1 //===-- lib/Evaluate/check-expression.cpp ---------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/check-expression.h" 10 #include "flang/Evaluate/characteristics.h" 11 #include "flang/Evaluate/intrinsics.h" 12 #include "flang/Evaluate/tools.h" 13 #include "flang/Evaluate/traverse.h" 14 #include "flang/Evaluate/type.h" 15 #include "flang/Semantics/semantics.h" 16 #include "flang/Semantics/symbol.h" 17 #include "flang/Semantics/tools.h" 18 #include <set> 19 #include <string> 20 21 namespace Fortran::evaluate { 22 23 // Constant expression predicates IsConstantExpr() & IsScopeInvariantExpr(). 24 // This code determines whether an expression is a "constant expression" 25 // in the sense of section 10.1.12. This is not the same thing as being 26 // able to fold it (yet) into a known constant value; specifically, 27 // the expression may reference derived type kind parameters whose values 28 // are not yet known. 29 // 30 // The variant form (IsScopeInvariantExpr()) also accepts symbols that are 31 // INTENT(IN) dummy arguments without the VALUE attribute. 32 template <bool INVARIANT> 33 class IsConstantExprHelper 34 : public AllTraverse<IsConstantExprHelper<INVARIANT>, true> { 35 public: 36 using Base = AllTraverse<IsConstantExprHelper, true>; 37 IsConstantExprHelper() : Base{*this} {} 38 using Base::operator(); 39 40 // A missing expression is not considered to be constant. 41 template <typename A> bool operator()(const std::optional<A> &x) const { 42 return x && (*this)(*x); 43 } 44 45 bool operator()(const TypeParamInquiry &inq) const { 46 return INVARIANT || semantics::IsKindTypeParameter(inq.parameter()); 47 } 48 bool operator()(const semantics::Symbol &symbol) const { 49 const auto &ultimate{GetAssociationRoot(symbol)}; 50 return IsNamedConstant(ultimate) || IsImpliedDoIndex(ultimate) || 51 IsInitialProcedureTarget(ultimate) || 52 ultimate.has<semantics::TypeParamDetails>() || 53 (INVARIANT && IsIntentIn(symbol) && !IsOptional(symbol) && 54 !symbol.attrs().test(semantics::Attr::VALUE)); 55 } 56 bool operator()(const CoarrayRef &) const { return false; } 57 bool operator()(const semantics::ParamValue ¶m) const { 58 return param.isExplicit() && (*this)(param.GetExplicit()); 59 } 60 bool operator()(const ProcedureRef &) const; 61 bool operator()(const StructureConstructor &constructor) const { 62 for (const auto &[symRef, expr] : constructor) { 63 if (!IsConstantStructureConstructorComponent(*symRef, expr.value())) { 64 return false; 65 } 66 } 67 return true; 68 } 69 bool operator()(const Component &component) const { 70 return (*this)(component.base()); 71 } 72 // Forbid integer division by zero in constants. 73 template <int KIND> 74 bool operator()( 75 const Divide<Type<TypeCategory::Integer, KIND>> &division) const { 76 using T = Type<TypeCategory::Integer, KIND>; 77 if (const auto divisor{GetScalarConstantValue<T>(division.right())}) { 78 return !divisor->IsZero() && (*this)(division.left()); 79 } else { 80 return false; 81 } 82 } 83 84 bool operator()(const Constant<SomeDerived> &) const { return true; } 85 bool operator()(const DescriptorInquiry &x) const { 86 const Symbol &sym{x.base().GetLastSymbol()}; 87 return INVARIANT && !IsAllocatable(sym) && 88 (!IsDummy(sym) || 89 (IsIntentIn(sym) && !IsOptional(sym) && 90 !sym.attrs().test(semantics::Attr::VALUE))); 91 } 92 93 private: 94 bool IsConstantStructureConstructorComponent( 95 const Symbol &, const Expr<SomeType> &) const; 96 bool IsConstantExprShape(const Shape &) const; 97 }; 98 99 template <bool INVARIANT> 100 bool IsConstantExprHelper<INVARIANT>::IsConstantStructureConstructorComponent( 101 const Symbol &component, const Expr<SomeType> &expr) const { 102 if (IsAllocatable(component)) { 103 return IsNullObjectPointer(expr); 104 } else if (IsPointer(component)) { 105 return IsNullPointer(expr) || IsInitialDataTarget(expr) || 106 IsInitialProcedureTarget(expr); 107 } else { 108 return (*this)(expr); 109 } 110 } 111 112 template <bool INVARIANT> 113 bool IsConstantExprHelper<INVARIANT>::operator()( 114 const ProcedureRef &call) const { 115 // LBOUND, UBOUND, and SIZE with truly constant DIM= arguments will have 116 // been rewritten into DescriptorInquiry operations. 117 if (const auto *intrinsic{std::get_if<SpecificIntrinsic>(&call.proc().u)}) { 118 const characteristics::Procedure &proc{intrinsic->characteristics.value()}; 119 if (intrinsic->name == "kind" || 120 intrinsic->name == IntrinsicProcTable::InvalidName || 121 call.arguments().empty() || !call.arguments()[0]) { 122 // kind is always a constant, and we avoid cascading errors by considering 123 // invalid calls to intrinsics to be constant 124 return true; 125 } else if (intrinsic->name == "lbound") { 126 auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())}; 127 return base && IsConstantExprShape(GetLBOUNDs(*base)); 128 } else if (intrinsic->name == "ubound") { 129 auto base{ExtractNamedEntity(call.arguments()[0]->UnwrapExpr())}; 130 return base && IsConstantExprShape(GetUBOUNDs(*base)); 131 } else if (intrinsic->name == "shape" || intrinsic->name == "size") { 132 auto shape{GetShape(call.arguments()[0]->UnwrapExpr())}; 133 return shape && IsConstantExprShape(*shape); 134 } else if (proc.IsPure()) { 135 for (const auto &arg : call.arguments()) { 136 if (!arg) { 137 return false; 138 } else if (const auto *expr{arg->UnwrapExpr()}; 139 !expr || !