1 //===-- lib/Evaluate/fold-logical.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "fold-implementation.h" 10 #include "fold-reduction.h" 11 #include "flang/Evaluate/check-expression.h" 12 13 namespace Fortran::evaluate { 14 15 // for ALL & ANY 16 template <typename T> 17 static Expr<T> FoldAllAny(FoldingContext &context, FunctionRef<T> &&ref, 18 Scalar<T> (Scalar<T>::*operation)(const Scalar<T> &) const, 19 Scalar<T> identity) { 20 static_assert(T::category == TypeCategory::Logical); 21 using Element = Scalar<T>; 22 std::optional<int> dim; 23 if (std::optional<Constant<T>> array{ 24 ProcessReductionArgs<T>(context, ref.arguments(), dim, identity, 25 /*ARRAY(MASK)=*/0, /*DIM=*/1)}) { 26 auto accumulator{[&](Element &element, const ConstantSubscripts &at) { 27 element = (element.*operation)(array->At(at)); 28 }}; 29 return Expr<T>{DoReduction<T>(*array, dim, identity, accumulator)}; 30 } 31 return Expr<T>{std::move(ref)}; 32 } 33 34 template <int KIND> 35 Expr<Type<TypeCategory::Logical, KIND>> FoldIntrinsicFunction( 36 FoldingContext &context, 37 FunctionRef<Type<TypeCategory::Logical, KIND>> &&funcRef) { 38 using T = Type<TypeCategory::Logical, KIND>; 39 ActualArguments &args{funcRef.arguments()}; 40 auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)}; 41 CHECK(intrinsic); 42 std::string name{intrinsic->name}; 43 using SameInt = Type<TypeCategory::Integer, KIND>; 44 if (name == "all") { 45 return FoldAllAny( 46 context, std::move(funcRef), &Scalar<T>::AND, Scalar<T>{true}); 47 } else if (name == "any") { 48 return FoldAllAny( 49 context, std::move(funcRef), &Scalar<T>::OR, Scalar<T>{false}); 50 } else if (name == "associated") { 51 bool gotConstant{true}; 52 const Expr<SomeType> *firstArgExpr{args[0]->UnwrapExpr()}; 53 if (!firstArgExpr || !IsNullPointer(*firstArgExpr)) { 54 gotConstant = false; 55 } else if (args[1]) { // There's a second argument 56 const Expr<SomeType> *secondArgExpr{args[1]->UnwrapExpr()}; 57 if (!secondArgExpr || !IsNullPointer(*secondArgExpr)) { 58 gotConstant = false; 59 } 60 } 61 return gotConstant ? Expr<T>{false} : Expr<T>{std::move(funcRef)}; 62 } else if (name == "bge" || name == "bgt" || name == "ble" || name == "blt") { 63 static_assert(std::is_same_v<Scalar<LargestInt>, BOZLiteralConstant>); 64 // Arguments do not have to be of the same integer type. Convert all 65 // arguments to the biggest integer type before comparing them to 66 // simplify. 67 for (int i{0}; i <= 1; ++i) { 68 if (auto *x{UnwrapExpr<Expr<SomeInteger>>(args[i])}) { 69 *args[i] = AsGenericExpr( 70 Fold(context, ConvertToType<LargestInt>(std::move(*x)))); 71 } else if (auto *x{UnwrapExpr<BOZLiteralConstant>(args[i])}) { 72 *args[i] = AsGenericExpr(Constant<LargestInt>{std::move(*x)}); 73 } 74 } 75 auto fptr{&Scalar<LargestInt>::BGE}; 76 if (name == "bge") { // done in fptr declaration 77 } else if (name == "bgt") { 78 fptr = &Scalar<LargestInt>::BGT; 79 } else if (name == "ble") { 80 fptr = &Scalar<LargestInt>::BLE; 81 } else if (name == "blt") { 82 fptr = &Scalar<LargestInt>::BLT; 83 } else { 84 common::die("missing case to fold intrinsic function %s", name.c_str()); 85 } 86 return FoldElementalIntrinsic<T, LargestInt, LargestInt>(context, 87 std::move(funcRef), 88 