1 //===-- lib/Evaluate/fold-logical.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "fold-implementation.h" 10 #include "flang/Evaluate/check-expression.h" 11 12 namespace Fortran::evaluate { 13 14 template <int KIND> 15 Expr<Type<TypeCategory::Logical, KIND>> FoldIntrinsicFunction( 16 FoldingContext &context, 17 FunctionRef<Type<TypeCategory::Logical, KIND>> &&funcRef) { 18 using T = Type<TypeCategory::Logical, KIND>; 19 ActualArguments &args{funcRef.arguments()}; 20 auto *intrinsic{std::get_if<SpecificIntrinsic>(&funcRef.proc().u)}; 21 CHECK(intrinsic); 22 std::string name{intrinsic->name}; 23 if (name == "all") { 24 if (!args[1]) { // TODO: ALL(x,DIM=d) 25 if (const auto *constant{UnwrapConstantValue<T>(args[0])}) { 26 bool result{true}; 27 for (const auto &element : constant->values()) { 28 if (!element.IsTrue()) { 29 result = false; 30 break; 31 } 32 } 33 return Expr<T>{result}; 34 } 35 } 36 } else if (name == "any") { 37 if (!args[1]) { // TODO: ANY(x,DIM=d) 38 if (const auto *constant{UnwrapConstantValue<T>(args[0])}) { 39 bool result{false}; 40 for (const auto &element : constant->values()) { 41 if (element.IsTrue()) { 42 result = true; 43 break; 44 } 45 } 46 return Expr<T>{result}; 47 } 48 } 49 } else if (name == "bge" || name == "bgt" || name == "ble" || name == "blt") { 50 using LargestInt = Type<TypeCategory::Integer, 16>; 51 static_assert(std::is_same_v<Scalar<LargestInt>, BOZLiteralConstant>); 52 // Arguments do not have to be of the same integer type. Convert all 53 // arguments to the biggest integer type before comparing them to 54 // simplify. 55 for (int i{0}; i <= 1; ++i) { 56 if (auto *x{UnwrapExpr<Expr<SomeInteger>>(args[i])}) { 57 *args[i] = AsGenericExpr( 58 Fold(context, ConvertToType<LargestInt>(std::move(*x)))); 59 } else if (auto *x{UnwrapExpr<BOZLiteralConstant>(args[i])}) { 60 *args[i] = AsGenericExpr(Constant<LargestInt>{std::move(*x)}); 61 } 62 } 63 auto fptr{&Scalar<LargestInt>::BGE}; 64 if (name == "bge") { // done in fptr declaration 65 } else if (name == "bgt") { 66 fptr = &Scalar<LargestInt>::BGT; 67 } else if (name == "ble") { 68 fptr = &Scalar<LargestInt>::BLE; 69 } else if (name == "blt") { 70 fptr = &Scalar<LargestInt>::BLT; 71 } else { 72 common::die("missing case to fold intrinsic function %s", name.c_str()); 73 } 74 return FoldElementalIntrinsic<T, LargestInt, LargestInt>(context, 75 std::move(funcRef), 76 ScalarFunc<T, LargestInt, LargestInt>( 77 [&fptr](const Scalar<LargestInt> &i, const Scalar<LargestInt> &j) { 78 return Scalar<T>{std::invoke(fptr, i, j)}; 79 })); 80 } else if (name == "is_contiguous") { 81 if (args.at(0)) { 82 if (auto *expr{args[0]->UnwrapExpr()}) { 83 if (IsSimplyContiguous(*expr, context.intrinsics())) { 84 return Expr<T>{true}; 85 } 86 } 87 } 88 } else if (name == "merge") { 89 return FoldMerge<T>(context, std::move(funcRef)); 90 } 91 // TODO: btest, cshift, dot_product, eoshift, is_iostat_end, 92 // is_iostat_eor, lge, lgt, lle, llt, logical, matmul, out_of_range, 93 // pack, parity, reduce, spread, transfer, transpose, unpack, 94 // extends_type_of, same_type_as 95 return Expr<T>{std::move(funcRef)}; 96 } 97 98 template <typename T> 99 