1 //===-- lib/Evaluate/characteristics.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/characteristics.h" 10 #include "flang/Common/indirection.h" 11 #include "flang/Evaluate/check-expression.h" 12 #include "flang/Evaluate/fold.h" 13 #include "flang/Evaluate/intrinsics.h" 14 #include "flang/Evaluate/tools.h" 15 #include "flang/Evaluate/type.h" 16 #include "flang/Parser/message.h" 17 #include "flang/Semantics/scope.h" 18 #include "flang/Semantics/symbol.h" 19 #include "flang/Semantics/tools.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <initializer_list> 22 23 using namespace Fortran::parser::literals; 24 25 namespace Fortran::evaluate::characteristics { 26 27 // Copy attributes from a symbol to dst based on the mapping in pairs. 28 template <typename A, typename B> 29 static void CopyAttrs(const semantics::Symbol &src, A &dst, 30 const std::initializer_list<std::pair<semantics::Attr, B>> &pairs) { 31 for (const auto &pair : pairs) { 32 if (src.attrs().test(pair.first)) { 33 dst.attrs.set(pair.second); 34 } 35 } 36 } 37 38 // Shapes of function results and dummy arguments have to have 39 // the same rank, the same deferred dimensions, and the same 40 // values for explicit dimensions when constant. 41 bool ShapesAreCompatible(const Shape &x, const Shape &y) { 42 if (x.size() != y.size()) { 43 return false; 44 } 45 auto yIter{y.begin()}; 46 for (const auto &xDim : x) { 47 const auto &yDim{*yIter++}; 48 if (xDim) { 49 if (!yDim || ToInt64(*xDim) != ToInt64(*yDim)) { 50 return false; 51 } 52 } else if (yDim) { 53 return false; 54 } 55 } 56 return true; 57 } 58 59 bool TypeAndShape::operator==(const TypeAndShape &that) const { 60 return type_ == that.type_ && ShapesAreCompatible(shape_, that.shape_) && 61 attrs_ == that.attrs_ && corank_ == that.corank_; 62 } 63 64 TypeAndShape &TypeAndShape::Rewrite(FoldingContext &context) { 65 LEN_ = Fold(context, std::move(LEN_)); 66 shape_ = Fold(context, std::move(shape_)); 67 return *this; 68 } 69 70 std::optional<TypeAndShape> TypeAndShape::Characterize( 71 const semantics::Symbol &symbol, FoldingContext &context) { 72 const auto &ultimate{symbol.GetUltimate()}; 73 return common::visit( 74 common::visitors{ 75 [&](const semantics::ProcEntityDetails &proc) { 76 const semantics::ProcInterface &interface { proc.interface() }; 77 if (interface.type()) { 78 return Characterize(*interface.type(), context); 79 } else if (interface.symbol()) { 80 return Characterize(*interface.symbol(), context); 81 } else { 82 return std::optional<TypeAndShape>{}; 83 } 84 }, 85 [&](const semantics::AssocEntityDetails &assoc) { 86 return Characterize(assoc, context); 87 }, 88 [&](const semantics::ProcBindingDetails &binding) { 89 return Characterize(binding.symbol(), context); 90 }, 91 [&](const auto &x) -> std::optional<TypeAndShape> { 92 using Ty = std::decay_t<decltype(x)>; 93 if constexpr (std::is_same_v<Ty, semantics::EntityDetails> || 94 std::is_same_v<Ty, semantics::ObjectEntityDetails> || 95 std::is_same_v<Ty, semantics::TypeParamDetails>) { 96 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 97 if (auto dyType{DynamicType::From(*type)}) { 98 TypeAndShape result{ 99 std::move(*dyType), GetShape(context, ultimate)}; 100 result.AcquireAttrs(ultimate); 101 result.AcquireLEN(ultimate); 102 return std::move(result.Rewrite(context)); 103 } 104 } 105 } 106 return std::nullopt; 107 }, 108 }, 109 // GetUltimate() used here, not ResolveAssociations(), because 110 // we need the type/rank of an associate entity from TYPE IS, 111 // CLASS IS, or RANK statement. 