1 //===-- lib/Evaluate/check-expression.cpp ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/check-expression.h" 10 #include "flang/Evaluate/characteristics.h" 11 #include "flang/Evaluate/intrinsics.h" 12 #include "flang/Evaluate/traverse.h" 13 #include "flang/Evaluate/type.h" 14 #include "flang/Semantics/symbol.h" 15 #include "flang/Semantics/tools.h" 16 #include <set> 17 #include <string> 18 19 namespace Fortran::evaluate { 20 21 // Constant expression predicates IsConstantExpr() & IsScopeInvariantExpr(). 22 // This code determines whether an expression is a "constant expression" 23 // in the sense of section 10.1.12. This is not the same thing as being 24 // able to fold it (yet) into a known constant value; specifically, 25 // the expression may reference derived type kind parameters whose values 26 // are not yet known. 27 // 28 // The variant form (IsScopeInvariantExpr()) also accepts symbols that are 29 // INTENT(IN) dummy arguments without the VALUE attribute. 30 template <bool INVARIANT> 31 class IsConstantExprHelper 32 : public AllTraverse<IsConstantExprHelper<INVARIANT>, true> { 33 public: 34 using Base = AllTraverse<IsConstantExprHelper, true>; 35 IsConstantExprHelper() : Base{*this} {} 36 using Base::operator(); 37 38 // A missing expression is not considered to be constant. 39 template <typename A> bool operator()(const std::optional<A> &x) const { 40 return x && (*this)(*x); 41 } 42 43 bool operator()(const TypeParamInquiry &inq) const { 44 return INVARIANT || semantics::IsKindTypeParameter(inq.parameter()); 45 } 46 bool operator()(const semantics::Symbol &symbol) const { 47 const auto &ultimate{GetAssociationRoot(symbol)}; 48 return IsNamedConstant(ultimate) || IsImpliedDoIndex(ultimate) || 49 IsInitialProcedureTarget(ultimate) || 50 ultimate.has<semantics::TypeParamDetails>() || 51 (INVARIANT && IsIntentIn(symbol) && 52 !symbol.attrs().test(semantics::Attr::VALUE)); 53 } 54 bool operator()(const CoarrayRef &) const { return false; } 55 bool operator()(const semantics::ParamValue ¶m) const { 56 return param.isExplicit() && (*this)(param.GetExplicit()); 57 } 58 bool operator()(const ProcedureRef &) const; 59 bool operator()(const StructureConstructor &constructor) const { 60 for (const auto &[symRef, expr] : constructor) { 61 if (!IsConstantStructureConstructorComponent(*symRef, expr.value())) { 62 return false; 63 } 64 } 65 return true; 66 } 67 bool operator()(const Component &component) const { 68 return (*this)(component.base()); 69 } 70 // Forbid integer division by zero in constants. 71 template <int KIND> 72 bool operator()( 73 const Divide<Type<TypeCategory::Integer, KIND>> &division) const { 74 using T = Type<TypeCategory::Integer, KIND>; 75 if (const auto divisor{GetScalarConstantValue<T>(division.right())}) { 76 return !divisor->IsZero() && (*this)(division.left()); 77 } else { 78 return false; 79 } 80 } 81 82 bool operator()(const Constant<SomeDerived> &) const { return true; } 83 bool operator()(const DescriptorInquiry &x) const { 84 const Symbol &sym{x.base().GetLastSymbol()}; 85 return INVARIANT && !IsAllocatable(sym) && 86 (!IsDummy(sym) || 87 (IsIntentIn(sym) && !sym.attrs().test(semantics::Attr::VALUE))); 88 } 89 90 private: 91 bool IsConstantStructureConstructorComponent( 92 const Symbol &, const Expr<SomeType> &) const; 93 bool IsConstantExprShape(const Shape &) const; 94 }; 95 96 template <bool INVARIANT> 97 bool IsConstantExprHelper<INVARIANT>::IsConstantStructureConstructorComponent( 98 const Symbol &component, const