1 //===-- lib/Evaluate/check-expression.cpp ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/check-expression.h" 10 #include "flang/Evaluate/characteristics.h" 11 #include "flang/Evaluate/intrinsics.h" 12 #include "flang/Evaluate/tools.h" 13 #include "flang/Evaluate/traverse.h" 14 #include "flang/Evaluate/type.h" 15 #include "flang/Semantics/semantics.h" 16 #include "flang/Semantics/symbol.h" 17 #include "flang/Semantics/tools.h" 18 #include <set> 19 #include <string> 20 21 namespace Fortran::evaluate { 22 23 // Constant expression predicates IsConstantExpr() & IsScopeInvariantExpr(). 24 // This code determines whether an expression is a "constant expression" 25 // in the sense of section 10.1.12. This is not the same thing as being 26 // able to fold it (yet) into a known constant value; specifically, 27 // the expression may reference derived type kind parameters whose values 28 // are not yet known. 29 // 30 // The variant form (IsScopeInvariantExpr()) also accepts symbols that are 31 // INTENT(IN) dummy arguments without the VALUE attribute. 32 template <bool INVARIANT> 33 class IsConstantExprHelper 34 : public AllTraverse<IsConstantExprHelper<INVARIANT>, true> { 35 public: 36 using Base = AllTraverse<IsConstantExprHelper, true>; 37 IsConstantExprHelper() : Base{*this} {} 38 using Base::operator(); 39 40 // A missing expression is not considered to be constant. 41 template <typename A> bool operator()(const std::optional<A> &x) const { 42 return x && (*this)(*x); 43 } 44 45 bool operator()(const TypeParamInquiry &inq) const { 46 return INVARIANT || semantics::IsKindTypeParameter(inq.parameter()); 47 } 48 bool operator()(const semantics::Symbol &symbol) const { 49 const auto &ultimate{GetAssociationRoot(symbol)}; 50 return IsNamedConstant(ultimate) || IsImpliedDoIndex(ultimate) || 51 IsInitialProcedureTarget(ultimate) || 52 ultimate.has<semantics::TypeParamDetails>() || 53 (INVARIANT && IsIntentIn(symbol) && !IsOptional(symbol) && 54 !symbol.attrs().test(semantics::Attr::VALUE)); 55 } 56 bool operator()(const CoarrayRef &) const { return false; } 57 bool operator()(const semantics::ParamValue ¶m) const { 58 return param.isExplicit() && (*this)(param.GetExplicit()); 59 } 60 bool operator()(const ProcedureRef &) const; 61 bool operator()(const StructureConstructor &constructor) const { 62 for (const auto &[symRef, expr] : constructor) { 63 if (!IsConstantStructureConstructorComponent(*symRef, expr.value())) { 64 return false; 65 } 66 } 67 return true; 68 } 69 bool operator()(const Component &component) const { 70 return (*this)(component.base()); 71 } 72 // Forbid integer division by zero in constants. 73 template <int KIND> 74 bool operator()( 75 const Divide<Type<TypeCategory::Integer, KIND>> &division) const { 76 using T = Type<TypeCategory::Integer, KIND>; 77 if (const auto divisor{GetScalarConstantValue<T>(division.right())}) { 78 return !divisor->IsZero() && (*this)(division.left()); 79 } else { 80 return false; 81 } 82 } 83 84 bool operator()(const Constant<SomeDerived> &) const { return true; } 85 bool operator()(const DescriptorInquiry &x) const { 86 const Symbol &sym{x.base().GetLastSymbol()}; 87 return INVARIANT && !IsAllocatable(sym) && 88 (!IsDummy(sym) || 89 (IsIntentIn(sym) && !IsOptional(sym) && 90 !sym.attrs().test(semantics::Attr::VALUE))); 91 } 92 93 private: 94 bool IsConstantStructureConstructorComponent( 95 const Symbol &, const Expr<SomeType> &) const; 96 bool IsConstantExprShape(const Shape &) const; 97 }; 98 99 template <bool INVARIANT> 100 bool IsConstantExprHelper<INVARIANT>::IsConstantStructureConstructorComponent( 101 const Symbol &component, const Expr<SomeType> &expr) const { 102 if (IsAllocatable(component)) { 103 return IsNullObjectPointer(expr); 104 } else if (IsPointer(component)) { 105 return IsNullPointer(expr) || IsInitialDataTarget(expr) || 106 IsInitialProcedureTarget(expr); 107 } else { 108 return (*this)(expr); 109 } 110 } 111 112 template <bool INVARIANT> 113 bool IsConstantExprHelper<INVARIANT>::operator()( 114 const ProcedureRef &call) const { 115 // LBOUND, UBOUND, and SIZE with truly constant DIM= arguments will have 116 // been rewritten into DescriptorInquiry operations. 117 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&call.proc().u)}) { 118 const characteristics::Procedure &proc{intrinsic->characteristics.value()}; 119 if (intrinsic->name == "kind" || 120 intrinsic->name == IntrinsicProcTable::InvalidName || 121 call.arguments().empty() || !call.arguments()[0]) { 122 // kind is always a constant, and we avoid cascading errors by considering 123 // invalid calls to intrinsics to be constant 124 return true; 125 } else if (intrinsic->name == "lbound") { 126 auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())}; 127 return base && IsConstantExprShape(GetLBOUNDs(*base)); 128 } else if (intrinsic->name == "ubound") { 129 auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())}; 130 return base && IsConstantExprShape(GetUBOUNDs(*base)); 131 } else if (intrinsic->name == "shape" || intrinsic->name == "size") { 132 auto shape{GetShape(call.arguments()[0]->UnwrapExpr())}; 133 return shape && IsConstantExprShape(*shape); 134 } else if (proc.IsPure()) { 135 for (const auto &arg : call.arguments()) { 136 if (!arg) { 137 return false; 138 } else if (const auto *expr{arg->UnwrapExpr()}; 139 !expr || !