112 ultimate.details()); 113 } 114 115 std::optional<TypeAndShape> TypeAndShape::Characterize( 116 const semantics::AssocEntityDetails &assoc, FoldingContext &context) { 117 std::optional<TypeAndShape> result; 118 if (auto type{DynamicType::From(assoc.type())}) { 119 if (auto rank{assoc.rank()}) { 120 if (*rank >= 0 && *rank <= common::maxRank) { 121 result = TypeAndShape{std::move(*type), Shape(*rank)}; 122 } 123 } else if (auto shape{GetShape(context, assoc.expr())}) { 124 result = TypeAndShape{std::move(*type), std::move(*shape)}; 125 } 126 if (result && type->category() == TypeCategory::Character) { 127 if (const auto *chExpr{UnwrapExpr<Expr<SomeCharacter>>(assoc.expr())}) { 128 if (auto len{chExpr->LEN()}) { 129 result->set_LEN(std::move(*len)); 130 } 131 } 132 } 133 } 134 return Fold(context, std::move(result)); 135 } 136 137 std::optional<TypeAndShape> TypeAndShape::Characterize( 138 const semantics::DeclTypeSpec &spec, FoldingContext &context) { 139 if (auto type{DynamicType::From(spec)}) { 140 return Fold(context, TypeAndShape{std::move(*type)}); 141 } else { 142 return std::nullopt; 143 } 144 } 145 146 std::optional<TypeAndShape> TypeAndShape::Characterize( 147 const ActualArgument &arg, FoldingContext &context) { 148 return Characterize(arg.UnwrapExpr(), context); 149 } 150 151 bool TypeAndShape::IsCompatibleWith(parser::ContextualMessages &messages, 152 const TypeAndShape &that, const char *thisIs, const char *thatIs, 153 bool omitShapeConformanceCheck, 154 enum CheckConformanceFlags::Flags flags) const { 155 if (!type_.IsTkCompatibleWith(that.type_)) { 156 messages.Say( 157 "%1$s type '%2$s' is not compatible with %3$s type '%4$s'"_err_en_US, 158 thatIs, that.AsFortran(), thisIs, AsFortran()); 159 return false; 160 } 161 return omitShapeConformanceCheck || 162 CheckConformance(messages, shape_, that.shape_, flags, thisIs, thatIs) 163 .value_or(true /*fail only when nonconformance is known now*/); 164 } 165 166 std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureElementSizeInBytes( 167 FoldingContext &foldingContext, bool align) const { 168 if (LEN_) { 169 CHECK(type_.category() == TypeCategory::Character); 170 return Fold(foldingContext, 171 Expr<SubscriptInteger>{ 172 foldingContext.targetCharacteristics().GetByteSize( 173 type_.category(), type_.kind())} * 174 Expr<SubscriptInteger>{*LEN_}); 175 } 176 if (auto elementBytes{type_.MeasureSizeInBytes(foldingContext, align)}) { 177 return Fold(foldingContext, std::move(*elementBytes)); 178 } 179 return std::nullopt; 180 } 181 182 std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureSizeInBytes( 183 FoldingContext &foldingContext) const { 184 if (auto elements{GetSize(Shape{shape_})}) { 185 // Sizes of arrays (even with single elements) are multiples of 186 // their alignments. 187 if (auto elementBytes{ 188 MeasureElementSizeInBytes(foldingContext, GetRank(shape_) > 0)}) { 189 return Fold( 190 foldingContext, std::move(*elements) * std::move(*elementBytes)); 191 } 192 } 193 return std::nullopt; 194 } 195 196 void TypeAndShape::AcquireAttrs(const semantics::Symbol &symbol) { 197 if (IsAssumedShape(symbol)) { 198 attrs_.set(Attr::AssumedShape); 199 } 200 if (IsDeferredShape(symbol)) { 201 attrs_.set(Attr::DeferredShape); 202 } 203 if (const auto *object{ 204 symbol.