Expr<SomeType> &expr) const { 99 if (IsAllocatable(component)) { 100 return IsNullPointer(expr); 101 } else if (IsPointer(component)) { 102 return IsNullPointer(expr) || IsInitialDataTarget(expr) || 103 IsInitialProcedureTarget(expr); 104 } else { 105 return (*this)(expr); 106 } 107 } 108 109 template <bool INVARIANT> 110 bool IsConstantExprHelper<INVARIANT>::operator()( 111 const ProcedureRef &call) const { 112 // LBOUND, UBOUND, and SIZE with DIM= arguments will have been rewritten 113 // into DescriptorInquiry operations. 114 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&call.proc().u)}) { 115 if (intrinsic->name == "kind" || 116 intrinsic->name == IntrinsicProcTable::InvalidName) { 117 // kind is always a constant, and we avoid cascading errors by considering 118 // invalid calls to intrinsics to be constant 119 return true; 120 } else if (intrinsic->name == "lbound" && call.arguments().size() == 1) { 121 // LBOUND(x) without DIM= 122 auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())}; 123 return base && IsConstantExprShape(GetLowerBounds(*base)); 124 } else if (intrinsic->name == "ubound" && call.arguments().size() == 1) { 125 // UBOUND(x) without DIM= 126 auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())}; 127 return base && IsConstantExprShape(GetUpperBounds(*base)); 128 } else if (intrinsic->name == "shape") { 129 auto shape{GetShape(call.arguments()[0]->UnwrapExpr())}; 130 return shape && IsConstantExprShape(*shape); 131 } else if (intrinsic->name == "size" && call.arguments().size() == 1) { 132 // SIZE(x) without DIM 133 auto shape{GetShape(call.arguments()[0]->UnwrapExpr())}; 134 return shape && IsConstantExprShape(*shape); 135 } 136 // TODO: STORAGE_SIZE 137 } 138 return false; 139 } 140 141 template <bool INVARIANT> 142 bool IsConstantExprHelper<INVARIANT>::IsConstantExprShape( 143 const Shape &shape) const { 144 for (const auto &extent : shape) { 145 if (!(*this)(extent)) { 146 return false; 147 } 148 } 149 return true; 150 } 151 152 template <typename A> bool IsConstantExpr(const A &x) { 153 return IsConstantExprHelper<false>{}(x); 154 } 155 template bool IsConstantExpr(const Expr<SomeType> &); 156 template bool IsConstantExpr(const Expr<SomeInteger> &); 157 template bool IsConstantExpr(const Expr<SubscriptInteger> &); 158 template bool IsConstantExpr(const StructureConstructor &); 159 160 // IsScopeInvariantExpr() 161 template <typename A> bool IsScopeInvariantExpr(const A &x) { 162 return IsConstantExprHelper<true>{}(x); 163 } 164 template bool IsScopeInvariantExpr(const Expr<SomeType> &); 165 template bool IsScopeInvariantExpr(const Expr<SomeInteger> &); 166 template bool IsScopeInvariantExpr(const Expr<SubscriptInteger> &); 167 168 // IsActuallyConstant() 169 struct IsActuallyConstantHelper { 170 template <typename A> bool operator()(const A &) { return false; } 171 template <typename T> bool operator()(const Constant<T> &) { return true; } 172 template <typename T> bool operator()(const Parentheses<T> &x) { 173 return (*this)(x.left()); 174 } 175 template <typename T> bool operator()(const Expr<T> &x) { 176 return std::visit([=](const auto &y) { return (*this)(y); }, x.u); 177 } 178 template <typename A> bool operator()(const A *x) { return x && (*this)(*x); } 179 template <typename A> bool operator()(const std::optional<A> &x) { 180 return x && (*this)(*x); 181 } 182 }; 183 184 template <typename A> bool IsActuallyConstant(const A &x) { 185 return IsActuallyConstantHelper{}(x); 186 } 187 188 template bool IsActuallyConstant(const Expr<SomeType> &); 189 190 // Object pointer initialization checking predicate IsInitialDataTarget(). 