1 //===-- lib/Evaluate/characteristics.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/characteristics.h" 10 #include "flang/Common/indirection.h" 11 #include "flang/Evaluate/check-expression.h" 12 #include "flang/Evaluate/fold.h" 13 #include "flang/Evaluate/intrinsics.h" 14 #include "flang/Evaluate/tools.h" 15 #include "flang/Evaluate/type.h" 16 #include "flang/Parser/message.h" 17 #include "flang/Semantics/scope.h" 18 #include "flang/Semantics/symbol.h" 19 #include "flang/Semantics/tools.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <initializer_list> 22 23 using namespace Fortran::parser::literals; 24 25 namespace Fortran::evaluate::characteristics { 26 27 // Copy attributes from a symbol to dst based on the mapping in pairs. 28 template <typename A, typename B> 29 static void CopyAttrs(const semantics::Symbol &src, A &dst, 30 const std::initializer_list<std::pair<semantics::Attr, B>> &pairs) { 31 for (const auto &pair : pairs) { 32 if (src.attrs().test(pair.first)) { 33 dst.attrs.set(pair.second); 34 } 35 } 36 } 37 38 // Shapes of function results and dummy arguments have to have 39 // the same rank, the same deferred dimensions, and the same 40 // values for explicit dimensions when constant. 41 bool ShapesAreCompatible(const Shape &x, const Shape &y) { 42 if (x.size() != y.size()) { 43 return false; 44 } 45 auto yIter{y.begin()}; 46 for (const auto &xDim : x) { 47 const auto &yDim{*yIter++}; 48 if (xDim) { 49 if (!yDim || ToInt64(*xDim) != ToInt64(*yDim)) { 50 return false; 51 } 52 } else if (yDim) { 53 return false; 54 } 55 } 56 return true; 57 } 58 59 bool TypeAndShape::operator==(const TypeAndShape &that) const { 60 return type_ == that.type_ && ShapesAreCompatible(shape_, that.shape_) && 61 attrs_ == that.attrs_ && corank_ == that.corank_; 62 } 63 64 TypeAndShape &TypeAndShape::Rewrite(FoldingContext &context) { 65 LEN_ = Fold(context, std::move(LEN_)); 66 shape_ = Fold(context, std::move(shape_)); 67 return *this; 68 } 69 70 std::optional<TypeAndShape> TypeAndShape::Characterize( 71 const semantics::Symbol &symbol, FoldingContext &context) { 72 const auto &ultimate{symbol.GetUltimate()}; 73 return common::visit( 74 common::visitors{ 75 [&](const semantics::ProcEntityDetails &proc) { 76 const semantics::ProcInterface &interface { proc.interface() }; 77 if (interface.type()) { 78 return Characterize(*interface.type(), context); 79 } else if (interface.symbol()) { 80 return Characterize(*interface.symbol(), context); 81 } else { 82 return std::optional<TypeAndShape>{}; 83 } 84 }, 85 [&](const semantics::AssocEntityDetails &assoc) { 86 return Characterize(assoc, context); 87 }, 88 [&](const semantics::ProcBindingDetails &binding) { 89 return Characterize(binding.symbol(), context); 90 }, 91 [&](const auto &x) -> std::optional<TypeAndShape> { 92 using Ty = std::decay_t<decltype(x)>; 93 if constexpr (std::is_same_v<Ty, semantics::EntityDetails> || 94 std::is_same_v<Ty, semantics::ObjectEntityDetails> || 95 std::is_same_v<Ty, semantics::TypeParamDetails>) { 96 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 97 if (auto dyType{DynamicType::From(*type)}) { 98 TypeAndShape result{ 99 std::move(*dyType), GetShape(context, ultimate)}; 100 result.AcquireAttrs(ultimate); 101 result.AcquireLEN(ultimate); 102 return std::move(result.Rewrite(context)); 103 } 104 } 105 } 106 return std::nullopt; 107 }, 108 }, 109 // GetUltimate() used here, not ResolveAssociations(), because 110 // we need the type/rank of an associate entity from TYPE IS, 111 // CLASS IS, or RANK statement. 112 ultimate.details()); 113 } 114 115 std::optional<TypeAndShape> TypeAndShape::Characterize( 116 const semantics::AssocEntityDetails &assoc, FoldingContext &context) { 117 std::optional<TypeAndShape> result; 118 if (auto type{DynamicType::From(assoc.type())}) { 119 if (auto rank{assoc.rank()}) { 120 if (*rank >= 0 && *rank <= common::maxRank) { 121 result = TypeAndShape{std::move(*type), Shape(*rank)}; 122 } 123 } else if (auto shape{GetShape(context, assoc.expr())}) { 124 result = TypeAndShape{std::move(*type), std::move(*shape)}; 125 } 126 if (result && type->category() == TypeCategory::Character) { 127 if (const auto *chExpr{UnwrapExpr<Expr<SomeCharacter>>(assoc.expr())}) { 128 if (auto len{chExpr->LEN()}) { 129 result->set_LEN(std::move(*len)); 130 } 131 } 132 } 133 } 134 return Fold(context, std::move(result)); 135 } 136 137 std::optional<TypeAndShape> TypeAndShape::Characterize( 138 const semantics::DeclTypeSpec &spec, FoldingContext &context) { 139 if (auto type{DynamicType::From(spec)}) { 140 return Fold(context, TypeAndShape{std::move(*type)}); 141 } else { 142 return std::nullopt; 143 } 144 } 145 146 std::optional<TypeAndShape> TypeAndShape::Characterize( 147 const ActualArgument &arg, FoldingContext &context) { 148 return Characterize(arg.UnwrapExpr(), context); 149 } 150 151 bool TypeAndShape::IsCompatibleWith(parser::ContextualMessages &messages, 152 const TypeAndShape &that, const char *thisIs, const char *thatIs, 153 bool omitShapeConformanceCheck, 154 enum CheckConformanceFlags::Flags flags) const { 155 if (!type_.IsTkCompatibleWith(that.type_)) { 156 messages.Say( 157 "%1$s type '%2$s' is not compatible with %3$s type '%4$s'"_err_en_US, 158 thatIs, that.AsFortran(), thisIs, AsFortran()); 159 return false; 160 } 161 return omitShapeConformanceCheck || 162 CheckConformance(messages, shape_, that.shape_, flags, thisIs, thatIs) 163 .value_or(true /*fail only when nonconformance is known now*/); 164 } 165 166 std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureElementSizeInBytes( 167 FoldingContext &foldingContext, bool align) const { 168 if (LEN_) { 169 CHECK(type_.category() == TypeCategory::Character); 170 return Fold(foldingContext, 171 Expr<SubscriptInteger>{ 172 foldingContext.targetCharacteristics().GetByteSize( 173 type_.category(), type_.kind())} * 174 Expr<SubscriptInteger>{*LEN_}); 175 } 176 if (auto elementBytes{type_.MeasureSizeInBytes(foldingContext, align)}) { 177 return Fold(foldingContext, std::move(*elementBytes)); 178 } 179 return std::nullopt; 180 } 181 182 std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureSizeInBytes( 183 FoldingContext &foldingContext) const { 184 if (auto elements{GetSize(Shape{shape_})}) { 185 // Sizes of arrays (even with single elements) are multiples of 186 // their alignments. 