(*this)(*expr)) { 140 return false; 141 } 142 } 143 return true; 144 } 145 // TODO: STORAGE_SIZE 146 } 147 return false; 148 } 149 150 template <bool INVARIANT> 151 bool IsConstantExprHelper<INVARIANT>::IsConstantExprShape( 152 const Shape &shape) const { 153 for (const auto &extent : shape) { 154 if (!(*this)(extent)) { 155 return false; 156 } 157 } 158 return true; 159 } 160 161 template <typename A> bool IsConstantExpr(const A &x) { 162 return IsConstantExprHelper<false>{}(x); 163 } 164 template bool IsConstantExpr(const Expr<SomeType> &); 165 template bool IsConstantExpr(const Expr<SomeInteger> &); 166 template bool IsConstantExpr(const Expr<SubscriptInteger> &); 167 template bool IsConstantExpr(const StructureConstructor &); 168 169 // IsScopeInvariantExpr() 170 template <typename A> bool IsScopeInvariantExpr(const A &x) { 171 return IsConstantExprHelper<true>{}(x); 172 } 173 template bool IsScopeInvariantExpr(const Expr<SomeType> &); 174 template bool IsScopeInvariantExpr(const Expr<SomeInteger> &); 175 template bool IsScopeInvariantExpr(const Expr<SubscriptInteger> &); 176 177 // IsActuallyConstant() 178 struct IsActuallyConstantHelper { 179 template <typename A> bool operator()(const A &) { return false; } 180 template <typename T> bool operator()(const Constant<T> &) { return true; } 181 template <typename T> bool operator()(const Parentheses<T> &x) { 182 return (*this)(x.left()); 183 } 184 template <typename T> bool operator()(const Expr<T> &x) { 185 return common::visit([=](const auto &y) { return (*this)(y); }, x.u); 186 } 187 bool operator()(const Expr<SomeType> &x) { 188 return common::visit([this](const auto &y) { return (*this)(y); }, x.u); 189 } 190 bool operator()(const StructureConstructor &x) { 191 for (const auto &pair : x) { 192 const Expr<SomeType> &y{pair.second.value()}; 193 const auto sym{pair.first}; 194 const bool compIsConstant{(*this)(y)}; 195 // If an allocatable component is initialized by a constant, 196 // the structure constructor is not a constant. 197 if ((!compIsConstant && !IsNullPointer(y)) || 198 (compIsConstant && IsAllocatable(sym))) { 199 return false; 200 } 201 } 202 return true; 203 } 204 template <typename A> bool operator()(const A *x) { return x && (*this)(*x); } 205 template <typename A> bool operator()(const std::optional<A> &x) { 206 return x && (*this)(*x); 207 } 208 }; 209 210 template <typename A> bool IsActuallyConstant(const A &x) { 211 return IsActuallyConstantHelper{}(x); 212 } 213 214 template bool IsActuallyConstant(const Expr<SomeType> &); 215 template bool IsActuallyConstant(const Expr<SomeInteger> &); 216 template bool IsActuallyConstant(const Expr<SubscriptInteger> &); 217 template bool IsActuallyConstant(const std::optional<Expr<SubscriptInteger>> &); 218 219 // Object pointer initialization checking predicate IsInitialDataTarget(). 220 // This code determines whether an expression is allowable as the static 221 // data address used to initialize a pointer with "=> x". See C765. 222 class IsInitialDataTargetHelper 223 : public AllTraverse<IsInitialDataTargetHelper, true> { 224 public: 225 using Base = AllTraverse<IsInitialDataTargetHelper, true>; 226 using Base::operator(); 227 explicit IsInitialDataTargetHelper(parser::ContextualMessages *m) 228 : Base{*this}, messages_{m} {} 229 230 bool emittedMessage() const { return emittedMessage_; } 231 232 bool operator()(const BOZLiteralConstant &) const { return false; } 233 bool operator()(const NullPointer &) const { return true; } 234 template <typename T> bool operator()(const Constant<T> &) const { 235 return false; 236 } 237 bool operator()(const semantics::Symbol &symbol) { 238 // This function checks only base symbols, not components. 239 const Symbol &ultimate{symbol.GetUltimate()}; 240 if (const auto *assoc{ 241 ultimate.detailsIf<semantics::AssocEntityDetails>()}) { 242 if (const auto &expr{assoc->expr()}) { 243 if (IsVariable(*expr)) { 244 return (*this)(*expr); 245 } else if (messages_) { 246 messages_->Say( 247 "An initial data target may not be an associated expression ('%s')"_err_en_US, 248 ultimate.name()); 249 emittedMessage_ = true; 250 } 251 } 252 return false; 253 } else if (!CheckVarOrComponent(ultimate)) { 254 return false; 255 } else if (!ultimate.attrs().test(semantics::Attr::TARGET)) { 256 if (messages_) { 257 messages_->Say( 258 "An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US, 259 ultimate.name()); 260 emittedMessage_ = true; 261 } 262 return false; 263 } else if (!IsSaved(ultimate)) { 264 if (messages_) { 265 messages_->Say( 266 "An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US, 267 ultimate.name()); 268 emittedMessage_ = true; 269 } 270 return false; 271 } else { 272 return true; 273 } 274 } 275 bool operator()(const StaticDataObject &) const { return false; } 276 bool operator()(const TypeParamInquiry &) const { return false; } 277 bool operator()(const Triplet &x) const { 278 return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && 279 IsConstantExpr(x.stride()); 280 } 281 bool operator()(const Subscript &x) const { 282 return common::visit(common::visitors{ 283 [&](const Triplet &t) { return (*this)(t); }, 284 [&](const auto &y) { 285 return y.value().Rank() == 0 && 286 IsConstantExpr(y.value()); 287 }, 288 }, 289 x.u); 290 } 291 bool operator()(const CoarrayRef &) const { return false; } 292 bool operator()(const Component &x) { 293 return CheckVarOrComponent(x.GetLastSymbol()) && (*this)(x.base()); 294 } 295 bool operator()(const Substring &x) const { 296 return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && 297 (*this)(x.parent()); 298 } 299 bool operator()(const DescriptorInquiry &) const { return false; } 300 template <typename T> bool operator()(const ArrayConstructor<T> &) const { 301 return false; 302 } 303 bool operator()(const StructureConstructor &) const { return false; } 304 template <typename D, typename R, typename... O> 305 bool operator()(const Operation<D, R, O...