191 // This code determines whether an expression is allowable as the static 192 // data address used to initialize a pointer with "=> x". See C765. 193 class IsInitialDataTargetHelper 194 : public AllTraverse<IsInitialDataTargetHelper, true> { 195 public: 196 using Base = AllTraverse<IsInitialDataTargetHelper, true>; 197 using Base::operator(); 198 explicit IsInitialDataTargetHelper(parser::ContextualMessages *m) 199 : Base{*this}, messages_{m} {} 200 201 bool emittedMessage() const { return emittedMessage_; } 202 203 bool operator()(const BOZLiteralConstant &) const { return false; } 204 bool operator()(const NullPointer &) const { return true; } 205 template <typename T> bool operator()(const Constant<T> &) const { 206 return false; 207 } 208 bool operator()(const semantics::Symbol &symbol) { 209 // This function checks only base symbols, not components. 210 const Symbol &ultimate{symbol.GetUltimate()}; 211 if (const auto *assoc{ 212 ultimate.detailsIf<semantics::AssocEntityDetails>()}) { 213 if (const auto &expr{assoc->expr()}) { 214 if (IsVariable(*expr)) { 215 return (*this)(*expr); 216 } else if (messages_) { 217 messages_->Say( 218 "An initial data target may not be an associated expression ('%s')"_err_en_US, 219 ultimate.name()); 220 emittedMessage_ = true; 221 } 222 } 223 return false; 224 } else if (!ultimate.attrs().test(semantics::Attr::TARGET)) { 225 if (messages_) { 226 messages_->Say( 227 "An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US, 228 ultimate.name()); 229 emittedMessage_ = true; 230 } 231 return false; 232 } else if (!IsSaved(ultimate)) { 233 if (messages_) { 234 messages_->Say( 235 "An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US, 236 ultimate.name()); 237 emittedMessage_ = true; 238 } 239 return false; 240 } else { 241 return CheckVarOrComponent(ultimate); 242 } 243 } 244 bool operator()(const StaticDataObject &) const { return false; } 245 bool operator()(const TypeParamInquiry &) const { return false; } 246 bool operator()(const Triplet &x) const { 247 return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && 248 IsConstantExpr(x.stride()); 249 } 250 bool operator()(const Subscript &x) const { 251 return std::visit(common::visitors{ 252 [&](const Triplet &t) { return (*this)(t); }, 253 [&](const auto &y) { 254 return y.value().Rank() == 0 && 255 IsConstantExpr(y.value()); 256 }, 257 }, 258 x.u); 259 } 260 bool operator()(const CoarrayRef &) const { return false; } 261 bool operator()(const Component &x) { 262 return CheckVarOrComponent(x.GetLastSymbol()) && (*this)(x.base()); 263 } 264 bool operator()(const Substring &x) const { 265 return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && 266 (*this)(x.parent()); 267 } 268 bool operator()(const DescriptorInquiry &) const { return false; } 269 template <typename T> bool operator()(const ArrayConstructor<T> &) const { 270 return false; 271 } 272 bool operator()(const StructureConstructor &) const { return false; } 273 template <typename T> bool operator()(const FunctionRef<T> &) { 274 return false; 275 } 276 template <typename D, typename R, typename... O> 277 bool operator()(const Operation<D, R, O...