187 if (auto elementBytes{ 188 MeasureElementSizeInBytes(foldingContext, GetRank(shape_) > 0)}) { 189 return Fold( 190 foldingContext, std::move(*elements) * std::move(*elementBytes)); 191 } 192 } 193 return std::nullopt; 194 } 195 196 void TypeAndShape::AcquireAttrs(const semantics::Symbol &symbol) { 197 if (IsAssumedShape(symbol)) { 198 attrs_.set(Attr::AssumedShape); 199 } 200 if (IsDeferredShape(symbol)) { 201 attrs_.set(Attr::DeferredShape); 202 } 203 if (const auto *object{ 204 symbol.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()}) { 205 corank_ = object->coshape().Rank(); 206 if (object->IsAssumedRank()) { 207 attrs_.set(Attr::AssumedRank); 208 } 209 if (object->IsAssumedSize()) { 210 attrs_.set(Attr::AssumedSize); 211 } 212 if (object->IsCoarray()) { 213 attrs_.set(Attr::Coarray); 214 } 215 } 216 } 217 218 void TypeAndShape::AcquireLEN() { 219 if (auto len{type_.GetCharLength()}) { 220 LEN_ = std::move(len); 221 } 222 } 223 224 void TypeAndShape::AcquireLEN(const semantics::Symbol &symbol) { 225 if (type_.category() == TypeCategory::Character) { 226 if (auto len{DataRef{symbol}.LEN()}) { 227 LEN_ = std::move(*len); 228 } 229 } 230 } 231 232 std::string TypeAndShape::AsFortran() const { 233 return type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""); 234 } 235 236 llvm::raw_ostream &TypeAndShape::Dump(llvm::raw_ostream &o) const { 237 o << type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""); 238 attrs_.Dump(o, EnumToString); 239 if (!shape_.empty()) { 240 o << " dimension"; 241 char sep{'('}; 242 for (const auto &expr : shape_) { 243 o << sep; 244 sep = ','; 245 if (expr) { 246 expr->AsFortran(o); 247 } else { 248 o << ':'; 249 } 250 } 251 o << ')'; 252 } 253 return o; 254 } 255 256 bool DummyDataObject::operator==(const DummyDataObject &that) const { 257 return type == that.type && attrs == that.attrs && intent == that.intent && 258 coshape == that.coshape; 259 } 260 261 static bool AreCompatibleDummyDataObjectShapes(const Shape &x, const Shape &y) { 262 // TODO: Validate more than just compatible ranks 263 return GetRank(x) == GetRank(y); 264 } 265 266 bool DummyDataObject::IsCompatibleWith( 267 const DummyDataObject &actual, std::string *whyNot) const { 268 if (!AreCompatibleDummyDataObjectShapes(type.shape(), actual.type.shape())) { 269 if (whyNot) { 270 *whyNot = "incompatible dummy data object shapes"; 271 } 272 return false; 273 } 274 if (!type.type().IsTkCompatibleWith(actual.type.type())) { 275 if (whyNot) { 276 *whyNot = "incompatible dummy data object types: "s + 277 type.type().AsFortran() + " vs " + actual.type.type().AsFortran(); 278 } 279 return false; 280 } 281 if (attrs != actual.attrs) { 282 if (whyNot) { 283 *whyNot = "incompatible dummy data object attributes"; 284 } 285 return false; 286 } 287 if (intent != actual.intent) { 288 if (whyNot) { 289 *whyNot = "incompatible dummy data object intents"; 290 } 291 return false; 292 } 293 if (coshape != actual.coshape) { 294 if (whyNot) { 295 *whyNot = "incompatible dummy data object coshapes"; 296 } 297 return false; 298 } 299 return true; 300 } 301 302 static common::Intent GetIntent(const semantics::Attrs &attrs) { 303 if (attrs.test(semantics::Attr::INTENT_IN)) { 304 return common::Intent::In; 305 } else if (attrs.test(semantics::Attr::INTENT_OUT)) { 306 return common::Intent::Out; 307 } else if (attrs.test(semantics::Attr::INTENT_INOUT)) { 308 return common::Intent::InOut; 309 } else { 310 return common::Intent::Default; 311 } 312 } 313 314 std::optional<DummyDataObject> DummyDataObject::Characterize( 315 const semantics::Symbol &symbol, FoldingContext &context) { 316 if (symbol.has<semantics::ObjectEntityDetails>() || 317 symbol.has<semantics::EntityDetails>()) { 318 if (auto type{TypeAndShape::Characterize(symbol, context)}) { 319 std::optional<DummyDataObject> result{std::move(*type)}; 320 using semantics::Attr; 321 CopyAttrs<DummyDataObject, DummyDataObject::Attr>(symbol, *result, 322 { 323 {Attr::OPTIONAL, DummyDataObject::Attr::Optional}, 324 {Attr::ALLOCATABLE, DummyDataObject::Attr::Allocatable}, 325 {Attr::ASYNCHRONOUS, DummyDataObject::Attr::Asynchronous}, 326 {Attr::CONTIGUOUS, DummyDataObject::Attr::Contiguous}, 327 {Attr::VALUE, DummyDataObject::Attr::Value}, 328 {Attr::VOLATILE, DummyDataObject::Attr::Volatile}, 329 {Attr::POINTER, DummyDataObject::Attr::Pointer}, 330 {Attr::TARGET, DummyDataObject::Attr::Target}, 331 }); 332 result->intent = GetIntent(symbol.attrs()); 333 return result; 334 } 335 } 336 return std::nullopt; 337 } 338 339 bool DummyDataObject::CanBePassedViaImplicitInterface() const { 340 if ((attrs & 341 Attrs{Attr::Allocatable, Attr::Asynchronous, Attr::Optional, 342 Attr::Pointer, Attr::Target, Attr::Value, Attr::Volatile}) 343 .any()) { 344 return false; // 15.4.2.2(3)(a) 345 } else if ((type.attrs() & 346 TypeAndShape::Attrs{TypeAndShape::Attr::AssumedShape, 347 TypeAndShape::Attr::AssumedRank, 348 TypeAndShape::Attr::Coarray}) 349 .any()) { 350 return false; // 15.4.2.2(3)(b-d) 351 } else if (type.type().IsPolymorphic()) { 352 return false; // 15.4.2.2(3)(f) 353 } else if (const auto *derived{GetDerivedTypeSpec(type.type())}) { 354 return derived->parameters().empty(); // 15.4.2.2(3)(e) 355 } else { 356 return true; 357 } 358 } 359 360 llvm::raw_ostream &DummyDataObject::Dump(llvm::raw_ostream &o) const { 361 attrs.Dump(o, EnumToString); 362 if (intent != common::Intent::Default) { 363 o << "INTENT(" << common::EnumToString(intent) << ')'; 364 } 365 type.Dump(o); 366 if (!coshape.empty()) { 367 char sep{'['}; 368 for (const auto &expr : coshape) { 369 expr.AsFortran(o << sep); 370 sep = ','; 371 } 372 } 373 return o; 374 } 375 376 DummyProcedure::DummyProcedure(Procedure &&p) 377 : procedure{new Procedure{std::move(p)}} {} 378 379 bool DummyProcedure::operator==(const DummyProcedure &that) const { 380 return attrs == that.attrs && intent == that.intent && 381 procedure.value() == that.procedure.value(); 382 } 383 384 bool DummyProcedure::IsCompatibleWith( 385 const DummyProcedure &actual, std::string *whyNot) const { 386 if (attrs != actual.attrs) { 387 if (whyNot) { 388 *whyNot = "incompatible dummy procedure attributes"; 389 } 390 return false; 391 } 392 if (intent != actual.intent) { 393 if (whyNot) { 394 *whyNot = "incompatible dummy procedure intents"; 395 } 396 return false; 397 } 398 if (!procedure.value().IsCompatibleWith(actual.procedure.value(), whyNot)) { 399 if (whyNot) { 400 *whyNot = "incompatible dummy procedure interfaces: "s + *whyNot; 401 } 402 return false; 403 } 404 return true; 405 } 406 407 bool DummyProcedure::CanBePassedViaImplicitInterface() const { 408 if ((attrs & Attrs{Attr::Optional, Attr::Pointer}).any()) { 409 return false; // 15.4.2.2(3)(a) 410 } 411 return true; 412 } 413 414 static std::string GetSeenProcs( 415 const semantics::UnorderedSymbolSet &seenProcs) { 416 // Sort the symbols so that they appear in the same order on all platforms 417 auto ordered{semantics::OrderBySourcePosition(seenProcs)}; 418 std::string result; 419 llvm::interleave( 420 ordered, 421 [&](const SymbolRef p) { result += '\'' + p->name().ToString() + '\''; }, 422 [&]() { result += ", "; }); 423 return result; 424 } 425 426 // These functions with arguments of type UnorderedSymbolSet are used with 427 // mutually recursive calls when characterizing a Procedure, a DummyArgument, 428 // or a DummyProcedure to detect circularly defined procedures as required by 429 // 15.4.3.6, paragraph 2. 430 static std::optional<DummyArgument> CharacterizeDummyArgument( 431 const semantics::Symbol &symbol, FoldingContext &context, 432 semantics::UnorderedSymbolSet seenProcs); 433 static std::optional<FunctionResult> CharacterizeFunctionResult( 434 const semantics::Symbol &symbol, FoldingContext &context, 435 semantics::UnorderedSymbolSet seenProcs); 436 437 static std::optional<Procedure> CharacterizeProcedure( 438 const semantics::Symbol &original, FoldingContext &context, 439 semantics::UnorderedSymbolSet seenProcs) { 440 Procedure result; 441 const auto &symbol{ResolveAssociations(original)}; 442 if (seenProcs.find(symbol) != seenProcs.end()) { 443 std::string procsList{GetSeenProcs(seenProcs)}; 444 context.messages().Say(symbol.name(), 445 "Procedure '%s' is recursively defined. Procedures in the cycle:" 446 " %s"_err_en_US, 447 symbol.name(), procsList); 448 return std::nullopt; 449 } 450 seenProcs.insert(symbol); 451 if (IsElementalProcedure(symbol)) { 452 result.attrs.set(Procedure::Attr::Elemental); 453 } 454 CopyAttrs<Procedure, Procedure::Attr>(symbol, result, 455 { 456 {semantics::Attr::BIND_C, Procedure::Attr::BindC}, 457 }); 458 if (IsPureProcedure(symbol) || // works for ENTRY too 459 (!symbol.attrs().test(semantics::Attr::IMPURE) && 460 result.attrs.test(Procedure::Attr::Elemental))) { 461 result.attrs.set(Procedure::Attr::Pure); 462 } 463 return common::visit( 464 common::visitors{ 465 [&](const semantics::SubprogramDetails &subp) 466 -> std::optional<Procedure> { 467 if (subp.isFunction()) { 468 if (auto fr{CharacterizeFunctionResult( 469 subp.result(), context, seenProcs)}) { 470 result.functionResult = std::move(fr); 471 } else { 472 return std::nullopt; 473 } 474 } else { 475 result.attrs.set(Procedure::Attr::Subroutine); 476 } 477 for (const semantics::Symbol *arg : subp.dummyArgs()) { 478 if (!arg) { 479 if (subp.isFunction()) { 480 return std::nullopt; 481 } else { 482 result.dummyArguments.emplace_back(AlternateReturn{}); 483 } 484 } else if (auto argCharacteristics{CharacterizeDummyArgument( 485 *arg, context, seenProcs)}) { 486 result.dummyArguments.emplace_back( 487 std::move(argCharacteristics.value())); 488 } else { 489 return std::nullopt; 490 } 491 } 492 return result; 493 }, 494 [&](const semantics::ProcEntityDetails &proc) 495 -> std::optional<Procedure> { 496 if (symbol.attrs().test(semantics::Attr::INTRINSIC)) { 497 // Fails when the intrinsic is not a specific intrinsic function 498 // from F'2018 table 16.2. In order to handle forward references, 499 // attempts to use impermissible intrinsic procedures as the 500 // interfaces of procedure pointers are caught and flagged in 501 // declaration checking in Semantics. 502 auto intrinsic{context.intrinsics().IsSpecificIntrinsicFunction( 503 symbol.name().ToString())}; 504 if (intrinsic && intrinsic->isRestrictedSpecific) { 505 intrinsic.reset(); // Exclude intrinsics from table 16.3. 506 } 507 return intrinsic; 508 } 509 const semantics::ProcInterface &interface { proc.interface() }; 510 if (const semantics::Symbol * interfaceSymbol{interface.symbol()}) { 511 auto interface { 512 CharacterizeProcedure(*interfaceSymbol, context, seenProcs) 513 }; 514 if (interface && IsPointer(symbol)) { 515 interface->attrs.reset(Procedure::Attr::Elemental); 516 } 517 return interface; 518 } else { 519 result.attrs.set(Procedure::Attr::ImplicitInterface); 520 const semantics::DeclTypeSpec *type{interface.type()}; 521 if (symbol.test(semantics::Symbol::Flag::Subroutine)) { 522 // ignore any implicit typing 523 result.attrs.set(Procedure::Attr::Subroutine); 524 } else if (type) { 525 if (auto resultType{DynamicType::From(*type)}) { 526 result.functionResult = FunctionResult{*resultType}; 527 } else { 528 return std::nullopt; 529 } 530 } else if (symbol.test(semantics::Symbol::Flag::Function)) { 531 return std::nullopt; 532 } 533 // The PASS name, if any, is not a characteristic. 534 return result; 535 } 536 }, 537 [&](const semantics::ProcBindingDetails &binding) { 538 if (auto result{CharacterizeProcedure( 539 binding.symbol(), context, seenProcs)}) { 540 if (binding.symbol().attrs().test(semantics::Attr::INTRINSIC)) { 541 result->attrs.reset(Procedure::Attr::Elemental); 542 } 543 if (!symbol.attrs().test(semantics::Attr::NOPASS)) { 544 auto passName{binding.passName()}; 545 for (auto &dummy : result->dummyArguments) { 546 if (!passName || dummy.name.c_str() == *passName) { 547 dummy.pass = true; 548 break; 549 } 550 } 551 } 552 return result; 553 } else { 554 return std::optional<Procedure>{}; 555 } 556 }, 557 [&](const semantics::UseDetails &use) { 558 return CharacterizeProcedure(use.symbol(), context, seenProcs); 559 }, 560 [](const semantics::UseErrorDetails &) { 561 // Ambiguous use-association will be handled later during symbol 562 // checks, ignore UseErrorDetails here without actual symbol usage. 