> &) const { 306 return false; 307 } 308 template <typename T> bool operator()(const Parentheses<T> &x) const { 309 return (*this)(x.left()); 310 } 311 bool operator()(const ProcedureRef &x) const { 312 if (const SpecificIntrinsic * intrinsic{x.proc().GetSpecificIntrinsic()}) { 313 return intrinsic->characteristics.value().attrs.test( 314 characteristics::Procedure::Attr::NullPointer); 315 } 316 return false; 317 } 318 bool operator()(const Relational<SomeType> &) const { return false; } 319 320 private: 321 bool CheckVarOrComponent(const semantics::Symbol &symbol) { 322 const Symbol &ultimate{symbol.GetUltimate()}; 323 const char *unacceptable{nullptr}; 324 if (ultimate.Corank() > 0) { 325 unacceptable = "a coarray"; 326 } else if (IsAllocatable(ultimate)) { 327 unacceptable = "an ALLOCATABLE"; 328 } else if (IsPointer(ultimate)) { 329 unacceptable = "a POINTER"; 330 } else { 331 return true; 332 } 333 if (messages_) { 334 messages_->Say( 335 "An initial data target may not be a reference to %s '%s'"_err_en_US, 336 unacceptable, ultimate.name()); 337 emittedMessage_ = true; 338 } 339 return false; 340 } 341 342 parser::ContextualMessages *messages_; 343 bool emittedMessage_{false}; 344 }; 345 346 bool IsInitialDataTarget( 347 const Expr<SomeType> &x, parser::ContextualMessages *messages) { 348 IsInitialDataTargetHelper helper{messages}; 349 bool result{helper(x)}; 350 if (!result && messages && !helper.emittedMessage()) { 351 messages->Say( 352 "An initial data target must be a designator with constant subscripts"_err_en_US); 353 } 354 return result; 355 } 356 357 bool IsInitialProcedureTarget(const semantics::Symbol &symbol) { 358 const auto &ultimate{symbol.GetUltimate()}; 359 return common::visit( 360 common::visitors{ 361 [&](const semantics::SubprogramDetails &subp) { 362 return !subp.isDummy() && !subp.stmtFunction() && 363 symbol.owner().kind() != semantics::Scope::Kind::MainProgram && 364 symbol.owner().kind() != semantics::Scope::Kind::Subprogram; 365 }, 366 [](const semantics::SubprogramNameDetails &x) { 367 return x.kind() != semantics::SubprogramKind::Internal; 368 }, 369 [&](const semantics::ProcEntityDetails &proc) { 370 return !semantics::IsPointer(ultimate) && !proc.isDummy(); 371 }, 372 [](const auto &) { return false; }, 373 }, 374 ultimate.details()); 375 } 376 377 bool IsInitialProcedureTarget(const ProcedureDesignator &proc) { 378 if (const auto *intrin{proc.GetSpecificIntrinsic()}) { 379 return !intrin->isRestrictedSpecific; 380 } else if (proc.GetComponent()) { 381 return false; 382 } else { 383 return IsInitialProcedureTarget(DEREF(proc.GetSymbol())); 384 } 385 } 386 387 bool IsInitialProcedureTarget(const Expr<SomeType> &expr) { 388 if (const auto *proc{std::get_if<ProcedureDesignator>(&expr.u)}) { 389 return IsInitialProcedureTarget(*proc); 390 } else { 391 return IsNullProcedurePointer(expr); 392 } 393 } 394 395 // Converts, folds, and then checks type, rank, and shape of an 396 // initialization expression for a named constant, a non-pointer 397 // variable static initialization, a component default initializer, 398 // a type parameter default value, or instantiated type parameter value. 399 std::optional<Expr<SomeType>> NonPointerInitializationExpr(const Symbol &symbol, 400 Expr<SomeType> &&x, FoldingContext &context, 401 const semantics::Scope *instantiation) { 402 CHECK(!IsPointer(symbol)); 403 if (auto symTS{ 404 characteristics::TypeAndShape::Characterize(symbol, context)}) { 405 auto xType{x.GetType()}; 406 auto converted{ConvertToType(symTS->type(), Expr<SomeType>{x})}; 407 if (!converted && 408 symbol.owner().context().IsEnabled( 409 common::LanguageFeature::LogicalIntegerAssignment)) { 410 converted = DataConstantConversionExtension(context, symTS->type(), x); 411 if (converted && 412 symbol.owner().context().ShouldWarn( 413 common::LanguageFeature::LogicalIntegerAssignment)) { 414 context.messages().Say( 415 "nonstandard usage: initialization of %s with %s"_port_en_US, 416 symTS->type().AsFortran(), x.GetType().value().AsFortran()); 417 } 418 } 419 if (converted) { 420 auto folded{Fold(context, std::move(*converted))}; 421 if (IsActuallyConstant(folded)) { 422 int symRank{GetRank(symTS->shape())}; 423 if (IsImpliedShape(symbol)) { 424 if (folded.Rank() == symRank) { 425 return ArrayConstantBoundChanger{ 426 std::move(*AsConstantExtents( 427 context, GetRawLowerBounds(context, NamedEntity{symbol})))} 428 .ChangeLbounds(std::move(folded)); 429 } else { 430 context.messages().Say( 431 "Implied-shape parameter '%s' has rank %d but its initializer has rank %d"_err_en_US, 432 symbol.name(), symRank, folded.Rank()); 433 } 434 } else if (auto extents{AsConstantExtents(context, symTS->shape())}) { 435 if (folded.Rank() == 0 && symRank == 0) { 436 // symbol and constant are both scalars 437 return {std::move(folded)}; 438 } else if (folded.Rank() == 0 && symRank > 0) { 439 // expand the scalar constant to an array 440 return ScalarConstantExpander{std::move(*extents), 441 AsConstantExtents( 442 context, GetRawLowerBounds(context, NamedEntity{symbol}))} 443 .Expand(std::move(folded)); 444 } else if (auto resultShape{GetShape(context, folded)}) { 445 if (CheckConformance(context.messages(), symTS->shape(), 446 *resultShape, CheckConformanceFlags::None, 447 "initialized object", "initialization expression") 448 .value_or(false /*fail if not known now to conform*/)) { 449 // make a constant array with adjusted lower bounds 450 return ArrayConstantBoundChanger{ 451 std::move(*AsConstantExtents(context, 452 GetRawLowerBounds(context, NamedEntity{symbol})))} 453 .ChangeLbounds(std::move(folded)); 454 } 455 } 456 } else if (IsNamedConstant(symbol)) { 457 if (IsExplicitShape(symbol)) { 458 context.messages().Say( 459 "Named constant '%s' array must have constant shape"_err_en_US, 460 symbol.name()); 461 } else { 462 // Declaration checking handles other cases 463 } 464 } else { 465 context.messages().Say( 466 "Shape of initialized object '%s' must be constant"_err_en_US, 467 symbol.name()); 468 } 469 } else if (IsErrorExpr(folded)) { 470 } else if (IsLenTypeParameter(symbol)) { 471 return {std::move(folded)}; 472 } else if (IsKindTypeParameter(symbol)) { 473 if (instantiation) { 474 context.messages().Say( 475 "Value of kind type parameter '%s' (%s) must be a scalar INTEGER constant"_err_en_US, 476 symbol.name(), folded.AsFortran()); 477 } else { 478 return {std::move(folded)}; 479 } 480 } else if (IsNamedConstant(symbol)) { 481 context.messages().Say( 482 "Value of named constant '%s' (%s) cannot be computed as a constant value"_err_en_US, 483 symbol.name(), folded.AsFortran()); 484 } else { 485 context.messages().Say( 486 "Initialization expression for '%s' (%s) cannot be computed as a constant value"_err_en_US, 487 symbol.name(), folded.AsFortran()); 488 } 489 } else if (xType) { 490 context.messages().Say( 491 "Initialization expression cannot be converted to declared type of '%s' from %s"_err_en_US, 492 symbol.name(), xType->AsFortran()); 493 } else { 494 context.messages().Say( 495 "Initialization expression cannot be converted to declared type of '%s'"_err_en_US, 496 symbol.name()); 497 } 498 } 499 return std::nullopt; 500 } 501 502 static bool IsNonLocal(const semantics::Symbol &symbol) { 503 return semantics::IsDummy(symbol) || symbol.has<semantics::UseDetails>() || 504 symbol.owner().kind() == semantics::Scope::Kind::Module || 505 semantics::FindCommonBlockContaining(symbol) || 506 symbol.has<semantics::HostAssocDetails>(); 507 } 508 509 static bool IsPermissibleInquiry(const semantics::Symbol &firstSymbol, 510 const semantics::Symbol &lastSymbol, DescriptorInquiry::Field field, 511 const semantics::Scope &localScope) { 512 if (IsNonLocal(firstSymbol)) { 513 return true; 514 } 515 if (&localScope != &firstSymbol.owner()) { 516 return true; 517 } 518 // Inquiries on local objects may not access a deferred bound or length. 519 // (This code used to be a switch, but it proved impossible to write it 520 // thus without running afoul of bogus warnings from different C++ 521 // compilers.) 522 if (field == DescriptorInquiry::Field::Rank) { 523 return true; // always known 524 } 525 const auto *object{lastSymbol.detailsIf<semantics::ObjectEntityDetails>()}; 526 if (field == DescriptorInquiry::Field::LowerBound || 527 field == DescriptorInquiry::Field::Extent || 528 field == DescriptorInquiry::Field::Stride) { 529 return object && !object->shape().CanBeDeferredShape(); 530 } 531 if (field == DescriptorInquiry::Field::Len) { 532 return object && object->type() && 533 object->type()->category() == semantics::DeclTypeSpec::Character && 534 !object->type()->characterTypeSpec().length().isDeferred(); 535 } 536 return false; 537 } 538 539 // Specification expression validation (10.1.11(2), C1010) 540 class CheckSpecificationExprHelper 541 : public AnyTraverse<CheckSpecificationExprHelper, 542 std::optional<std::string>> { 543 public: 544 using Result = std::optional<std::string>; 545 using Base = AnyTraverse<CheckSpecificationExprHelper, Result>; 546 explicit CheckSpecificationExprHelper( 547 const semantics::Scope &s, FoldingContext &context) 548 : Base{*this}, scope_{s}, context_{context} {} 549 using Base::operator(); 550 551 Result operator()(const CoarrayRef &) const { return "coindexed reference"; } 552 553 Result operator()(const semantics::Symbol &symbol) const { 554 const auto &ultimate{symbol.GetUltimate()}; 555 if (const auto *assoc{ 556 ultimate.detailsIf<semantics::AssocEntityDetails>()}) { 557 return (*this)(assoc->expr()); 558 } else if (semantics::IsNamedConstant(ultimate) || 559 ultimate.owner().IsModule() || ultimate.owner().IsSubmodule()) { 560 return std::nullopt; 561 } else if (scope_.IsDerivedType() && 562 IsVariableName(ultimate)) { // C750, C754 563 return "derived type component or type parameter value not