 279 } else if (IsInfinite()) { 280 // SQRT(+Inf) == +Inf 281 result.value = Infinity(false); 282 } else { 283 int expo{UnbiasedExponent()}; 284 if (expo < -1 || expo > 1) { 285 // Reduce the range to [0.5 .. 4.0) by dividing by an integral power 286 // of four to avoid trouble with very large and very small values 287 // (esp. truncation of subnormals). 288 // SQRT(2**(2a) * x) = SQRT(2**(2a)) * SQRT(x) = 2**a * SQRT(x) 289 Real scaled; 290 int adjust{expo / 2}; 291 scaled.Normalize(false, expo - 2 * adjust + exponentBias, GetFraction()); 292 result = scaled.SQRT(rounding); 293 result.value.Normalize(false, 294 result.value.UnbiasedExponent() + adjust + exponentBias, 295 result.value.GetFraction()); 296 return result; 297 } 298 // Compute the square root of the reduced value with the slow but 299 // reliable bit-at-a-time method. Start with a clear significand and 300 // half of the unbiased exponent, and then try to set significand bits 301 // in descending order of magnitude without exceeding the exact result. 302 expo = expo / 2 + exponentBias; 303 result.value.Normalize(false, expo, Fraction::MASKL(1)); 304 Real initialSq{result.value.Multiply(result.value).value}; 305 if (Compare(initialSq) == Relation::Less) { 306 // Initial estimate is too large; this can happen for values just 307 // under 1.0. 308 --expo; 309 result.value.Normalize(false, expo, Fraction::MASKL(1)); 310 } 311 for (int bit{significandBits - 1}; bit >= 0; --bit) { 312 Word word{result.value.word_}; 313 result.value.word_ = word.IBSET(bit); 314 auto squared{result.value.Multiply(result.value, rounding)}; 315 if (squared.flags.test(RealFlag::Overflow) || 316 squared.flags.test(RealFlag::Underflow) || 317 Compare(squared.value) == Relation::Less) { 318 result.value.word_ = word; 319 } 320 } 321 // The computed square root has a square that's not greater than the 322 // original argument. Check this square against the square of the next 323 // larger Real and return that one if its square is closer in magnitude to 324 // the original argument. 325 Real resultSq{result.value.Multiply(result.value).value}; 326 Real diff{Subtract(resultSq).value.ABS()}; 327 if (diff.IsZero()) { 328 return result; // exact 329 } 330 Real ulp; 331 ulp.Normalize(false, expo, Fraction::MASKR(1)); 332 Real nextAfter{result.value.Add(ulp).value}; 333 auto nextAfterSq{nextAfter.Multiply(nextAfter)}; 334 if (!nextAfterSq.flags.test(RealFlag::Overflow) && 335 !nextAfterSq.flags.test(RealFlag::Underflow)) { 336 Real nextAfterDiff{Subtract(nextAfterSq.value).value.ABS()}; 337 if (nextAfterDiff.Compare(diff) == Relation::Less) { 338 result.value = nextAfter; 339 if (nextAfterDiff.IsZero()) { 340 return result; // exact 341 } 342 } 343 } 344 result.flags.set(RealFlag::Inexact); 345 } 346 return result; 347 } 348 349 template <typename W, int P> 350 ValueWithRealFlags<Real<W, P>> Real<W, P>::NEAREST(bool upward) const { 351 ValueWithRealFlags<Real> result; 352 if (IsFinite()) { 353 Fraction fraction{GetFraction()}; 354 int expo{Exponent()}; 355 Fraction one{1}; 356 Fraction nearest; 357 bool isNegative{IsNegative()}; 358 if (upward != isNegative) { // upward in magnitude 359 auto next{fraction.AddUnsigned(one)}; 360 if (next.carry) { 361 ++expo; 362 nearest = Fraction::Least(); // MSB only 363 } else { 364 nearest = next.value; 365 } 366 } else { // downward in magnitude 367 if (IsZero()) { 368 nearest = 1; // smallest magnitude negative subnormal 369 isNegative = !isNegative; 370 } else { 371 auto sub1{fraction.SubtractSigned(one)}; 372 if (sub1.overflow) { 373 nearest = Fraction{0}.NOT(); 374 --expo; 375 } else { 376 nearest = sub1.value; 377 } 378 } 379 } 380 result.flags = result.value.Normalize(isNegative, expo, nearest); 381 } else { 382 result.flags.set(RealFlag::InvalidArgument); 383 result.value = *this; 384 } 385 return result; 386 } 387 388 // HYPOT(x,y) = SQRT(x**2 + y**2) by definition, but those squared intermediate 389 // values are susceptible to over/underflow when computed naively. 