Expr<LogicalResult> FoldOperation( 100 FoldingContext &context, Relational<T> &&relation) { 101 if (auto array{ApplyElementwise(context, relation, 102 std::function<Expr<LogicalResult>(Expr<T> &&, Expr<T> &&)>{ 103 [=](Expr<T> &&x, Expr<T> &&y) { 104 return Expr<LogicalResult>{Relational<SomeType>{ 105 Relational<T>{relation.opr, std::move(x), std::move(y)}}}; 106 }})}) { 107 return *array; 108 } 109 if (auto folded{OperandsAreConstants(relation)}) { 110 bool result{}; 111 if constexpr (T::category == TypeCategory::Integer) { 112 result = 113 Satisfies(relation.opr, folded->first.CompareSigned(folded->second)); 114 } else if constexpr (T::category == TypeCategory::Real) { 115 result = Satisfies(relation.opr, folded->first.Compare(folded->second)); 116 } else if constexpr (T::category == TypeCategory::Character) { 117 result = Satisfies(relation.opr, Compare(folded->first, folded->second)); 118 } else { 119 static_assert(T::category != TypeCategory::Complex && 120 T::category != TypeCategory::Logical); 121 } 122 return Expr<LogicalResult>{Constant<LogicalResult>{result}}; 123 } 124 return Expr<LogicalResult>{Relational<SomeType>{std::move(relation)}}; 125 } 126 127 Expr<LogicalResult> FoldOperation( 128 FoldingContext &context, Relational<SomeType> &&relation) { 129 return std::visit( 130 [&](auto &&x) { 131 return Expr<LogicalResult>{FoldOperation(context, std::move(x))}; 132 }, 133 std::move(relation.u)); 134 } 135 136 template <int KIND> 137 Expr<Type<TypeCategory::Logical, KIND>> FoldOperation( 138 FoldingContext &context, Not<KIND> &&x) { 139 if (auto array{ApplyElementwise(context, x)}) { 140 return *array; 141 } 142 using Ty = Type<TypeCategory::Logical, KIND>; 143 auto &operand{x.left()}; 144 if (auto value{GetScalarConstantValue<Ty>(operand)}) { 145 return Expr<Ty>{Constant<Ty>{!value->IsTrue()}}; 146 } 147 return Expr<Ty>{x}; 148 } 149 150 template <int KIND> 151 Expr<Type<TypeCategory::Logical, KIND>> FoldOperation( 152 FoldingContext &context, LogicalOperation<KIND> &&operation) { 153 using LOGICAL = Type<TypeCategory::Logical, KIND>; 154 if (auto array{ApplyElementwise(context, operation, 155 std::function<Expr<LOGICAL>(Expr<LOGICAL> &&, Expr<LOGICAL> &&)>{ 156 [=](Expr<LOGICAL> &&x, Expr<LOGICAL> &&y) { 157 return Expr<LOGICAL>{LogicalOperation<KIND>{ 158 operation.logicalOperator, std::move(x), std::move(y)}}; 159 }})}) { 160 return *array; 161 } 162 if (auto folded{OperandsAreConstants(operation)}) { 163 bool xt{folded->first.IsTrue()}, yt{folded->second.IsTrue()}, result{}; 164 switch (operation.logicalOperator) { 165 case LogicalOperator::And: 166 result = xt && yt; 167 break; 168 case LogicalOperator::Or: 169 result = xt || yt; 170 break; 171 case LogicalOperator::Eqv: 172 result = xt == yt; 173 break; 174 case LogicalOperator::Neqv: 175 result = xt != yt; 176 break; 177 case LogicalOperator::Not: 178 DIE("not a binary operator"); 179 } 180 return Expr<LOGICAL>{Constant<LOGICAL>{result}}; 181 } 182 return Expr<LOGICAL>{std::move(operation)}; 183 } 184 185 FOR_EACH_LOGICAL_KIND(template class ExpressionBase, ) 186 template class ExpressionBase<SomeLogical>; 187 } // namespace Fortran::evaluate 188