1 //===-- lib/Evaluate/real.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/real.h" 10 #include "int-power.h" 11 #include "flang/Common/idioms.h" 12 #include "flang/Decimal/decimal.h" 13 #include "flang/Parser/characters.h" 14 #include "llvm/Support/raw_ostream.h" 15 #include <limits> 16 17 namespace Fortran::evaluate::value { 18 19 template <typename W, int P> Relation Real<W, P>::Compare(const Real &y) const { 20 if (IsNotANumber() || y.IsNotANumber()) { // NaN vs x, x vs NaN 21 return Relation::Unordered; 22 } else if (IsInfinite()) { 23 if (y.IsInfinite()) { 24 if (IsNegative()) { // -Inf vs +/-Inf 25 return y.IsNegative() ? Relation::Equal : Relation::Less; 26 } else { // +Inf vs +/-Inf 27 return y.IsNegative() ? Relation::Greater : Relation::Equal; 28 } 29 } else { // +/-Inf vs finite 30 return IsNegative() ? Relation::Less : Relation::Greater; 31 } 32 } else if (y.IsInfinite()) { // finite vs +/-Inf 33 return y.IsNegative() ? Relation::Greater : Relation::Less; 34 } else { // two finite numbers 35 bool isNegative{IsNegative()}; 36 if (isNegative != y.IsNegative()) { 37 if (word_.IOR(y.word_).IBCLR(bits - 1).IsZero()) { 38 return Relation::Equal; // +/-0.0 == -/+0.0 39 } else { 40 return isNegative ? Relation::Less : Relation::Greater; 41 } 42 } else { 43 // same sign 44 Ordering order{evaluate::Compare(Exponent(), y.Exponent())}; 45 if (order == Ordering::Equal) { 46 order = GetSignificand().CompareUnsigned(y.GetSignificand()); 47 } 48 if (isNegative) { 49 order = Reverse(order); 50 } 51 return RelationFromOrdering(order); 52 } 53 } 54 } 55 56 template <typename W, int P> 57 ValueWithRealFlags<Real<W, P>> Real<W, P>::Add( 58 const Real &y, Rounding rounding) const { 59 ValueWithRealFlags<Real> result; 60 if (IsNotANumber() || y.IsNotANumber()) { 61 result.value = NotANumber(); // NaN + x -> NaN 62 if (IsSignalingNaN() || y.IsSignalingNaN()) { 63 result.flags.set(RealFlag::InvalidArgument); 64 } 65 return result; 66 } 67 bool isNegative{IsNegative()}; 68 bool yIsNegative{y.IsNegative()}; 69 if (IsInfinite()) { 70 if (y.IsInfinite()) { 71 if (isNegative == yIsNegative) { 72 result.value = *this; // +/-Inf + +/-Inf -> +/-Inf 73 } else { 74 result.value = NotANumber(); // +/-Inf + -/+Inf -> NaN 75 result.flags.set(RealFlag::InvalidArgument); 76 } 77 } else { 78 result.value = *this; // +/-Inf + x -> +/-Inf 79 } 80 return result; 81 } 82 if (y.IsInfinite()) { 83 result.value = y; // x + +/-Inf -> +/-Inf 84 return result; 85 } 86 int exponent{Exponent()}; 87 int yExponent{y.Exponent()}; 88 if (exponent < yExponent) { 89 // y is larger in magnitude; simplify by reversing operands 90 return y.Add(*this, rounding); 91 } 92 if (exponent == yExponent && isNegative != yIsNegative) { 93 Ordering order{GetSignificand().CompareUnsigned(y.GetSignificand())}; 94 if (order == Ordering::Less) { 95 // Same exponent, opposite signs, and y is larger in magnitude 96 return y.Add(*this, rounding); 97 } 98 if (order == Ordering::Equal) { 99 // x + (-x) -> +0.0 unless rounding is directed downwards 100 if (rounding.mode == common::RoundingMode::Down) { 101 result.value = NegativeZero(); 102 } 103 return result; 104 } 105 } 106 // Our exponent is greater than y's, or the exponents match and y is not 107 // of the opposite sign and greater magnitude. So (x+y) will have the 108 // same sign as x. 109 