1 //===-- lib/Evaluate/check-expression.cpp ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/check-expression.h" 10 #include "flang/Evaluate/characteristics.h" 11 #include "flang/Evaluate/intrinsics.h" 12 #include "flang/Evaluate/tools.h" 13 #include "flang/Evaluate/traverse.h" 14 #include "flang/Evaluate/type.h" 15 #include "flang/Semantics/semantics.h" 16 #include "flang/Semantics/symbol.h" 17 #include "flang/Semantics/tools.h" 18 #include <set> 19 #include <string> 20 21 namespace Fortran::evaluate { 22 23 // Constant expression predicates IsConstantExpr() & IsScopeInvariantExpr(). 24 // This code determines whether an expression is a "constant expression" 25 // in the sense of section 10.1.12. This is not the same thing as being 26 // able to fold it (yet) into a known constant value; specifically, 27 // the expression may reference derived type kind parameters whose values 28 // are not yet known. 29 // 30 // The variant form (IsScopeInvariantExpr()) also accepts symbols that are 31 // INTENT(IN) dummy arguments without the VALUE attribute. 32 template <bool INVARIANT> 33 class IsConstantExprHelper 34 : public AllTraverse<IsConstantExprHelper<INVARIANT>, true> { 35 public: 36 using Base = AllTraverse<IsConstantExprHelper, true>; 37 IsConstantExprHelper() : Base{*this} {} 38 using Base::operator(); 39 40 // A missing expression is not considered to be constant. 41 template <typename A> bool operator()(const std::optional<A> &x) const { 42 return x && (*this)(*x); 43 } 44 45 bool operator()(const TypeParamInquiry &inq) const { 46 return INVARIANT || semantics::IsKindTypeParameter(inq.parameter()); 47 } 48 bool operator()(const semantics::Symbol &symbol) const { 49 const auto &ultimate{GetAssociationRoot(symbol)}; 50 return IsNamedConstant(ultimate) || IsImpliedDoIndex(ultimate) || 51 IsInitialProcedureTarget(ultimate) || 52 ultimate.has<semantics::TypeParamDetails>() || 53 (INVARIANT && IsIntentIn(symbol) && !IsOptional(symbol) && 54 !symbol.attrs().test(semantics::Attr::VALUE)); 55 } 56 bool operator()(const CoarrayRef &) const { return false; } 57 bool operator()(const semantics::ParamValue ¶m) const { 58 return param.isExplicit() && (*this)(param.GetExplicit()); 59 } 60 bool operator()(const ProcedureRef &) const; 61 bool operator()(const StructureConstructor &constructor) const { 62 for (const auto &[symRef, expr] : constructor) { 63 if (!IsConstantStructureConstructorComponent(*symRef, expr.value())) { 64 return false; 65 } 66 } 67 return true; 68 } 69 bool operator()(const Component &component) const { 70 return (*this)(component.base()); 71 } 72 // Forbid integer division by zero in constants. 73 template <int KIND> 74 bool operator()( 75 const Divide<Type<TypeCategory::Integer, KIND>> &division) const { 76 using T = Type<TypeCategory::Integer, KIND>; 77 if (const auto divisor{GetScalarConstantValue<T>(division.right())}) { 78 return !divisor->IsZero() && (*this)(division.left()); 79 } else { 80 return false; 81 } 82 } 83 84 bool operator()(const Constant<SomeDerived> &) const { return true; } 85 bool operator()(const DescriptorInquiry &x) const { 86 const Symbol &sym{x.base().GetLastSymbol()}; 87 return INVARIANT && !IsAllocatable(sym) && 88 (!IsDummy(sym) || 89 (IsIntentIn(sym) && !IsOptional(sym) && 90 !sym.attrs().test(semantics::Attr::VALUE))); 91 } 92 93 private: 94 bool IsConstantStructureConstructorComponent( 95 const Symbol &, const Expr<SomeType> &) const; 96 bool IsConstantExprShape(const Shape &) const; 97 }; 98 99 template <bool INVARIANT> 100 bool IsConstantExprHelper<INVARIANT>::IsConstantStructureConstructorComponent( 101 const Symbol &component, const Expr<SomeType> &expr) const { 102 if (IsAllocatable(component)) { 103 return IsNullObjectPointer(expr); 104 } else if (IsPointer(component)) { 105 return IsNullPointer(expr) || IsInitialDataTarget(expr) || 106 IsInitialProcedureTarget(expr); 107 } else { 108 return (*this)(expr); 109 } 110 } 111 112 template <bool INVARIANT> 113 bool IsConstantExprHelper<INVARIANT>::operator()( 114 const ProcedureRef &call) const { 115 // LBOUND, UBOUND, and SIZE with truly constant DIM= arguments will have 116 // been rewritten into DescriptorInquiry operations. 117 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&call.proc().u)}) { 118 const characteristics::Procedure &proc{intrinsic->characteristics.value()}; 119 if (intrinsic->name == "kind" || 120 intrinsic->name == IntrinsicProcTable::InvalidName || 121 call.arguments().empty() || !call.arguments()[0]) { 122 // kind is always a constant, and we avoid cascading errors by considering 123 // invalid calls to intrinsics to be constant 124 return true; 125 } else if (intrinsic->name == "lbound") { 126 auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())}; 127 return base && IsConstantExprShape(GetLBOUNDs(*base)); 128 } else if (intrinsic->name == "ubound") { 129 auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())}; 130 return base && IsConstantExprShape(GetUBOUNDs(*base)); 131 } else if (intrinsic->name == "shape" || intrinsic->name == "size") { 132 auto shape{GetShape(call.arguments()[0]->UnwrapExpr())}; 133 return shape && IsConstantExprShape(*shape); 134 } else if (proc.IsPure()) { 135 for (const auto &arg : call.arguments()) { 136 if (!arg) { 137 return false; 138 } else if (const auto *expr{arg->UnwrapExpr()}; 139 !expr || !(*this)(*expr)) { 140 return false; 141 } 142 } 143 return true; 144 } 145 // TODO: STORAGE_SIZE 146 } 147 return false; 148 } 149 150 template <bool INVARIANT> 151 bool IsConstantExprHelper<INVARIANT>::IsConstantExprShape( 152 const Shape &shape) const { 153 for (const auto &extent : shape) { 154 if (!