xref: /llvm-project/flang/lib/Evaluate/check-expression.cpp (revision dfecbcae0d6434fa1daafe66ba5d90f816d4268b)
1 //===-- lib/Evaluate/check-expression.cpp ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "flang/Evaluate/check-expression.h"
10 #include "flang/Evaluate/characteristics.h"
11 #include "flang/Evaluate/intrinsics.h"
12 #include "flang/Evaluate/traverse.h"
13 #include "flang/Evaluate/type.h"
14 #include "flang/Semantics/symbol.h"
15 #include "flang/Semantics/tools.h"
16 #include <set>
17 #include <string>
18 
19 namespace Fortran::evaluate {
20 
21 // Constant expression predicate IsConstantExpr().
22 // This code determines whether an expression is a "constant expression"
23 // in the sense of section 10.1.12.  This is not the same thing as being
24 // able to fold it (yet) into a known constant value; specifically,
25 // the expression may reference derived type kind parameters whose values
26 // are not yet known.
27 class IsConstantExprHelper : public AllTraverse<IsConstantExprHelper, true> {
28 public:
29   using Base = AllTraverse<IsConstantExprHelper, true>;
30   IsConstantExprHelper() : Base{*this} {}
31   using Base::operator();
32 
33   // A missing expression is not considered to be constant.
34   template <typename A> bool operator()(const std::optional<A> &x) const {
35     return x && (*this)(*x);
36   }
37 
38   bool operator()(const TypeParamInquiry &inq) const {
39     return semantics::IsKindTypeParameter(inq.parameter());
40   }
41   bool operator()(const semantics::Symbol &symbol) const {
42     const auto &ultimate{GetAssociationRoot(symbol)};
43     return IsNamedConstant(ultimate) || IsImpliedDoIndex(ultimate) ||
44         IsInitialProcedureTarget(ultimate);
45   }
46   bool operator()(const CoarrayRef &) const { return false; }
47   bool operator()(const semantics::ParamValue &param) const {
48     return param.isExplicit() && (*this)(param.GetExplicit());
49   }
50   bool operator()(const ProcedureRef &) const;
51   bool operator()(const StructureConstructor &constructor) const {
52     for (const auto &[symRef, expr] : constructor) {
53       if (!IsConstantStructureConstructorComponent(*symRef, expr.value())) {
54         return false;
55       }
56     }
57     return true;
58   }
59   bool operator()(const Component &component) const {
60     return (*this)(component.base());
61   }
62   // Forbid integer division by zero in constants.
63   template <int KIND>
64   bool operator()(
65       const Divide<Type<TypeCategory::Integer, KIND>> &division) const {
66     using T = Type<TypeCategory::Integer, KIND>;
67     if (const auto divisor{GetScalarConstantValue<T>(division.right())}) {
68       return !divisor->IsZero() && (*this)(division.left());
69     } else {
70       return false;
71     }
72   }
73 
74   bool operator()(const Constant<SomeDerived> &) const { return true; }
75   bool operator()(const DescriptorInquiry &) const { return false; }
76 
77 private:
78   bool IsConstantStructureConstructorComponent(
79       const Symbol &, const Expr<SomeType> &) const;
80   bool IsConstantExprShape(const Shape &) const;
81 };
82 
83 bool IsConstantExprHelper::IsConstantStructureConstructorComponent(
84     const Symbol &component, const Expr<SomeType> &expr) const {
85   if (IsAllocatable(component)) {
86     return IsNullPointer(expr);
87   } else if (IsPointer(component)) {
88     return IsNullPointer(expr) || IsInitialDataTarget(expr) ||
89         IsInitialProcedureTarget(expr);
90   } else {
91     return (*this)(expr);
92   }
93 }
94 
95 bool IsConstantExprHelper::operator()(const ProcedureRef &call) const {
96   // LBOUND, UBOUND, and SIZE with DIM= arguments will have been reritten
97   // into DescriptorInquiry operations.