Fraction fraction{GetFraction()}; 110 Fraction yFraction{y.GetFraction()}; 111 int rshift = exponent - yExponent; 112 if (exponent > 0 && yExponent == 0) { 113 --rshift; // correct overshift when only y is subnormal 114 } 115 RoundingBits roundingBits{yFraction, rshift}; 116 yFraction = yFraction.SHIFTR(rshift); 117 bool carry{false}; 118 if (isNegative != yIsNegative) { 119 // Opposite signs: subtract via addition of two's complement of y and 120 // the rounding bits. 121 yFraction = yFraction.NOT(); 122 carry = roundingBits.Negate(); 123 } 124 auto sum{fraction.AddUnsigned(yFraction, carry)}; 125 fraction = sum.value; 126 if (isNegative == yIsNegative && sum.carry) { 127 roundingBits.ShiftRight(sum.value.BTEST(0)); 128 fraction = fraction.SHIFTR(1).IBSET(fraction.bits - 1); 129 ++exponent; 130 } 131 NormalizeAndRound( 132 result, isNegative, exponent, fraction, rounding, roundingBits); 133 return result; 134 } 135 136 template <typename W, int P> 137 ValueWithRealFlags<Real<W, P>> Real<W, P>::Multiply( 138 const Real &y, Rounding rounding) const { 139 ValueWithRealFlags<Real> result; 140 if (IsNotANumber() || y.IsNotANumber()) { 141 result.value = NotANumber(); // NaN * x -> NaN 142 if (IsSignalingNaN() || y.IsSignalingNaN()) { 143 result.flags.set(RealFlag::InvalidArgument); 144 } 145 } else { 146 bool isNegative{IsNegative() != y.IsNegative()}; 147 if (IsInfinite() || y.IsInfinite()) { 148 if (IsZero() || y.IsZero()) { 149 result.value = NotANumber(); // 0 * Inf -> NaN 150 result.flags.set(RealFlag::InvalidArgument); 151 } else { 152 result.value = Infinity(isNegative); 153 } 154 } else { 155 auto product{GetFraction().MultiplyUnsigned(y.GetFraction())}; 156 std::int64_t exponent{CombineExponents(y, false)}; 157 if (exponent < 1) { 158 int rshift = 1 - exponent; 159 exponent = 1; 160 bool sticky{false}; 161 if (rshift >= product.upper.bits + product.lower.bits) { 162 sticky = !product.lower.IsZero() || !product.upper.IsZero(); 163 } else if (rshift >= product.lower.bits) { 164 sticky = !product.lower.IsZero() || 165 !product.upper 166 .IAND(product.upper.MASKR(rshift - product.lower.bits)) 167 .IsZero(); 168 } else { 169 sticky = !product.lower.IAND(product.lower.MASKR(rshift)).IsZero(); 170 } 171 product.lower = product.lower.SHIFTRWithFill(product.upper, rshift); 172 product.upper = product.upper.SHIFTR(rshift); 173 if (sticky) { 174 product.lower = product.lower.IBSET(0); 175 } 176 } 177 int leadz{product.upper.LEADZ()}; 178 if (leadz >= product.upper.bits) { 179 leadz += product.lower.LEADZ(); 180 } 181 int lshift{leadz}; 182 if (lshift > exponent - 1) { 183 lshift = exponent - 1; 184 } 185 exponent -= lshift; 186 product.upper = product.upper.SHIFTLWithFill(product.lower, lshift); 187 product.lower = product.lower.SHIFTL(lshift); 188 RoundingBits roundingBits{product.lower, product.lower.bits}; 189 NormalizeAndRound(result, isNegative, exponent, product.upper, rounding, 190 roundingBits, true /*multiply*/); 191 } 192 } 193 return result; 194 } 195 196 template <typename W, int P> 197 ValueWithRealFlags<Real<W, P>> Real<W, P>::Divide( 198 const Real &y, Rounding rounding) const { 199 ValueWithRealFlags<Real> result; 200 if (IsNotANumber() || y.IsNotANumber()) { 201 result.value = NotANumber(); // NaN / x -> NaN, x / NaN -> NaN 202 if (IsSignalingNaN() || y.IsSignalingNaN()) { 203 