(*this)(extent)) { 155 return false; 156 } 157 } 158 return true; 159 } 160 161 template <typename A> bool IsConstantExpr(const A &x) { 162 return IsConstantExprHelper<false>{}(x); 163 } 164 template bool IsConstantExpr(const Expr<SomeType> &); 165 template bool IsConstantExpr(const Expr<SomeInteger> &); 166 template bool IsConstantExpr(const Expr<SubscriptInteger> &); 167 template bool IsConstantExpr(const StructureConstructor &); 168 169 // IsScopeInvariantExpr() 170 template <typename A> bool IsScopeInvariantExpr(const A &x) { 171 return IsConstantExprHelper<true>{}(x); 172 } 173 template bool IsScopeInvariantExpr(const Expr<SomeType> &); 174 template bool IsScopeInvariantExpr(const Expr<SomeInteger> &); 175 template bool IsScopeInvariantExpr(const Expr<SubscriptInteger> &); 176 177 // IsActuallyConstant() 178 struct IsActuallyConstantHelper { 179 template <typename A> bool operator()(const A &) { return false; } 180 template <typename T> bool operator()(const Constant<T> &) { return true; } 181 template <typename T> bool operator()(const Parentheses<T> &x) { 182 return (*this)(x.left()); 183 } 184 template <typename T> bool operator()(const Expr<T> &x) { 185 return common::visit([=](const auto &y) { return (*this)(y); }, x.u); 186 } 187 bool operator()(const Expr<SomeType> &x) { 188 return common::visit([this](const auto &y) { return (*this)(y); }, x.u); 189 } 190 bool operator()(const StructureConstructor &x) { 191 for (const auto &pair : x) { 192 const Expr<SomeType> &y{pair.second.value()}; 193 const auto sym{pair.first}; 194 const bool compIsConstant{(*this)(y)}; 195 // If an allocatable component is initialized by a constant, 196 // the structure constructor is not a constant. 197 if ((!compIsConstant && !IsNullPointer(y)) || 198 (compIsConstant && IsAllocatable(sym))) { 199 return false; 200 } 201 } 202 return true; 203 } 204 template <typename A> bool operator()(const A *x) { return x && (*this)(*x); } 205 template <typename A> bool operator()(const std::optional<A> &x) { 206 return x && (*this)(*x); 207 } 208 }; 209 210 template <typename A> bool IsActuallyConstant(const A &x) { 211 return IsActuallyConstantHelper{}(x); 212 } 213 214 template bool IsActuallyConstant(const Expr<SomeType> &); 215 template bool IsActuallyConstant(const Expr<SomeInteger> &); 216 template bool IsActuallyConstant(const Expr<SubscriptInteger> &); 217 template bool IsActuallyConstant(const std::optional<Expr<SubscriptInteger>> &); 218 219 // Object pointer initialization checking predicate IsInitialDataTarget(). 220 // This code determines whether an expression is allowable as the static 221 // data address used to initialize a pointer with "=> x". See C765. 222 class IsInitialDataTargetHelper 223 : public AllTraverse<IsInitialDataTargetHelper, true> { 224 public: 225 using Base = AllTraverse<IsInitialDataTargetHelper, true>; 226 using Base::operator(); 227 explicit IsInitialDataTargetHelper(parser::ContextualMessages *m) 228 : Base{*this}, messages_{m} {} 229 230 bool emittedMessage() const { return emittedMessage_; } 231 232 bool operator()(const BOZLiteralConstant &) const { return false; } 233 bool operator()(const NullPointer &) const { return true; } 234 template <typename T> bool operator()(const Constant<T> &) const { 235 return false; 236 } 237 bool operator()(const semantics::Symbol &symbol) { 238 // This function checks only base symbols, not components. 239 const Symbol &ultimate{symbol.GetUltimate()}; 240 if (const auto *assoc{ 241 ultimate.detailsIf<semantics::AssocEntityDetails>()}) { 242 if (const auto &expr{assoc->expr()}) { 243 if (IsVariable(*expr)) { 244 return (*this)(*expr); 245 } else if (messages_) { 246 messages_->Say( 247 "An initial data target may not be an associated expression ('%s')"_err_en_US, 248 ultimate.name()); 249 emittedMessage_ = true; 250 } 251 } 252 return false; 253 } else if (!CheckVarOrComponent(ultimate)) { 254 return false; 255 } else if (!ultimate.attrs().test(semantics::Attr::TARGET)) { 256 if (messages_) { 257 messages_->Say( 258 "An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US, 259 ultimate.name()); 260 emittedMessage_ = true; 261 } 262 return false; 263 } else if (!IsSaved(ultimate)) { 264 if (messages_) { 265 messages_->Say( 266 "An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US, 267 ultimate.name()); 268 emittedMessage_ = true; 269 } 270 return false; 271 } else { 272 return true; 273 } 274 } 275 bool operator()(const StaticDataObject &) const { return false; } 276 bool operator()(const TypeParamInquiry &) const { return false; } 277 bool operator()(const Triplet &x) const { 278 return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && 279 IsConstantExpr(x.stride()); 280 } 281 bool operator()(const Subscript &x) const { 282 return common::visit(common::visitors{ 283 [&](const Triplet &t) { return (*this)(t); }, 284 [&](const auto &y) { 285 return y.value().Rank() == 0 && 286 IsConstantExpr(y.value()); 287 }, 288 }, 289 x.u); 290 } 291 bool operator()(const CoarrayRef &) const { return false; } 292 bool operator()(const Component &x) { 293 return CheckVarOrComponent(x.GetLastSymbol()) && (*this)(x.base()); 294 } 295 bool operator()(const Substring &x) const { 296 return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && 297 (*this)(x.parent()); 298 } 299 bool operator()(const DescriptorInquiry &) const { return false; } 300 template <typename T> bool operator()(const ArrayConstructor<T> &) const { 301 return false; 302 } 303 bool operator()(const StructureConstructor &) const { return false; } 304 template <typename D, typename R, typename... O> 305 bool operator()(const Operation<D, R, O...