> &) const { 278 return false; 279 } 280 template <typename T> bool operator()(const Parentheses<T> &x) const { 281 return (*this)(x.left()); 282 } 283 template <typename T> bool operator()(const FunctionRef<T> &x) const { 284 return false; 285 } 286 bool operator()(const Relational<SomeType> &) const { return false; } 287 288 private: 289 bool CheckVarOrComponent(const semantics::Symbol &symbol) { 290 const Symbol &ultimate{symbol.GetUltimate()}; 291 if (IsAllocatable(ultimate)) { 292 if (messages_) { 293 messages_->Say( 294 "An initial data target may not be a reference to an ALLOCATABLE '%s'"_err_en_US, 295 ultimate.name()); 296 emittedMessage_ = true; 297 } 298 return false; 299 } else if (ultimate.Corank() > 0) { 300 if (messages_) { 301 messages_->Say( 302 "An initial data target may not be a reference to a coarray '%s'"_err_en_US, 303 ultimate.name()); 304 emittedMessage_ = true; 305 } 306 return false; 307 } 308 return true; 309 } 310 311 parser::ContextualMessages *messages_; 312 bool emittedMessage_{false}; 313 }; 314 315 bool IsInitialDataTarget( 316 const Expr<SomeType> &x, parser::ContextualMessages *messages) { 317 IsInitialDataTargetHelper helper{messages}; 318 bool result{helper(x)}; 319 if (!result && messages && !helper.emittedMessage()) { 320 messages->Say( 321 "An initial data target must be a designator with constant subscripts"_err_en_US); 322 } 323 return result; 324 } 325 326 bool IsInitialProcedureTarget(const semantics::Symbol &symbol) { 327 const auto &ultimate{symbol.GetUltimate()}; 328 return std::visit( 329 common::visitors{ 330 [](const semantics::SubprogramDetails &subp) { 331 return !subp.isDummy(); 332 }, 333 [](const semantics::SubprogramNameDetails &) { return true; }, 334 [&](const semantics::ProcEntityDetails &proc) { 335 return !semantics::IsPointer(ultimate) && !proc.isDummy(); 336 }, 337 [](const auto &) { return false; }, 338 }, 339 ultimate.details()); 340 } 341 342 bool IsInitialProcedureTarget(const ProcedureDesignator &proc) { 343 if (const auto *intrin{proc.GetSpecificIntrinsic()}) { 344 return !intrin->isRestrictedSpecific; 345 } else if (proc.GetComponent()) { 346 return false; 347 } else { 348 return IsInitialProcedureTarget(DEREF(proc.GetSymbol())); 349 } 350 } 351 352 bool IsInitialProcedureTarget(const Expr<SomeType> &expr) { 353 if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) { 354 return IsInitialProcedureTarget(*proc); 355 } else { 356 return IsNullPointer(expr); 357 } 358 } 359 360 class ArrayConstantBoundChanger { 361 public: 362 ArrayConstantBoundChanger(ConstantSubscripts &&lbounds) 363 : lbounds_{std::move(lbounds)} {} 364 365 template <typename A> A ChangeLbounds(A &&x) const { 366 return std::move(x); // default case 367 } 368 template <typename T> Constant<T> ChangeLbounds(Constant<T> &&x) { 369 x.set_lbounds(std::move(lbounds_)); 370 return std::move(x); 371 } 372 template <typename T> Expr<T> ChangeLbounds(Parentheses<T> &&x) { 373 return ChangeLbounds( 374 std::move(x.left())); // Constant<> can be parenthesized 375 } 376 template <typename T> Expr<T> ChangeLbounds(Expr<T> &&x) { 377 return std::visit( 378 [&](auto &&x) { return Expr<T>{ChangeLbounds(std::move(x))}; }, 379 std::move(x.u)); // recurse until we hit a constant 380 } 381 382 private: 383 ConstantSubscripts &&lbounds_; 384 }; 385 386 // Converts, folds, and then checks type, rank, and shape of an 387 // initialization expression for a named constant, a non-pointer 388 // variable static initializatio, a component default initializer, 389 // a type parameter default value, or instantiated type parameter value. 