98   if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&call.proc().u)}) {
99     if (intrinsic->name == "kind" ||
100         intrinsic->name == IntrinsicProcTable::InvalidName) {
101       // kind is always a constant, and we avoid cascading errors by considering
102       // invalid calls to intrinsics to be constant
103       return true;
104     } else if (intrinsic->name == "lbound" && call.arguments().size() == 1) {
105       // LBOUND(x) without DIM=
106       auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())};
107       return base && IsConstantExprShape(GetLowerBounds(*base));
108     } else if (intrinsic->name == "ubound" && call.arguments().size() == 1) {
109       // UBOUND(x) without DIM=
110       auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())};
111       return base && IsConstantExprShape(GetUpperBounds(*base));
112     } else if (intrinsic->name == "shape") {
113       auto shape{GetShape(call.arguments()[0]->UnwrapExpr())};
114       return shape && IsConstantExprShape(*shape);
115     } else if (intrinsic->name == "size" && call.arguments().size() == 1) {
116       // SIZE(x) without DIM
117       auto shape{GetShape(call.arguments()[0]->UnwrapExpr())};
118       return shape && IsConstantExprShape(*shape);
119     }
120     // TODO: STORAGE_SIZE
121   }
122   return false;
123 }
124 
125 bool IsConstantExprHelper::IsConstantExprShape(const Shape &shape) const {
126   for (const auto &extent : shape) {
127     if (!(*this)(extent)) {
128       return false;
129     }
130   }
131   return true;
132 }
133 
134 template <typename A> bool IsConstantExpr(const A &x) {
135   return IsConstantExprHelper{}(x);
136 }
137 template bool IsConstantExpr(const Expr<SomeType> &);
138 template bool IsConstantExpr(const Expr<SomeInteger> &);
139 template bool IsConstantExpr(const Expr<SubscriptInteger> &);
140 template bool IsConstantExpr(const StructureConstructor &);
141 
142 // IsActuallyConstant()
143 struct IsActuallyConstantHelper {
144   template <typename A> bool operator()(const A &) { return false; }
145   template <typename T> bool operator()(const Constant<T> &) { return true; }
146   template <typename T> bool operator()(const Parentheses<T> &x) {
147     return (*this)(x.left());
148   }
149   template <typename T> bool operator()(const Expr<T> &x) {
150     return std::visit([=](const auto &y) { return (*this)(y); }, x.u);
151   }
152   template <typename A> bool operator()(const A *x) { return x && (*this)(*x); }
153   template <typename A> bool operator()(const std::optional<A> &x) {
154     return x && (*this)(*x);
155   }
156 };
157 
158 template <typename A> bool IsActuallyConstant(const A &x) {
159   return IsActuallyConstantHelper{}(x);
160 }
161 
162 template bool IsActuallyConstant(const Expr<SomeType> &);
163 
164 // Object pointer initialization checking predicate IsInitialDataTarget().
165 // This code determines whether an expression is allowable as the static
166 // data address used to initialize a pointer with "=> x".  See C765.
167 class IsInitialDataTargetHelper
168     : public AllTraverse<IsInitialDataTargetHelper, true> {
169 public:
170   using Base = AllTraverse<IsInitialDataTargetHelper, true>;
171   using Base::operator();
172   explicit IsInitialDataTargetHelper(parser::ContextualMessages *m)
173       : Base{*this}, messages_{m} {}
174 
175   bool emittedMessage() const { return emittedMessage_; }
176 
177   bool operator()(const BOZLiteralConstant &) const { return false; }
178   bool operator()(const NullPointer &) const { return true; }
179   template <typename T> bool operator()(const Constant<T> &) const {
180     return false;
181   }
182   bool operator()(const semantics::Symbol &symbol) {
183     // This function checks only base symbols, not components.