result.flags.set(RealFlag::InvalidArgument); 204 } 205 } else { 206 bool isNegative{IsNegative() != y.IsNegative()}; 207 if (IsInfinite()) { 208 if (y.IsInfinite()) { 209 result.value = NotANumber(); // Inf/Inf -> NaN 210 result.flags.set(RealFlag::InvalidArgument); 211 } else { // Inf/x -> Inf, Inf/0 -> Inf 212 result.value = Infinity(isNegative); 213 } 214 } else if (y.IsZero()) { 215 if (IsZero()) { // 0/0 -> NaN 216 result.value = NotANumber(); 217 result.flags.set(RealFlag::InvalidArgument); 218 } else { // x/0 -> Inf, Inf/0 -> Inf 219 result.value = Infinity(isNegative); 220 result.flags.set(RealFlag::DivideByZero); 221 } 222 } else if (IsZero() || y.IsInfinite()) { // 0/x, x/Inf -> 0 223 if (isNegative) { 224 result.value = NegativeZero(); 225 } 226 } else { 227 // dividend and divisor are both finite and nonzero numbers 228 Fraction top{GetFraction()}, divisor{y.GetFraction()}; 229 std::int64_t exponent{CombineExponents(y, true)}; 230 Fraction quotient; 231 bool msb{false}; 232 if (!top.BTEST(top.bits - 1) || !divisor.BTEST(divisor.bits - 1)) { 233 // One or two subnormals 234 int topLshift{top.LEADZ()}; 235 top = top.SHIFTL(topLshift); 236 int divisorLshift{divisor.LEADZ()}; 237 divisor = divisor.SHIFTL(divisorLshift); 238 exponent += divisorLshift - topLshift; 239 } 240 for (int j{1}; j <= quotient.bits; ++j) { 241 if (NextQuotientBit(top, msb, divisor)) { 242 quotient = quotient.IBSET(quotient.bits - j); 243 } 244 } 245 bool guard{NextQuotientBit(top, msb, divisor)}; 246 bool round{NextQuotientBit(top, msb, divisor)}; 247 bool sticky{msb || !top.IsZero()}; 248 RoundingBits roundingBits{guard, round, sticky}; 249 if (exponent < 1) { 250 std::int64_t rshift{1 - exponent}; 251 for (; rshift > 0; --rshift) { 252 roundingBits.ShiftRight(quotient.BTEST(0)); 253 quotient = quotient.SHIFTR(1); 254 } 255 exponent = 1; 256 } 257 NormalizeAndRound( 258 result, isNegative, exponent, quotient, rounding, roundingBits); 259 } 260 } 261 return result; 262 } 263 264 template <typename W, int P> 265 ValueWithRealFlags<Real<W, P>> Real<W, P>::SQRT(Rounding rounding) const { 266 ValueWithRealFlags<Real> result; 267 if (IsNotANumber()) { 268 result.value = NotANumber(); 269 if (IsSignalingNaN()) { 270 result.flags.set(RealFlag::InvalidArgument); 271 } 272 } else if (IsNegative()) { 273 if (IsZero()) { 274 // SQRT(-0) == -0 in IEEE-754. 275 result.value = NegativeZero(); 276 } else { 277 result.value = NotANumber(); 278 } 279 } else if (IsInfinite()) { 280 // SQRT(+Inf) == +Inf 281 result.value = Infinity(false); 282 } else if (IsZero()) { 283 result.value = PositiveZero(); 284 } else { 285 int expo{UnbiasedExponent()}; 286 if (expo < -1 || expo > 1) { 287 // Reduce the range to [0.5 .. 4.0) by dividing by an integral power 288 // of four to avoid trouble with very large and very small values 289 // (esp. truncation of subnormals). 290 // SQRT(2**(2a) * x) = SQRT(2**(2a)) * SQRT(x) = 2**a * SQRT(x) 291 Real scaled; 292 int adjust{expo / 2}; 293 scaled.Normalize(false, expo - 2 * adjust + exponentBias, GetFraction()); 294 result = scaled.SQRT(rounding); 295 result.value.Normalize(false, 296 result.value.UnbiasedExponent() + adjust + exponentBias, 297 result.value.GetFraction()); 298 return result; 299 } 300 // Compute the square root of the reduced value with the slow but 301 // reliable bit-at-a-time method. Start with a clear significand and 302 // half of the unbiased exponent, and then try to set significand bits 303 // in descending order of magnitude without exceeding the exact result. 