390 std::optional<Expr<SomeType>> NonPointerInitializationExpr(const Symbol &symbol, 391 Expr<SomeType> &&x, FoldingContext &context, 392 const semantics::Scope *instantiation) { 393 CHECK(!IsPointer(symbol)); 394 if (auto symTS{ 395 characteristics::TypeAndShape::Characterize(symbol, context)}) { 396 auto xType{x.GetType()}; 397 if (auto converted{ConvertToType(symTS->type(), std::move(x))}) { 398 auto folded{Fold(context, std::move(*converted))}; 399 if (IsActuallyConstant(folded)) { 400 int symRank{GetRank(symTS->shape())}; 401 if (IsImpliedShape(symbol)) { 402 if (folded.Rank() == symRank) { 403 return {std::move(folded)}; 404 } else { 405 context.messages().Say( 406 "Implied-shape parameter '%s' has rank %d but its initializer has rank %d"_err_en_US, 407 symbol.name(), symRank, folded.Rank()); 408 } 409 } else if (auto extents{AsConstantExtents(context, symTS->shape())}) { 410 if (folded.Rank() == 0 && symRank == 0) { 411 // symbol and constant are both scalars 412 return {std::move(folded)}; 413 } else if (folded.Rank() == 0 && symRank > 0) { 414 // expand the scalar constant to an array 415 return ScalarConstantExpander{std::move(*extents), 416 AsConstantExtents( 417 context, GetLowerBounds(context, NamedEntity{symbol}))} 418 .Expand(std::move(folded)); 419 } else if (auto resultShape{GetShape(context, folded)}) { 420 if (CheckConformance(context.messages(), symTS->shape(), 421 *resultShape, CheckConformanceFlags::None, 422 "initialized object", "initialization expression") 423 .value_or(false /*fail if not known now to conform*/)) { 424 // make a constant array with adjusted lower bounds 425 return ArrayConstantBoundChanger{ 426 std::move(*AsConstantExtents( 427 context, GetLowerBounds(context, NamedEntity{symbol})))} 428 .ChangeLbounds(std::move(folded)); 429 } 430 } 431 } else if (IsNamedConstant(symbol)) { 432 if (IsExplicitShape(symbol)) { 433 context.messages().Say( 434 "Named constant '%s' array must have constant shape"_err_en_US, 435 symbol.name()); 436 } else { 437 // Declaration checking handles other cases 438 } 439 } else { 440 context.messages().Say( 441 "Shape of initialized object '%s' must be constant"_err_en_US, 442 symbol.name()); 443 } 444 } else if (IsErrorExpr(folded)) { 445 } else if (IsLenTypeParameter(symbol)) { 446 return {std::move(folded)}; 447 } else if (IsKindTypeParameter(symbol)) { 448 if (instantiation) { 449 context.messages().Say( 450 "Value of kind type parameter '%s' (%s) must be a scalar INTEGER constant"_err_en_US, 451 symbol.name(), folded.AsFortran()); 452 } else { 453 return {std::move(folded)}; 454 } 455 } else if (IsNamedConstant(symbol)) { 456 context.messages().Say( 457 "Value of named constant '%s' (%s) cannot be computed as a constant value"_err_en_US, 458 symbol.name(), folded.AsFortran()); 459 } else { 460 context.messages().Say( 461 "Initialization expression for '%s' (%s) cannot be computed as a constant value"_err_en_US, 462 symbol.name(), folded.AsFortran()); 463 } 464 } else if (xType) { 465 context.messages().Say( 466 "Initialization expression cannot be converted to declared type of '%s' from %s"_err_en_US, 467 symbol.name(), xType->AsFortran()); 468 } else { 469 context.messages().Say( 470 "Initialization expression cannot be converted to declared type of '%s'"_err_en_US, 471 symbol.name()); 472 } 473 } 474 return std::nullopt; 475 } 476 477 // Specification expression validation (10.1.11(2), C1010) 478 class CheckSpecificationExprHelper 479 : public AnyTraverse<CheckSpecificationExprHelper, 480 std::optional<std::string>> { 481 public: 482 using Result = std::optional<std::string>; 483 using Base = AnyTraverse<CheckSpecificationExprHelper, Result>; 484 explicit CheckSpecificationExprHelper( 485 const semantics::Scope &s, FoldingContext &context) 486 : Base{*this}, scope_{s}, context_{context} {} 487 using Base::operator(); 488 489 Result operator()(const CoarrayRef &) const { return "coindexed reference"; } 490 491 Result operator()(const semantics::Symbol &symbol) const { 492 const auto &ultimate{symbol.GetUltimate()}; 493 if (const auto *assoc{ 494 ultimate.detailsIf<semantics::AssocEntityDetails>()}) { 495 return (*this)(assoc->expr()); 496 } else if (semantics::IsNamedConstant(ultimate) || 497 ultimate.owner().IsModule() || ultimate.owner().IsSubmodule()) { 498 return std::nullopt; 499 } else if (scope_.IsDerivedType() && 500 IsVariableName(ultimate)) { // C750, C754 501 return "derived type component or type parameter value not allowed to " 502 "reference variable '"s + 503 ultimate.name().ToString() + "'"; 504 } else if (IsDummy(ultimate)) { 505 if (ultimate.attrs().test(semantics::Attr::OPTIONAL)) { 506 return "reference to OPTIONAL dummy argument '"s + 507 ultimate.name().ToString() + "'"; 508 } else if (ultimate.attrs().test(semantics::Attr::INTENT_OUT)) { 509 return "reference to INTENT(OUT) dummy argument '"s + 510 ultimate.name().ToString() + "'"; 511 } else if (ultimate.has<semantics::ObjectEntityDetails>()) { 512 return std::nullopt; 513 } else { 514 return "dummy procedure argument"; 515 } 516 } else if (const auto *object{ 517 ultimate.detailsIf<semantics::ObjectEntityDetails>()}) { 518 if (object->commonBlock()) { 519 return std::nullopt; 520 } 521 } 522 for (const semantics::Scope *s{&scope_}; !s->IsGlobal();) { 523 s = &s->parent(); 524 if (s == &ultimate.owner()) { 525 return std::nullopt; 526 } 527 } 528 return "reference to local entity '"s + ultimate.name().ToString() + "'"; 529 } 530 531 Result operator()(const Component &x) const { 532 // Don't look at the component symbol. 533 return (*this)(x.base()); 534 } 535 Result operator()(const DescriptorInquiry &) const { 536 // Subtle: Uses of SIZE(), LBOUND(), &c. that are valid in specification 537 // expressions will have been converted to expressions over descriptor 538 // inquiries by Fold(). 539 return std::nullopt; 540 } 541 542 Result operator()(const TypeParamInquiry &inq) const { 543 if (scope_.IsDerivedType() && !IsConstantExpr(inq) && 544 inq.base() /* X%T, not local T */) { // C750, C754 545 return "non-constant reference to a type parameter inquiry not " 546 "allowed for derived type components or type parameter values"; 547 } 548 return std::nullopt; 549 } 550 551 template <typename T> Result operator()(const FunctionRef<T> &x) const { 552 if (const auto *symbol{x.proc().GetSymbol()}) { 553 const Symbol &ultimate{symbol->GetUltimate()}; 554 if (!semantics::IsPureProcedure(ultimate)) { 555 return "reference to impure function '"s + ultimate.name().ToString() + 556 "'"; 557 } 558 if (semantics::IsStmtFunction(ultimate)) { 559 return "reference to statement function '"s + 560 ultimate.name().ToString() + "'"; 561 } 562 if (scope_.IsDerivedType()) { // C750, C754 563 return "reference to function '"s + ultimate.name().ToString() + 564 "' not allowed for derived type components or type parameter" 565 " values"; 566 } 567 if (auto procChars{ 568 characteristics::Procedure::Characterize(x.proc(), context_)}) { 569 const auto iter{std::find_if(procChars->dummyArguments.begin(), 570 procChars->dummyArguments.end(), 571 [](const characteristics::DummyArgument &dummy) { 572 return std::holds_alternative<characteristics::DummyProcedure>( 573 dummy.u); 574 })}; 575 if (iter != procChars->dummyArguments.end()) { 576 return "reference to function '"s + ultimate.name().ToString() + 577 "' with dummy procedure argument '" + iter->name + '\''; 578 } 579 } 580 // References to internal functions are caught in expression semantics. 