390 // Assuming that x>=y, calculate instead: 391 // HYPOT(x,y) = SQRT(x**2 * (1+(y/x)**2)) 392 // = ABS(x) * SQRT(1+(y/x)**2) 393 template <typename W, int P> 394 ValueWithRealFlags<Real<W, P>> Real<W, P>::HYPOT( 395 const Real &y, Rounding rounding) const { 396 ValueWithRealFlags<Real> result; 397 if (IsNotANumber() || y.IsNotANumber()) { 398 result.flags.set(RealFlag::InvalidArgument); 399 result.value = NotANumber(); 400 } else if (ABS().Compare(y.ABS()) == Relation::Less) { 401 return y.HYPOT(*this); 402 } else if (IsZero()) { 403 return result; // x==y==0 404 } else { 405 auto yOverX{y.Divide(*this, rounding)}; // y/x 406 bool inexact{yOverX.flags.test(RealFlag::Inexact)}; 407 auto squared{yOverX.value.Multiply(yOverX.value, rounding)}; // (y/x)**2 408 inexact |= squared.flags.test(RealFlag::Inexact); 409 Real one; 410 one.Normalize(false, exponentBias, Fraction::MASKL(1)); // 1.0 411 auto sum{squared.value.Add(one, rounding)}; // 1.0 + (y/x)**2 412 inexact |= sum.flags.test(RealFlag::Inexact); 413 auto sqrt{sum.value.SQRT()}; 414 inexact |= sqrt.flags.test(RealFlag::Inexact); 415 result = sqrt.value.Multiply(ABS(), rounding); 416 if (inexact) { 417 result.flags.set(RealFlag::Inexact); 418 } 419 } 420 return result; 421 } 422 423 template <typename W, int P> 424 ValueWithRealFlags<Real<W, P>> Real<W, P>::ToWholeNumber( 425 common::RoundingMode mode) const { 426 ValueWithRealFlags<Real> result{*this}; 427 if (IsNotANumber()) { 428 result.flags.set(RealFlag::InvalidArgument); 429 result.value = NotANumber(); 430 } else if (IsInfinite()) { 431 result.flags.set(RealFlag::Overflow); 432 } else { 433 constexpr int noClipExponent{exponentBias + binaryPrecision - 1}; 434 if (Exponent() < noClipExponent) { 435 Real adjust; // ABS(EPSILON(adjust)) == 0.5 436 adjust.Normalize(IsSignBitSet(), noClipExponent, Fraction::MASKL(1)); 437 // Compute ival=(*this + adjust), losing any fractional bits; keep flags 438 result = Add(adjust, Rounding{mode}); 439 result.flags.reset(RealFlag::Inexact); // result *is* exact 440 // Return (ival-adjust) with original sign in case we've generated a zero. 441 result.value = 442 result.value.Subtract(adjust, Rounding{common::RoundingMode::ToZero}) 443 .value.SIGN(*this); 444 } 445 } 446 return result; 447 } 448 449 template <typename W, int P> 450 RealFlags Real<W, P>::Normalize(bool negative, int exponent, 451 const Fraction &fraction, Rounding rounding, RoundingBits *roundingBits) { 452 int lshift{fraction.LEADZ()}; 453 if (lshift == fraction.bits /* fraction is zero */ && 454 (!roundingBits || roundingBits->empty())) { 455 // No fraction, no rounding bits -> +/-0.0 456 exponent = lshift = 0; 457 } else if (lshift < exponent) { 458 exponent -= lshift; 459 } else if (exponent > 0) { 460 lshift = exponent - 1; 461 exponent = 0; 462 } else if (lshift == 0) { 463 exponent = 1; 464 } else { 465 lshift = 0; 466 } 467 if (exponent >= maxExponent) { 468 // Infinity or overflow 469 if (rounding.mode == common::RoundingMode::TiesToEven || 470 rounding.mode == common::RoundingMode::TiesAwayFromZero || 