304 expo = expo / 2 + exponentBias; 305 result.value.Normalize(false, expo, Fraction::MASKL(1)); 306 Real initialSq{result.value.Multiply(result.value).value}; 307 if (Compare(initialSq) == Relation::Less) { 308 // Initial estimate is too large; this can happen for values just 309 // under 1.0. 310 --expo; 311 result.value.Normalize(false, expo, Fraction::MASKL(1)); 312 } 313 for (int bit{significandBits - 1}; bit >= 0; --bit) { 314 Word word{result.value.word_}; 315 result.value.word_ = word.IBSET(bit); 316 auto squared{result.value.Multiply(result.value, rounding)}; 317 if (squared.flags.test(RealFlag::Overflow) || 318 squared.flags.test(RealFlag::Underflow) || 319 Compare(squared.value) == Relation::Less) { 320 result.value.word_ = word; 321 } 322 } 323 // The computed square root has a square that's not greater than the 324 // original argument. Check this square against the square of the next 325 // larger Real and return that one if its square is closer in magnitude to 326 // the original argument. 327 Real resultSq{result.value.Multiply(result.value).value}; 328 Real diff{Subtract(resultSq).value.ABS()}; 329 if (diff.IsZero()) { 330 return result; // exact 331 } 332 Real ulp; 333 ulp.Normalize(false, expo, Fraction::MASKR(1)); 334 Real nextAfter{result.value.Add(ulp).value}; 335 auto nextAfterSq{nextAfter.Multiply(nextAfter)}; 336 if (!nextAfterSq.flags.test(RealFlag::Overflow) && 337 !nextAfterSq.flags.test(RealFlag::Underflow)) { 338 Real nextAfterDiff{Subtract(nextAfterSq.value).value.ABS()}; 339 if (nextAfterDiff.Compare(diff) == Relation::Less) { 340 result.value = nextAfter; 341 if (nextAfterDiff.IsZero()) { 342 return result; // exact 343 } 344 } 345 } 346 result.flags.set(RealFlag::Inexact); 347 } 348 return result; 349 } 350 351 template <typename W, int P> 352 ValueWithRealFlags<Real<W, P>> Real<W, P>::NEAREST(bool upward) const { 353 ValueWithRealFlags<Real> result; 354 if (IsFinite()) { 355 Fraction fraction{GetFraction()}; 356 int expo{Exponent()}; 357 Fraction one{1}; 358 Fraction nearest; 359 bool isNegative{IsNegative()}; 360 if (upward != isNegative) { // upward in magnitude 361 auto next{fraction.AddUnsigned(one)}; 362 if (next.carry) { 363 ++expo; 364 nearest = Fraction::Least(); // MSB only 365 } else { 366 nearest = next.value; 367 } 368 } else { // downward in magnitude 369 if (IsZero()) { 370 nearest = 1; // smallest magnitude negative subnormal 371 isNegative = !isNegative; 372 } else { 373 auto sub1{fraction.SubtractSigned(one)}; 374 if (sub1.overflow) { 375 nearest = Fraction{0}.NOT(); 376 --expo; 377 } else { 378 nearest = sub1.value; 379 } 380 } 381 } 382 result.flags = result.value.Normalize(isNegative, expo, nearest); 383 } else { 384 result.flags.set(RealFlag::InvalidArgument); 385 result.value = *this; 386 } 387 return result; 388 } 389 390 // HYPOT(x,y) = SQRT(x**2 + y**2) by definition, but those squared intermediate 391 // values are susceptible to over/underflow when computed naively. 