581 // TODO: other checks for standard module procedures 582 } else { 583 const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())}; 584 if (scope_.IsDerivedType()) { // C750, C754 585 if ((context_.intrinsics().IsIntrinsic(intrin.name) && 586 badIntrinsicsForComponents_.find(intrin.name) != 587 badIntrinsicsForComponents_.end()) || 588 IsProhibitedFunction(intrin.name)) { 589 return "reference to intrinsic '"s + intrin.name + 590 "' not allowed for derived type components or type parameter" 591 " values"; 592 } 593 if (context_.intrinsics().GetIntrinsicClass(intrin.name) == 594 IntrinsicClass::inquiryFunction && 595 !IsConstantExpr(x)) { 596 return "non-constant reference to inquiry intrinsic '"s + 597 intrin.name + 598 "' not allowed for derived type components or type" 599 " parameter values"; 600 } 601 } else if (intrin.name == "present") { 602 return std::nullopt; // no need to check argument(s) 603 } 604 if (IsConstantExpr(x)) { 605 // inquiry functions may not need to check argument(s) 606 return std::nullopt; 607 } 608 } 609 return (*this)(x.arguments()); 610 } 611 612 private: 613 const semantics::Scope &scope_; 614 FoldingContext &context_; 615 const std::set<std::string> badIntrinsicsForComponents_{ 616 "allocated", "associated", "extends_type_of", "present", "same_type_as"}; 617 static bool IsProhibitedFunction(std::string name) { return false; } 618 }; 619 620 template <typename A> 621 void CheckSpecificationExpr( 622 const A &x, const semantics::Scope &scope, FoldingContext &context) { 623 if (auto why{CheckSpecificationExprHelper{scope, context}(x)}) { 624 context.messages().Say( 625 "Invalid specification expression: %s"_err_en_US, *why); 626 } 627 } 628 629 template void CheckSpecificationExpr( 630 const Expr<SomeType> &, const semantics::Scope &, FoldingContext &); 631 template void CheckSpecificationExpr( 632 const Expr<SomeInteger> &, const semantics::Scope &, FoldingContext &); 633 template void CheckSpecificationExpr( 634 const Expr<SubscriptInteger> &, const semantics::Scope &, FoldingContext &); 635 template void CheckSpecificationExpr(const std::optional<Expr<SomeType>> &, 636 const semantics::Scope &, FoldingContext &); 637 template void CheckSpecificationExpr(const std::optional<Expr<SomeInteger>> &, 638 const semantics::Scope &, FoldingContext &); 639 template void CheckSpecificationExpr( 640 const std::optional<Expr<SubscriptInteger>> &, const semantics::Scope &, 641 FoldingContext &); 642 643 // IsSimplyContiguous() -- 9.5.4 644 class IsSimplyContiguousHelper 645 : public AnyTraverse<IsSimplyContiguousHelper, std::optional<bool>> { 646 public: 647 using Result = std::optional<bool>; // tri-state 648 using Base = AnyTraverse<IsSimplyContiguousHelper, Result>; 649 explicit IsSimplyContiguousHelper(FoldingContext &c) 650 : Base{*this}, context_{c} {} 651 using Base::operator(); 652 653 Result operator()(const semantics::Symbol &symbol) const { 654 const auto &ultimate{symbol.GetUltimate()}; 655 if (ultimate.attrs().test(semantics::Attr::CONTIGUOUS)) { 656 return true; 657 } else if (ultimate.Rank() == 0) { 658 // Extension: accept scalars as a degenerate case of 659 // simple contiguity to allow their use in contexts like 660 // data targets in pointer assignments with remapping. 