> &) const { 306 return false; 307 } 308 template <typename T> bool operator()(const Parentheses<T> &x) const { 309 return (*this)(x.left()); 310 } 311 bool operator()(const ProcedureRef &x) const { 312 if (const SpecificIntrinsic * intrinsic{x.proc().GetSpecificIntrinsic()}) { 313 return intrinsic->characteristics.value().attrs.test( 314 characteristics::Procedure::Attr::NullPointer); 315 } 316 return false; 317 } 318 bool operator()(const Relational<SomeType> &) const { return false; } 319 320 private: 321 bool CheckVarOrComponent(const semantics::Symbol &symbol) { 322 const Symbol &ultimate{symbol.GetUltimate()}; 323 const char *unacceptable{nullptr}; 324 if (ultimate.Corank() > 0) { 325 unacceptable = "a coarray"; 326 } else if (IsAllocatable(ultimate)) { 327 unacceptable = "an ALLOCATABLE"; 328 } else if (IsPointer(ultimate)) { 329 unacceptable = "a POINTER"; 330 } else { 331 return true; 332 } 333 if (messages_) { 334 messages_->Say( 335 "An initial data target may not be a reference to %s '%s'"_err_en_US, 336 unacceptable, ultimate.name()); 337 emittedMessage_ = true; 338 } 339 return false; 340 } 341 342 parser::ContextualMessages *messages_; 343 bool emittedMessage_{false}; 344 }; 345 346 bool IsInitialDataTarget( 347 const Expr<SomeType> &x, parser::ContextualMessages *messages) { 348 IsInitialDataTargetHelper helper{messages}; 349 bool result{helper(x)}; 350 if (!result && messages && !helper.emittedMessage()) { 351 messages->Say( 352 "An initial data target must be a designator with constant subscripts"_err_en_US); 353 } 354 return result; 355 } 356 357 bool IsInitialProcedureTarget(const semantics::Symbol &symbol) { 358 const auto &ultimate{symbol.GetUltimate()}; 359 return common::visit( 360 common::visitors{ 361 [&](const semantics::SubprogramDetails &subp) { 362 return !subp.isDummy() && !subp.stmtFunction() && 363 symbol.owner().kind() != semantics::Scope::Kind::MainProgram && 364 symbol.owner().kind() != semantics::Scope::Kind::Subprogram; 365 }, 366 [](const semantics::SubprogramNameDetails &x) { 367 return x.kind() != semantics::SubprogramKind::Internal; 368 }, 369 [&](const semantics::ProcEntityDetails &proc) { 370 return !semantics::IsPointer(ultimate) && !proc.isDummy(); 371 }, 372 [](const auto &) { return false; }, 373 }, 374 ultimate.details()); 375 } 376 377 bool IsInitialProcedureTarget(const ProcedureDesignator &proc) { 378 if (const auto *intrin{proc.GetSpecificIntrinsic()}) { 379 return !intrin->isRestrictedSpecific; 380 } else if (proc.GetComponent()) { 381 return false; 382 } else { 383 return IsInitialProcedureTarget(DEREF(proc.GetSymbol())); 384 } 385 } 386 387 bool IsInitialProcedureTarget(const Expr<SomeType> &expr) { 388 if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) { 389 return IsInitialProcedureTarget(*proc); 390 } else { 391 return IsNullProcedurePointer(expr); 392 } 393 } 394 395 // Converts, folds, and then checks type, rank, and shape of an 396 // initialization expression for a named constant, a non-pointer 397 // variable static initialization, a component default initializer, 398 // a type parameter default value, or instantiated type parameter value. 399 std::optional<Expr<SomeType>> NonPointerInitializationExpr(const Symbol &symbol, 400 Expr<SomeType> &&x, FoldingContext &context, 401 const semantics::Scope *instantiation) { 402 CHECK(!IsPointer(symbol)); 403 if (auto symTS{ 404 characteristics::TypeAndShape::Characterize(symbol, context)}) { 405 auto xType{x.GetType()}; 406 auto converted{ConvertToType(symTS->type(), Expr<SomeType>{x})}; 407 if (!converted && 408 symbol.owner().context().IsEnabled( 409 common::LanguageFeature::LogicalIntegerAssignment)) { 410 converted = DataConstantConversionExtension(context, symTS->type(), x); 411 if (converted && 412 symbol.owner().context().ShouldWarn( 413 common::LanguageFeature::LogicalIntegerAssignment)) { 414 context.messages().Say( 415 "nonstandard usage: initialization of %s with %s"_port_en_US, 416 symTS->type().AsFortran(), x.GetType().value().AsFortran()); 417 } 418 } 419 if (converted) { 420 auto folded{Fold(context, std::move(*converted))}; 421 if (IsActuallyConstant(folded)) { 422 int symRank{symTS->Rank()}; 423 if (IsImpliedShape(symbol)) { 424 if (folded.Rank() == symRank) { 425 return ArrayConstantBoundChanger{ 426 std::move(*AsConstantExtents( 427 context, GetRawLowerBounds(context, NamedEntity{symbol})))} 428 .ChangeLbounds(std::move(folded)); 429 } else { 430 context.messages().Say( 431 "Implied-shape parameter '%s' has rank %d but its initializer has rank %d"_err_en_US, 432 symbol.name(), symRank, folded.Rank()); 433 } 434 } else if (auto extents{AsConstantExtents(context, symTS->shape())}) { 435 if (folded.Rank() == 0 && symRank == 0) { 436 // symbol and constant are both scalars 437 return {std::move(folded)}; 438 } else if (folded.Rank() == 0 && symRank > 0) { 439 // expand the scalar constant to an array 440 return ScalarConstantExpander{std::move(*extents), 441 AsConstantExtents( 442 context, GetRawLowerBounds(context, NamedEntity{symbol}))} 443 .Expand(std::move(folded)); 444 } else if (auto resultShape{GetShape(context, folded)}) { 445 CHECK(symTS->shape()); // Assumed-ranks cannot be initialized. 