563 return std::optional<Procedure>{}; 564 }, 565 [&](const semantics::HostAssocDetails &assoc) { 566 return CharacterizeProcedure(assoc.symbol(), context, seenProcs); 567 }, 568 [&](const semantics::GenericDetails &generic) { 569 if (const semantics::Symbol * specific{generic.specific()}) { 570 return CharacterizeProcedure(*specific, context, seenProcs); 571 } else { 572 return std::optional<Procedure>{}; 573 } 574 }, 575 [&](const semantics::EntityDetails &) { 576 context.messages().Say( 577 "Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US, 578 symbol.name()); 579 return std::optional<Procedure>{}; 580 }, 581 [&](const semantics::SubprogramNameDetails &) { 582 context.messages().Say( 583 "Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US, 584 symbol.name()); 585 return std::optional<Procedure>{}; 586 }, 587 [&](const auto &) { 588 context.messages().Say( 589 "'%s' is not a procedure"_err_en_US, symbol.name()); 590 return std::optional<Procedure>{}; 591 }, 592 }, 593 symbol.details()); 594 } 595 596 static std::optional<DummyProcedure> CharacterizeDummyProcedure( 597 const semantics::Symbol &symbol, FoldingContext &context, 598 semantics::UnorderedSymbolSet seenProcs) { 599 if (auto procedure{CharacterizeProcedure(symbol, context, seenProcs)}) { 600 // Dummy procedures may not be elemental. Elemental dummy procedure 601 // interfaces are errors when the interface is not intrinsic, and that 602 // error is caught elsewhere. Elemental intrinsic interfaces are 603 // made non-elemental. 604 procedure->attrs.reset(Procedure::Attr::Elemental); 605 DummyProcedure result{std::move(procedure.value())}; 606 CopyAttrs<DummyProcedure, DummyProcedure::Attr>(symbol, result, 607 { 608 {semantics::Attr::OPTIONAL, DummyProcedure::Attr::Optional}, 609 {semantics::Attr::POINTER, DummyProcedure::Attr::Pointer}, 610 }); 611 result.intent = GetIntent(symbol.attrs()); 612 return result; 613 } else { 614 return std::nullopt; 615 } 616 } 617 618 llvm::raw_ostream &DummyProcedure::Dump(llvm::raw_ostream &o) const { 619 attrs.Dump(o, EnumToString); 620 if (intent != common::Intent::Default) { 621 o << "INTENT(" << common::EnumToString(intent) << ')'; 622 } 623 procedure.value().Dump(o); 624 return o; 625 } 626 627 llvm::raw_ostream &AlternateReturn::Dump(llvm::raw_ostream &o) const { 628 return o << '*'; 629 } 630 631 DummyArgument::~DummyArgument() {} 632 633 bool DummyArgument::operator==(const DummyArgument &that) const { 634 return u == that.u; // name and passed-object usage are not characteristics 635 } 636 637 bool DummyArgument::IsCompatibleWith( 638 const DummyArgument &actual, std::string *whyNot) const { 639 if (const auto *ifaceData{std::get_if<DummyDataObject>(&u)}) { 640 if (const auto *actualData{std::get_if<DummyDataObject>(&actual.u)}) { 641 return ifaceData->IsCompatibleWith(*actualData, whyNot); 642 } 643 if (whyNot) { 644 *whyNot = "one dummy argument is an object, the other is not"; 645 } 646 } else if (const auto *ifaceProc{std::get_if<DummyProcedure>(&u)}) { 647 if (const auto *actualProc{std::get_if<DummyProcedure>(&actual.u)}) { 648 return ifaceProc->IsCompatibleWith(*actualProc, whyNot); 649 } 650 if (whyNot) { 651 *whyNot = "one dummy argument is a procedure, the other is not"; 652 } 653 } else { 654 CHECK(std::holds_alternative<AlternateReturn>(u)); 655 if (std::holds_alternative<AlternateReturn>(actual.u)) { 656 return true; 657 } 658 if (whyNot) { 659 *whyNot = "one dummy argument is an alternate return, the other is not"; 660 } 661 } 662 return false; 663 } 664 665 static std::optional<DummyArgument> CharacterizeDummyArgument( 666 const semantics::Symbol &symbol, FoldingContext &context, 667 semantics::UnorderedSymbolSet seenProcs) { 668 auto name{symbol.name().ToString()}; 669 if (symbol.has<semantics::ObjectEntityDetails>() || 670 symbol.has<semantics::EntityDetails>()) { 671 if (auto obj{DummyDataObject::Characterize(symbol, context)}) { 672 return DummyArgument{std::move(name), std::move(obj.value())}; 673 } 674 } else if (auto proc{ 675 CharacterizeDummyProcedure(symbol, context, seenProcs)}) { 676 return DummyArgument{std::move(name), std::move(proc.value())}; 677 } 678 return std::nullopt; 679 } 680 681 std::optional<DummyArgument> DummyArgument::FromActual( 682 std::string &&name, const Expr<SomeType> &expr, FoldingContext &context) { 683 return common::visit( 684 common::visitors{ 685 [&](const BOZLiteralConstant &) { 686 return std::make_optional<DummyArgument>(std::move(name), 687 DummyDataObject{ 688 TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}); 689 }, 690 [&](const NullPointer &) { 691 return std::make_optional<DummyArgument>(std::move(name), 692 DummyDataObject{ 693 TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}); 694 }, 695 [&](const ProcedureDesignator &designator) { 696 if (auto proc{Procedure::Characterize(designator, context)}) { 697 return std::make_optional<DummyArgument>( 698 std::move(name), DummyProcedure{std::move(*proc)}); 699 } else { 700 return std::optional<DummyArgument>{}; 701 } 702 }, 703 [&](const ProcedureRef &call) { 704 if (auto proc{Procedure::Characterize(call, context)}) { 705 return std::make_optional<DummyArgument>( 706 std::move(name), DummyProcedure{std::move(*proc)}); 707 } else { 708 return std::optional<DummyArgument>{}; 709 } 710 }, 711 [&](const auto &) { 712 if (auto type{TypeAndShape::Characterize(expr, context)}) { 713 return std::make_optional<DummyArgument>( 714 std::move(name), DummyDataObject{std::move(*type)}); 715 } else { 716 return std::optional<DummyArgument>{}; 717 } 718 }, 719 }, 720 expr.u); 721 } 722 723 bool DummyArgument::IsOptional() const { 724 return common::visit( 725 common::visitors{ 726 [](const DummyDataObject &data) { 727 return data.attrs.test(DummyDataObject::Attr::Optional); 728 }, 729 [](const DummyProcedure &proc) { 730 return proc.attrs.test(DummyProcedure::Attr::Optional); 731 }, 732 [](const AlternateReturn &) { return false; }, 733 }, 734 u); 735 } 736 737 void DummyArgument::SetOptional(bool value) { 738 common::visit(common::visitors{ 739 [value](DummyDataObject &data) { 740 data.attrs.set(DummyDataObject::Attr::Optional, value); 741 }, 742 [value](DummyProcedure &proc) { 743 proc.attrs.set(DummyProcedure::Attr::Optional, value); 744 }, 745 [](AlternateReturn &) { DIE("cannot set optional"); }, 746 }, 747 u); 748 } 749 750 void DummyArgument::SetIntent(common::Intent intent) { 751 common::visit(common::visitors{ 752 [intent](DummyDataObject &data) { data.intent = intent; }, 753 [intent](DummyProcedure &proc) { proc.intent = intent; }, 754 [](AlternateReturn &) { DIE("cannot set intent"); }, 755 }, 756 u); 757 } 758 759 common::Intent DummyArgument::GetIntent() const { 760 