184     const Symbol &ultimate{symbol.GetUltimate()};
185     if (const auto *assoc{
186             ultimate.detailsIf<semantics::AssocEntityDetails>()}) {
187       if (const auto &expr{assoc->expr()}) {
188         if (IsVariable(*expr)) {
189           return (*this)(*expr);
190         } else if (messages_) {
191           messages_->Say(
192               "An initial data target may not be an associated expression ('%s')"_err_en_US,
193               ultimate.name());
194           emittedMessage_ = true;
195         }
196       }
197       return false;
198     } else if (!ultimate.attrs().test(semantics::Attr::TARGET)) {
199       if (messages_) {
200         messages_->Say(
201             "An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US,
202             ultimate.name());
203         emittedMessage_ = true;
204       }
205       return false;
206     } else if (!IsSaved(ultimate)) {
207       if (messages_) {
208         messages_->Say(
209             "An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US,
210             ultimate.name());
211         emittedMessage_ = true;
212       }
213       return false;
214     } else {
215       return CheckVarOrComponent(ultimate);
216     }
217   }
218   bool operator()(const StaticDataObject &) const { return false; }
219   bool operator()(const TypeParamInquiry &) const { return false; }
220   bool operator()(const Triplet &x) const {
221     return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) &&
222         IsConstantExpr(x.stride());
223   }
224   bool operator()(const Subscript &x) const {
225     return std::visit(common::visitors{
226                           [&](const Triplet &t) { return (*this)(t); },
227                           [&](const auto &y) {
228                             return y.value().Rank() == 0 &&
229                                 IsConstantExpr(y.value());
230                           },
231                       },
232         x.u);
233   }
234   bool operator()(const CoarrayRef &) const { return false; }
235   bool operator()(const Component &x) {
236     return CheckVarOrComponent(x.GetLastSymbol()) && (*this)(x.base());
237   }
238   bool operator()(const Substring &x) const {
239     return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) &&
240         (*this)(x.parent());
241   }
242   bool operator()(const DescriptorInquiry &) const { return false; }
243   template <typename T> bool operator()(const ArrayConstructor<T> &) const {
244     return false;
245   }
246   bool operator()(const StructureConstructor &) const { return false; }
247   template <typename T> bool operator()(const FunctionRef<T> &) {
248     return false;
249   }
250   template <typename D, typename R, typename... O>
251   bool operator()(const Operation<D, R, O...> &) const {
252     return false;
253   }
254   template <typename T> bool operator()(const Parentheses<T> &x) const {
255     return (*this)(x.left());
256   }
257   template <typename T> bool operator()(const FunctionRef<T> &x) const {
258     return false;
259   }
260   bool operator()(const Relational<SomeType> &) const { return false; }
261 
262 private:
263   bool CheckVarOrComponent(const semantics::Symbol &symbol) {
264     const Symbol &ultimate{symbol.GetUltimate()};
265     if (IsAllocatable(ultimate)) {
266       if (messages_) {
267         messages_->Say(
268             "An initial data target may not be a reference to an ALLOCATABLE '%s'"_err_en_US,
269             ultimate.name());
270         emittedMessage_ = true;
271       }
272       return false;
273     } else if (ultimate.Corank() > 0) {
274       if (messages_) {
275         messages_->Say(
276             "An initial data target may not be a reference to a coarray '%s'"_err_en_US,
277             ultimate.name());
278         emittedMessage_ = true;
279       }
280       return false;
281     }
282     return true;
283   }
284 
285   parser::ContextualMessages *messages_;
286   bool emittedMessage_{false};
287 };
288 
289 bool IsInitialDataTarget(
290     const Expr<SomeType> &x, parser::ContextualMessages *messages) {
291   IsInitialDataTargetHelper helper{messages};
292   bool result{helper(x)};
293   if (!result && messages && !helper.emittedMessage()) {
294     messages->Say(
295         "An initial data target must be a designator with constant subscripts"_err_en_US);
296   }
297   return result;
298 }
299 
300 bool IsInitialProcedureTarget(const semantics::Symbol &symbol) {
301   const auto &ultimate{symbol.GetUltimate()};
302   return std::visit(
303       common::visitors{
304           [](const semantics::SubprogramDetails &) { return true; },