446 if (CheckConformance(context.messages(), *symTS->shape(), 447 *resultShape, CheckConformanceFlags::None, 448 "initialized object", "initialization expression") 449 .value_or(false /*fail if not known now to conform*/)) { 450 // make a constant array with adjusted lower bounds 451 return ArrayConstantBoundChanger{ 452 std::move(*AsConstantExtents(context, 453 GetRawLowerBounds(context, NamedEntity{symbol})))} 454 .ChangeLbounds(std::move(folded)); 455 } 456 } 457 } else if (IsNamedConstant(symbol)) { 458 if (IsExplicitShape(symbol)) { 459 context.messages().Say( 460 "Named constant '%s' array must have constant shape"_err_en_US, 461 symbol.name()); 462 } else { 463 // Declaration checking handles other cases 464 } 465 } else { 466 context.messages().Say( 467 "Shape of initialized object '%s' must be constant"_err_en_US, 468 symbol.name()); 469 } 470 } else if (IsErrorExpr(folded)) { 471 } else if (IsLenTypeParameter(symbol)) { 472 return {std::move(folded)}; 473 } else if (IsKindTypeParameter(symbol)) { 474 if (instantiation) { 475 context.messages().Say( 476 "Value of kind type parameter '%s' (%s) must be a scalar INTEGER constant"_err_en_US, 477 symbol.name(), folded.AsFortran()); 478 } else { 479 return {std::move(folded)}; 480 } 481 } else if (IsNamedConstant(symbol)) { 482 if (symbol.name() == "numeric_storage_size" && 483 symbol.owner().IsModule() && 484 DEREF(symbol.owner().symbol()).name() == "iso_fortran_env") { 485 // Very special case: numeric_storage_size is not folded until 486 // it read from the iso_fortran_env module file, as its value 487 // depends on compilation options. 488 return {std::move(folded)}; 489 } 490 context.messages().Say( 491 "Value of named constant '%s' (%s) cannot be computed as a constant value"_err_en_US, 492 symbol.name(), folded.AsFortran()); 493 } else { 494 context.messages().Say( 495 "Initialization expression for '%s' (%s) cannot be computed as a constant value"_err_en_US, 496 symbol.name(), x.AsFortran()); 497 } 498 } else if (xType) { 499 context.messages().Say( 500 "Initialization expression cannot be converted to declared type of '%s' from %s"_err_en_US, 501 symbol.name(), xType->AsFortran()); 502 } else { 503 context.messages().Say( 504 "Initialization expression cannot be converted to declared type of '%s'"_err_en_US, 505 symbol.name()); 506 } 507 } 508 return std::nullopt; 509 } 510 511 // Specification expression validation (10.1.11(2), C1010) 512 class CheckSpecificationExprHelper 513 : public AnyTraverse<CheckSpecificationExprHelper, 514 std::optional<std::string>> { 515 public: 516 using Result = std::optional<std::string>; 517 using Base = AnyTraverse<CheckSpecificationExprHelper, Result>; 518 explicit CheckSpecificationExprHelper(const semantics::Scope &s, 519 FoldingContext &context, bool forElementalFunctionResult) 520 : Base{*this}, scope_{s}, context_{context}, 521 forElementalFunctionResult_{forElementalFunctionResult} {} 522 using Base::operator(); 523 524 Result operator()(const CoarrayRef &) const { return "coindexed reference"; } 525 526 Result operator()(const semantics::Symbol &symbol) const { 527 const auto &ultimate{symbol.GetUltimate()}; 528 if (const auto *assoc{ 529 ultimate.detailsIf<semantics::AssocEntityDetails>()}) { 530 return (*this)(assoc->expr()); 531 } else if (semantics::IsNamedConstant(ultimate) || 532 ultimate.owner().IsModule() || ultimate.owner().IsSubmodule()) { 533 return std::nullopt; 534 } else if (scope_.IsDerivedType() && 535 IsVariableName(ultimate)) { // C750, C754 536 return "derived type component or type parameter value not allowed to " 537 "reference variable '"s + 538 ultimate.name().ToString() + "'"; 539 } else if (IsDummy(ultimate)) { 540 if (!inInquiry_ && forElementalFunctionResult_) { 541 return "dependence on value of dummy argument '"s + 542 ultimate.name().ToString() + "'"; 543 } else if (ultimate.attrs().test(semantics::Attr::OPTIONAL)) { 544 return "reference to OPTIONAL dummy argument '"s + 545 ultimate.name().ToString() + "'"; 546 } else if (!inInquiry_ && 547 ultimate.attrs().test(semantics::Attr::INTENT_OUT)) { 548 return "reference to INTENT(OUT) dummy argument '"s + 549 ultimate.name().ToString() + "'"; 550 } else if (ultimate.has<semantics::ObjectEntityDetails>()) { 551 return std::nullopt; 552 } else { 553 return "dummy procedure argument"; 554 } 555 } else if (&symbol.owner() != &scope_ || &ultimate.owner() != &scope_) { 556 return std::nullopt; // host association is in play 557 } else if (const auto *object{ 558 ultimate.detailsIf<semantics::ObjectEntityDetails>()}) { 559 if (object->commonBlock()) { 560 return std::nullopt; 561 } 562 } 563 if (inInquiry_) { 564 return std::nullopt; 565 } else { 566 return "reference to local entity '"s + ultimate.name().ToString() + "'"; 567 } 568 } 569 570 Result operator()(const Component &x) const { 571 // Don't look at the component symbol. 572 return (*this)(x.base()); 573 } 574 Result operator()(const ArrayRef &x) const { 575 if (auto result{(*this)(x.base())}) { 576 return result; 577 } 578 // The subscripts don't get special protection for being in a 579 // specification inquiry context; 580 auto restorer{common::ScopedSet(inInquiry_, false)}; 581 return (*this)(x.subscript()); 582 } 583 Result operator()(const Substring &x) const { 584 if (auto result{(*this)(x.parent())}) { 585 return result; 586 } 587 // The bounds don't get special protection for being in a 588 // specification inquiry context; 589 auto restorer{common::ScopedSet(inInquiry_, false)}; 590 if (auto result{(*this)(x.lower())}) { 591 return result; 592 } 593 return (*this)(x.upper()); 594 } 595 Result operator()(const DescriptorInquiry &x) const { 596 // Many uses of SIZE(), LBOUND(), &c. that are valid in specification 597 // expressions will have been converted to expressions over descriptor 598 // inquiries by Fold(). 