(*this)(*expr)) { 140 return false; 141 } 142 } 143 return true; 144 } 145 // TODO: STORAGE_SIZE 146 } 147 return false; 148 } 149 150 template <bool INVARIANT> 151 bool IsConstantExprHelper<INVARIANT>::IsConstantExprShape( 152 const Shape &shape) const { 153 for (const auto &extent : shape) { 154 if (!(*this)(extent)) { 155 return false; 156 } 157 } 158 return true; 159 } 160 161 template <typename A> bool IsConstantExpr(const A &x) { 162 return IsConstantExprHelper<false>{}(x); 163 } 164 template bool IsConstantExpr(const Expr<SomeType> &); 165 template bool IsConstantExpr(const Expr<SomeInteger> &); 166 template bool IsConstantExpr(const Expr<SubscriptInteger> &); 167 template bool IsConstantExpr(const StructureConstructor &); 168 169 // IsScopeInvariantExpr() 170 template <typename A> bool IsScopeInvariantExpr(const A &x) { 171 return IsConstantExprHelper<true>{}(x); 172 } 173 template bool IsScopeInvariantExpr(const Expr<SomeType> &); 174 template bool IsScopeInvariantExpr(const Expr<SomeInteger> &); 175 template bool IsScopeInvariantExpr(const Expr<SubscriptInteger> &); 176 177 // IsActuallyConstant() 178 struct IsActuallyConstantHelper { 179 template <typename A> bool operator()(const A &) { return false; } 180 template <typename T> bool operator()(const Constant<T> &) { return true; } 181 template <typename T> bool operator()(const Parentheses<T> &x) { 182 return (*this)(x.left()); 183 } 184 template <typename T> bool operator()(const Expr<T> &x) { 185 return common::visit([=](const auto &y) { return (*this)(y); }, x.u); 186 } 187 bool operator()(const Expr<SomeType> &x) { 188 return common::visit([this](const auto &y) { return (*this)(y); }, x.u); 189 } 190 bool operator()(const StructureConstructor &x) { 191 for (const auto &pair : x) { 192 const Expr<SomeType> &y{pair.second.value()}; 193 const auto sym{pair.first}; 194 const bool compIsConstant{(*this)(y)}; 195 // If an allocatable component is initialized by a constant, 196 // the structure constructor is not a constant. 197 if ((!compIsConstant && !IsNullPointer(y)) || 198 (compIsConstant && IsAllocatable(sym))) { 199 return false; 200 } 201 } 202 return true; 203 } 204 template <typename A> bool operator()(const A *x) { return x && (*this)(*x); } 205 template <typename A> bool operator()(const std::optional<A> &x) { 206 return x && (*this)(*x); 207 } 208 }; 209 210 template <typename A> bool IsActuallyConstant(const A &x) { 211 return IsActuallyConstantHelper{}(x); 212 } 213 214 template bool IsActuallyConstant(const Expr<SomeType> &); 215 template bool IsActuallyConstant(const Expr<SomeInteger> &); 216 template bool IsActuallyConstant(const Expr<SubscriptInteger> &); 217 template bool IsActuallyConstant(const std::optional<Expr<SubscriptInteger>> &); 218 219 // Object pointer initialization checking predicate IsInitialDataTarget(). 220 // This code determines whether an expression is allowable as the static 221 // data address used to initialize a pointer with "=> x". See C765. 222 class IsInitialDataTargetHelper 223 : public AllTraverse<IsInitialDataTargetHelper, true> { 224 public: 225 using Base = AllTraverse<IsInitialDataTargetHelper, true>; 226 using Base::operator(); 227 explicit IsInitialDataTargetHelper(parser::ContextualMessages *m) 228 : Base{*this}, messages_{m} {} 229 230 bool emittedMessage() const { return emittedMessage_; } 231 232 bool operator()(const BOZLiteralConstant &) const { return false; } 233 bool operator()(const NullPointer &) const { return true; } 234 template <typename T> bool operator()(const Constant<T> &) const { 235 return false; 236 } 237 bool operator()(const semantics::Symbol &symbol) { 238 // This function checks only base symbols, not components. 239 const Symbol &ultimate{symbol.GetUltimate()}; 240 if (const auto *assoc{ 241 ultimate.detailsIf<semantics::AssocEntityDetails>()}) { 242 if (const auto &expr{assoc->expr()}) { 243 if (IsVariable(*expr)) { 244 return (*this)(*expr); 245 } else if (messages_) { 246 messages_->Say( 247 "An initial data target may not be an associated expression ('%s')"_err_en_US, 248 ultimate.name()); 249 emittedMessage_ = true; 250 } 251 } 252 return false; 253 } else if (!CheckVarOrComponent(ultimate)) { 254 return false; 255 } else if (!ultimate.attrs().test(semantics::Attr::TARGET)) { 256 if (messages_) { 257 messages_->Say( 258 "An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US, 259 ultimate.name()); 260 emittedMessage_ = true; 261 } 262 return false; 263 } else if (!IsSaved(ultimate)) { 264 if (messages_) { 265 messages_->Say( 266 "An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US, 267 ultimate.name()); 268 emittedMessage_ = true; 269 } 270 return false; 271 } else { 272 return true; 273 } 274 } 275 bool operator()(const StaticDataObject &) const { return false; } 276 bool operator()(const TypeParamInquiry &) const { return false; } 277 bool operator()(const Triplet &x) const { 278 return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && 279 IsConstantExpr(x.stride()); 280 } 281 bool operator()(const Subscript &x) const { 282 return common::visit(common::visitors{ 283 [&](const Triplet &t) { return (*this)(t); }, 284 [&](const auto &y) { 285 return y.value().Rank() == 0 && 286 IsConstantExpr(y.value()); 287 }, 288 }, 289 x.u); 290 } 291 bool operator()(const CoarrayRef &) const { return false; } 292 bool operator()(const Component &x) { 293 return CheckVarOrComponent(x.GetLastSymbol()) && (*this)(x.base()); 294 } 295 bool operator()(const Substring &x) const { 296 return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && 297 (*this)(x.parent()); 298 } 299 bool operator()(const DescriptorInquiry &) const { return false; } 300 template <typename T> bool operator()(const ArrayConstructor<T> &) const { 301 return false; 302 } 303 bool operator()(const StructureConstructor &) const { return false; } 304 template <typename D, typename R, typename... O> 305 bool operator()(const Operation<D, R, O...