allowed to " 564 "reference variable '"s + 565 ultimate.name().ToString() + "'"; 566 } else if (IsDummy(ultimate)) { 567 if (ultimate.attrs().test(semantics::Attr::OPTIONAL)) { 568 return "reference to OPTIONAL dummy argument '"s + 569 ultimate.name().ToString() + "'"; 570 } else if (!inInquiry_ && 571 ultimate.attrs().test(semantics::Attr::INTENT_OUT)) { 572 return "reference to INTENT(OUT) dummy argument '"s + 573 ultimate.name().ToString() + "'"; 574 } else if (ultimate.has<semantics::ObjectEntityDetails>()) { 575 return std::nullopt; 576 } else { 577 return "dummy procedure argument"; 578 } 579 } else if (&symbol.owner() != &scope_ || &ultimate.owner() != &scope_) { 580 return std::nullopt; // host association is in play 581 } else if (const auto *object{ 582 ultimate.detailsIf<semantics::ObjectEntityDetails>()}) { 583 if (object->commonBlock()) { 584 return std::nullopt; 585 } 586 } 587 if (inInquiry_) { 588 return std::nullopt; 589 } else { 590 return "reference to local entity '"s + ultimate.name().ToString() + "'"; 591 } 592 } 593 594 Result operator()(const Component &x) const { 595 // Don't look at the component symbol. 596 return (*this)(x.base()); 597 } 598 Result operator()(const ArrayRef &x) const { 599 if (auto result{(*this)(x.base())}) { 600 return result; 601 } 602 // The subscripts don't get special protection for being in a 603 // specification inquiry context; 604 auto restorer{common::ScopedSet(inInquiry_, false)}; 605 return (*this)(x.subscript()); 606 } 607 Result operator()(const Substring &x) const { 608 if (auto result{(*this)(x.parent())}) { 609 return result; 610 } 611 // The bounds don't get special protection for being in a 612 // specification inquiry context; 613 auto restorer{common::ScopedSet(inInquiry_, false)}; 614 if (auto result{(*this)(x.lower())}) { 615 return result; 616 } 617 return (*this)(x.upper()); 618 } 619 Result operator()(const DescriptorInquiry &x) const { 620 // Many uses of SIZE(), LBOUND(), &c. that are valid in specification 621 // expressions will have been converted to expressions over descriptor 622 // inquiries by Fold(). 623 // Catch REAL, ALLOCATABLE :: X(:); REAL :: Y(SIZE(X)) 624 if (IsPermissibleInquiry(x.base().GetFirstSymbol(), 625 x.base().GetLastSymbol(), x.field(), scope_)) { 626 auto restorer{common::ScopedSet(inInquiry_, true)}; 627 return (*this)(x.base()); 628 } else if (IsConstantExpr(x)) { 629 return std::nullopt; 630 } else { 631 return "non-constant descriptor inquiry not allowed for local object"; 632 } 633 } 634 635 Result operator()(const TypeParamInquiry &inq) const { 636 if (scope_.IsDerivedType() && !IsConstantExpr(inq) && 637 inq.base() /* X%T, not local T */) { // C750, C754 638 return "non-constant reference to a type parameter inquiry not " 639 "allowed for derived type components or type parameter values"; 640 } 641 return std::nullopt; 642 } 643 644 Result operator()(const ProcedureRef &x) const { 645 bool inInquiry{false}; 646 if (const auto *symbol{x.proc().GetSymbol()}) { 647 const Symbol &ultimate{symbol->GetUltimate()}; 648 if (!semantics::IsPureProcedure(ultimate)) { 649 return "reference to impure function '"s + ultimate.name().ToString() + 650 "'"; 651 } 652 if (semantics::IsStmtFunction(ultimate)) { 653 return "reference to statement function '"s + 654 ultimate.name().ToString() + "'"; 655 } 656 if (scope_.IsDerivedType()) { // C750, C754 657 return "reference to function '"s + ultimate.name().ToString() + 658 "' not allowed for derived type components or type parameter" 659 " values"; 660 } 661 if (auto procChars{ 662 characteristics::Procedure::Characterize(x.proc(), context_)}) { 663 const auto iter{std::find_if(procChars->dummyArguments.begin(), 664 procChars->dummyArguments.end(), 665 [](const characteristics::DummyArgument &dummy) { 666 return std::holds_alternative<characteristics::DummyProcedure>( 667 dummy.u); 668 })}; 669 if (iter != procChars->dummyArguments.end()) { 670 return "reference to function '"s + ultimate.name().ToString() + 671 "' with dummy procedure argument '" + iter->name + '\''; 672 } 673 } 674 // References to internal functions are caught in expression semantics. 675 // TODO: other checks for standard module procedures 676 } else { // intrinsic 677 const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())}; 678 inInquiry = context_.intrinsics().GetIntrinsicClass(intrin.name) == 679 IntrinsicClass::inquiryFunction; 680 if (scope_.IsDerivedType()) { // C750, C754 681 if ((context_.intrinsics().IsIntrinsic(intrin.name) && 682 badIntrinsicsForComponents_.find(intrin.name) != 683 badIntrinsicsForComponents_.end())) { 684 return "reference to intrinsic '"s + intrin.name + 685 "' not allowed for derived type components or type parameter" 686 " values"; 687 } 688 if (inInquiry && !IsConstantExpr(x)) { 689 return "non-constant reference to inquiry intrinsic '"s + 690 intrin.name + 691 "' not allowed for derived type components or type" 692 " parameter values"; 693 } 694 } 695 // Type-determined inquiries (DIGITS, HUGE, &c.) will have already been 696 // folded and won't arrive here. Inquiries that are represented with 697 // DescriptorInquiry operations (LBOUND) are checked elsewhere. If a 698 // call that makes it to here satisfies the requirements of a constant 699 // expression (as Fortran defines it), it's fine. 700 if (IsConstantExpr(x)) { 701 return std::nullopt; 702 } 703 if (intrin.name == "present") { 704 return std::nullopt; // always ok 705 } 706 // Catch CHARACTER(:), ALLOCATABLE :: X; CHARACTER(LEN(X)) :: Y 707 if (inInquiry && x.arguments().size() >= 1) { 708 if (const auto &arg{x.arguments().at(0)}) { 709 if (auto dataRef{ExtractDataRef(*arg, true, true)}) { 710 if (intrin.name == "allocated" || intrin.name == "associated" || 711 intrin.name == "is_contiguous") { // ok 712 } else if (intrin.name == "len" && 713 IsPermissibleInquiry(dataRef->GetFirstSymbol(), 714 dataRef->GetLastSymbol(), DescriptorInquiry::Field::Len, 715 scope_)) { // ok 716 } else if (intrin.name == "lbound" && 717 IsPermissibleInquiry(dataRef->GetFirstSymbol(), 718 dataRef->GetLastSymbol(), 719 DescriptorInquiry::Field::LowerBound, scope_)) { // ok 720 } else if ((intrin.name == "shape" || intrin.name == "size" || 721 intrin.name == "sizeof" || 722 intrin.name == "storage_size" || 723 intrin.name == "ubound") && 724 IsPermissibleInquiry(dataRef->GetFirstSymbol(), 725 dataRef->GetLastSymbol(), DescriptorInquiry::Field::Extent, 726 scope_)) { // ok 727 } else { 728 return "non-constant inquiry function '"s + intrin.name + 729 "' not allowed for local object"; 730 } 731 } 732 } 733 } 734 } 735 auto restorer{common::ScopedSet(inInquiry_, inInquiry)}; 736 return (*this)(x.arguments()); 737 } 738 739 private: 740 const semantics::Scope &scope_; 741 FoldingContext &context_; 742 // Contextual information: this flag is true when in an argument to 743 // an inquiry intrinsic like SIZE(). 744 mutable bool inInquiry_{false}; 745 const std::set<std::string> badIntrinsicsForComponents_{ 746 "allocated", "associated", "extends_type_of", "present", "same_type_as"}; 747 }; 748 749 template <typename A> 750 void CheckSpecificationExpr( 751 const A &x, const semantics::Scope &scope, FoldingContext &context) { 752 if (auto why{CheckSpecificationExprHelper{scope, context}(x)}) { 753 context.messages().Say( 754 "Invalid specification expression: %s"_err_en_US, *why); 755 } 756 } 757 758 template void CheckSpecificationExpr( 759 const Expr<SomeType> &, const semantics::Scope &, FoldingContext &); 760 template void CheckSpecificationExpr( 761 const Expr<SomeInteger> &, const semantics::Scope &, FoldingContext &); 762 template void CheckSpecificationExpr( 763 const Expr<SubscriptInteger> &, const semantics::Scope &, FoldingContext &); 764 template void CheckSpecificationExpr(const std::optional<Expr<SomeType>> &, 765 const semantics::Scope &, FoldingContext &); 766 template void CheckSpecificationExpr(const std::optional<Expr<SomeInteger>> &, 767 const semantics::Scope &, FoldingContext &); 768 template void CheckSpecificationExpr( 769 const std::optional<Expr<SubscriptInteger>> &, const semantics::Scope &, 770 FoldingContext &); 771 772 // IsContiguous() -- 9.5.4 773 class IsContiguousHelper 774 : public AnyTraverse<IsContiguousHelper, std::optional<bool>> { 775 public: 776 using Result = std::optional<bool>; // tri-state 777 using Base = AnyTraverse<IsContiguousHelper, Result>; 778 explicit IsContiguousHelper(FoldingContext &c) : Base{*this}, context_{c} {} 779 using Base::operator(); 780 781 template <typename T> Result operator()(const Constant<T> &) const { 782 return true; 783 } 784 Result operator()(const StaticDataObject &) const { return true; } 785 Result operator()(const semantics::Symbol &symbol) const { 786 const auto &ultimate{symbol.GetUltimate()}; 787 if (ultimate.attrs().test(semantics::Attr::CONTIGUOUS)) { 788 return true; 789 } else if (!IsVariable(symbol)) { 790 return true; 791 } else if (ultimate.Rank() == 0) { 792 // Extension: accept scalars as a degenerate case of 793 // simple contiguity to allow their use in contexts like 794 // data targets in pointer assignments with remapping. 795 return true; 796 } else if (ultimate.has<semantics::AssocEntityDetails>()) { 797 return Base::operator()(ultimate); // use expr 798 } else if (semantics::IsPointer(ultimate) || 799 semantics::IsAssumedShape(ultimate) || IsAssumedRank(ultimate)) { 800 return std::nullopt; 801 } else if (ultimate.has<semantics::ObjectEntityDetails>()) { 802 return true; 803 } else { 804 return Base::operator()(ultimate); 805 } 806 } 807 808 Result operator()(const ArrayRef &x) const { 809 if (x.Rank() == 0) { 810 return true; // scalars considered contiguous 811 } 812 int subscriptRank{0}; 813 auto baseLbounds{GetLBOUNDs(context_, x.base())}; 814 auto baseUbounds{GetUBOUNDs(context_, x.base())}; 815 auto subscripts{CheckSubscripts( 816 x.subscript(), subscriptRank, &baseLbounds, &baseUbounds)}; 817 if (!subscripts.value_or(false)) { 818 return subscripts; // subscripts not known to be contiguous 819 } else if (subscriptRank > 0) { 820 // a(1)%b(:,:) is contiguous if and only if a(1)%b is contiguous. 821 return (*this)(x.base()); 822 } else { 823 // a(:)%b(1,1) is (probably) not contiguous. 824 return std::nullopt; 825 } 826 } 827 Result operator()(const CoarrayRef &x) const { 828 int rank{0}; 829 return CheckSubscripts(x.subscript(), rank).has_value(); 830 } 831 Result operator()(const Component &x) const { 832 if (x.base().Rank() == 0) { 833 return (*this)(x.GetLastSymbol()); 834 } else { 835 if (Result baseIsContiguous{(*this)(x.base())}) { 836 if (!