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()}) { 205 corank_ = object->coshape().Rank(); 206 if (object->IsAssumedRank()) { 207 attrs_.set(Attr::AssumedRank); 208 } 209 if (object->IsAssumedSize()) { 210 attrs_.set(Attr::AssumedSize); 211 } 212 if (object->IsCoarray()) { 213 attrs_.set(Attr::Coarray); 214 } 215 } 216 } 217 218 void TypeAndShape::AcquireLEN() { 219 if (auto len{type_.GetCharLength()}) { 220 LEN_ = std::move(len); 221 } 222 } 223 224 void TypeAndShape::AcquireLEN(const semantics::Symbol &symbol) { 225 if (type_.category() == TypeCategory::Character) { 226 if (auto len{DataRef{symbol}.LEN()}) { 227 LEN_ = std::move(*len); 228 } 229 } 230 } 231 232 std::string TypeAndShape::AsFortran() const { 233 return type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""); 234 } 235 236 llvm::raw_ostream &TypeAndShape::Dump(llvm::raw_ostream &o) const { 237 o << type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""); 238 attrs_.Dump(o, EnumToString); 239 if (!shape_.empty()) { 240 o << " dimension"; 241 char sep{'('}; 242 for (const auto &expr : shape_) { 243 o << sep; 244 sep = ','; 245 if (expr) { 246 expr->AsFortran(o); 247 } else { 248 o << ':'; 249 } 250 } 251 o << ')'; 252 } 253 return o; 254 } 255 256 bool DummyDataObject::operator==(const DummyDataObject &that) const { 257 return type == that.type && attrs == that.attrs && intent == that.intent && 258 coshape == that.coshape; 259 } 260 261 static bool AreCompatibleDummyDataObjectShapes(const Shape &x, const Shape &y) { 262 // TODO: Validate more than just compatible ranks 263 return GetRank(x) == GetRank(y); 264 } 265 266 bool DummyDataObject::IsCompatibleWith( 267 const DummyDataObject &actual, std::string *whyNot) const { 268 if (!AreCompatibleDummyDataObjectShapes(type.shape(), actual.type.shape())) { 269 if (whyNot) { 270 *whyNot = "incompatible dummy data object shapes"; 271 } 272 return false; 273 } 274 if (!type.type().IsTkCompatibleWith(actual.type.type())) { 275 if (whyNot) { 276 *whyNot = "incompatible dummy data object types: "s + 277 type.type().AsFortran() + " vs " + actual.type.type().AsFortran(); 278 } 279 return false; 280 } 281 if (attrs != actual.attrs) { 282 if (whyNot) { 283 *whyNot = "incompatible dummy data object attributes"; 284 } 285 return false; 286 } 287 if (intent != actual.intent) { 288 if (whyNot) { 289 *whyNot = "incompatible dummy data object intents"; 290 } 291 return false; 292 } 293 if (coshape != actual.coshape) { 294 if (whyNot) { 295 *whyNot = "incompatible dummy data object coshapes"; 296 } 297 return false; 298 } 299 return true; 300 } 301 302 static common::Intent GetIntent(const semantics::Attrs &attrs) { 303 if (attrs.test(semantics::Attr::INTENT_IN)) { 304 return common::Intent::In; 305 } else if (attrs.test(semantics::Attr::INTENT_OUT)) { 306 return common::Intent::Out; 307 } else if (attrs.test(semantics::Attr::INTENT_INOUT)) { 308 return common::Intent::InOut; 309 } else { 310 return common::Intent::Default; 311 } 312 } 313 314 std::optional<DummyDataObject> DummyDataObject::Characterize( 315 const semantics::Symbol &symbol, FoldingContext &context) { 316 if (symbol.has<semantics::ObjectEntityDetails>() || 317 symbol.has<semantics::EntityDetails>()) { 318 if (auto type{TypeAndShape::Characterize(symbol, context)}) { 319 std::optional<DummyDataObject> result{std::move(*type)}; 320 using semantics::Attr; 321 CopyAttrs<DummyDataObject, DummyDataObject::Attr>(symbol, *result, 322 { 323 {Attr::OPTIONAL, DummyDataObject::Attr::Optional}, 324 {Attr::ALLOCATABLE, DummyDataObject::Attr::Allocatable}, 325 {Attr::ASYNCHRONOUS, DummyDataObject::Attr::Asynchronous}, 326 {Attr::CONTIGUOUS, DummyDataObject::Attr::Contiguous}, 327 {Attr::VALUE, DummyDataObject::Attr::Value}, 328 {Attr::VOLATILE, DummyDataObject::Attr::Volatile}, 329 {Attr::POINTER, DummyDataObject::Attr::Pointer}, 330 {Attr::TARGET, DummyDataObject::Attr::Target}, 331 }); 332 result->intent = GetIntent(symbol.attrs()); 