599 // Catch REAL, ALLOCATABLE :: X(:); REAL :: Y(SIZE(X)) 600 if (IsPermissibleInquiry( 601 x.base().GetFirstSymbol(), x.base().GetLastSymbol(), x.field())) { 602 auto restorer{common::ScopedSet(inInquiry_, true)}; 603 return (*this)(x.base()); 604 } else if (IsConstantExpr(x)) { 605 return std::nullopt; 606 } else { 607 return "non-constant descriptor inquiry not allowed for local object"; 608 } 609 } 610 611 Result operator()(const TypeParamInquiry &inq) const { 612 if (scope_.IsDerivedType()) { 613 if (!IsConstantExpr(inq) && 614 inq.base() /* X%T, not local T */) { // C750, C754 615 return "non-constant reference to a type parameter inquiry not allowed " 616 "for derived type components or type parameter values"; 617 } 618 } else if (inq.base() && 619 IsInquiryAlwaysPermissible(inq.base()->GetFirstSymbol())) { 620 auto restorer{common::ScopedSet(inInquiry_, true)}; 621 return (*this)(inq.base()); 622 } else if (!IsConstantExpr(inq)) { 623 return "non-constant type parameter inquiry not allowed for local object"; 624 } 625 return std::nullopt; 626 } 627 628 Result operator()(const ProcedureRef &x) const { 629 bool inInquiry{false}; 630 if (const auto *symbol{x.proc().GetSymbol()}) { 631 const Symbol &ultimate{symbol->GetUltimate()}; 632 if (!semantics::IsPureProcedure(ultimate)) { 633 return "reference to impure function '"s + ultimate.name().ToString() + 634 "'"; 635 } 636 if (semantics::IsStmtFunction(ultimate)) { 637 return "reference to statement function '"s + 638 ultimate.name().ToString() + "'"; 639 } 640 if (scope_.IsDerivedType()) { // C750, C754 641 return "reference to function '"s + ultimate.name().ToString() + 642 "' not allowed for derived type components or type parameter" 643 " values"; 644 } 645 if (auto procChars{characteristics::Procedure::Characterize( 646 x.proc(), context_, /*emitError=*/true)}) { 647 const auto iter{std::find_if(procChars->dummyArguments.begin(), 648 procChars->dummyArguments.end(), 649 [](const characteristics::DummyArgument &dummy) { 650 return std::holds_alternative<characteristics::DummyProcedure>( 651 dummy.u); 652 })}; 653 if (iter != procChars->dummyArguments.end() && 654 ultimate.name().ToString() != "__builtin_c_funloc") { 655 return "reference to function '"s + ultimate.name().ToString() + 656 "' with dummy procedure argument '" + iter->name + '\''; 657 } 658 } 659 // References to internal functions are caught in expression semantics. 660 // TODO: other checks for standard module procedures 661 } else { // intrinsic 662 const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())}; 663 inInquiry = context_.intrinsics().GetIntrinsicClass(intrin.name) == 664 IntrinsicClass::inquiryFunction; 665 if (scope_.IsDerivedType()) { // C750, C754 666 if ((context_.intrinsics().IsIntrinsic(intrin.name) && 667 badIntrinsicsForComponents_.find(intrin.name) != 668 badIntrinsicsForComponents_.end())) { 669 return "reference to intrinsic '"s + intrin.name + 670 "' not allowed for derived type components or type parameter" 671 " values"; 672 } 673 if (inInquiry && !IsConstantExpr(x)) { 674 return "non-constant reference to inquiry intrinsic '"s + 675 intrin.name + 676 "' not allowed for derived type components or type" 677 " parameter values"; 678 } 679 } 680 // Type-determined inquiries (DIGITS, HUGE, &c.) will have already been 681 // folded and won't arrive here. Inquiries that are represented with 682 // DescriptorInquiry operations (LBOUND) are checked elsewhere. If a 683 // call that makes it to here satisfies the requirements of a constant 684 // expression (as Fortran defines it), it's fine. 685 if (IsConstantExpr(x)) { 686 return std::nullopt; 687 } 688 if (intrin.name == "present") { 689 return std::nullopt; // always ok 690 } 691 // Catch CHARACTER(:), ALLOCATABLE :: X; CHARACTER(LEN(X)) :: Y 692 if (inInquiry && x.arguments().size() >= 1) { 693 if (const auto &arg{x.arguments().at(0)}) { 694 if (auto dataRef{ExtractDataRef(*arg, true, true)}) { 695 if (intrin.name == "allocated" || intrin.name == "associated" || 696 intrin.name == "is_contiguous") { // ok 697 } else if (intrin.name == "len" && 698 IsPermissibleInquiry(dataRef->GetFirstSymbol(), 699 dataRef->GetLastSymbol(), 700 DescriptorInquiry::Field::Len)) { // ok 701 } else if (intrin.name == "lbound" && 702 IsPermissibleInquiry(dataRef->GetFirstSymbol(), 703 dataRef->GetLastSymbol(), 704 DescriptorInquiry::Field::LowerBound)) { // ok 705 } else if ((intrin.name == "shape" || intrin.name == "size" || 706 intrin.name == "sizeof" || 707 intrin.name == "storage_size" || 708 intrin.name == "ubound") && 709 IsPermissibleInquiry(dataRef->GetFirstSymbol(), 710 dataRef->GetLastSymbol(), 711 DescriptorInquiry::Field::Extent)) { // ok 712 } else { 713 return "non-constant inquiry function '"s + intrin.name + 714 "' not allowed for local object"; 715 } 716 } 717 } 718 } 719 } 720 auto restorer{common::ScopedSet(inInquiry_, inInquiry)}; 721 return (*this)(x.arguments()); 722 } 723 724 private: 725 const semantics::Scope &scope_; 726 FoldingContext &context_; 727 // Contextual information: this flag is true when in an argument to 728 // an inquiry intrinsic like SIZE(). 