305           [](const semantics::SubprogramNameDetails &) { return true; },
306           [&](const semantics::ProcEntityDetails &proc) {
307             return !semantics::IsPointer(ultimate) && !proc.isDummy();
308           },
309           [](const auto &) { return false; },
310       },
311       ultimate.details());
312 }
313 
314 bool IsInitialProcedureTarget(const ProcedureDesignator &proc) {
315   if (const auto *intrin{proc.GetSpecificIntrinsic()}) {
316     return !intrin->isRestrictedSpecific;
317   } else if (proc.GetComponent()) {
318     return false;
319   } else {
320     return IsInitialProcedureTarget(DEREF(proc.GetSymbol()));
321   }
322 }
323 
324 bool IsInitialProcedureTarget(const Expr<SomeType> &expr) {
325   if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) {
326     return IsInitialProcedureTarget(*proc);
327   } else {
328     return IsNullPointer(expr);
329   }
330 }
331 
332 class ArrayConstantBoundChanger {
333 public:
334   ArrayConstantBoundChanger(ConstantSubscripts &&lbounds)
335       : lbounds_{std::move(lbounds)} {}
336 
337   template <typename A> A ChangeLbounds(A &&x) const {
338     return std::move(x); // default case
339   }
340   template <typename T> Constant<T> ChangeLbounds(Constant<T> &&x) {
341     x.set_lbounds(std::move(lbounds_));
342     return std::move(x);
343   }
344   template <typename T> Expr<T> ChangeLbounds(Parentheses<T> &&x) {
345     return ChangeLbounds(
346         std::move(x.left())); // Constant<> can be parenthesized
347   }
348   template <typename T> Expr<T> ChangeLbounds(Expr<T> &&x) {
349     return std::visit(
350         [&](auto &&x) { return Expr<T>{ChangeLbounds(std::move(x))}; },
351         std::move(x.u)); // recurse until we hit a constant
352   }
353 
354 private:
355   ConstantSubscripts &&lbounds_;
356 };
357 
358 // Converts, folds, and then checks type, rank, and shape of an
359 // initialization expression for a named constant, a non-pointer
360 // variable static initializatio, a component default initializer,
361 // a type parameter default value, or instantiated type parameter value.
362 std::optional<Expr<SomeType>> NonPointerInitializationExpr(const Symbol &symbol,
363     Expr<SomeType> &&x, FoldingContext &context,
364     const semantics::Scope *instantiation) {
365   CHECK(!IsPointer(symbol));
366   if (auto symTS{
367           characteristics::TypeAndShape::Characterize(symbol, context)}) {
368     auto xType{x.GetType()};
369     if (auto converted{ConvertToType(symTS->type(), std::move(x))}) {
370       auto folded{Fold(context, std::move(*converted))};
371       if (IsActuallyConstant(folded)) {
372         int symRank{GetRank(symTS->shape())};
373         if (IsImpliedShape(symbol)) {
374           if (folded.Rank() == symRank) {
375             return {std::move(folded)};
376           } else {
377             context.messages().Say(
378                 "Implied-shape parameter '%s' has rank %d but its initializer has rank %d"_err_en_US,
379                 symbol.name(), symRank, folded.Rank());
380           }
381         } else if (auto extents{AsConstantExtents(context, symTS->shape())}) {
382           if (folded.Rank() == 0 && symRank == 0) {
383             // symbol and constant are both scalars
384             return {std::move(folded)};
385           } else if (folded.Rank() == 0 && symRank > 0) {
386             // expand the scalar constant to an array
387             return ScalarConstantExpander{std::move(*extents),
388                 AsConstantExtents(
389                     context, GetLowerBounds(context, NamedEntity{symbol}))}
390                 .Expand(std::move(folded));
391           } else if (auto resultShape{GetShape(context, folded)}) {
392             if (CheckConformance(context.messages(), symTS->shape(),
393                     *resultShape, CheckConformanceFlags::None,
394                     "initialized object", "initialization expression")
395                     .value_or(false /*fail if not known now to conform*/)) {
396               // make a constant array with adjusted lower bounds
397               return ArrayConstantBoundChanger{
398                   std::move(*AsConstantExtents(
399                       context, GetLowerBounds(context, NamedEntity{symbol})))}
400                   .ChangeLbounds(std::move(folded));
401             }
402           }
403         } else if (IsNamedConstant(symbol)) {
404           if (IsExplicitShape(symbol)) {
405             context.messages().Say(
406                 "Named constant '%s' array must have constant shape"_err_en_US,