333 return result; 334 } 335 } 336 return std::nullopt; 337 } 338 339 bool DummyDataObject::CanBePassedViaImplicitInterface() const { 340 if ((attrs & 341 Attrs{Attr::Allocatable, Attr::Asynchronous, Attr::Optional, 342 Attr::Pointer, Attr::Target, Attr::Value, Attr::Volatile}) 343 .any()) { 344 return false; // 15.4.2.2(3)(a) 345 } else if ((type.attrs() & 346 TypeAndShape::Attrs{TypeAndShape::Attr::AssumedShape, 347 TypeAndShape::Attr::AssumedRank, 348 TypeAndShape::Attr::Coarray}) 349 .any()) { 350 return false; // 15.4.2.2(3)(b-d) 351 } else if (type.type().IsPolymorphic()) { 352 return false; // 15.4.2.2(3)(f) 353 } else if (const auto *derived{GetDerivedTypeSpec(type.type())}) { 354 return derived->parameters().empty(); // 15.4.2.2(3)(e) 355 } else { 356 return true; 357 } 358 } 359 360 llvm::raw_ostream &DummyDataObject::Dump(llvm::raw_ostream &o) const { 361 attrs.Dump(o, EnumToString); 362 if (intent != common::Intent::Default) { 363 o << "INTENT(" << common::EnumToString(intent) << ')'; 364 } 365 type.Dump(o); 366 if (!coshape.empty()) { 367 char sep{'['}; 368 for (const auto &expr : coshape) { 369 expr.AsFortran(o << sep); 370 sep = ','; 371 } 372 } 373 return o; 374 } 375 376 DummyProcedure::DummyProcedure(Procedure &&p) 377 : procedure{new Procedure{std::move(p)}} {} 378 379 bool DummyProcedure::operator==(const DummyProcedure &that) const { 380 return attrs == that.attrs && intent == that.intent && 381 procedure.value() == that.procedure.value(); 382 } 383 384 bool DummyProcedure::IsCompatibleWith( 385 const DummyProcedure &actual, std::string *whyNot) const { 386 if (attrs != actual.attrs) { 387 if (whyNot) { 388 *whyNot = "incompatible dummy procedure attributes"; 389 } 390 return false; 391 } 392 if (intent != actual.intent) { 393 if (whyNot) { 394 *whyNot = "incompatible dummy procedure intents"; 395 } 396 return false; 397 } 398 if (!procedure.value().IsCompatibleWith(actual.procedure.value(), whyNot)) { 399 if (whyNot) { 400 *whyNot = "incompatible dummy procedure interfaces: "s + *whyNot; 401 } 402 return false; 403 } 404 return true; 405 } 406 407 static std::string GetSeenProcs( 408 const semantics::UnorderedSymbolSet &seenProcs) { 409 // Sort the symbols so that they appear in the same order on all platforms 410 auto ordered{semantics::OrderBySourcePosition(seenProcs)}; 411 std::string result; 412 llvm::interleave( 413 ordered, 414 [&](const SymbolRef p) { result += '\'' + p->name().ToString() + '\''; }, 415 [&]() { result += ", "; }); 416 return result; 417 } 418 419 // These functions with arguments of type UnorderedSymbolSet are used with 420 // mutually recursive calls when characterizing a Procedure, a DummyArgument, 421 // or a DummyProcedure to detect circularly defined procedures as required by 422 // 15.4.3.6, paragraph 2. 423 static std::optional<DummyArgument> CharacterizeDummyArgument( 424 const semantics::Symbol &symbol, FoldingContext &context, 425 semantics::UnorderedSymbolSet seenProcs); 426 static std::optional<FunctionResult> CharacterizeFunctionResult( 427 const semantics::Symbol &symbol, FoldingContext &context, 428 semantics::UnorderedSymbolSet seenProcs); 429 430 static std::optional<Procedure> CharacterizeProcedure( 431 const semantics::Symbol &original, FoldingContext &context, 432 semantics::UnorderedSymbolSet seenProcs) { 433 Procedure result; 434 const auto &symbol{ResolveAssociations(original)}; 435 if (seenProcs.find(symbol) != seenProcs.end()) { 436 std::string procsList{GetSeenProcs(seenProcs)}; 437 context.messages().Say(symbol.name(), 438 "Procedure '%s' is recursively