729 mutable bool inInquiry_{false}; 730 bool forElementalFunctionResult_{false}; // F'2023 C15121 731 const std::set<std::string> badIntrinsicsForComponents_{ 732 "allocated", "associated", "extends_type_of", "present", "same_type_as"}; 733 734 bool IsInquiryAlwaysPermissible(const semantics::Symbol &) const; 735 bool IsPermissibleInquiry(const semantics::Symbol &firstSymbol, 736 const semantics::Symbol &lastSymbol, 737 DescriptorInquiry::Field field) const; 738 }; 739 740 bool CheckSpecificationExprHelper::IsInquiryAlwaysPermissible( 741 const semantics::Symbol &symbol) const { 742 if (&symbol.owner() != &scope_ || symbol.has<semantics::UseDetails>() || 743 symbol.owner().kind() == semantics::Scope::Kind::Module || 744 semantics::FindCommonBlockContaining(symbol) || 745 symbol.has<semantics::HostAssocDetails>()) { 746 return true; // it's nonlocal 747 } else if (semantics::IsDummy(symbol) && !forElementalFunctionResult_) { 748 return true; 749 } else { 750 return false; 751 } 752 } 753 754 bool CheckSpecificationExprHelper::IsPermissibleInquiry( 755 const semantics::Symbol &firstSymbol, const semantics::Symbol &lastSymbol, 756 DescriptorInquiry::Field field) const { 757 if (IsInquiryAlwaysPermissible(firstSymbol)) { 758 return true; 759 } 760 // Inquiries on local objects may not access a deferred bound or length. 761 // (This code used to be a switch, but it proved impossible to write it 762 // thus without running afoul of bogus warnings from different C++ 763 // compilers.) 764 if (field == DescriptorInquiry::Field::Rank) { 765 return true; // always known 766 } 767 const auto *object{lastSymbol.detailsIf<semantics::ObjectEntityDetails>()}; 768 if (field == DescriptorInquiry::Field::LowerBound || 769 field == DescriptorInquiry::Field::Extent || 770 field == DescriptorInquiry::Field::Stride) { 771 return object && !object->shape().CanBeDeferredShape(); 772 } 773 if (field == DescriptorInquiry::Field::Len) { 774 return object && object->type() && 775 object->type()->category() == semantics::DeclTypeSpec::Character && 776 !object->type()->characterTypeSpec().length().isDeferred(); 777 } 778 return false; 779 } 780 781 template <typename A> 782 void CheckSpecificationExpr(const A &x, const semantics::Scope &scope, 783 FoldingContext &context, bool forElementalFunctionResult) { 784 if (auto why{CheckSpecificationExprHelper{ 785 scope, context, forElementalFunctionResult}(x)}) { 786 context.messages().Say("Invalid specification expression%s: %s"_err_en_US, 787 forElementalFunctionResult ? " for elemental function result" : "", 788 *why); 789 } 790 } 791 792 template void CheckSpecificationExpr(const Expr<SomeType> &, 793 const semantics::Scope &, FoldingContext &, 794 bool forElementalFunctionResult); 795 template void CheckSpecificationExpr(const Expr<SomeInteger> &, 796 const semantics::Scope &, FoldingContext &, 797 bool forElementalFunctionResult); 798 template void CheckSpecificationExpr(const Expr<SubscriptInteger> &, 799 const semantics::Scope &, FoldingContext &, 800 bool forElementalFunctionResult); 801 template void CheckSpecificationExpr(const std::optional<Expr<SomeType>> &, 802 const semantics::Scope &, FoldingContext &, 803 bool forElementalFunctionResult); 804 template void CheckSpecificationExpr(const std::optional<Expr<SomeInteger>> &, 805 const semantics::Scope &, FoldingContext &, 806 bool forElementalFunctionResult); 807 template void CheckSpecificationExpr( 808 const std::optional<Expr<SubscriptInteger>> &, const semantics::Scope &, 809 FoldingContext &, bool forElementalFunctionResult); 810 811 // IsContiguous() -- 9.5.4 812 class IsContiguousHelper 813 : public AnyTraverse<IsContiguousHelper, std::optional<bool>> { 814 public: 815 using Result = std::optional<bool>; // tri-state 816 using Base = AnyTraverse<IsContiguousHelper, Result>; 817 explicit IsContiguousHelper(FoldingContext &c) : Base{*this}, context_{c} {} 818 using Base::operator(); 819 820 template <typename T> Result operator()(const Constant<T> &) const { 821 return true; 822 } 823 Result operator()(const StaticDataObject &) const { return true; } 824 Result operator()(const semantics::Symbol &symbol) const { 825 const auto &ultimate{symbol.GetUltimate()}; 826 if (ultimate.attrs().test(semantics::Attr::CONTIGUOUS)) { 827 return true; 828 } else if (!IsVariable(symbol)) { 829 return true; 830 } else if (ultimate.Rank() == 0) { 831 // Extension: accept scalars as a degenerate case of 832 // simple contiguity to allow their use in contexts like 833 // data targets in pointer assignments with remapping. 834 return true; 835 } else if (const auto *details{ 836 ultimate.detailsIf<semantics::AssocEntityDetails>()}) { 837 // RANK(*) associating entity is contiguous. 838 if (details->IsAssumedSize()) { 839 return true; 840 } else { 841 return Base::operator()(ultimate); // use expr 842 } 843 } else if (semantics::IsPointer(ultimate) || 844 semantics::IsAssumedShape(ultimate) || IsAssumedRank(ultimate)) { 845 return std::nullopt; 846 } else if (ultimate.has<semantics::ObjectEntityDetails>()) { 847 return true; 848 } else { 849 return Base::operator()(ultimate); 850 } 851 } 852 853 Result operator()(const ArrayRef &x) const { 854 if (x.Rank() == 0) { 855 return true; // scalars considered contiguous 856 } 857 int subscriptRank{0}; 858 auto baseLbounds{GetLBOUNDs(context_, x.base())}; 859 auto baseUbounds{GetUBOUNDs(context_, x.base())}; 860 auto subscripts{CheckSubscripts( 861 x.subscript(), subscriptRank, &baseLbounds, &baseUbounds)}; 862 if (!subscripts.value_or(false)) { 863 return subscripts; // subscripts not known to be contiguous 864 } else if (subscriptRank > 0) { 865 // a(1)%b(:,:) is contiguous if and only if a(1)%b is contiguous. 