return common::visit( 761 common::visitors{ 762 [](const DummyDataObject &data) { return data.intent; }, 763 [](const DummyProcedure &proc) { return proc.intent; }, 764 [](const AlternateReturn &) -> common::Intent { 765 DIE("Alternate returns have no intent"); 766 }, 767 }, 768 u); 769 } 770 771 bool DummyArgument::CanBePassedViaImplicitInterface() const { 772 if (const auto *object{std::get_if<DummyDataObject>(&u)}) { 773 return object->CanBePassedViaImplicitInterface(); 774 } else if (const auto *proc{std::get_if<DummyProcedure>(&u)}) { 775 return proc->CanBePassedViaImplicitInterface(); 776 } else { 777 return true; 778 } 779 } 780 781 bool DummyArgument::IsTypelessIntrinsicDummy() const { 782 const auto *argObj{std::get_if<characteristics::DummyDataObject>(&u)}; 783 return argObj && argObj->type.type().IsTypelessIntrinsicArgument(); 784 } 785 786 llvm::raw_ostream &DummyArgument::Dump(llvm::raw_ostream &o) const { 787 if (!name.empty()) { 788 o << name << '='; 789 } 790 if (pass) { 791 o << " PASS"; 792 } 793 common::visit([&](const auto &x) { x.Dump(o); }, u); 794 return o; 795 } 796 797 FunctionResult::FunctionResult(DynamicType t) : u{TypeAndShape{t}} {} 798 FunctionResult::FunctionResult(TypeAndShape &&t) : u{std::move(t)} {} 799 FunctionResult::FunctionResult(Procedure &&p) : u{std::move(p)} {} 800 FunctionResult::~FunctionResult() {} 801 802 bool FunctionResult::operator==(const FunctionResult &that) const { 803 return attrs == that.attrs && u == that.u; 804 } 805 806 static std::optional<FunctionResult> CharacterizeFunctionResult( 807 const semantics::Symbol &symbol, FoldingContext &context, 808 semantics::UnorderedSymbolSet seenProcs) { 809 if (symbol.has<semantics::ObjectEntityDetails>()) { 810 if (auto type{TypeAndShape::Characterize(symbol, context)}) { 811 FunctionResult result{std::move(*type)}; 812 CopyAttrs<FunctionResult, FunctionResult::Attr>(symbol, result, 813 { 814 {semantics::Attr::ALLOCATABLE, FunctionResult::Attr::Allocatable}, 815 {semantics::Attr::CONTIGUOUS, FunctionResult::Attr::Contiguous}, 816 {semantics::Attr::POINTER, FunctionResult::Attr::Pointer}, 817 }); 818 return result; 819 } 820 } else if (auto maybeProc{ 821 CharacterizeProcedure(symbol, context, seenProcs)}) { 822 FunctionResult result{std::move(*maybeProc)}; 823 result.attrs.set(FunctionResult::Attr::Pointer); 824 return result; 825 } 826 return std::nullopt; 827 } 828 829 std::optional<FunctionResult> FunctionResult::Characterize( 830 const Symbol &symbol, FoldingContext &context) { 831 semantics::UnorderedSymbolSet seenProcs; 832 return CharacterizeFunctionResult(symbol, context, seenProcs); 833 } 834 835 bool FunctionResult::IsAssumedLengthCharacter() const { 836 if (const auto *ts{std::get_if<TypeAndShape>(&u)}) { 837 return ts->type().IsAssumedLengthCharacter(); 838 } else { 839 return false; 840 } 841 } 842 843 bool FunctionResult::CanBeReturnedViaImplicitInterface() const { 844 if (attrs.test(Attr::Pointer) || attrs.test(Attr::Allocatable)) { 845 return false; // 15.4.2.2(4)(b) 846 } else if (const auto *typeAndShape{GetTypeAndShape()}) { 847 if (typeAndShape->Rank() > 0) { 848 return false; // 15.4.2.2(4)(a) 849 } else { 850 const DynamicType &type{typeAndShape->type()}; 851 switch (type.category()) { 852 case TypeCategory::Character: 853 if (type.knownLength()) { 854 return true; 855 } else if (const auto *param{type.charLengthParamValue()}) { 856 if (const auto &expr{param->GetExplicit()}) { 857 return IsConstantExpr(*expr); // 15.4.2.2(4)(c) 858 } else if (param->isAssumed()) { 859 return true; 860 } 861 } 862 return false; 863 case TypeCategory::Derived: 864 if (!type.IsPolymorphic()) { 865 const auto &spec{type.GetDerivedTypeSpec()}; 866 for (const auto &pair : spec.parameters()) { 867 if (const auto &expr{pair.second.GetExplicit()}) { 868 if (!IsConstantExpr(*expr)) { 869 return false; // 15.4.2.2(4)(c) 870 } 871 } 872 } 873 return true; 874 } 875 return false; 876 default: 877 return true; 878 } 879 } 880 } else { 881 return false; // 15.4.2.2(4)(b) - procedure pointer 882 } 883 } 884 885 static bool AreCompatibleFunctionResultShapes(const Shape &x, const Shape &y) { 886 int rank{GetRank(x)}; 887 if (GetRank(y) != rank) { 888 return false; 889 } 890 for (int j{0}; j < rank; ++j) { 891 if (auto xDim{ToInt64(x[j])}) { 892 if (auto yDim{ToInt64(y[j])}) { 893 if (*xDim != *yDim) { 894 return false; 895 } 896 } 897 } 898 } 899 return true; 900 } 901 902 bool FunctionResult::IsCompatibleWith( 903 const FunctionResult &actual, std::string *whyNot) const { 904 Attrs actualAttrs{actual.attrs}; 905 if (!attrs.test(Attr::Contiguous)) { 906 actualAttrs.reset(Attr::Contiguous); 907 } 908 if (attrs != actualAttrs) { 909 if (whyNot) { 910 *whyNot = "function results have incompatible attributes"; 911 } 912 } else if (const auto *ifaceTypeShape{std::get_if<TypeAndShape>(&u)}) { 913 if (const auto *actualTypeShape{std::get_if<TypeAndShape>(&actual.u)}) { 914 if (ifaceTypeShape->Rank() != actualTypeShape->Rank()) { 915 if (whyNot) { 916 *whyNot = "function results have distinct ranks"; 917 } 918 } else if (!attrs.test(Attr::Allocatable) && !attrs.test(Attr::Pointer) && 919 !AreCompatibleFunctionResultShapes( 920 ifaceTypeShape->shape(), actualTypeShape->shape())) { 921 if (whyNot) { 922 *whyNot = "function results have distinct constant extents"; 923 } 924 } else if (!ifaceTypeShape->type().IsTkCompatibleWith( 925 actualTypeShape->type())) { 926 if (whyNot) { 927 *whyNot = "function results have incompatible types: "s + 928 ifaceTypeShape->type().AsFortran() + " vs "s + 929 actualTypeShape->type().AsFortran(); 930 } 931 } else { 932 return true; 933 } 934 } else { 935 if (whyNot) { 936 *whyNot = "function result type and shape are not known"; 937 } 938 } 939 } else { 940 const auto *ifaceProc{std::get_if<CopyableIndirection<Procedure>>(&u)}; 941 CHECK(ifaceProc != nullptr); 942 if (const auto *actualProc{ 943 std::get_if<CopyableIndirection<Procedure>>(&actual.u)}) { 944 if (ifaceProc->value().IsCompatibleWith(actualProc->value(), whyNot)) { 945 return true; 946 } 947 if (whyNot) { 948 *whyNot = 949 "function results are incompatible procedure pointers: "s + *whyNot; 950 } 951 } else { 952 if (whyNot) { 953 *whyNot = 954 "one function result is a procedure pointer, the other is not"; 955 } 956 } 957 } 958 return false; 959 } 960 961 