407                 symbol.name());
408           } else {
409             // Declaration checking handles other cases
410           }
411         } else {
412           context.messages().Say(
413               "Shape of initialized object '%s' must be constant"_err_en_US,
414               symbol.name());
415         }
416       } else if (IsErrorExpr(folded)) {
417       } else if (IsLenTypeParameter(symbol)) {
418         return {std::move(folded)};
419       } else if (IsKindTypeParameter(symbol)) {
420         if (instantiation) {
421           context.messages().Say(
422               "Value of kind type parameter '%s' (%s) must be a scalar INTEGER constant"_err_en_US,
423               symbol.name(), folded.AsFortran());
424         } else {
425           return {std::move(folded)};
426         }
427       } else if (IsNamedConstant(symbol)) {
428         context.messages().Say(
429             "Value of named constant '%s' (%s) cannot be computed as a constant value"_err_en_US,
430             symbol.name(), folded.AsFortran());
431       } else {
432         context.messages().Say(
433             "Initialization expression for '%s' (%s) cannot be computed as a constant value"_err_en_US,
434             symbol.name(), folded.AsFortran());
435       }
436     } else if (xType) {
437       context.messages().Say(
438           "Initialization expression cannot be converted to declared type of '%s' from %s"_err_en_US,
439           symbol.name(), xType->AsFortran());
440     } else {
441       context.messages().Say(
442           "Initialization expression cannot be converted to declared type of '%s'"_err_en_US,
443           symbol.name());
444     }
445   }
446   return std::nullopt;
447 }
448 
449 // Specification expression validation (10.1.11(2), C1010)
450 class CheckSpecificationExprHelper
451     : public AnyTraverse<CheckSpecificationExprHelper,
452           std::optional<std::string>> {
453 public:
454   using Result = std::optional<std::string>;
455   using Base = AnyTraverse<CheckSpecificationExprHelper, Result>;
456   explicit CheckSpecificationExprHelper(
457       const semantics::Scope &s, FoldingContext &context)
458       : Base{*this}, scope_{s}, context_{context} {}
459   using Base::operator();
460 
461   Result operator()(const ProcedureDesignator &) const {
462     return "dummy procedure argument";
463   }
464   Result operator()(const CoarrayRef &) const { return "coindexed reference"; }
465 
466   Result operator()(const semantics::Symbol &symbol) const {
467     const auto &ultimate{symbol.GetUltimate()};
468     if (const auto *assoc{
469             ultimate.detailsIf<semantics::AssocEntityDetails>()}) {
470       return (*this)(assoc->expr());
471     } else if (semantics::IsNamedConstant(ultimate) ||
472         ultimate.owner().IsModule() || ultimate.owner().IsSubmodule()) {
473       return std::nullopt;
474     } else if (scope_.IsDerivedType() &&
475         IsVariableName(ultimate)) { // C750, C754
476       return "derived type component or type parameter value not allowed to "
477              "reference variable '"s +
478           ultimate.name().ToString() + "'";
479     } else if (IsDummy(ultimate)) {
480       if (ultimate.attrs().test(semantics::Attr::OPTIONAL)) {
481         return "reference to OPTIONAL dummy argument '"s +
482             ultimate.name().ToString() + "'";
483       } else if (ultimate.attrs().test(semantics::Attr::INTENT_OUT)) {
484         return "reference to INTENT(OUT) dummy argument '"s +
485             ultimate.name().ToString() + "'";
486       } else if (ultimate.has<semantics::ObjectEntityDetails>()) {
487         return std::nullopt;
488       } else {
489         return "dummy procedure argument";
490       }
491     } else if (const auto *object{
492                    ultimate.detailsIf<semantics::ObjectEntityDetails>()}) {
493       if (object->commonBlock()) {
494         return std::nullopt;
495       }
496     }
497     for (const semantics::Scope *s{&scope_}; !s->IsGlobal();) {
498       s = &s->parent();
499       if (s == &ultimate.owner()) {
500         return std::nullopt;
501       }
502     }
503     return "reference to local entity '"s + ultimate.name().ToString() + "'";
504   }
505 
506   Result operator()(const Component &x) const {
507     // Don't look at the component symbol.
508     return (*this)(x.base());
509   }
510   Result operator()(const DescriptorInquiry &) const {
511     // Subtle: Uses of SIZE(), LBOUND(), &c. that are valid in specification
512     // expressions will have been converted to expressions over descriptor
513     // inquiries by Fold().