*baseIsContiguous) { 837 return false; 838 } 839 // TODO could be true if base contiguous and this is only component, or 840 // if base has only one element? 841 } 842 return std::nullopt; 843 } 844 } 845 Result operator()(const ComplexPart &x) const { 846 return x.complex().Rank() == 0; 847 } 848 Result operator()(const Substring &) const { return std::nullopt; } 849 850 Result operator()(const ProcedureRef &x) const { 851 if (auto chars{ 852 characteristics::Procedure::Characterize(x.proc(), context_)}) { 853 if (chars->functionResult) { 854 const auto &result{*chars->functionResult}; 855 if (!result.IsProcedurePointer()) { 856 if (result.attrs.test( 857 characteristics::FunctionResult::Attr::Contiguous)) { 858 return true; 859 } 860 if (!result.attrs.test( 861 characteristics::FunctionResult::Attr::Pointer)) { 862 return true; 863 } 864 if (const auto *type{result.GetTypeAndShape()}; 865 type && type->Rank() == 0) { 866 return true; // pointer to scalar 867 } 868 // Must be non-CONTIGUOUS pointer to array 869 } 870 } 871 } 872 return std::nullopt; 873 } 874 875 Result operator()(const NullPointer &) const { return true; } 876 877 private: 878 // Returns "true" for a provably empty or simply contiguous array section; 879 // return "false" for a provably nonempty discontiguous section or for use 880 // of a vector subscript. 881 std::optional<bool> CheckSubscripts(const std::vector<Subscript> &subscript, 882 int &rank, const Shape *baseLbounds = nullptr, 883 const Shape *baseUbounds = nullptr) const { 884 bool anyTriplet{false}; 885 rank = 0; 886 // Detect any provably empty dimension in this array section, which would 887 // render the whole section empty and therefore vacuously contiguous. 888 std::optional<bool> result; 889 bool mayBeEmpty{false}; 890 auto dims{subscript.size()}; 891 std::vector<bool> knownPartialSlice(dims, false); 892 for (auto j{dims}; j-- > 0;) { 893 std::optional<ConstantSubscript> dimLbound; 894 std::optional<ConstantSubscript> dimUbound; 895 std::optional<ConstantSubscript> dimExtent; 896 if (baseLbounds && j < baseLbounds->size()) { 897 if (const auto &lb{baseLbounds->at(j)}) { 898 dimLbound = ToInt64(Fold(context_, Expr<SubscriptInteger>{*lb})); 899 } 900 } 901 if (baseUbounds && j < baseUbounds->size()) { 902 if (const auto &ub{baseUbounds->at(j)}) { 903 dimUbound = ToInt64(Fold(context_, Expr<SubscriptInteger>{*ub})); 904 } 905 } 906 if (dimLbound && dimUbound) { 907 if (*dimLbound <= *dimUbound) { 908 dimExtent = *dimUbound - *dimLbound + 1; 909 } else { 910 // This is an empty dimension. 911 result = true; 912 dimExtent = 0; 913 } 914 } 915 916 if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) { 917 ++rank; 918 if (auto stride{ToInt64(triplet->stride())}) { 919 const Expr<SubscriptInteger> *lowerBound{triplet->GetLower()}; 920 const Expr<SubscriptInteger> *upperBound{triplet->GetUpper()}; 921 std::optional<ConstantSubscript> lowerVal{lowerBound 922 ? ToInt64(Fold(context_, Expr<SubscriptInteger>{*lowerBound})) 923 : dimLbound}; 924 std::optional<ConstantSubscript> upperVal{upperBound 925 ? ToInt64(Fold(context_, Expr<SubscriptInteger>{*upperBound})) 926 : dimUbound}; 927 if (lowerVal && upperVal) { 928 if (*lowerVal < *upperVal) { 929 if (*stride < 0) { 930 result = true; // empty dimension 931 } else if (!result && *stride > 1 && 932 *lowerVal + *stride <= *upperVal) { 933 result = false; // discontiguous if not empty 934 } 935 } else if (*lowerVal > *upperVal) { 936 if (*stride > 0) { 937 result = true; // empty dimension 938 } else if (!result && *stride < 0 && 939 *lowerVal + *stride >= *upperVal) { 940 result = false; // discontiguous if not empty 941 } 942 } else { 943 mayBeEmpty = true; 944 } 945 } else { 946 mayBeEmpty = true; 947 } 948 } else { 949 mayBeEmpty = true; 950 } 951 } else if (subscript[j].Rank() > 0) { 952 ++rank; 953 if (!result) { 954 result = false; // vector subscript 955 } 956 mayBeEmpty = true; 957 } else { 958 // Scalar subscript. 959 if (dimExtent && *dimExtent > 1) { 960 knownPartialSlice[j] = true; 961 } 962 } 963 } 964 if (rank == 0) { 965 result = true; // scalar 966 } 967 if (result) { 968 return result; 969 } 970 // Not provably discontiguous at this point. 971 // Return "true" if simply contiguous, otherwise nullopt. 972 for (auto j{subscript.size()}; j-- > 0;) { 973 if (const auto *triplet{std::get_if<Triplet>(&subscript[j].u)}) { 974 auto stride{ToInt64(triplet->stride())}; 975 if (!stride || stride != 1) { 976 return std::nullopt; 977 } else if (anyTriplet) { 978 if (triplet->GetLower() || triplet->GetUpper()) { 979 // all triplets before the last one must be just ":" for 980 // simple contiguity 981 return std::nullopt; 982 } 983 } else { 984 anyTriplet = true; 985 } 986 ++rank; 987 } else if (anyTriplet) { 988 // If the section cannot be empty, and this dimension's 989 // scalar subscript is known not to cover the whole 990 // dimension, then the array section is provably 991 // discontiguous. 