> &) const { 306 return false; 307 } 308 template <typename T> bool operator()(const Parentheses<T> &x) const { 309 return (*this)(x.left()); 310 } 311 bool operator()(const ProcedureRef &x) const { 312 if (const SpecificIntrinsic * intrinsic{x.proc().GetSpecificIntrinsic()}) { 313 return intrinsic->characteristics.value().attrs.test( 314 characteristics::Procedure::Attr::NullPointer); 315 } 316 return false; 317 } 318 bool operator()(const Relational<SomeType> &) const { return false; } 319 320 private: 321 bool CheckVarOrComponent(const semantics::Symbol &symbol) { 322 const Symbol &ultimate{symbol.GetUltimate()}; 323 const char *unacceptable{nullptr}; 324 if (ultimate.Corank() > 0) { 325 unacceptable = "a coarray"; 326 } else if (IsAllocatable(ultimate)) { 327 unacceptable = "an ALLOCATABLE"; 328 } else if (IsPointer(ultimate)) { 329 unacceptable = "a POINTER"; 330 } else { 331 return true; 332 } 333 if (messages_) { 334 messages_->Say( 335 "An initial data target may not be a reference to %s '%s'"_err_en_US, 336 unacceptable, ultimate.name()); 337 emittedMessage_ = true; 338 } 339 return false; 340 } 341 342 parser::ContextualMessages *messages_; 343 bool emittedMessage_{false}; 344 }; 345 346 bool IsInitialDataTarget( 347 const Expr<SomeType> &x, parser::ContextualMessages *messages) { 348 IsInitialDataTargetHelper helper{messages}; 349 bool result{helper(x)}; 350 if (!result && messages && !helper.emittedMessage()) { 351 messages->Say( 352 "An initial data target must be a designator with constant subscripts"_err_en_US); 353 } 354 return result; 355 } 356 357 bool IsInitialProcedureTarget(const semantics::Symbol &symbol) { 358 const auto &ultimate{symbol.GetUltimate()}; 359 return common::visit( 360 common::visitors{ 361 [&](const semantics::SubprogramDetails &subp) { 362 return !subp.isDummy() && !subp.stmtFunction() && 363 symbol.owner().kind() != semantics::Scope::Kind::MainProgram && 364 symbol.owner().kind() != semantics::Scope::Kind::Subprogram; 365 }, 366 [](const semantics::SubprogramNameDetails &x) { 367 return x.kind() != semantics::SubprogramKind::Internal; 368 }, 369 [&](const semantics::ProcEntityDetails &proc) { 370 return !semantics::IsPointer(ultimate) && !proc.isDummy(); 371 }, 372 [](const auto &) { return false; }, 373 }, 374 ultimate.details()); 375 } 376 377 bool IsInitialProcedureTarget(const ProcedureDesignator &proc) { 378 if (const auto *intrin{proc.GetSpecificIntrinsic()}) { 379 return !intrin->isRestrictedSpecific; 380 } else if (proc.GetComponent()) { 381 return false; 382 } else { 383 return IsInitialProcedureTarget(DEREF(proc.GetSymbol())); 384 } 385 } 386 387 bool IsInitialProcedureTarget(const Expr<SomeType> &expr) { 388 if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) { 389 return IsInitialProcedureTarget(*proc); 390 } else { 391 return IsNullProcedurePointer(expr); 392 } 393 } 394 395 // Converts, folds, and then checks type, rank, and shape of an 396 // initialization expression for a named constant, a non-pointer 397 // variable static initialization, a component default initializer, 398 // a type parameter default value, or instantiated type parameter value. 399 std::optional<Expr<SomeType>> NonPointerInitializationExpr(const Symbol &symbol, 400 Expr<SomeType> &&x, FoldingContext &context, 401 const semantics::Scope *instantiation) { 402 CHECK(!IsPointer(symbol)); 403 if (auto symTS{ 404 characteristics::TypeAndShape::Characterize(symbol, context)}) { 405 auto xType{x.GetType()}; 406 auto converted{ConvertToType(symTS->type(), Expr<SomeType>{x})}; 407 if (!converted && 408 symbol.owner().context().IsEnabled( 409 common::LanguageFeature::LogicalIntegerAssignment)) { 410 converted = DataConstantConversionExtension(context, symTS->type(), x); 411 if (converted && 412 symbol.owner().context().ShouldWarn( 413 common::LanguageFeature::LogicalIntegerAssignment)) { 414 context.messages().Say( 415 "nonstandard usage: initialization of %s with %s"_port_en_US, 416 symTS->type().AsFortran(), x.GetType().value().AsFortran()); 417 } 418 } 419 if (converted) { 420 auto folded{Fold(context, std::move(*converted))}; 421 if (IsActuallyConstant(folded)) { 422 int symRank{GetRank(symTS->shape())}; 423 if (IsImpliedShape(symbol)) { 424 if (folded.Rank() == symRank) { 425 return ArrayConstantBoundChanger{ 426 std::move(*AsConstantExtents( 427 context, GetRawLowerBounds(context, NamedEntity{symbol})))} 428 .ChangeLbounds(std::move(folded)); 429 } else { 430 context.messages().Say( 431 "Implied-shape parameter '%s' has rank %d but its initializer has rank %d"_err_en_US, 432 symbol.name(), symRank, folded.Rank()); 433 } 434 } else if (auto extents{AsConstantExtents(context, symTS->shape())}) { 