392 // Assuming that x>=y, calculate instead: 393 // HYPOT(x,y) = SQRT(x**2 * (1+(y/x)**2)) 394 // = ABS(x) * SQRT(1+(y/x)**2) 395 template <typename W, int P> 396 ValueWithRealFlags<Real<W, P>> Real<W, P>::HYPOT( 397 const Real &y, Rounding rounding) const { 398 ValueWithRealFlags<Real> result; 399 if (IsNotANumber() || y.IsNotANumber()) { 400 result.flags.set(RealFlag::InvalidArgument); 401 result.value = NotANumber(); 402 } else if (ABS().Compare(y.ABS()) == Relation::Less) { 403 return y.HYPOT(*this); 404 } else if (IsZero()) { 405 return result; // x==y==0 406 } else { 407 auto yOverX{y.Divide(*this, rounding)}; // y/x 408 bool inexact{yOverX.flags.test(RealFlag::Inexact)}; 409 auto squared{yOverX.value.Multiply(yOverX.value, rounding)}; // (y/x)**2 410 inexact |= squared.flags.test(RealFlag::Inexact); 411 Real one; 412 one.Normalize(false, exponentBias, Fraction::MASKL(1)); // 1.0 413 auto sum{squared.value.Add(one, rounding)}; // 1.0 + (y/x)**2 414 inexact |= sum.flags.test(RealFlag::Inexact); 415 auto sqrt{sum.value.SQRT()}; 416 inexact |= sqrt.flags.test(RealFlag::Inexact); 417 result = sqrt.value.Multiply(ABS(), rounding); 418 if (inexact) { 419 result.flags.set(RealFlag::Inexact); 420 } 421 } 422 return result; 423 } 424 425 template <typename W, int P> 426 ValueWithRealFlags<Real<W, P>> Real<W, P>::ToWholeNumber( 427 common::RoundingMode mode) const { 428 ValueWithRealFlags<Real> result{*this}; 429 if (IsNotANumber()) { 430 result.flags.set(RealFlag::InvalidArgument); 431 result.value = NotANumber(); 432 } else if (IsInfinite()) { 433 result.flags.set(RealFlag::Overflow); 434 } else { 435 constexpr int noClipExponent{exponentBias + binaryPrecision - 1}; 436 if (Exponent() < noClipExponent) { 437 Real adjust; // ABS(EPSILON(adjust)) == 0.5 438 adjust.Normalize(IsSignBitSet(), noClipExponent, Fraction::MASKL(1)); 439 // Compute ival=(*this + adjust), losing any fractional bits; keep flags 440 result = Add(adjust, Rounding{mode}); 441 result.flags.reset(RealFlag::Inexact); // result *is* exact 442 // Return (ival-adjust) with original sign in case we've generated a zero. 443 result.value = 444 result.value.Subtract(adjust, Rounding{common::RoundingMode::ToZero}) 445 .value.SIGN(*this); 446 } 447 } 448 return result; 449 } 450 451 template <typename W, int P> 452 RealFlags Real<W, P>::Normalize(bool negative, int exponent, 453 const Fraction &fraction, Rounding rounding, RoundingBits *roundingBits) { 454 int lshift{fraction.LEADZ()}; 455 if (lshift == fraction.bits /* fraction is zero */ && 456 (!roundingBits || roundingBits->empty())) { 457 // No fraction, no rounding bits -> +/-0.0 458 exponent = lshift = 0; 459 } else if (lshift < exponent) { 460 exponent -= lshift; 461 } else if (exponent > 0) { 462 lshift = exponent - 1; 463 exponent = 0; 464 } else if (lshift == 0) { 465 exponent = 1; 466 } else { 467 lshift = 0; 468 } 469 if (exponent >= maxExponent) { 470 // Infinity or overflow 471 if (rounding.mode == common::RoundingMode::TiesToEven || 472 rounding.mode == common::RoundingMode::TiesAwayFromZero || 473 (rounding.mode == common::RoundingMode::Up && !negative) || 474 (rounding.mode == common::RoundingMode::Down && negative)) { 475 word_ = Word{maxExponent}.SHIFTL(significandBits); // Inf 476 } else { 477 // directed rounding: round to largest finite value rather than infinity 478 // (x86 does this, not sure whether it's standard behavior) 479 word_ = Word{word_.MASKR(word_.bits - 1)}.IBCLR(significandBits); 480 } 481 if (negative) { 