514     return std::nullopt;
515   }
516 
517   Result operator()(const TypeParamInquiry &inq) const {
518     if (scope_.IsDerivedType() && !IsConstantExpr(inq) &&
519         inq.base() /* X%T, not local T */) { // C750, C754
520       return "non-constant reference to a type parameter inquiry not "
521              "allowed for derived type components or type parameter values";
522     }
523     return std::nullopt;
524   }
525 
526   template <typename T> Result operator()(const FunctionRef<T> &x) const {
527     if (const auto *symbol{x.proc().GetSymbol()}) {
528       const Symbol &ultimate{symbol->GetUltimate()};
529       if (!semantics::IsPureProcedure(ultimate)) {
530         return "reference to impure function '"s + ultimate.name().ToString() +
531             "'";
532       }
533       if (semantics::IsStmtFunction(ultimate)) {
534         return "reference to statement function '"s +
535             ultimate.name().ToString() + "'";
536       }
537       if (scope_.IsDerivedType()) { // C750, C754
538         return "reference to function '"s + ultimate.name().ToString() +
539             "' not allowed for derived type components or type parameter"
540             " values";
541       }
542       // TODO: other checks for standard module procedures
543     } else {
544       const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())};
545       if (scope_.IsDerivedType()) { // C750, C754
546         if ((context_.intrinsics().IsIntrinsic(intrin.name) &&
547                 badIntrinsicsForComponents_.find(intrin.name) !=
548                     badIntrinsicsForComponents_.end()) ||
549             IsProhibitedFunction(intrin.name)) {
550           return "reference to intrinsic '"s + intrin.name +
551               "' not allowed for derived type components or type parameter"
552               " values";
553         }
554         if (context_.intrinsics().GetIntrinsicClass(intrin.name) ==
555                 IntrinsicClass::inquiryFunction &&
556             !IsConstantExpr(x)) {
557           return "non-constant reference to inquiry intrinsic '"s +
558               intrin.name +
559               "' not allowed for derived type components or type"
560               " parameter values";
561         }
562       } else if (intrin.name == "present") {
563         return std::nullopt; // no need to check argument(s)
564       }
565       if (IsConstantExpr(x)) {
566         // inquiry functions may not need to check argument(s)
567         return std::nullopt;
568       }
569     }
570     return (*this)(x.arguments());
571   }
572 
573 private:
574   const semantics::Scope &scope_;
575   FoldingContext &context_;
576   const std::set<std::string> badIntrinsicsForComponents_{
577       "allocated", "associated", "extends_type_of", "present", "same_type_as"};
578   static bool IsProhibitedFunction(std::string name) { return false; }
579 };
580 
581 template <typename A>
582 void CheckSpecificationExpr(
583     const A &x, const semantics::Scope &scope, FoldingContext &context) {
584   if (auto why{CheckSpecificationExprHelper{scope, context}(x)}) {
585     context.messages().Say(
586         "Invalid specification expression: %s"_err_en_US, *why);
587   }
588 }
589 
590 template void CheckSpecificationExpr(
591     const Expr<SomeType> &, const semantics::Scope &, FoldingContext &);
592 template void CheckSpecificationExpr(
593     const Expr<SomeInteger> &, const semantics::Scope &, FoldingContext &);
594 template void CheckSpecificationExpr(
595     const Expr<SubscriptInteger> &, const semantics::Scope &, FoldingContext &);
596 template void CheckSpecificationExpr(const std::optional<Expr<SomeType>> &,
597     const semantics::Scope &, FoldingContext &);
598 template void CheckSpecificationExpr(const std::optional<Expr<SomeInteger>> &,
599     const semantics::Scope &, FoldingContext &);
600 template void CheckSpecificationExpr(
601     const std::optional<Expr<SubscriptInteger>> &, const semantics::Scope &,
602     FoldingContext &);
603 
604 // IsSimplyContiguous() -- 9.5.4
605 class IsSimplyContiguousHelper
606     : public AnyTraverse<IsSimplyContiguousHelper, std::optional<bool>> {
607 public:
608   using Result = std::optional<bool>; // tri-state
609   using Base = AnyTraverse<IsSimplyContiguousHelper, Result>;
610   explicit IsSimplyContiguousHelper(FoldingContext &c)
611       : Base{*this}, context_{c} {}
612   using Base::operator();
613 
614   Result operator()(const semantics::Symbol &symbol) const {
615     const auto &ultimate{symbol.GetUltimate()};
616     if (ultimate.attrs().test(semantics::Attr::CONTIGUOUS) ||
617         ultimate.Rank() == 0) {
618       return true;
619     } else if (semantics::IsPointer(ultimate)) {
620       return false;
621     } else if (const auto *details{
622                    ultimate.detailsIf<semantics::ObjectEntityDetails>()}) {
623       // N.B. ALLOCATABLEs are deferred shape, not assumed, and
624       // are obviously contiguous.