435 if (folded.Rank() == 0 && symRank == 0) { 436 // symbol and constant are both scalars 437 return {std::move(folded)}; 438 } else if (folded.Rank() == 0 && symRank > 0) { 439 // expand the scalar constant to an array 440 return ScalarConstantExpander{std::move(*extents), 441 AsConstantExtents( 442 context, GetRawLowerBounds(context, NamedEntity{symbol}))} 443 .Expand(std::move(folded)); 444 } else if (auto resultShape{GetShape(context, folded)}) { 445 if (CheckConformance(context.messages(), symTS->shape(), 446 *resultShape, CheckConformanceFlags::None, 447 "initialized object", "initialization expression") 448 .value_or(false /*fail if not known now to conform*/)) { 449 // make a constant array with adjusted lower bounds 450 return ArrayConstantBoundChanger{ 451 std::move(*AsConstantExtents(context, 452 GetRawLowerBounds(context, NamedEntity{symbol})))} 453 .ChangeLbounds(std::move(folded)); 454 } 455 } 456 } else if (IsNamedConstant(symbol)) { 457 if (IsExplicitShape(symbol)) { 458 context.messages().Say( 459 "Named constant '%s' array must have constant shape"_err_en_US, 460 symbol.name()); 461 } else { 462 // Declaration checking handles other cases 463 } 464 } else { 465 context.messages().Say( 466 "Shape of initialized object '%s' must be constant"_err_en_US, 467 symbol.name()); 468 } 469 } else if (IsErrorExpr(folded)) { 470 } else if (IsLenTypeParameter(symbol)) { 471 return {std::move(folded)}; 472 } else if (IsKindTypeParameter(symbol)) { 473 if (instantiation) { 474 context.messages().Say( 475 "Value of kind type parameter '%s' (%s) must be a scalar INTEGER constant"_err_en_US, 476 symbol.name(), folded.AsFortran()); 477 } else { 478 return {std::move(folded)}; 479 } 480 } else if (IsNamedConstant(symbol)) { 481 if (symbol.name() == "numeric_storage_size" && 482 symbol.owner().IsModule() && 483 DEREF(symbol.owner().symbol()).name() == "iso_fortran_env") { 484 // Very special case: numeric_storage_size is not folded until 485 // it read from the iso_fortran_env module file, as its value 486 // depends on compilation options. 487 return {std::move(folded)}; 488 } 489 context.messages().Say( 490 "Value of named constant '%s' (%s) cannot be computed as a constant value"_err_en_US, 491 symbol.name(), folded.AsFortran()); 492 } else { 493 context.messages().Say( 494 "Initialization expression for '%s' (%s) cannot be computed as a constant value"_err_en_US, 495 symbol.name(), folded.AsFortran()); 496 } 497 } else if (xType) { 498 context.messages().Say( 499 "Initialization expression cannot be converted to declared type of '%s' from %s"_err_en_US, 500 symbol.name(), xType->AsFortran()); 501 } else { 502 context.messages().Say( 503 "Initialization expression cannot be converted to declared type of '%s'"_err_en_US, 504 symbol.name()); 505 } 506 } 507 return std::nullopt; 508 } 509 510 static bool IsNonLocal(const semantics::Symbol &symbol) { 511 return semantics::IsDummy(symbol) || symbol.has<semantics::UseDetails>() || 512 symbol.owner().kind() == semantics::Scope::Kind::Module || 513 semantics::FindCommonBlockContaining(symbol) || 514 symbol.has<semantics::HostAssocDetails>(); 515 } 516 517 static bool IsPermissibleInquiry(const semantics::Symbol &firstSymbol, 518 const semantics::Symbol &lastSymbol, DescriptorInquiry::Field field, 519 const semantics::Scope &localScope) { 520 if (IsNonLocal(firstSymbol)) { 521 return true; 522 } 523 if (&localScope != &firstSymbol.owner()) { 524 return true; 525 } 526 // Inquiries on local objects may not access a deferred bound or length. 527 // (This code used to be a switch, but it proved impossible to write it 528 // thus without running afoul of bogus warnings from different C++ 529 // compilers.) 530 if (field == DescriptorInquiry::Field::Rank) { 531 return true; // always known 532 } 533 const auto *object{lastSymbol.detailsIf<semantics::ObjectEntityDetails>()}; 534 if (field == DescriptorInquiry::Field::LowerBound || 535 field == DescriptorInquiry::Field::Extent || 536 field == DescriptorInquiry::Field::Stride) { 537 return object && !object->shape().CanBeDeferredShape(); 538 } 539 if (field == DescriptorInquiry::Field::Len) { 540 return object && object->type() && 541 object->type()->category() == semantics::DeclTypeSpec::Character && 542 !object->type()->characterTypeSpec().length().isDeferred(); 543 } 544 return false; 545 } 546 547 // Specification expression validation (10.1.11(2), C1010) 548 class CheckSpecificationExprHelper 549 : public AnyTraverse<CheckSpecificationExprHelper, 550 std::optional<std::string>> { 551 public: 552 using Result = std::optional<std::string>; 553 using Base = AnyTraverse<CheckSpecificationExprHelper, Result>; 554 explicit CheckSpecificationExprHelper( 555 const semantics::Scope &s, FoldingContext &context) 556 : Base{*this}, scope_{s}, context_{context} {} 557 using Base::operator(); 558 559 Result operator()(const CoarrayRef &) const { return "coindexed reference"; } 560 561 Result operator()(const semantics::Symbol &symbol) const { 562 const auto &ultimate{symbol.GetUltimate()}; 563 if (const auto *assoc{ 564 ultimate.detailsIf<semantics::AssocEntityDetails>()}) { 565 return (*this)(assoc->expr()); 566 } else if (semantics::IsNamedConstant(ultimate) || 567 ultimate.owner().IsModule() || ultimate.owner().IsSubmodule()) { 568 return std::nullopt; 569 } else