482 word_ = word_.IBSET(bits - 1); 483 } 484 RealFlags flags{RealFlag::Overflow}; 485 if (!fraction.IsZero()) { 486 flags.set(RealFlag::Inexact); 487 } 488 return flags; 489 } 490 word_ = Word::ConvertUnsigned(fraction).value; 491 if (lshift > 0) { 492 word_ = word_.SHIFTL(lshift); 493 if (roundingBits) { 494 for (; lshift > 0; --lshift) { 495 if (roundingBits->ShiftLeft()) { 496 word_ = word_.IBSET(lshift - 1); 497 } 498 } 499 } 500 } 501 if constexpr (isImplicitMSB) { 502 word_ = word_.IBCLR(significandBits); 503 } 504 word_ = word_.IOR(Word{exponent}.SHIFTL(significandBits)); 505 if (negative) { 506 word_ = word_.IBSET(bits - 1); 507 } 508 return {}; 509 } 510 511 template <typename W, int P> 512 RealFlags Real<W, P>::Round( 513 Rounding rounding, const RoundingBits &bits, bool multiply) { 514 int origExponent{Exponent()}; 515 RealFlags flags; 516 bool inexact{!bits.empty()}; 517 if (inexact) { 518 flags.set(RealFlag::Inexact); 519 } 520 if (origExponent < maxExponent && 521 bits.MustRound(rounding, IsNegative(), word_.BTEST(0) /* is odd */)) { 522 typename Fraction::ValueWithCarry sum{ 523 GetFraction().AddUnsigned(Fraction{}, true)}; 524 int newExponent{origExponent}; 525 if (sum.carry) { 526 // The fraction was all ones before rounding; sum.value is now zero 527 sum.value = sum.value.IBSET(binaryPrecision - 1); 528 if (++newExponent >= maxExponent) { 529 flags.set(RealFlag::Overflow); // rounded away to an infinity 530 } 531 } 532 flags |= Normalize(IsNegative(), newExponent, sum.value); 533 } 534 if (inexact && origExponent == 0) { 535 // inexact subnormal input: signal Underflow unless in an x86-specific 536 // edge case 537 if (rounding.x86CompatibleBehavior && Exponent() != 0 && multiply && 538 bits.sticky() && 539 (bits.guard() || 540 (rounding.mode != common::RoundingMode::Up && 541 rounding.mode != common::RoundingMode::Down))) { 542 // x86 edge case in which Underflow fails to signal when a subnormal 543 // inexact multiplication product rounds to a normal result when 544 // the guard bit is set or we're not using directed rounding 545 } else { 546 flags.set(RealFlag::Underflow); 547 } 548 } 549 return flags; 550 } 551 552 template <typename W, int P> 553 void Real<W, P>::NormalizeAndRound(ValueWithRealFlags<Real> &result, 554 bool isNegative, int exponent, const Fraction &fraction, Rounding rounding, 555 RoundingBits roundingBits, bool multiply) { 556 result.flags |= result.value.Normalize( 557 isNegative, exponent, fraction, rounding, &roundingBits); 558 result.flags |= result.value.Round(rounding, roundingBits, multiply); 559 } 560 561 inline enum decimal::FortranRounding MapRoundingMode( 562 common::RoundingMode rounding) { 563 switch (rounding) { 564 case common::RoundingMode::TiesToEven: 565 break; 566 case common::RoundingMode::ToZero: 567 return decimal::RoundToZero; 568 case common::RoundingMode::Down: 569 return decimal::RoundDown; 570 case common::RoundingMode::Up: 571 return decimal::RoundUp; 572 case common::RoundingMode::TiesAwayFromZero: 573 return decimal::RoundCompatible; 574 } 575 return decimal::RoundNearest; // dodge gcc warning about lack of result 576 } 577 578 inline RealFlags MapFlags(decimal::ConversionResultFlags flags) { 579 RealFlags result; 580 if (flags & decimal::Overflow) { 581 result.set(RealFlag::Overflow); 582 } 583 if (flags & decimal::Inexact) { 