llvm::raw_ostream &FunctionResult::Dump(llvm::raw_ostream &o) const { 962 attrs.Dump(o, EnumToString); 963 common::visit(common::visitors{ 964 [&](const TypeAndShape &ts) { ts.Dump(o); }, 965 [&](const CopyableIndirection<Procedure> &p) { 966 p.value().Dump(o << " procedure(") << ')'; 967 }, 968 }, 969 u); 970 return o; 971 } 972 973 Procedure::Procedure(FunctionResult &&fr, DummyArguments &&args, Attrs a) 974 : functionResult{std::move(fr)}, dummyArguments{std::move(args)}, attrs{a} { 975 } 976 Procedure::Procedure(DummyArguments &&args, Attrs a) 977 : dummyArguments{std::move(args)}, attrs{a} {} 978 Procedure::~Procedure() {} 979 980 bool Procedure::operator==(const Procedure &that) const { 981 return attrs == that.attrs && functionResult == that.functionResult && 982 dummyArguments == that.dummyArguments; 983 } 984 985 bool Procedure::IsCompatibleWith(const Procedure &actual, std::string *whyNot, 986 const SpecificIntrinsic *specificIntrinsic) const { 987 // 15.5.2.9(1): if dummy is not pure, actual need not be. 988 // Ditto with elemental. 989 Attrs actualAttrs{actual.attrs}; 990 if (!attrs.test(Attr::Pure)) { 991 actualAttrs.reset(Attr::Pure); 992 } 993 if (!attrs.test(Attr::Elemental) && specificIntrinsic) { 994 actualAttrs.reset(Attr::Elemental); 995 } 996 Attrs differences{attrs ^ actualAttrs}; 997 differences.reset(Attr::Subroutine); // dealt with specifically later 998 if (!differences.empty()) { 999 if (whyNot) { 1000 auto sep{": "s}; 1001 *whyNot = "incompatible procedure attributes"; 1002 differences.IterateOverMembers([&](Attr x) { 1003 *whyNot += sep + std::string{EnumToString(x)}; 1004 sep = ", "; 1005 }); 1006 } 1007 } else if ((IsFunction() && actual.IsSubroutine()) || 1008 (IsSubroutine() && actual.IsFunction())) { 1009 if (whyNot) { 1010 *whyNot = 1011 "incompatible procedures: one is a function, the other a subroutine"; 1012 } 1013 } else if (functionResult && actual.functionResult && 1014 !functionResult->IsCompatibleWith(*actual.functionResult, whyNot)) { 1015 } else if (dummyArguments.size() != actual.dummyArguments.size()) { 1016 if (whyNot) { 1017 *whyNot = "distinct numbers of dummy arguments"; 1018 } 1019 } else { 1020 for (std::size_t j{0}; j < dummyArguments.size(); ++j) { 1021 if (!dummyArguments[j].IsCompatibleWith( 1022 actual.dummyArguments[j], whyNot)) { 1023 if (whyNot) { 1024 *whyNot = "incompatible dummy argument #"s + std::to_string(j + 1) + 1025 ": "s + *whyNot; 1026 } 1027 return false; 1028 } 1029 } 1030 return true; 1031 } 1032 return false; 1033 } 1034 1035 int Procedure::FindPassIndex(std::optional<parser::CharBlock> name) const { 1036 int argCount{static_cast<int>(dummyArguments.size())}; 1037 int index{0}; 1038 if (name) { 1039 while (index < argCount && *name != dummyArguments[index].name.c_str()) { 1040 ++index; 1041 } 1042 } 1043 CHECK(index < argCount); 1044 return index; 1045 } 1046 1047 bool Procedure::CanOverride( 1048 const Procedure &that, std::optional<int> passIndex) const { 1049 // A pure procedure may override an impure one (7.5.7.3(2)) 1050 if ((that.attrs.test(Attr::Pure) && !attrs.test(Attr::Pure)) || 1051 that.attrs.test(Attr::Elemental) != attrs.test(Attr::Elemental) || 1052 functionResult != that.functionResult) { 1053 return false; 1054 } 1055 int argCount{static_cast<int>(dummyArguments.size())}; 1056 if (argCount != static_cast<int>(that.dummyArguments.size())) { 1057 return false; 1058 } 1059 for (int j{0}; j < argCount; ++j) { 1060 if ((!passIndex || j != *passIndex) && 1061 dummyArguments[j] != that.dummyArguments[j]) { 1062 return false; 1063 } 1064 } 1065 return true; 1066 } 1067 1068 std::optional<Procedure> Procedure::Characterize( 1069 const semantics::Symbol &original, FoldingContext &context) { 1070 semantics::UnorderedSymbolSet seenProcs; 1071 return CharacterizeProcedure(original, context, seenProcs); 1072 } 1073 1074 std::optional<Procedure> Procedure::Characterize( 1075 const ProcedureDesignator &proc, FoldingContext &context) { 1076 if (const auto *symbol{proc.GetSymbol()}) { 1077 if (auto result{ 1078 characteristics::Procedure::Characterize(*symbol, context)}) { 1079 return result; 1080 } 1081 } else if (const auto *intrinsic{proc.GetSpecificIntrinsic()}) { 1082 return intrinsic->characteristics.value(); 1083 } 1084 return std::nullopt; 1085 } 1086 1087 std::optional<Procedure> Procedure::Characterize( 1088 const ProcedureRef &ref, FoldingContext &context) { 1089 if (auto callee{Characterize(ref.proc(), context)}) { 1090 if (callee->functionResult) { 1091 if (const Procedure * 1092 proc{callee->functionResult->IsProcedurePointer()}) { 1093 return {*proc}; 1094 } 1095 } 1096 } 1097 return std::nullopt; 1098 } 1099 1100 bool Procedure::CanBeCalledViaImplicitInterface() const { 1101 // TODO: Pass back information on why we return false 1102 if (attrs.test(Attr::Elemental) || attrs.test(Attr::BindC)) { 1103 return false; // 15.4.2.2(5,6) 1104 } else if (IsFunction() && 1105 !functionResult->CanBeReturnedViaImplicitInterface()) { 1106 return false; 1107 } else { 1108 for (const DummyArgument &arg : dummyArguments) { 1109 if (!arg.CanBePassedViaImplicitInterface()) { 1110 return false; 1111 } 1112 } 1113 return true; 1114 } 1115 } 1116 1117 llvm::raw_ostream &Procedure::Dump(llvm::raw_ostream &o) const { 1118 attrs.Dump(o, EnumToString); 1119 if (functionResult) { 1120 functionResult->Dump(o << "TYPE(") << ") FUNCTION"; 1121 } else if (attrs.test(Attr::Subroutine)) { 1122 o << "SUBROUTINE"; 1123 } else { 1124 o << "EXTERNAL"; 1125 } 1126 char sep{'('}; 1127 for (const auto &dummy : dummyArguments) { 1128 dummy.Dump(o << sep); 1129 sep = ','; 1130 } 1131 return o << (sep == '(' ? "()" : ")"); 1132 } 1133 1134 // Utility class to determine if Procedures, etc. are distinguishable 1135 class DistinguishUtils { 1136 public: 1137 explicit DistinguishUtils(const common::LanguageFeatureControl &features) 1138 : features_{features} {} 1139 1140 // Are these procedures distinguishable for a generic name? 1141 bool Distinguishable(const Procedure &, const Procedure &) const; 1142 // Are these procedures distinguishable for a generic operator or assignment? 