if (scope_.IsDerivedType() && 570 IsVariableName(ultimate)) { // C750, C754 571 return "derived type component or type parameter value not allowed to " 572 "reference variable '"s + 573 ultimate.name().ToString() + "'"; 574 } else if (IsDummy(ultimate)) { 575 if (ultimate.attrs().test(semantics::Attr::OPTIONAL)) { 576 return "reference to OPTIONAL dummy argument '"s + 577 ultimate.name().ToString() + "'"; 578 } else if (!inInquiry_ && 579 ultimate.attrs().test(semantics::Attr::INTENT_OUT)) { 580 return "reference to INTENT(OUT) dummy argument '"s + 581 ultimate.name().ToString() + "'"; 582 } else if (ultimate.has<semantics::ObjectEntityDetails>()) { 583 return std::nullopt; 584 } else { 585 return "dummy procedure argument"; 586 } 587 } else if (&symbol.owner() != &scope_ || &ultimate.owner() != &scope_) { 588 return std::nullopt; // host association is in play 589 } else if (const auto *object{ 590 ultimate.detailsIf<semantics::ObjectEntityDetails>()}) { 591 if (object->commonBlock()) { 592 return std::nullopt; 593 } 594 } 595 if (inInquiry_) { 596 return std::nullopt; 597 } else { 598 return "reference to local entity '"s + ultimate.name().ToString() + "'"; 599 } 600 } 601 602 Result operator()(const Component &x) const { 603 // Don't look at the component symbol. 604 return (*this)(x.base()); 605 } 606 Result operator()(const ArrayRef &x) const { 607 if (auto result{(*this)(x.base())}) { 608 return result; 609 } 610 // The subscripts don't get special protection for being in a 611 // specification inquiry context; 612 auto restorer{common::ScopedSet(inInquiry_, false)}; 613 return (*this)(x.subscript()); 614 } 615 Result operator()(const Substring &x) const { 616 if (auto result{(*this)(x.parent())}) { 617 return result; 618 } 619 // The bounds don't get special protection for being in a 620 // specification inquiry context; 621 auto restorer{common::ScopedSet(inInquiry_, false)}; 622 if (auto result{(*this)(x.lower())}) { 623 return result; 624 } 625 return (*this)(x.upper()); 626 } 627 Result operator()(const DescriptorInquiry &x) const { 628 // Many uses of SIZE(), LBOUND(), &c. that are valid in specification 629 // expressions will have been converted to expressions over descriptor 630 // inquiries by Fold(). 631 // Catch REAL, ALLOCATABLE :: X(:); REAL :: Y(SIZE(X)) 632 if (IsPermissibleInquiry(x.base().GetFirstSymbol(), 633 x.base().GetLastSymbol(), x.field(), scope_)) { 634 auto restorer{common::ScopedSet(inInquiry_, true)}; 635 return (*this)(x.base()); 636 } else if (IsConstantExpr(x)) { 637 return std::nullopt; 638 } else { 639 return "non-constant descriptor inquiry not allowed for local object"; 640 } 641 } 642 643 Result operator()(const TypeParamInquiry &inq) const { 644 if (scope_.IsDerivedType() && !IsConstantExpr(inq) && 645 inq.base() /* X%T, not local T */) { // C750, C754 646 return "non-constant reference to a type parameter inquiry not " 647 "allowed for derived type components or type parameter values"; 648 } 649 return std::nullopt; 650 } 651 652 Result operator()(const ProcedureRef &x) const { 653 bool inInquiry{false}; 654 if (const auto *symbol{x.proc().GetSymbol()}) { 655 const Symbol &ultimate{symbol->GetUltimate()}; 656 if (!semantics::IsPureProcedure(ultimate)) { 657 return "reference to impure function '"s + ultimate.name().ToString() + 658 "'"; 659 } 660 if (semantics::IsStmtFunction(ultimate)) { 661 return "reference to statement function '"s + 662 ultimate.name().ToString() + "'"; 663 } 664 if (scope_.IsDerivedType()) { // C750, C754 665 return "reference to function '"s + ultimate.name().ToString() + 666 "' not allowed for derived type components or type parameter" 667 " values"; 668 } 669 if (auto procChars{characteristics::Procedure::Characterize( 670 x.proc(), context_, /*emitError=*/true)}) { 671 const auto iter{std::find_if(procChars->dummyArguments.begin(), 672 procChars->dummyArguments.end(), 673 [](const characteristics::DummyArgument &dummy) { 674 return std::holds_alternative<characteristics::DummyProcedure>( 675 dummy.u); 676 })}; 677 if (iter != procChars->dummyArguments.end()) { 678 return "reference to function '"s + ultimate.name().ToString() + 679 "' with dummy procedure argument '" + iter->name + '\''; 680 } 681 } 682 // References to internal functions are caught in expression semantics. 683 // TODO: other checks for standard module procedures 684 } else { // intrinsic 685 const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())}; 686 inInquiry = context_.intrinsics().GetIntrinsicClass(intrin.name) == 687 IntrinsicClass::inquiryFunction; 688 if (scope_.IsDerivedType()) { // C750, C754 689 if ((context_.intrinsics().IsIntrinsic(intrin.name) && 690 badIntrinsicsForComponents_.find(intrin.name) != 691 badIntrinsicsForComponents_.end())) { 692 return "reference to intrinsic '"s + intrin.name + 693 "' not allowed for derived type components or type parameter" 694 " values"; 695 } 696 if (inInquiry && !IsConstantExpr(x)) { 697 return "non-constant reference to inquiry intrinsic '"s + 698 intrin.name + 699 "' not allowed for derived type components or type" 700 " parameter values"; 701 } 702 } 703 // Type-determined inquiries (DIGITS, HUGE, &c.) will have already been 704 // folded and won't arrive here. Inquiries that are represented with 705 // DescriptorInquiry operations (LBOUND) are