584 result.set(RealFlag::Inexact); 585 } 586 if (flags & decimal::Invalid) { 587 result.set(RealFlag::InvalidArgument); 588 } 589 return result; 590 } 591 592 template <typename W, int P> 593 ValueWithRealFlags<Real<W, P>> Real<W, P>::Read( 594 const char *&p, Rounding rounding) { 595 auto converted{ 596 decimal::ConvertToBinary<P>(p, MapRoundingMode(rounding.mode))}; 597 const auto *value{reinterpret_cast<Real<W, P> *>(&converted.binary)}; 598 return {*value, MapFlags(converted.flags)}; 599 } 600 601 template <typename W, int P> std::string Real<W, P>::DumpHexadecimal() const { 602 if (IsNotANumber()) { 603 return "NaN0x"s + word_.Hexadecimal(); 604 } else if (IsNegative()) { 605 return "-"s + Negate().DumpHexadecimal(); 606 } else if (IsInfinite()) { 607 return "Inf"s; 608 } else if (IsZero()) { 609 return "0.0"s; 610 } else { 611 Fraction frac{GetFraction()}; 612 std::string result{"0x"}; 613 char intPart = '0' + frac.BTEST(frac.bits - 1); 614 result += intPart; 615 result += '.'; 616 int trailz{frac.TRAILZ()}; 617 if (trailz >= frac.bits - 1) { 618 result += '0'; 619 } else { 620 int remainingBits{frac.bits - 1 - trailz}; 621 int wholeNybbles{remainingBits / 4}; 622 int lostBits{remainingBits - 4 * wholeNybbles}; 623 if (wholeNybbles > 0) { 624 std::string fracHex{frac.SHIFTR(trailz + lostBits) 625 .IAND(frac.MASKR(4 * wholeNybbles)) 626 .Hexadecimal()}; 627 std::size_t field = wholeNybbles; 628 if (fracHex.size() < field) { 629 result += std::string(field - fracHex.size(), '0'); 630 } 631 result += fracHex; 632 } 633 if (lostBits > 0) { 634 result += frac.SHIFTR(trailz) 635 .IAND(frac.MASKR(lostBits)) 636 .SHIFTL(4 - lostBits) 637 .Hexadecimal(); 638 } 639 } 640 result += 'p'; 641 int exponent = Exponent() - exponentBias; 642 if (intPart == '0') { 643 exponent += 1; 644 } 645 result += Integer<32>{exponent}.SignedDecimal(); 646 return result; 647 } 648 } 649 650 template <typename W, int P> 651 llvm::raw_ostream &Real<W, P>::AsFortran( 652 llvm::raw_ostream &o, int kind, bool minimal) const { 653 if (IsNotANumber()) { 654 o << "(0._" << kind << "/0.)"; 655 } else if (IsInfinite()) { 656 if (IsNegative()) { 657 o << "(-1._" << kind << "/0.)"; 658 } else { 659 o << "(1._" << kind << "/0.)"; 660 } 661 } else { 662 using B = decimal::BinaryFloatingPointNumber<P>; 663 B value{word_.template ToUInt<typename B::RawType>()}; 664 char buffer[common::MaxDecimalConversionDigits(P) + 665 EXTRA_DECIMAL_CONVERSION_SPACE]; 666 decimal::DecimalConversionFlags flags{}; // default: exact representation 667 if (minimal) { 668 flags = decimal::Minimize; 669 } 670 auto result{decimal::ConvertToDecimal<P>(buffer, sizeof buffer, flags, 671 static_cast<int>(sizeof buffer), decimal::RoundNearest, value)}; 672 const char *p{result.str}; 673 if (DEREF(p) == '-' || *p == '+') { 674 o << *p++; 675 } 676 int expo{result.decimalExponent}; 677 if (*p != '0') { 678 --expo; 679 } 680 o << *p << '.' << (p + 1); 681 if (expo != 0) { 682 o << 'e' << expo; 683 } 684 o << '_' << kind; 685 } 686 return o; 687 } 688 689 template class Real<Integer<16>, 11>; 690 template class Real<Integer<16>, 8>; 691 template class Real<Integer<32>, 24>; 692 template class Real<Integer<64>, 53>; 693 template class Real<Integer<80>, 64>; 694 template class Real<Integer<128>, 113>; 695 } // namespace Fortran::evaluate::value 696