ScalarFunc<T, LargestInt, LargestInt>( 89 [&fptr](const Scalar<LargestInt> &i, const Scalar<LargestInt> &j) { 90 return Scalar<T>{std::invoke(fptr, i, j)}; 91 })); 92 } else if (name == "btest") { 93 if (const auto *ix{UnwrapExpr<Expr<SomeInteger>>(args[0])}) { 94 return std::visit( 95 [&](const auto &x) { 96 using IT = ResultType<decltype(x)>; 97 return FoldElementalIntrinsic<T, IT, SameInt>(context, 98 std::move(funcRef), 99 ScalarFunc<T, IT, SameInt>( 100 [&](const Scalar<IT> &x, const Scalar<SameInt> &pos) { 101 auto posVal{pos.ToInt64()}; 102 if (posVal < 0 || posVal >= x.bits) { 103 context.messages().Say( 104 "POS=%jd out of range for BTEST"_err_en_US, 105 static_cast<std::intmax_t>(posVal)); 106 } 107 return Scalar<T>{x.BTEST(posVal)}; 108 })); 109 }, 110 ix->u); 111 } 112 } else if (name == "isnan" || name == "__builtin_ieee_is_nan") { 113 // A warning about an invalid argument is discarded from converting 114 // the argument of isnan() / IEEE_IS_NAN(). 115 auto restorer{context.messages().DiscardMessages()}; 116 using DefaultReal = Type<TypeCategory::Real, 4>; 117 return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef), 118 ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) { 119 return Scalar<T>{x.IsNotANumber()}; 120 })); 121 } else if (name == "is_contiguous") { 122 if (args.at(0)) { 123 if (auto *expr{args[0]->UnwrapExpr()}) { 124 if (IsSimplyContiguous(*expr, context)) { 125 return Expr<T>{true}; 126 } 127 } 128 } 129 } else if (name == "lge" || name == "lgt" || name == "lle" || name == "llt") { 130 // Rewrite LGE/LGT/LLE/LLT into ASCII character relations 131 auto *cx0{UnwrapExpr<Expr<SomeCharacter>>(args[0])}; 132 auto *cx1{UnwrapExpr<Expr<SomeCharacter>>(args[1])}; 133 if (cx0 && cx1) { 134 return Fold(context, 135 ConvertToType<T>( 136 PackageRelation(name == "lge" ? RelationalOperator::GE 137 : name == "lgt" ? RelationalOperator::GT 138 : name == "lle" ? RelationalOperator::LE 139 : RelationalOperator::LT, 140 ConvertToType<Ascii>(std::move(*cx0)), 141 ConvertToType<Ascii>(std::move(*cx1))))); 142 } 143 } else if (name == "logical") { 144 if (auto *expr{UnwrapExpr<Expr<SomeLogical>>(args[0])}) { 145 return Fold(context, ConvertToType<T>(std::move(*expr))); 146 } 147 } else if (name == "merge") { 148 return FoldMerge<T>(context, std::move(funcRef)); 149 } else if (name == "__builtin_ieee_support_datatype" || 150 name == "__builtin_ieee_support_denormal" || 151 name == "__builtin_ieee_support_divide" || 152 name == "__builtin_ieee_support_divide" || 153 name == "__builtin_ieee_support_inf" || 154 name == "__builtin_ieee_support_io" || 155 name == "__builtin_ieee_support_nan" || 156 name == "__builtin_ieee_support_sqrt" || 157 name == "__builtin_ieee_support_standard" || 158 name == "__builtin_ieee_support_subnormal" || 159 name == "__builtin_ieee_support_underflow_control") { 160 return Expr<T>{true}; 161 } 162 // TODO: dot_product, is_iostat_end, 163 // is_iostat_eor, logical, matmul, out_of_range, 164 // parity, transfer 165 return Expr<T>{std::move(funcRef)}; 166 } 167 168 template <typename T> 169 Expr<LogicalResult> FoldOperation( 170 FoldingContext &context, Relational<T> &&relation) { 171 if (auto array{ApplyElementwise(context, relation, 172 