992 return (mayBeEmpty || !knownPartialSlice[j]) 993 ? std::nullopt 994 : std::make_optional(false); 995 } 996 } 997 return true; // simply contiguous 998 } 999 1000 FoldingContext &context_; 1001 }; 1002 1003 template <typename A> 1004 std::optional<bool> IsContiguous(const A &x, FoldingContext &context) { 1005 return IsContiguousHelper{context}(x); 1006 } 1007 1008 template std::optional<bool> IsContiguous( 1009 const Expr<SomeType> &, FoldingContext &); 1010 template std::optional<bool> IsContiguous(const ArrayRef &, FoldingContext &); 1011 template std::optional<bool> IsContiguous(const Substring &, FoldingContext &); 1012 template std::optional<bool> IsContiguous(const Component &, FoldingContext &); 1013 template std::optional<bool> IsContiguous( 1014 const ComplexPart &, FoldingContext &); 1015 template std::optional<bool> IsContiguous(const CoarrayRef &, FoldingContext &); 1016 template std::optional<bool> IsContiguous(const Symbol &, FoldingContext &); 1017 1018 // IsErrorExpr() 1019 struct IsErrorExprHelper : public AnyTraverse<IsErrorExprHelper, bool> { 1020 using Result = bool; 1021 using Base = AnyTraverse<IsErrorExprHelper, Result>; 1022 IsErrorExprHelper() : Base{*this} {} 1023 using Base::operator(); 1024 1025 bool operator()(const SpecificIntrinsic &x) { 1026 return x.name == IntrinsicProcTable::InvalidName; 1027 } 1028 }; 1029 1030 template <typename A> bool IsErrorExpr(const A &x) { 1031 return IsErrorExprHelper{}(x); 1032 } 1033 1034 template bool IsErrorExpr(const Expr<SomeType> &); 1035 1036 // C1577 1037 // TODO: Also check C1579 & C1582 here 1038 class StmtFunctionChecker 1039 : public AnyTraverse<StmtFunctionChecker, std::optional<parser::Message>> { 1040 public: 1041 using Result = std::optional<parser::Message>; 1042 using Base = AnyTraverse<StmtFunctionChecker, Result>; 1043 StmtFunctionChecker(const Symbol &sf, FoldingContext &context) 1044 : Base{*this}, sf_{sf}, context_{context} { 1045 if (!context_.languageFeatures().IsEnabled( 1046 common::LanguageFeature::StatementFunctionExtensions)) { 1047 severity_ = parser::Severity::Error; 1048 } else if (context_.languageFeatures().ShouldWarn( 1049 common::LanguageFeature::StatementFunctionExtensions)) { 1050 severity_ = parser::Severity::Portability; 1051 } 1052 } 1053 using Base::operator(); 1054 1055 template <typename T> Result operator()(const ArrayConstructor<T> &) const { 1056 if (severity_) { 1057 auto msg{ 1058 "Statement function '%s' should not contain an array constructor"_port_en_US}; 1059 msg.set_severity(*severity_); 1060 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1061 } else { 1062 return std::nullopt; 1063 } 1064 } 1065 Result operator()(const StructureConstructor &) const { 1066 if (severity_) { 1067 auto msg{ 1068 "Statement function '%s' should not contain a structure constructor"_port_en_US}; 1069 msg.set_severity(*severity_); 1070 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1071 } else { 1072 return std::nullopt; 1073 } 1074 } 1075 Result operator()(const TypeParamInquiry &) const { 1076 if (severity_) { 1077 auto msg{ 1078 "Statement function '%s' should not contain a type parameter inquiry"_port_en_US}; 1079 msg.set_severity(*severity_); 1080 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1081 } else { 1082 return std::nullopt; 1083 } 1084 } 1085 Result operator()(const ProcedureDesignator &proc) const { 1086 if (const Symbol * symbol{proc.GetSymbol()}) { 1087 const Symbol &ultimate{symbol->GetUltimate()}; 1088 if (const auto *subp{ 1089 ultimate.detailsIf<semantics::SubprogramDetails>()}) { 1090 if (subp->stmtFunction() && &ultimate.owner() == &sf_.owner()) { 1091 if (ultimate.name().begin() > sf_.name().begin()) { 1092 return parser::Message{sf_.name(), 1093 "Statement function '%s' may not reference another statement function '%s' that is defined later"_err_en_US, 1094 sf_.name(), ultimate.name()}; 1095 } 1096 } 1097 } 1098 if (auto chars{ 1099 characteristics::Procedure::Characterize(proc, context_)}) { 1100 if (!chars->CanBeCalledViaImplicitInterface()) { 1101 if (severity_) { 1102 auto msg{ 1103 "Statement function '%s' should not reference function '%s' that requires an explicit interface"_port_en_US}; 1104 msg.set_severity(*severity_); 1105 return parser::Message{ 1106 sf_.name(), std::move(msg), sf_.name(), symbol->name()}; 1107 } 1108 } 1109 } 1110 } 1111 if (proc.Rank() > 0) { 1112 if (severity_) { 1113 auto msg{ 1114 "Statement function '%s' should not reference a function that returns an array"_port_en_US}; 1115 msg.set_severity(*severity_); 1116 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1117 } 1118 } 1119 return std::nullopt; 1120 } 1121 Result operator()(const ActualArgument &arg) const { 1122 if (const auto *expr{arg.UnwrapExpr()}) { 1123 if (auto result{(*this)(*expr)}) { 1124 return result; 1125 } 1126 if (expr->Rank() > 0 && !UnwrapWholeSymbolOrComponentDataRef(*expr)) { 1127 if (severity_) { 1128 auto msg{ 1129 "Statement function '%s' should not pass an array argument that is not a whole array"_port_en_US}; 1130 msg.set_severity(*severity_); 1131 return parser::Message{sf_.name(), std::move(msg), sf_.name()}; 1132 } 1133 } 1134 } 1135 return std::nullopt; 1136 } 1137 1138 private: 1139 const Symbol &sf_; 1140 FoldingContext &context_; 1141 std::optional<parser::Severity> severity_; 1142 }; 1143 1144 std::optional<parser::Message> CheckStatementFunction( 1145 const Symbol &sf, const Expr<SomeType> &expr, FoldingContext &context) { 1146 return StmtFunctionChecker{sf, context}(expr); 1147 } 1148 1149 } // namespace Fortran::evaluate 1150