471 (rounding.mode == common::RoundingMode::Up && !negative) || 472 (rounding.mode == common::RoundingMode::Down && negative)) { 473 word_ = Word{maxExponent}.SHIFTL(significandBits); // Inf 474 } else { 475 // directed rounding: round to largest finite value rather than infinity 476 // (x86 does this, not sure whether it's standard behavior) 477 word_ = Word{word_.MASKR(word_.bits - 1)}.IBCLR(significandBits); 478 } 479 if (negative) { 480 word_ = word_.IBSET(bits - 1); 481 } 482 RealFlags flags{RealFlag::Overflow}; 483 if (!fraction.IsZero()) { 484 flags.set(RealFlag::Inexact); 485 } 486 return flags; 487 } 488 word_ = Word::ConvertUnsigned(fraction).value; 489 if (lshift > 0) { 490 word_ = word_.SHIFTL(lshift); 491 if (roundingBits) { 492 for (; lshift > 0; --lshift) { 493 if (roundingBits->ShiftLeft()) { 494 word_ = word_.IBSET(lshift - 1); 495 } 496 } 497 } 498 } 499 if constexpr (isImplicitMSB) { 500 word_ = word_.IBCLR(significandBits); 501 } 502 word_ = word_.IOR(Word{exponent}.SHIFTL(significandBits)); 503 if (negative) { 504 word_ = word_.IBSET(bits - 1); 505 } 506 return {}; 507 } 508 509 template <typename W, int P> 510 RealFlags Real<W, P>::Round( 511 Rounding rounding, const RoundingBits &bits, bool multiply) { 512 int origExponent{Exponent()}; 513 RealFlags flags; 514 bool inexact{!bits.empty()}; 515 if (inexact) { 516 flags.set(RealFlag::Inexact); 517 } 518 if (origExponent < maxExponent && 519 bits.MustRound(rounding, IsNegative(), word_.BTEST(0) /* is odd */)) { 520 typename Fraction::ValueWithCarry sum{ 521 GetFraction().AddUnsigned(Fraction{}, true)}; 522 int newExponent{origExponent}; 523 if (sum.carry) { 524 // The fraction was all ones before rounding; sum.value is now zero 525 sum.value = sum.value.IBSET(binaryPrecision - 1); 526 if (++newExponent >= maxExponent) { 527 flags.set(RealFlag::Overflow); // rounded away to an infinity 528 } 529 } 530 flags |= Normalize(IsNegative(), newExponent, sum.value); 531 } 532 if (inexact && origExponent == 0) { 533 // inexact subnormal input: signal Underflow unless in an x86-specific 534 // edge case 535 if (rounding.x86CompatibleBehavior && Exponent() != 0 && multiply && 536 bits.sticky() && 537 (bits.guard() || 538 (rounding.mode != common::RoundingMode::Up && 539 rounding.mode != common::RoundingMode::Down))) { 540 // x86 edge case in which Underflow fails to signal when a subnormal 541 // inexact multiplication product rounds to a normal result when 542 // the guard bit is set or we're not using directed rounding 543 } else { 544 flags.set(RealFlag::Underflow); 545 } 546 } 547 return flags; 548 } 549 550 template <typename W, int P> 551 void Real<W, P>::NormalizeAndRound(ValueWithRealFlags<Real> &result, 552 bool isNegative, int exponent, const Fraction &fraction, Rounding rounding, 553 RoundingBits roundingBits, bool multiply) { 554 result.flags |= result.value.Normalize( 555 isNegative, exponent, fraction, rounding, &roundingBits); 556 result.flags |= result.value.Round(rounding, roundingBits, multiply); 557 } 558 559 inline enum decimal::FortranRounding MapRoundingMode( 560 common::RoundingMode rounding) { 561 switch (rounding) { 562 case common::RoundingMode::TiesToEven: 563 break; 564 case common::RoundingMode::ToZero: 565 return decimal::RoundToZero; 566 case common::RoundingMode::Down: 567 return decimal::RoundDown; 568 case common::RoundingMode::Up: 569 return decimal::RoundUp; 570 case common::RoundingMode::TiesAwayFromZero: 571 return decimal::RoundCompatible; 572 } 573 return decimal::RoundNearest; // dodge