checked elsewhere. If a 706 // call that makes it to here satisfies the requirements of a constant 707 // expression (as Fortran defines it), it's fine. 708 if (IsConstantExpr(x)) { 709 return std::nullopt; 710 } 711 if (intrin.name == "present") { 712 return std::nullopt; // always ok 713 } 714 // Catch CHARACTER(:), ALLOCATABLE :: X; CHARACTER(LEN(X)) :: Y 715 if (inInquiry && x.arguments().size() >= 1) { 716 if (const auto &arg{x.arguments().at(0)}) { 717 if (auto dataRef{ExtractDataRef(*arg, true, true)}) { 718 if (intrin.name == "allocated" || intrin.name == "associated" || 719 intrin.name == "is_contiguous") { // ok 720 } else if (intrin.name == "len" && 721 IsPermissibleInquiry(dataRef->GetFirstSymbol(), 722 dataRef->GetLastSymbol(), DescriptorInquiry::Field::Len, 723 scope_)) { // ok 724 } else if (intrin.name == "lbound" && 725 IsPermissibleInquiry(dataRef->GetFirstSymbol(), 726 dataRef->GetLastSymbol(), 727 DescriptorInquiry::Field::LowerBound, scope_)) { // ok 728 } else if ((intrin.name == "shape" || intrin.name == "size" || 729 intrin.name == "sizeof" || 730 intrin.name == "storage_size" || 731 intrin.name == "ubound") && 732 IsPermissibleInquiry(dataRef->GetFirstSymbol(), 733 dataRef->GetLastSymbol(), DescriptorInquiry::Field::Extent, 734 scope_)) { // ok 735 } else { 736 return "non-constant inquiry function '"s + intrin.name + 737 "' not allowed for local object"; 738 } 739 } 740 } 741 } 742 } 743 auto restorer{common::ScopedSet(inInquiry_, inInquiry)}; 744 return (*this)(x.arguments()); 745 } 746 747 private: 748 const semantics::Scope &scope_; 749 FoldingContext &context_; 750 // Contextual information: this flag is true when in an argument to 751 // an inquiry intrinsic like SIZE(). 752 mutable bool inInquiry_{false}; 753 const std::set<std::string> badIntrinsicsForComponents_{ 754 "allocated", "associated", "extends_type_of", "present", "same_type_as"}; 755 }; 756 757 template <typename A> 758 void CheckSpecificationExpr( 759 const A &x, const semantics::Scope &scope, FoldingContext &context) { 760 if (auto why{CheckSpecificationExprHelper{scope, context}(x)}) { 761 context.messages().Say( 762 "Invalid specification expression: %s"_err_en_US, *why); 763 } 764 } 765 766 template void CheckSpecificationExpr( 767 const Expr<SomeType> &, const semantics::Scope &, FoldingContext &); 768 template void CheckSpecificationExpr( 769 const Expr<SomeInteger> &, const semantics::Scope &, FoldingContext &); 770 template void CheckSpecificationExpr( 771 const Expr<SubscriptInteger> &, const semantics::Scope &, FoldingContext &); 772 template void CheckSpecificationExpr(const std::optional<Expr<SomeType>> &, 773 const semantics::Scope &, FoldingContext &); 774 template void CheckSpecificationExpr(const std::optional<Expr<SomeInteger>> &, 775 const semantics::Scope &, FoldingContext &); 776 template void CheckSpecificationExpr( 777 const std::optional<Expr<SubscriptInteger>> &, const semantics::Scope &, 778 FoldingContext &); 779 780 // IsContiguous() -- 9.5.4 781 class IsContiguousHelper 782 : public AnyTraverse<IsContiguousHelper, std::optional<bool>> { 783 public: 784 using Result = std::optional<bool>; // tri-state 785 using Base = AnyTraverse<IsContiguousHelper, Result>; 786 explicit IsContiguousHelper(FoldingContext &c) : Base{*this}, context_{c} {} 787 using Base::operator(); 788 789 template <typename T> Result operator()(const Constant<T> &) const { 790 return true; 791 } 792 Result operator()(const StaticDataObject &) const { return true; } 793 Result operator()(const semantics::Symbol &symbol) const { 794 const auto &ultimate{symbol.GetUltimate()}; 795 if (ultimate.attrs().test(semantics::Attr::CONTIGUOUS)) { 796 return true; 797 } else if (!IsVariable(symbol)) { 798 return true; 799 } else if (ultimate.Rank() == 0) { 800 // Extension: accept scalars as a degenerate case of 801 // simple contiguity to allow their use in contexts like 802 // data targets in pointer assignments with remapping. 803 return true; 804 } else if (ultimate.has<semantics::AssocEntityDetails>()) { 805 return Base::operator()(ultimate); // use expr 806 } else if (semantics::IsPointer(ultimate) || 807 semantics::IsAssumedShape(ultimate) || IsAssumedRank(ultimate)) { 808 return std::nullopt; 809 } else if (ultimate.has<semantics::ObjectEntityDetails>()) { 810 return true; 811 } else { 812 return Base::operator()(ultimate); 813 } 814 } 815 816 Result operator()(const ArrayRef &x) const { 817 if (x.Rank() == 0) { 818 return true; // scalars considered contiguous 819 } 820 int subscriptRank{0}; 821 auto baseLbounds{GetLBOUNDs(context_, x.base())}; 822 auto baseUbounds{GetUBOUNDs(context_, x.base())}; 823 auto subscripts{CheckSubscripts( 824 x.subscript(), subscriptRank, &baseLbounds, &baseUbounds)}; 825 if (!subscripts.value_or(false)) { 826 return subscripts; // subscripts not known to be contiguous 827 } else if (subscriptRank > 0) { 828 // a(1)%b(:,:) is contiguous if and only if a(1)%b is contiguous. 829 return (*this)(x.base()); 830 } else { 831 // a(:)%b(1,1) is (probably) not contiguous. 832 return std::nullopt; 833 } 834 } 835 Result operator()(const CoarrayRef &x) const { 836 int rank{0}; 837 return CheckSubscripts(x.subscript(), rank).has_value(); 838 } 839 Result operator()(const Component &x) const { 840 if (x.base().Rank() == 0) { 841 return (*this)(x.GetLastSymbol()); 842 } else { 843 if (Result baseIsContiguous{(*this)(x.base())}) { 844 if (!