1 //===-- lib/Evaluate/fold-logical.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "fold-implementation.h" 10 #include "fold-reduction.h" 11 #include "flang/Evaluate/check-expression.h" 12 13 namespace Fortran::evaluate { 14 15 // for ALL & ANY 16 template <typename T> 17 static Expr<T> FoldAllAny(FoldingContext &context, FunctionRef<T> &&ref, 18 Scalar<T> (Scalar<T>::*operation)(const Scalar<T> &) const, 19 Scalar<T> identity) { 20 static_assert(T::category == TypeCategory::Logical); 21 using Element = Scalar<T>; 22 std::optional<int> dim; 23 if (std::optional<Constant<T>> array{ 24 ProcessReductionArgs<T>(context, ref.arguments(), dim, identity, 25 /*ARRAY(MASK)=*/0, /*DIM=*/1)}) { 26 auto accumulator{[&](Element &element, const ConstantSubscripts &at) { 27 element = (element.*operation)(array->At(at)); 28 }}; 29 return Expr<T>{DoReduction<T>(*array, dim, identity, accumulator)}; 30 } 31 return Expr<T>{std::move(ref)}; 32 } 33 34 template <int KIND> 35 Expr<Type<TypeCategory::Logical, KIND>> FoldIntrinsicFunction( 36 FoldingContext &context, 37 FunctionRef<Type<TypeCategory::Logical, KIND>> &&funcRef) { 38 using T = Type<TypeCategory::Logical, KIND>; 39 ActualArguments &args{funcRef.arguments()}; 40 auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)}; 41 CHECK(intrinsic); 42 std::string name{intrinsic->name}; 43 using SameInt = Type<TypeCategory::Integer, KIND>; 44 if (name == "all") { 45 return FoldAllAny( 46 context, std::move(funcRef), &Scalar<T>::AND, Scalar<T>{true}); 47 } else if (name == "any") { 48 return FoldAllAny( 49 context, std::move(funcRef), &Scalar<T>::OR, Scalar<T>{false}); 50 } else if (name == "associated") { 51 bool gotConstant{true}; 52 const Expr<SomeType> *firstArgExpr{args[0]->UnwrapExpr()}; 53 if (!firstArgExpr || !IsNullPointer(*firstArgExpr)) { 54 gotConstant = false; 55 } else if (args[1]) { // There's a second argument 56 const Expr<SomeType> *secondArgExpr{args[1]->UnwrapExpr()}; 57 if (!secondArgExpr || !IsNullPointer(*secondArgExpr)) { 58 gotConstant = false; 59 } 60 } 61 return gotConstant ? Expr<T>{false} : Expr<T>{std::move(funcRef)}; 62 } else if (name == "bge" || name == "bgt" || name == "ble" || name == "blt") { 63 static_assert(std::is_same_v<Scalar<LargestInt>, BOZLiteralConstant>); 64 // Arguments do not have to be of the same integer type. Convert all 65 // arguments to the biggest integer type before comparing them to 66 // simplify. 67 for (int i{0}; i <= 1; ++i) { 68 if (auto *x{UnwrapExpr<Expr<SomeInteger>>(args[i])}) { 69 *args[i] = AsGenericExpr( 70 Fold(context, ConvertToType<LargestInt>(std::move(*x)))); 71 } else if (auto *x{UnwrapExpr<BOZLiteralConstant>(args[i])}) { 72 *args[i] = AsGenericExpr(Constant<LargestInt>{std::move(*x)}); 73 } 74 } 75 auto fptr{&Scalar<LargestInt>::BGE}; 76 if (name == "bge") { // done in fptr declaration 77 } else if (name == "bgt") { 78 fptr = &Scalar<LargestInt>::BGT; 79 } else if (name == "ble") { 80 fptr = &Scalar<LargestInt>::BLE; 81 } else if (name == "blt") { 82 fptr = &Scalar<LargestInt>::BLT; 83 } else { 84 common::die("missing case to fold intrinsic function %s", name.c_str()); 85 } 86 return FoldElementalIntrinsic<T, LargestInt, LargestInt>(context, 87 std::move(funcRef), 88 ScalarFunc<T, LargestInt, LargestInt>( 89 [&fptr](const Scalar<LargestInt> &i, const Scalar<LargestInt> &j) { 90 return Scalar<T>{std::invoke(fptr, i, j)}; 91 })); 92 } else if (name == "btest") { 93 if (const auto *ix{UnwrapExpr<Expr<SomeInteger>>(args[0])}) { 94 return std::visit( 95 [&](const auto &x) { 96 using IT = ResultType<decltype(x)>; 97 return FoldElementalIntrinsic<T, IT, SameInt>(context, 98 std::move(funcRef), 99 ScalarFunc<T, IT, SameInt>( 100 [&](const Scalar<IT> &x, const Scalar<SameInt> &pos) { 101 auto posVal{pos.ToInt64()}; 102 if (posVal < 0 || posVal >= x.bits) { 103 context.messages().Say( 104 "POS=%jd out of range for BTEST"_err_en_US, 105 static_cast<std::intmax_t>(posVal)); 106 } 107 return Scalar<T>{x.BTEST(posVal)}; 108 })); 109 }, 110 ix->u); 111 } 112 } else if (name == "isnan" || name == "__builtin_ieee_is_nan") { 113 // A warning about an invalid argument is discarded from converting 114 // the argument of isnan() / IEEE_IS_NAN(). 115 auto restorer{context.messages().DiscardMessages()}; 116 using DefaultReal = Type<TypeCategory::Real, 4>; 117 return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef), 118 ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) { 119 return Scalar<T>{x.IsNotANumber()}; 120 })); 121 } else if (name == "__builtin_ieee_is_negative") { 122 auto restorer{context.messages().DiscardMessages()}; 123 using DefaultReal = Type<TypeCategory::Real, 4>; 124 return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef), 125 ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) { 126 return Scalar<T>{x.IsNegative()}; 127 })); 128 } else if (name == "__builtin_ieee_is_normal") { 129 auto restorer{context.messages().DiscardMessages()}; 130 using DefaultReal = Type<TypeCategory::Real, 4>; 131 return FoldElementalIntrinsic<T, DefaultReal>(context, std::move(funcRef), 132 ScalarFunc<T, DefaultReal>([](const Scalar<DefaultReal> &x) { 133 return Scalar<T>{x.IsNormal()}; 134 })); 135 } else if (name == "is_contiguous") { 136 if (args.at(0)) { 137 if (auto *expr{args[0]->UnwrapExpr()}) { 138 if (IsSimplyContiguous(*expr, context)) { 139 return Expr<T>{true}; 140 } 141 } 142 } 143 } else if (name == "lge" || name == "lgt" || name == "lle" || name == "llt") { 144 // Rewrite LGE/LGT/LLE/LLT into ASCII character relations 145 auto *cx0{UnwrapExpr<Expr<SomeCharacter>>(args[0])}; 146 auto *cx1{UnwrapExpr<Expr<SomeCharacter>>(args[1])}; 147 if (cx0 && cx1) { 148 return Fold(context, 149 ConvertToType<T>( 150 PackageRelation(name == "lge" ? RelationalOperator::GE 151 : name == "lgt" ? RelationalOperator::GT 152 : name == "lle" ? RelationalOperator::LE 153 : RelationalOperator::LT, 154 ConvertToType<Ascii>(std::move(*cx0)), 155 ConvertToType<Ascii>(std::move(*cx1))))); 156 } 157 } else if (name == "logical") { 158 if (auto *expr{UnwrapExpr<Expr<SomeLogical>>(args[0])}) { 159 return Fold(context, ConvertToType<T>(std::move(*expr))); 160 } 161 } else if (name == "merge") { 162 return FoldMerge<T>(context, std::move(funcRef)); 163 } else if (name == "__builtin_ieee_support_datatype" || 164 name == "__builtin_ieee_support_denormal" || 165 name == "__builtin_ieee_support_divide" || 166 name == "__builtin_ieee_support_divide" || 167 name == "__builtin_ieee_support_inf" || 168 name == "__builtin_ieee_support_io" || 169 name == "__builtin_ieee_support_nan" || 170 name == "__builtin_ieee_support_sqrt" || 171 name == "__builtin_ieee_support_standard" || 172 name == "__builtin_ieee_support_subnormal" || 173 name == "__builtin_ieee_support_underflow_control") { 174 return Expr<T>{true}; 175 } 176 // TODO: dot_product, is_iostat_end, 177 // is_iostat_eor, logical, matmul, out_of_range, 178 // parity, transfer 179 return