gcc warning about lack of result 574 } 575 576 inline RealFlags MapFlags(decimal::ConversionResultFlags flags) { 577 RealFlags result; 578 if (flags & decimal::Overflow) { 579 result.set(RealFlag::Overflow); 580 } 581 if (flags & decimal::Inexact) { 582 result.set(RealFlag::Inexact); 583 } 584 if (flags & decimal::Invalid) { 585 result.set(RealFlag::InvalidArgument); 586 } 587 return result; 588 } 589 590 template <typename W, int P> 591 ValueWithRealFlags<Real<W, P>> Real<W, P>::Read( 592 const char *&p, Rounding rounding) { 593 auto converted{ 594 decimal::ConvertToBinary<P>(p, MapRoundingMode(rounding.mode))}; 595 const auto *value{reinterpret_cast<Real<W, P> *>(&converted.binary)}; 596 return {*value, MapFlags(converted.flags)}; 597 } 598 599 template <typename W, int P> std::string Real<W, P>::DumpHexadecimal() const { 600 if (IsNotANumber()) { 601 return "NaN0x"s + word_.Hexadecimal(); 602 } else if (IsNegative()) { 603 return "-"s + Negate().DumpHexadecimal(); 604 } else if (IsInfinite()) { 605 return "Inf"s; 606 } else if (IsZero()) { 607 return "0.0"s; 608 } else { 609 Fraction frac{GetFraction()}; 610 std::string result{"0x"}; 611 char intPart = '0' + frac.BTEST(frac.bits - 1); 612 result += intPart; 613 result += '.'; 614 int trailz{frac.TRAILZ()}; 615 if (trailz >= frac.bits - 1) { 616 result += '0'; 617 } else { 618 int remainingBits{frac.bits - 1 - trailz}; 619 int wholeNybbles{remainingBits / 4}; 620 int lostBits{remainingBits - 4 * wholeNybbles}; 621 if (wholeNybbles > 0) { 622 std::string fracHex{frac.SHIFTR(trailz + lostBits) 623 .IAND(frac.MASKR(4 * wholeNybbles)) 624 .Hexadecimal()}; 625 std::size_t field = wholeNybbles; 626 if (fracHex.size() < field) { 627 result += std::string(field - fracHex.size(), '0'); 628 } 629 result += fracHex; 630 } 631 if (lostBits > 0) { 632 result += frac.SHIFTR(trailz) 633 .IAND(frac.MASKR(lostBits)) 634 .SHIFTL(4 - lostBits) 635 .Hexadecimal(); 636 } 637 } 638 result += 'p'; 639 int exponent = Exponent() - exponentBias; 640 result += Integer<32>{exponent}.SignedDecimal(); 641 return result; 642 } 643 } 644 645 template <typename W, int P> 646 llvm::raw_ostream &Real<W, P>::AsFortran( 647 llvm::raw_ostream &o, int kind, bool minimal) const { 648 if (IsNotANumber()) { 649 o << "(0._" << kind << "/0.)"; 650 } else if (IsInfinite()) { 651 if (IsNegative()) { 652 o << "(-1._" << kind << "/0.)"; 653 } else { 654 o << "(1._" << kind << "/0.)"; 655 } 656 } else { 657 using B = decimal::BinaryFloatingPointNumber<P>; 658 B value{word_.template ToUInt<typename B::RawType>()}; 659 char buffer[common::MaxDecimalConversionDigits(P) + 660 EXTRA_DECIMAL_CONVERSION_SPACE]; 661 decimal::DecimalConversionFlags flags{}; // default: exact representation 662 if (minimal) { 663 flags = decimal::Minimize; 664 } 665 auto result{decimal::ConvertToDecimal<P>(buffer, sizeof buffer, flags, 666 static_cast<int>(sizeof buffer), decimal::RoundNearest, value)}; 667 const char *p{result.str}; 668 if (DEREF(p) == '-' || *p == '+') { 669 o << *p++; 670 } 671 int expo{result.decimalExponent}; 672 if (*p != '0') { 673 --expo; 674 } 675 o << *p << '.' << (p + 1); 676 if (expo != 0) { 677 o << 'e' << expo; 678 } 679 o << '_' << kind; 680 } 681 return o; 682 } 683 684 template class Real<Integer<16>, 11>; 685 template class Real<Integer<16>, 8>; 686 template class Real<Integer<32>, 24>; 687 template class Real<Integer<64>, 53>; 688 template class Real<Integer<80>, 64>; 689 template class Real<Integer<128>, 113>; 690 } // namespace Fortran::evaluate::value 691