*baseIsContiguous) { 845 return false; 846 } 847 // TODO could be true if base contiguous and this is only component, or 848 // if base has only one element? 849 } 850 return std::nullopt; 851 } 852 } 853 Result operator()(const ComplexPart &x) const { 854 return x.complex().Rank() == 0; 855 } 856 Result operator()(const Substring &) const { return std::nullopt; } 857 858 Result operator()(const ProcedureRef &x) const { 859 if (auto chars{characteristics::Procedure::Characterize( 860 x.proc(), context_, /*emitError=*/true)}) { 861 if (chars->functionResult) { 862 const auto &result{*chars->functionResult}; 863 if (!result.IsProcedurePointer()) { 864 if (result.attrs.test( 865 characteristics::FunctionResult::Attr::Contiguous)) { 866 return true; 867 } 868 if (!result.attrs.test( 869 characteristics::FunctionResult::Attr::Pointer)) { 870 return true; 871 } 872 if (const auto *type{result.GetTypeAndShape()}; 873 type && type->Rank() == 0) { 874 return true; // pointer to scalar 875 } 876 // Must be non-CONTIGUOUS pointer to array 877 } 878 } 879 } 880 return std::nullopt; 881 } 882 883 Result operator()(const NullPointer &) const { return true; } 884 885 private: 886 // Returns "true" for a provably empty or simply contiguous array section; 887 // return "false" for a provably nonempty discontiguous section or for use 888 // of a vector subscript. 889 std::optional<bool> CheckSubscripts(const std::vector<Subscript> &subscript, 890 int &rank, const Shape *baseLbounds = nullptr, 891 const Shape *baseUbounds = nullptr) const { 892 bool anyTriplet{false}; 893 rank = 0; 894 // Detect any provably empty dimension in this array section, which would 895 // render the whole section empty and therefore vacuously contiguous. 896 std::optional<bool> result; 897 bool mayBeEmpty{false}; 898 auto dims{subscript.size()}; 899 std::vector<bool> knownPartialSlice(dims, false); 900 for (auto j{dims}; j-- > 0;) { 901 std::optional<ConstantSubscript> dimLbound; 902 std::optional<ConstantSubscript> dimUbound; 903 std::optional<ConstantSubscript> dimExtent; 904 if (baseLbounds && j < baseLbounds->size()) { 905 if (const auto &lb{baseLbounds->at(j)}) { 906 dimLbound = ToInt64(Fold(context_, Expr<SubscriptInteger>{*lb})); 907 } 908 } 909 if (baseUbounds && j < baseUbounds->size()) { 910 if (const auto &ub{baseUbounds->at(j)}) { 911 dimUbound = ToInt64(Fold(context_, Expr<SubscriptInteger>{*ub})); 912 } 913 } 914 if (dimLbound && dimUbound) { 915 if (*dimLbound <= *dimUbound) { 916 dimExtent = *dimUbound - *dimLbound + 1; 917 } else { 918 // This is an empty dimension. 919 result = true; 920 dimExtent = 0; 921 } 922 } 923 924 if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) { 925 ++rank; 926 if (auto stride{ToInt64(triplet->stride())}) { 927 const Expr<SubscriptInteger> *lowerBound{triplet->GetLower()}; 928 const Expr<SubscriptInteger> *upperBound{triplet->GetUpper()}; 929 std::optional<ConstantSubscript> lowerVal{lowerBound 930 ? ToInt64(Fold(context_, Expr<SubscriptInteger>{*lowerBound})) 931 : dimLbound}; 932 std::optional<ConstantSubscript> upperVal{upperBound 933 ? ToInt64(Fold(context_, Expr<SubscriptInteger>{*upperBound})) 934 : dimUbound}; 935 if (lowerVal && upperVal) { 936 if (*lowerVal < *upperVal) { 937 if (*stride < 0) { 938 result = true; // empty dimension 939 } else if (!result && *stride > 1 && 940 *lowerVal + *stride <= *upperVal) { 941 result = false; // discontiguous if not empty 942 } 943 } else if (*lowerVal > *upperVal) { 944 if (*stride > 0) { 945 result = true; // empty dimension 946 } else if (!result && *stride < 0 && 947 *lowerVal + *stride >= *upperVal) { 948 result = false; // discontiguous if not empty 949 } 950 } else { 951 mayBeEmpty = true; 952 } 953 } else { 954 mayBeEmpty = true; 955 } 956 } else { 957 mayBeEmpty = true; 958 } 959 } else if (subscript[j].Rank() > 0) { 960 ++rank; 961 if (!result) { 962 result = false; // vector subscript 963 } 964 mayBeEmpty = true; 965 } else { 966 // Scalar subscript. 967 if (dimExtent && *dimExtent > 1) { 968 knownPartialSlice[j] = true; 969 } 970 } 971 } 972 if (rank == 0) { 973 result = true; // scalar 974 } 975 if (result) { 976 return result; 977 } 978 // Not provably discontiguous at this point. 979 // Return "true" if simply contiguous, otherwise nullopt. 980 for (auto j{subscript.size()}; j-- > 0;) { 981 if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) { 982 auto stride{ToInt64(triplet->stride())}; 983 if (!stride || stride != 1) { 984 return std::nullopt; 985 } else if (anyTriplet) { 986 if (triplet->GetLower() || triplet->GetUpper()) { 987 // all triplets before the last one must be just ":" for 988 // simple contiguity 989 return std::nullopt; 990 } 991 } else { 992 anyTriplet = true; 993 } 994 ++rank; 995 } else if (anyTriplet) { 996 // If the section cannot be empty, and this dimension's 997 // scalar subscript is known not to cover the whole 998 // dimension, then the array section is provably 999 // discontiguous. 