1143 bool DistinguishableOpOrAssign(const Procedure &, const Procedure &) const; 1144 1145 private: 1146 struct CountDummyProcedures { 1147 CountDummyProcedures(const DummyArguments &args) { 1148 for (const DummyArgument &arg : args) { 1149 if (std::holds_alternative<DummyProcedure>(arg.u)) { 1150 total += 1; 1151 notOptional += !arg.IsOptional(); 1152 } 1153 } 1154 } 1155 int total{0}; 1156 int notOptional{0}; 1157 }; 1158 1159 bool Rule3Distinguishable(const Procedure &, const Procedure &) const; 1160 const DummyArgument *Rule1DistinguishingArg( 1161 const DummyArguments &, const DummyArguments &) const; 1162 int FindFirstToDistinguishByPosition( 1163 const DummyArguments &, const DummyArguments &) const; 1164 int FindLastToDistinguishByName( 1165 const DummyArguments &, const DummyArguments &) const; 1166 int CountCompatibleWith(const DummyArgument &, const DummyArguments &) const; 1167 int CountNotDistinguishableFrom( 1168 const DummyArgument &, const DummyArguments &) const; 1169 bool Distinguishable(const DummyArgument &, const DummyArgument &) const; 1170 bool Distinguishable(const DummyDataObject &, const DummyDataObject &) const; 1171 bool Distinguishable(const DummyProcedure &, const DummyProcedure &) const; 1172 bool Distinguishable(const FunctionResult &, const FunctionResult &) const; 1173 bool Distinguishable(const TypeAndShape &, const TypeAndShape &) const; 1174 bool IsTkrCompatible(const DummyArgument &, const DummyArgument &) const; 1175 bool IsTkrCompatible(const TypeAndShape &, const TypeAndShape &) const; 1176 const DummyArgument *GetAtEffectivePosition( 1177 const DummyArguments &, int) const; 1178 const DummyArgument *GetPassArg(const Procedure &) const; 1179 1180 const common::LanguageFeatureControl &features_; 1181 }; 1182 1183 // Simpler distinguishability rules for operators and assignment 1184 bool DistinguishUtils::DistinguishableOpOrAssign( 1185 const Procedure &proc1, const Procedure &proc2) const { 1186 auto &args1{proc1.dummyArguments}; 1187 auto &args2{proc2.dummyArguments}; 1188 if (args1.size() != args2.size()) { 1189 return true; // C1511: distinguishable based on number of arguments 1190 } 1191 for (std::size_t i{0}; i < args1.size(); ++i) { 1192 if (Distinguishable(args1[i], args2[i])) { 1193 return true; // C1511, C1512: distinguishable based on this arg 1194 } 1195 } 1196 return false; 1197 } 1198 1199 bool DistinguishUtils::Distinguishable( 1200 const Procedure &proc1, const Procedure &proc2) const { 1201 auto &args1{proc1.dummyArguments}; 1202 auto &args2{proc2.dummyArguments}; 1203 auto count1{CountDummyProcedures(args1)}; 1204 auto count2{CountDummyProcedures(args2)}; 1205 if (count1.notOptional > count2.total || count2.notOptional > count1.total) { 1206 return true; // distinguishable based on C1514 rule 2 1207 } 1208 if (Rule3Distinguishable(proc1, proc2)) { 1209 return true; // distinguishable based on C1514 rule 3 1210 } 1211 if (Rule1DistinguishingArg(args1, args2)) { 1212 return true; // distinguishable based on C1514 rule 1 1213 } 1214 int pos1{FindFirstToDistinguishByPosition(args1, args2)}; 1215 int name1{FindLastToDistinguishByName(args1, args2)}; 1216 if (pos1 >= 0 && pos1 <= name1) { 1217 return true; // distinguishable based on C1514 rule 4 1218 } 1219 int pos2{FindFirstToDistinguishByPosition(args2, args1)}; 1220 int name2{FindLastToDistinguishByName(args2, args1)}; 1221 if (pos2 >= 0 && pos2 <= name2) { 1222 return true; // distinguishable based on C1514 rule 4 1223 } 1224 return false; 1225 } 1226 1227 // C1514 rule 3: Procedures are distinguishable if both have a passed-object 1228 // dummy argument and those are distinguishable. 1229 bool DistinguishUtils::Rule3Distinguishable( 1230 const Procedure &proc1, const Procedure &proc2) const { 1231 const DummyArgument *pass1{GetPassArg(proc1)}; 1232 const DummyArgument *pass2{GetPassArg(proc2)}; 1233 return pass1 && pass2 && Distinguishable(*pass1, *pass2); 1234 } 1235 1236 // Find a non-passed-object dummy data object in one of the argument lists 1237 // that satisfies C1514 rule 1. I.e. x such that: 1238 // - m is the number of dummy data objects in one that are nonoptional, 1239 // are not passed-object, that x is TKR compatible with 1240 // - n is the number of non-passed-object dummy data objects, in the other 1241 // that are not distinguishable from x 1242 // - m is greater than n 1243 const DummyArgument *DistinguishUtils::Rule1DistinguishingArg( 1244 const DummyArguments &args1, const DummyArguments &args2) const { 1245 auto size1{args1.size()}; 1246 auto size2{args2.size()}; 1247 for (std::size_t i{0}; i < size1 + size2; ++i) { 1248 const DummyArgument &x{i < size1 ? args1[i] : args2[i - size1]}; 1249 if (!x.pass && std::holds_alternative<DummyDataObject>(x.u)) { 1250 if (CountCompatibleWith(x, args1) > 1251 CountNotDistinguishableFrom(x, args2) || 1252 CountCompatibleWith(x, args2) > 1253 CountNotDistinguishableFrom(x, args1)) { 1254 return &x; 1255 } 1256 } 1257 } 1258 return nullptr; 1259 } 1260 1261 // Find the index of the first nonoptional non-passed-object dummy argument 1262 // in args1 at an effective position such that either: 1263 // - args2 has no dummy argument at that effective position 1264 // - the dummy argument at that position is distinguishable from it 1265 int DistinguishUtils::FindFirstToDistinguishByPosition( 1266 const DummyArguments &args1, const DummyArguments &args2) const { 1267 int effective{0}; // position of arg1 in list, ignoring passed arg 1268 for (std::size_t i{0}; i < args1.size(); ++i) { 1269 const DummyArgument &arg1{args1.at(i)}; 1270 if (!arg1.pass && !arg1.IsOptional()) { 1271 const DummyArgument *arg2{GetAtEffectivePosition(args2, effective)}; 1272 if (!arg2 || Distinguishable(arg1, *arg2)) { 1273 return i; 1274 } 1275 } 1276 effective += !arg1.pass; 1277 } 1278 return -1; 1279 } 1280 1281 // Find the index of the last nonoptional non-passed-object dummy argument 1282 // in args1 whose name is such that either: 1283 // - args2 has no dummy argument with that name 1284 // - the dummy argument with that name is distinguishable from it 1285 int DistinguishUtils::FindLastToDistinguishByName( 1286 const DummyArguments &args1, const DummyArguments &args2) const { 1287 std::map<std::string, const DummyArgument *> nameToArg; 1288 for (const auto &arg2 : args2) { 1289 nameToArg.emplace(arg2.name, &arg2); 1290 } 1291 for (int i = args1.size() - 1; i >= 0; --i) { 1292 const DummyArgument &arg1{args1.at(i)}; 1293 if (!arg1.pass && !arg1.IsOptional()) { 1294 auto it{nameToArg.find(arg1.name)}; 1295 if (it == nameToArg.end() || Distinguishable(arg1, *it->second)) { 1296 return i; 1297 } 1298 } 1299 } 1300 return -1; 1301 } 1302 1303 // Count the dummy data objects in args that are nonoptional, are not 1304 // passed-object, and that x is TKR compatible with 1305 int DistinguishUtils::CountCompatibleWith( 1306 const DummyArgument &x, const DummyArguments &args) const { 1307 return llvm::count_if(args, [&](const DummyArgument &y) { 1308 return !y.pass && !y.IsOptional() && IsTkrCompatible(x, y); 1309 }); 1310 } 1311 1312 // Return the number of dummy data objects in args that are not 1313 // distinguishable from x and not passed-object. 