625       return !details->IsAssumedShape() && !details->IsAssumedRank();
626     } else if (auto assoc{Base::operator()(ultimate)}) {
627       return assoc;
628     } else {
629       return false;
630     }
631   }
632 
633   Result operator()(const ArrayRef &x) const {
634     const auto &symbol{x.GetLastSymbol()};
635     if (!(*this)(symbol)) {
636       return false;
637     } else if (auto rank{CheckSubscripts(x.subscript())}) {
638       // a(:)%b(1,1) is not contiguous; a(1)%b(:,:) is
639       return *rank > 0 || x.Rank() == 0;
640     } else {
641       return false;
642     }
643   }
644   Result operator()(const CoarrayRef &x) const {
645     return CheckSubscripts(x.subscript()).has_value();
646   }
647   Result operator()(const Component &x) const {
648     return x.base().Rank() == 0 && (*this)(x.GetLastSymbol());
649   }
650   Result operator()(const ComplexPart &) const { return false; }
651   Result operator()(const Substring &) const { return false; }
652 
653   template <typename T> Result operator()(const FunctionRef<T> &x) const {
654     if (auto chars{
655             characteristics::Procedure::Characterize(x.proc(), context_)}) {
656       if (chars->functionResult) {
657         const auto &result{*chars->functionResult};
658         return !result.IsProcedurePointer() &&
659             result.attrs.test(characteristics::FunctionResult::Attr::Pointer) &&
660             result.attrs.test(
661                 characteristics::FunctionResult::Attr::Contiguous);
662       }
663     }
664     return false;
665   }
666 
667 private:
668   // If the subscripts can possibly be on a simply-contiguous array reference,
669   // return the rank.
670   static std::optional<int> CheckSubscripts(
671       const std::vector<Subscript> &subscript) {
672     bool anyTriplet{false};
673     int rank{0};
674     for (auto j{subscript.size()}; j-- > 0;) {
675       if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) {
676         if (!triplet->IsStrideOne()) {
677           return std::nullopt;
678         } else if (anyTriplet) {
679           if (triplet->lower() || triplet->upper()) {
680             // all triplets before the last one must be just ":"
681             return std::nullopt;
682           }
683         } else {
684           anyTriplet = true;
685         }
686         ++rank;
687       } else if (anyTriplet || subscript[j].Rank() > 0) {
688         return std::nullopt;
689       }
690     }
691     return rank;
692   }
693 
694   FoldingContext &context_;
695 };
696 
697 template <typename A>
698 bool IsSimplyContiguous(const A &x, FoldingContext &context) {
699   if (IsVariable(x)) {
700     auto known{IsSimplyContiguousHelper{context}(x)};
701     return known && *known;
702   } else {
703     return true; // not a variable
704   }
705 }
706 
707 template bool IsSimplyContiguous(const Expr<SomeType> &, FoldingContext &);
708 
709 // IsErrorExpr()
710 struct IsErrorExprHelper : public AnyTraverse<IsErrorExprHelper, bool> {
711   using Result = bool;
712   using Base = AnyTraverse<IsErrorExprHelper, Result>;
713   IsErrorExprHelper() : Base{*this} {}
714   using Base::operator();
715 
716   bool operator()(const SpecificIntrinsic &x) {
717     return x.name == IntrinsicProcTable::InvalidName;
718   }
719 };
720 
721 template <typename A> bool IsErrorExpr(const A &x) {
722   return IsErrorExprHelper{}(x);
723 }
724 
725 template bool IsErrorExpr(const Expr<SomeType> &);
726 
727 } // namespace Fortran::evaluate
728