1000 return (mayBeEmpty || !knownPartialSlice[j]) 1001 ? std::nullopt 1002 : std::make_optional(false); 1003 } 1004 } 1005 return true; // simply contiguous 1006 } 1007 1008 FoldingContext &context_; 1009 }; 1010 1011 template <typename A> 1012 std::optional<bool> IsContiguous(const A &x, FoldingContext &context) { 1013 return IsContiguousHelper{context}(x); 1014 } 1015 1016 template std::optional<bool> IsContiguous( 1017 const Expr<SomeType> &, FoldingContext &); 1018 template std::optional<bool> IsContiguous(const ArrayRef &, FoldingContext &); 1019 template std::optional<bool> IsContiguous(const Substring &, FoldingContext &); 1020 template std::optional<bool> IsContiguous(const Component &, FoldingContext &); 1021 template std::optional<bool> IsContiguous( 1022 const ComplexPart &, FoldingContext &); 1023 template std::optional<bool> IsContiguous(const CoarrayRef &, FoldingContext &); 1024 template std::optional<bool> IsContiguous(const Symbol &, FoldingContext &); 1025 1026 // IsErrorExpr() 1027 struct IsErrorExprHelper : public AnyTraverse<IsErrorExprHelper, bool> { 1028 using Result = bool; 1029 using Base = AnyTraverse<IsErrorExprHelper, Result>; 1030 IsErrorExprHelper() : Base{*this} {} 1031 using Base::operator(); 1032 1033 bool operator()(const SpecificIntrinsic &x) { 1034 return x.name == IntrinsicProcTable::InvalidName; 1035 } 1036 }; 1037 1038 template <typename A> bool IsErrorExpr(const A &x) { 1039 return IsErrorExprHelper{}(x); 1040 } 1041 1042 template bool IsErrorExpr(const Expr<SomeType> &); 1043 1044 // C1577 1045 // TODO: Also check C1579 & C1582 here 1046 class StmtFunctionChecker 1047 : public AnyTraverse<StmtFunctionChecker, std::optional<parser::Message>> { 1048 public: 1049 using Result = std::optional<parser::Message>; 1050 using Base = AnyTraverse<StmtFunctionChecker, Result>; 1051 StmtFunctionChecker(const Symbol &sf, FoldingContext &context) 1052 : Base{*this}, sf_{sf}, context_{context} { 1053 if (!context_.languageFeatures().IsEnabled( 1054 common::LanguageFeature::StatementFunctionExtensions)) { 1055 severity_ = parser::Severity::Error; 1056 } else if (context_.languageFeatures().ShouldWarn( 1057 common::LanguageFeature::StatementFunctionExtensions)) { 1058 severity_ = parser::Severity::Portability; 1059 } 1060 } 1061 using Base::operator(); 1062 1063 template <typename T> Result operator()(const ArrayConstructor<T> &) const { 1064 if (severity_) { 1065 auto msg{ 1066 "Statement function '%s' should not contain an array constructor"_port_en_US}; 1067 msg.set_severity(*severity_); 1068 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1069 } else { 1070 return std::nullopt; 1071 } 1072 } 1073 Result operator()(const StructureConstructor &) const { 1074 if (severity_) { 1075 auto msg{ 1076 "Statement function '%s' should not contain a structure constructor"_port_en_US}; 1077 msg.set_severity(*severity_); 1078 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1079 } else { 1080 return std::nullopt; 1081 } 1082 } 1083 Result operator()(const TypeParamInquiry &) const { 1084 if (severity_) { 1085 auto msg{ 1086 "Statement function '%s' should not contain a type parameter inquiry"_port_en_US}; 1087 msg.set_severity(*severity_); 1088 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1089 } else { 1090 return std::nullopt; 1091 } 1092 } 1093 Result operator()(const ProcedureDesignator &proc) const { 1094 if (const Symbol * symbol{proc.GetSymbol()}) { 1095 const Symbol &ultimate{symbol->GetUltimate()}; 1096 if (const auto *subp{ 1097 ultimate.detailsIf<semantics::SubprogramDetails>()}) { 1098 if (subp->stmtFunction() && &ultimate.owner() == &sf_.owner()) { 1099 if (ultimate.name().begin() > sf_.name().begin()) { 1100 return parser::Message{sf_.name(), 1101 "Statement function '%s' may not reference another statement function '%s' that is defined later"_err_en_US, 1102 sf_.name(), ultimate.name()}; 1103 } 1104 } 1105 } 1106 if (auto chars{characteristics::Procedure::Characterize( 1107 proc, context_, /*emitError=*/true)}) { 1108 if (!chars->CanBeCalledViaImplicitInterface()) { 1109 if (severity_) { 1110 auto msg{ 1111 "Statement function '%s' should not reference function '%s' that requires an explicit interface"_port_en_US}; 1112 msg.set_severity(*severity_); 1113 return parser::Message{ 1114 sf_.name(), std::move(msg), sf_.name(), symbol->name()}; 1115 } 1116 } 1117 } 1118 } 1119 if (proc.Rank() > 0) { 1120 if (severity_) { 1121 auto msg{ 1122 "Statement function '%s' should not reference a function that returns an array"_port_en_US}; 1123 msg.set_severity(*severity_); 1124 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1125 } 1126 } 1127 return std::nullopt; 1128 } 1129 Result operator()(const ActualArgument &arg) const { 1130 if (const auto *expr{arg.UnwrapExpr()}) { 1131 if (auto result{(*this)(*expr)}) { 1132 return result; 1133 } 1134 if (expr->Rank() > 0 && !UnwrapWholeSymbolOrComponentDataRef(*expr)) { 1135 if (severity_) { 1136 auto msg{ 1137 "Statement function '%s' should not pass an array argument that is not a whole array"_port_en_US}; 1138 msg.set_severity(*severity_); 1139 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1140 } 1141 } 1142 } 1143 return std::nullopt; 1144 } 1145 1146 private: 1147 const Symbol &sf_; 1148 FoldingContext &context_; 1149 std::optional<parser::Severity> severity_; 1150 }; 1151 1152 std::optional<parser::Message> CheckStatementFunction( 1153 const Symbol &sf, const Expr<SomeType> &expr, FoldingContext &context) { 1154 return StmtFunctionChecker{sf, context}(expr); 1155 } 1156 1157 } // namespace Fortran::evaluate 1158