1314 int DistinguishUtils::CountNotDistinguishableFrom( 1315 const DummyArgument &x, const DummyArguments &args) const { 1316 return llvm::count_if(args, [&](const DummyArgument &y) { 1317 return !y.pass && std::holds_alternative<DummyDataObject>(y.u) && 1318 !Distinguishable(y, x); 1319 }); 1320 } 1321 1322 bool DistinguishUtils::Distinguishable( 1323 const DummyArgument &x, const DummyArgument &y) const { 1324 if (x.u.index() != y.u.index()) { 1325 return true; // different kind: data/proc/alt-return 1326 } 1327 return common::visit( 1328 common::visitors{ 1329 [&](const DummyDataObject &z) { 1330 return Distinguishable(z, std::get<DummyDataObject>(y.u)); 1331 }, 1332 [&](const DummyProcedure &z) { 1333 return Distinguishable(z, std::get<DummyProcedure>(y.u)); 1334 }, 1335 [&](const AlternateReturn &) { return false; }, 1336 }, 1337 x.u); 1338 } 1339 1340 bool DistinguishUtils::Distinguishable( 1341 const DummyDataObject &x, const DummyDataObject &y) const { 1342 using Attr = DummyDataObject::Attr; 1343 if (Distinguishable(x.type, y.type)) { 1344 return true; 1345 } else if (x.attrs.test(Attr::Allocatable) && y.attrs.test(Attr::Pointer) && 1346 y.intent != common::Intent::In) { 1347 return true; 1348 } else if (y.attrs.test(Attr::Allocatable) && x.attrs.test(Attr::Pointer) && 1349 x.intent != common::Intent::In) { 1350 return true; 1351 } else if (features_.IsEnabled( 1352 common::LanguageFeature::DistinguishableSpecifics) && 1353 (x.attrs.test(Attr::Allocatable) || x.attrs.test(Attr::Pointer)) && 1354 (y.attrs.test(Attr::Allocatable) || y.attrs.test(Attr::Pointer)) && 1355 (x.type.type().IsUnlimitedPolymorphic() != 1356 y.type.type().IsUnlimitedPolymorphic() || 1357 x.type.type().IsPolymorphic() != y.type.type().IsPolymorphic())) { 1358 // Extension: Per 15.5.2.5(2), an allocatable/pointer dummy and its 1359 // corresponding actual argument must both or neither be polymorphic, 1360 // and must both or neither be unlimited polymorphic. So when exactly 1361 // one of two dummy arguments is polymorphic or unlimited polymorphic, 1362 // any actual argument that is admissible to one of them cannot also match 1363 // the other one. 1364 return true; 1365 } else { 1366 return false; 1367 } 1368 } 1369 1370 bool DistinguishUtils::Distinguishable( 1371 const DummyProcedure &x, const DummyProcedure &y) const { 1372 const Procedure &xProc{x.procedure.value()}; 1373 const Procedure &yProc{y.procedure.value()}; 1374 if (Distinguishable(xProc, yProc)) { 1375 return true; 1376 } else { 1377 const std::optional<FunctionResult> &xResult{xProc.functionResult}; 1378 const std::optional<FunctionResult> &yResult{yProc.functionResult}; 1379 return xResult ? !yResult || Distinguishable(*xResult, *yResult) 1380 : yResult.has_value(); 1381 } 1382 } 1383 1384 bool DistinguishUtils::Distinguishable( 1385 const FunctionResult &x, const FunctionResult &y) const { 1386 if (x.u.index() != y.u.index()) { 1387 return true; // one is data object, one is procedure 1388 } 1389 return common::visit( 1390 common::visitors{ 1391 [&](const TypeAndShape &z) { 1392 return Distinguishable(z, std::get<TypeAndShape>(y.u)); 1393 }, 1394 [&](const CopyableIndirection<Procedure> &z) { 1395 return Distinguishable(z.value(), 1396 std::get<CopyableIndirection<Procedure>>(y.u).value()); 1397 }, 1398 }, 1399 x.u); 1400 } 1401 1402 bool DistinguishUtils::Distinguishable( 1403 const TypeAndShape &x, const TypeAndShape &y) const { 1404 return !IsTkrCompatible(x, y) && !IsTkrCompatible(y, x); 1405 } 1406 1407 // Compatibility based on type, kind, and rank 1408 bool DistinguishUtils::IsTkrCompatible( 1409 const DummyArgument &x, const DummyArgument &y) const { 1410 const auto *obj1{std::get_if<DummyDataObject>(&x.u)}; 1411 const auto *obj2{std::get_if<DummyDataObject>(&y.u)}; 1412 return obj1 && obj2 && IsTkrCompatible(obj1->type, obj2->type); 1413 } 1414 bool DistinguishUtils::IsTkrCompatible( 1415 const TypeAndShape &x, const TypeAndShape &y) const { 1416 return x.type().IsTkCompatibleWith(y.type()) && 1417 (x.attrs().test(TypeAndShape::Attr::AssumedRank) || 1418 y.attrs().test(TypeAndShape::Attr::AssumedRank) || 1419 x.Rank() == y.Rank()); 1420 } 1421 1422 // Return the argument at the given index, ignoring the passed arg 1423 const DummyArgument *DistinguishUtils::GetAtEffectivePosition( 1424 const DummyArguments &args, int index) const { 1425 for (const DummyArgument &arg : args) { 1426 if (!arg.pass) { 1427 if (index == 0) { 1428 return &arg; 1429 } 1430 --index; 1431 } 1432 } 1433 return nullptr; 1434 } 1435 1436 // Return the passed-object dummy argument of this procedure, if any 1437 const DummyArgument *DistinguishUtils::GetPassArg(const Procedure &proc) const { 1438 for (const auto &arg : proc.dummyArguments) { 1439 if (arg.pass) { 1440 return &arg; 1441 } 1442 } 1443 return nullptr; 1444 } 1445 1446 bool Distinguishable(const common::LanguageFeatureControl &features, 1447 const Procedure &x, const Procedure &y) { 1448 return DistinguishUtils{features}.Distinguishable(x, y); 1449 } 1450 1451 bool DistinguishableOpOrAssign(const common::LanguageFeatureControl &features, 1452 const Procedure &x, const Procedure &y) { 1453 return DistinguishUtils{features}.DistinguishableOpOrAssign(x, y); 1454 } 1455 1456 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyArgument) 1457 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyProcedure) 1458 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(FunctionResult) 1459 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(Procedure) 1460 } // namespace Fortran::evaluate::characteristics 1461 1462 template class Fortran::common::Indirection< 1463 Fortran::evaluate::characteristics::Procedure, true>; 1464