std::function<Expr<LogicalResult>(Expr<T> &&, Expr<T> &&)>{ 173 [=](Expr<T> &&x, Expr<T> &&y) { 174 return Expr<LogicalResult>{Relational<SomeType>{ 175 Relational<T>{relation.opr, std::move(x), std::move(y)}}}; 176 }})}) { 177 return *array; 178 } 179 if (auto folded{OperandsAreConstants(relation)}) { 180 bool result{}; 181 if constexpr (T::category == TypeCategory::Integer) { 182 result = 183 Satisfies(relation.opr, folded->first.CompareSigned(folded->second)); 184 } else if constexpr (T::category == TypeCategory::Real) { 185 result = Satisfies(relation.opr, folded->first.Compare(folded->second)); 186 } else if constexpr (T::category == TypeCategory::Complex) { 187 result = (relation.opr == RelationalOperator::EQ) == 188 folded->first.Equals(folded->second); 189 } else if constexpr (T::category == TypeCategory::Character) { 190 result = Satisfies(relation.opr, Compare(folded->first, folded->second)); 191 } else { 192 static_assert(T::category != TypeCategory::Logical); 193 } 194 return Expr<LogicalResult>{Constant<LogicalResult>{result}}; 195 } 196 return Expr<LogicalResult>{Relational<SomeType>{std::move(relation)}}; 197 } 198 199 Expr<LogicalResult> FoldOperation( 200 FoldingContext &context, Relational<SomeType> &&relation) { 201 return std::visit( 202 [&](auto &&x) { 203 return Expr<LogicalResult>{FoldOperation(context, std::move(x))}; 204 }, 205 std::move(relation.u)); 206 } 207 208 template <int KIND> 209 Expr<Type<TypeCategory::Logical, KIND>> FoldOperation( 210 FoldingContext &context, Not<KIND> &&x) { 211 if (auto array{ApplyElementwise(context, x)}) { 212 return *array; 213 } 214 using Ty = Type<TypeCategory::Logical, KIND>; 215 auto &operand{x.left()}; 216 if (auto value{GetScalarConstantValue<Ty>(operand)}) { 217 return Expr<Ty>{Constant<Ty>{!value->IsTrue()}}; 218 } 219 return Expr<Ty>{x}; 220 } 221 222 template <int KIND> 223 Expr<Type<TypeCategory::Logical, KIND>> FoldOperation( 224 FoldingContext &context, LogicalOperation<KIND> &&operation) { 225 using LOGICAL = Type<TypeCategory::Logical, KIND>; 226 if (auto array{ApplyElementwise(context, operation, 227 std::function<Expr<LOGICAL>(Expr<LOGICAL> &&, Expr<LOGICAL> &&)>{ 228 [=](Expr<LOGICAL> &&x, Expr<LOGICAL> &&y) { 229 return Expr<LOGICAL>{LogicalOperation<KIND>{ 230 operation.logicalOperator, std::move(x), std::move(y)}}; 231 }})}) { 232 return *array; 233 } 234 if (auto folded{OperandsAreConstants(operation)}) { 235 bool xt{folded->first.IsTrue()}, yt{folded->second.IsTrue()}, result{}; 236 switch (operation.logicalOperator) { 237 case LogicalOperator::And: 238 result = xt && yt; 239 break; 240 case LogicalOperator::Or: 241 result = xt || yt; 242 break; 243 case LogicalOperator::Eqv: 244 result = xt == yt; 245 break; 246 case LogicalOperator::Neqv: 247 result = xt != yt; 248 break; 249 case LogicalOperator::Not: 250 DIE("not a binary operator"); 251 } 252 return Expr<LOGICAL>{Constant<LOGICAL>{result}}; 253 } 254 return Expr<LOGICAL>{std::move(operation)}; 255 } 256 257 #ifdef _MSC_VER // disable bogus warning about missing definitions 258 #pragma warning(disable : 4661) 259 #endif 260 FOR_EACH_LOGICAL_KIND(template class ExpressionBase, ) 261 template class ExpressionBase<SomeLogical>; 262 } // namespace Fortran::evaluate 263