Expr<T>{std::move(funcRef)}; 180 } 181 182 template <typename T> 183 Expr<LogicalResult> FoldOperation( 184 FoldingContext &context, Relational<T> &&relation) { 185 if (auto array{ApplyElementwise(context, relation, 186 std::function<Expr<LogicalResult>(Expr<T> &&, Expr<T> &&)>{ 187 [=](Expr<T> &&x, Expr<T> &&y) { 188 return Expr<LogicalResult>{Relational<SomeType>{ 189 Relational<T>{relation.opr, std::move(x), std::move(y)}}}; 190 }})}) { 191 return *array; 192 } 193 if (auto folded{OperandsAreConstants(relation)}) { 194 bool result{}; 195 if constexpr (T::category == TypeCategory::Integer) { 196 result = 197 Satisfies(relation.opr, folded->first.CompareSigned(folded->second)); 198 } else if constexpr (T::category == TypeCategory::Real) { 199 result = Satisfies(relation.opr, folded->first.Compare(folded->second)); 200 } else if constexpr (T::category == TypeCategory::Complex) { 201 result = (relation.opr == RelationalOperator::EQ) == 202 folded->first.Equals(folded->second); 203 } else if constexpr (T::category == TypeCategory::Character) { 204 result = Satisfies(relation.opr, Compare(folded->first, folded->second)); 205 } else { 206 static_assert(T::category != TypeCategory::Logical); 207 } 208 return Expr<LogicalResult>{Constant<LogicalResult>{result}}; 209 } 210 return Expr<LogicalResult>{Relational<SomeType>{std::move(relation)}}; 211 } 212 213 Expr<LogicalResult> FoldOperation( 214 FoldingContext &context, Relational<SomeType> &&relation) { 215 return std::visit( 216 [&](auto &&x) { 217 return Expr<LogicalResult>{FoldOperation(context, std::move(x))}; 218 }, 219 std::move(relation.u)); 220 } 221 222 template <int KIND> 223 Expr<Type<TypeCategory::Logical, KIND>> FoldOperation( 224 FoldingContext &context, Not<KIND> &&x) { 225 if (auto array{ApplyElementwise(context, x)}) { 226 return *array; 227 } 228 using Ty = Type<TypeCategory::Logical, KIND>; 229 auto &operand{x.left()}; 230 if (auto value{GetScalarConstantValue<Ty>(operand)}) { 231 return Expr<Ty>{Constant<Ty>{!value->IsTrue()}}; 232 } 233 return Expr<Ty>{x}; 234 } 235 236 template <int KIND> 237 Expr<Type<TypeCategory::Logical, KIND>> FoldOperation( 238 FoldingContext &context, LogicalOperation<KIND> &&operation) { 239 using LOGICAL = Type<TypeCategory::Logical, KIND>; 240 if (auto array{ApplyElementwise(context, operation, 241 std::function<Expr<LOGICAL>(Expr<LOGICAL> &&, Expr<LOGICAL> &&)>{ 242 [=](Expr<LOGICAL> &&x, Expr<LOGICAL> &&y) { 243 return Expr<LOGICAL>{LogicalOperation<KIND>{ 244 operation.logicalOperator, std::move(x), std::move(y)}}; 245 }})}) { 246 return *array; 247 } 248 if (auto folded{OperandsAreConstants(operation)}) { 249 bool xt{folded->first.IsTrue()}, yt{folded->second.IsTrue()}, result{}; 250 switch (operation.logicalOperator) { 251 case LogicalOperator::And: 252 result = xt && yt; 253 break; 254 case LogicalOperator::Or: 255 result = xt || yt; 256 break; 257 case LogicalOperator::Eqv: 258 result = xt == yt; 259 break; 260 case LogicalOperator::Neqv: 261 result = xt != yt; 262 break; 263 case LogicalOperator::Not: 264 DIE("not a binary operator"); 265 } 266 return Expr<LOGICAL>{Constant<LOGICAL>{result}}; 267 } 268 return Expr<LOGICAL>{std::move(operation)}; 269 } 270 271 #ifdef _MSC_VER // disable bogus warning about missing definitions 272 #pragma warning(disable : 4661) 273 #endif 274 FOR_EACH_LOGICAL_KIND(template class ExpressionBase, ) 275 template class ExpressionBase<SomeLogical>; 276 } // namespace Fortran::evaluate 277