661 return true; 662 } else if (semantics::IsPointer(ultimate)) { 663 return false; 664 } else if (const auto *details{ 665 ultimate.detailsIf<semantics::ObjectEntityDetails>()}) { 666 // N.B. ALLOCATABLEs are deferred shape, not assumed, and 667 // are obviously contiguous. 668 return !details->IsAssumedShape() && !details->IsAssumedRank(); 669 } else if (auto assoc{Base::operator()(ultimate)}) { 670 return assoc; 671 } else { 672 return false; 673 } 674 } 675 676 Result operator()(const ArrayRef &x) const { 677 const auto &symbol{x.GetLastSymbol()}; 678 if (!(*this)(symbol).has_value()) { 679 return false; 680 } else if (auto rank{CheckSubscripts(x.subscript())}) { 681 // a(:)%b(1,1) is not contiguous; a(1)%b(:,:) is 682 return *rank > 0 || x.Rank() == 0; 683 } else { 684 return false; 685 } 686 } 687 Result operator()(const CoarrayRef &x) const { 688 return CheckSubscripts(x.subscript()).has_value(); 689 } 690 Result operator()(const Component &x) const { 691 return x.base().Rank() == 0 && (*this)(x.GetLastSymbol()).value_or(false); 692 } 693 Result operator()(const ComplexPart &) const { return false; } 694 Result operator()(const Substring &) const { return false; } 695 696 template <typename T> Result operator()(const FunctionRef<T> &x) const { 697 if (auto chars{ 698 characteristics::Procedure::Characterize(x.proc(), context_)}) { 699 if (chars->functionResult) { 700 const auto &result{*chars->functionResult}; 701 return !result.IsProcedurePointer() && 702 result.attrs.test(characteristics::FunctionResult::Attr::Pointer) && 703 result.attrs.test( 704 characteristics::FunctionResult::Attr::Contiguous); 705 } 706 } 707 return false; 708 } 709 710 private: 711 // If the subscripts can possibly be on a simply-contiguous array reference, 712 // return the rank. 713 static std::optional<int> CheckSubscripts( 714 const std::vector<Subscript> &subscript) { 715 bool anyTriplet{false}; 716 int rank{0}; 717 for (auto j{subscript.size()}; j-- > 0;) { 718 if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) { 719 if (!triplet->IsStrideOne()) { 720 return std::nullopt; 721 } else if (anyTriplet) { 722 if (triplet->lower() || triplet->upper()) { 723 // all triplets before the last one must be just ":" 724 return std::nullopt; 725 } 726 } else { 727 anyTriplet = true; 728 } 729 ++rank; 730 } else if (anyTriplet || subscript[j].Rank() > 0) { 731 return std::nullopt; 732 } 733 } 734 return rank; 735 } 736 737 FoldingContext &context_; 738 }; 739 740 template <typename A> 741 bool IsSimplyContiguous(const A &x, FoldingContext &context) { 742 if (IsVariable(x)) { 743 auto known{IsSimplyContiguousHelper{context}(x)}; 744 return known && *known; 745 } else { 746 return true; // not a variable 747 } 748 } 749 750 template bool IsSimplyContiguous(const Expr<SomeType> &, FoldingContext &); 751 752 // IsErrorExpr() 753 struct IsErrorExprHelper : public AnyTraverse<IsErrorExprHelper, bool> { 754 using Result = bool; 755 using Base = AnyTraverse<IsErrorExprHelper, Result>; 756 IsErrorExprHelper() : Base{*this} {} 757 using Base::operator(); 758 759 bool operator()(const SpecificIntrinsic &x) { 760 return x.name == IntrinsicProcTable::InvalidName; 761 } 762 }; 763 764 template <typename A> bool IsErrorExpr(const A &x) { 765 return IsErrorExprHelper{}(x); 766 } 767 768 template bool IsErrorExpr(const Expr<SomeType> &); 769 770 } // namespace Fortran::evaluate 771