866 return (*this)(x.base()); 867 } else { 868 // a(:)%b(1,1) is (probably) not contiguous. 869 return std::nullopt; 870 } 871 } 872 Result operator()(const CoarrayRef &x) const { 873 int rank{0}; 874 return CheckSubscripts(x.subscript(), rank).has_value(); 875 } 876 Result operator()(const Component &x) const { 877 if (x.base().Rank() == 0) { 878 return (*this)(x.GetLastSymbol()); 879 } else { 880 if (Result baseIsContiguous{(*this)(x.base())}) { 881 if (!*baseIsContiguous) { 882 return false; 883 } 884 // TODO could be true if base contiguous and this is only component, or 885 // if base has only one element? 886 } 887 return std::nullopt; 888 } 889 } 890 Result operator()(const ComplexPart &x) const { 891 return x.complex().Rank() == 0; 892 } 893 Result operator()(const Substring &) const { return std::nullopt; } 894 895 Result operator()(const ProcedureRef &x) const { 896 if (auto chars{characteristics::Procedure::Characterize( 897 x.proc(), context_, /*emitError=*/true)}) { 898 if (chars->functionResult) { 899 const auto &result{*chars->functionResult}; 900 if (!result.IsProcedurePointer()) { 901 if (result.attrs.test( 902 characteristics::FunctionResult::Attr::Contiguous)) { 903 return true; 904 } 905 if (!result.attrs.test( 906 characteristics::FunctionResult::Attr::Pointer)) { 907 return true; 908 } 909 if (const auto *type{result.GetTypeAndShape()}; 910 type && type->Rank() == 0) { 911 return true; // pointer to scalar 912 } 913 // Must be non-CONTIGUOUS pointer to array 914 } 915 } 916 } 917 return std::nullopt; 918 } 919 920 Result operator()(const NullPointer &) const { return true; } 921 922 private: 923 // Returns "true" for a provably empty or simply contiguous array section; 924 // return "false" for a provably nonempty discontiguous section or for use 925 // of a vector subscript. 926 std::optional<bool> CheckSubscripts(const std::vector<Subscript> &subscript, 927 int &rank, const Shape *baseLbounds = nullptr, 928 const Shape *baseUbounds = nullptr) const { 929 bool anyTriplet{false}; 930 rank = 0; 931 // Detect any provably empty dimension in this array section, which would 932 // render the whole section empty and therefore vacuously contiguous. 933 std::optional<bool> result; 934 bool mayBeEmpty{false}; 935 auto dims{subscript.size()}; 936 std::vector<bool> knownPartialSlice(dims, false); 937 for (auto j{dims}; j-- > 0;) { 938 std::optional<ConstantSubscript> dimLbound; 939 std::optional<ConstantSubscript> dimUbound; 940 std::optional<ConstantSubscript> dimExtent; 941 if (baseLbounds && j < baseLbounds->size()) { 942 if (const auto &lb{baseLbounds->at(j)}) { 943 dimLbound = ToInt64(Fold(context_, Expr<SubscriptInteger>{*lb})); 944 } 945 } 946 if (baseUbounds && j < baseUbounds->size()) { 947 if (const auto &ub{baseUbounds->at(j)}) { 948 dimUbound = ToInt64(Fold(context_, Expr<SubscriptInteger>{*ub})); 949 } 950 } 951 if (dimLbound && dimUbound) { 952 if (*dimLbound <= *dimUbound) { 953 dimExtent = *dimUbound - *dimLbound + 1; 954 } else { 955 // This is an empty dimension. 956 result = true; 957 dimExtent = 0; 958 } 959 } 960 961 if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) { 962 ++rank; 963 if (auto stride{ToInt64(triplet->stride())}) { 964 const Expr<SubscriptInteger> *lowerBound{triplet->GetLower()}; 965 const Expr<SubscriptInteger> *upperBound{triplet->GetUpper()}; 966 std::optional<ConstantSubscript> lowerVal{lowerBound 967 ? ToInt64(Fold(context_, Expr<SubscriptInteger>{*lowerBound})) 968 : dimLbound}; 969 std::optional<ConstantSubscript> upperVal{upperBound 970 ? ToInt64(Fold(context_, Expr<SubscriptInteger>{*upperBound})) 971 : dimUbound}; 972 if (lowerVal && upperVal) { 973 if (*lowerVal < *upperVal) { 974 if (*stride < 0) { 975 result = true; // empty dimension 976 } else if (!result && *stride > 1 && 977 *lowerVal + *stride <= *upperVal) { 978 result = false; // discontiguous if not empty 979 } 980 } else if (*lowerVal > *upperVal) { 981 if (*stride > 0) { 982 result = true; // empty dimension 983 } else if (!result && *stride < 0 && 984 *lowerVal + *stride >= *upperVal) { 985 result = false; // discontiguous if not empty 986 } 987 } else { 988 mayBeEmpty = true; 989 } 990 } else { 991 mayBeEmpty = true; 992 } 993 } else { 994 mayBeEmpty = true; 995 } 996 } else if (subscript[j].Rank() > 0) { 997 ++rank; 998 if (!result) { 999 result = false; // vector subscript 1000 } 1001 mayBeEmpty = true; 1002 } else { 1003 // Scalar subscript. 1004 if (dimExtent && *dimExtent > 1) { 1005 knownPartialSlice[j] = true; 1006 } 1007 } 1008 } 1009 if (rank == 0) { 1010 result = true; // scalar 1011 } 1012 if (result) { 1013 return result; 1014 } 1015 // Not provably discontiguous at this point. 1016 // Return "true" if simply contiguous, otherwise nullopt. 1017 for (auto j{subscript.size()}; j-- > 0;) { 1018 if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) { 1019 auto stride{ToInt64(triplet->stride())}; 1020 if (!stride || stride != 1) { 1021 return std::nullopt; 1022 } else if (anyTriplet) { 1023 if (triplet->GetLower() || triplet->GetUpper()) { 1024 // all triplets before the last one must be just ":" for 1025 // simple contiguity 1026 return std::nullopt; 1027 } 1028 } else { 1029 anyTriplet = true; 1030 } 1031 ++rank; 1032 } else if (anyTriplet) { 1033 // If the section cannot be empty, and this dimension's 1034 // scalar subscript is known not to cover the whole 1035 // dimension, then the array section is provably 1036 // discontiguous. 1037 return (mayBeEmpty || !knownPartialSlice[j]) 1038 ? std::nullopt 1039 : std::make_optional(false); 1040 } 1041 } 1042 return true; // simply contiguous 1043 } 1044 1045 FoldingContext &context_; 1046 }; 1047 1048 template <typename A> 1049 std::optional<bool> IsContiguous(const A &x, FoldingContext &context) { 1050 return IsContiguousHelper{context}(x); 1051 } 1052 1053 template std::optional<bool> IsContiguous( 1054 const Expr<SomeType> &, FoldingContext &); 1055 template std::optional<bool> IsContiguous(const ArrayRef &, FoldingContext &); 1056 template std::optional<bool> IsContiguous(const Substring &, FoldingContext &); 1057 template std::optional<bool> IsContiguous(const Component &, FoldingContext &); 1058 template std::optional<bool> IsContiguous( 1059 const ComplexPart &, FoldingContext &); 1060 template std::optional<bool> IsContiguous(const CoarrayRef &, FoldingContext &); 1061 template std::optional<bool> IsContiguous(const Symbol &, FoldingContext &); 1062 1063 // IsErrorExpr() 1064 struct IsErrorExprHelper : public AnyTraverse<IsErrorExprHelper, bool> { 1065 using Result = bool; 1066 using Base = AnyTraverse<IsErrorExprHelper, Result>; 1067 IsErrorExprHelper() : Base{*this} {} 1068 using Base::operator(); 1069 1070 bool operator()(const SpecificIntrinsic &x) { 1071 return x.name == IntrinsicProcTable::InvalidName; 1072 } 1073 }; 1074 1075 template <typename A> bool IsErrorExpr(const A &x) { 1076 return IsErrorExprHelper{}(x); 1077 } 1078 1079 template bool IsErrorExpr(const Expr<SomeType> &); 1080 1081 // C1577 1082 // TODO: Also check C1579 & C1582 here 1083 class StmtFunctionChecker 1084 : public AnyTraverse<StmtFunctionChecker, std::optional<parser::Message>> { 1085 public: 1086 using Result = std::optional<parser::Message>; 1087 using Base = AnyTraverse<StmtFunctionChecker, Result>; 1088 StmtFunctionChecker(const Symbol &sf, FoldingContext &context) 1089 : Base{*this}, sf_{sf}, context_{context} { 1090 if (!context_.languageFeatures().IsEnabled( 1091 common::LanguageFeature::StatementFunctionExtensions)) { 1092 severity_ = parser::Severity::Error; 1093 } else if (context_.languageFeatures().ShouldWarn( 1094 common::LanguageFeature::StatementFunctionExtensions)) { 1095 severity_ = parser::Severity::Portability; 1096 } 1097 } 1098 using Base::operator(); 1099 1100 template <typename T> Result operator()(const ArrayConstructor<T> &) const { 1101 if (severity_) { 1102 auto msg{ 1103 "Statement function '%s' should not contain an array constructor"_port_en_US}; 1104 msg.set_severity(*severity_); 1105 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1106 } else { 1107 return std::nullopt; 1108 } 1109 } 1110 Result operator()(const StructureConstructor &) const { 1111 if (severity_) { 1112 auto msg{ 1113 "Statement function '%s' should not contain a structure constructor"_port_en_US}; 1114 msg.set_severity(*severity_); 1115 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1116 } else { 1117 return std::nullopt; 1118 } 1119 } 1120 Result operator()(const TypeParamInquiry &) const { 1121 if (severity_) { 1122 auto msg{ 1123 "Statement function '%s' should not contain a type parameter inquiry"_port_en_US}; 1124 msg.set_severity(*severity_); 1125 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1126 } else { 1127 return std::nullopt; 1128 } 1129 } 1130 Result operator()(const ProcedureDesignator &proc) const { 1131 if (const Symbol * symbol{proc.GetSymbol()}) { 1132 const Symbol &ultimate{symbol->GetUltimate()}; 1133 if (const auto *subp{ 1134 ultimate.detailsIf<semantics::SubprogramDetails>()}) { 1135 if (subp->stmtFunction() && &ultimate.owner() == &sf_.owner()) { 1136 if (ultimate.name().begin() > sf_.name().begin()) { 1137 return parser::Message{sf_.name(), 1138 "Statement function '%s' may not reference another statement function '%s' that is defined later"_err_en_US, 1139 sf_.name(), ultimate.name()}; 1140 } 1141 } 1142 } 1143 if (auto chars{characteristics::Procedure::Characterize( 1144 proc, context_, /*emitError=*/true)}) { 1145 if (!chars->CanBeCalledViaImplicitInterface()) { 1146 if (severity_) { 1147 auto msg{ 1148 "Statement function '%s' should not reference function '%s' that requires an explicit interface"_port_en_US}; 1149 msg.set_severity(*severity_); 1150 return parser::Message{ 1151 sf_.name(), std::move(msg), sf_.name(), symbol->name()}; 1152 } 1153 } 1154 } 1155 } 1156 if (proc.Rank() > 0) { 1157 if (severity_) { 1158 auto msg{ 1159 "Statement function '%s' should not reference a function that returns an array"_port_en_US}; 1160 msg.set_severity(*severity_); 1161 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1162 } 1163 } 1164 return std::nullopt; 1165 } 1166 Result operator()(const ActualArgument &arg) const { 1167 if (const auto *expr{arg.UnwrapExpr()}) { 1168 if (auto result{(*this)(*expr)}) { 1169 return result; 1170 } 1171 if (expr->Rank() > 0 && !UnwrapWholeSymbolOrComponentDataRef(*expr)) { 1172 if (severity_) { 1173 auto msg{ 1174 "Statement function '%s' should not pass an array argument that is not a whole array"_port_en_US}; 1175 msg.set_severity(*severity_); 1176 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1177 } 1178 } 1179 } 1180 return std::nullopt; 1181 } 1182 1183 private: 1184 const Symbol &sf_; 1185 FoldingContext &context_; 1186 std::optional<parser::Severity> severity_; 1187 }; 1188 1189 std::optional<parser::Message> CheckStatementFunction( 1190 const Symbol &sf, const Expr<SomeType> &expr, FoldingContext &context) { 1191 return StmtFunctionChecker{sf, context}(expr); 1192 } 1193 1194 } // namespace Fortran::evaluate 1195