defined. Procedures in the cycle:" 439 " %s"_err_en_US, 440 symbol.name(), procsList); 441 return std::nullopt; 442 } 443 seenProcs.insert(symbol); 444 if (IsElementalProcedure(symbol)) { 445 result.attrs.set(Procedure::Attr::Elemental); 446 } 447 CopyAttrs<Procedure, Procedure::Attr>(symbol, result, 448 { 449 {semantics::Attr::BIND_C, Procedure::Attr::BindC}, 450 }); 451 if (IsPureProcedure(symbol) || // works for ENTRY too 452 (!symbol.attrs().test(semantics::Attr::IMPURE) && 453 result.attrs.test(Procedure::Attr::Elemental))) { 454 result.attrs.set(Procedure::Attr::Pure); 455 } 456 return common::visit( 457 common::visitors{ 458 [&](const semantics::SubprogramDetails &subp) 459 -> std::optional<Procedure> { 460 if (subp.isFunction()) { 461 if (auto fr{CharacterizeFunctionResult( 462 subp.result(), context, seenProcs)}) { 463 result.functionResult = std::move(fr); 464 } else { 465 return std::nullopt; 466 } 467 } else { 468 result.attrs.set(Procedure::Attr::Subroutine); 469 } 470 for (const semantics::Symbol *arg : subp.dummyArgs()) { 471 if (!arg) { 472 if (subp.isFunction()) { 473 return std::nullopt; 474 } else { 475 result.dummyArguments.emplace_back(AlternateReturn{}); 476 } 477 } else if (auto argCharacteristics{CharacterizeDummyArgument( 478 *arg, context, seenProcs)}) { 479 result.dummyArguments.emplace_back( 480 std::move(argCharacteristics.value())); 481 } else { 482 return std::nullopt; 483 } 484 } 485 return result; 486 }, 487 [&](const semantics::ProcEntityDetails &proc) 488 -> std::optional<Procedure> { 489 if (symbol.attrs().test(semantics::Attr::INTRINSIC)) { 490 // Fails when the intrinsic is not a specific intrinsic function 491 // from F'2018 table 16.2. In order to handle forward references, 492 // attempts to use impermissible intrinsic procedures as the 493 // interfaces of procedure pointers are caught and flagged in 494 // declaration checking in Semantics. 495 auto intrinsic{context.intrinsics().IsSpecificIntrinsicFunction( 496 symbol.name().ToString())}; 497 if (intrinsic && intrinsic->isRestrictedSpecific) { 498 intrinsic.reset(); // Exclude intrinsics from table 16.3. 499 } 500 return intrinsic; 501 } 502 const semantics::ProcInterface &interface { proc.interface() }; 503 if (const semantics::Symbol * interfaceSymbol{interface.symbol()}) { 504 auto interface { 505 CharacterizeProcedure(*interfaceSymbol, context, seenProcs) 506 }; 507 if (interface && IsPointer(symbol)) { 508 interface->attrs.reset(Procedure::Attr::Elemental); 509 } 510 return interface; 511 } else { 512 result.attrs.set(Procedure::Attr::ImplicitInterface); 513 const semantics::DeclTypeSpec *type{interface.type()}; 514 if (symbol.test(semantics::Symbol::Flag::Subroutine)) { 515 // ignore any implicit typing 516 result.attrs.set(Procedure::Attr::Subroutine); 517 } else if (type) { 518 if (auto resultType{DynamicType::From(*type)}) { 519 result.functionResult = FunctionResult{*resultType}; 520 } else { 521 return std::nullopt; 522 } 523 } else if (symbol.test(semantics::Symbol::Flag::Function)) { 524 return std::nullopt; 525 } 526 // The PASS name, if any, is not a characteristic. 527 return result; 528 } 529 }, 530 [&](const semantics::ProcBindingDetails &binding) { 531 if (auto result{CharacterizeProcedure( 532 binding.symbol(), context, seenProcs)}) { 533 if (!symbol.attrs().test(semantics::Attr::NOPASS)) { 534 auto passName{binding.passName()}; 535 for (auto &dummy : result->dummyArguments) { 536 if (!passName || dummy.name.c_str() == *passName) { 537 dummy.pass = true; 538 return result; 539 } 540 } 541 DIE("PASS argument missing"); 542 } 543 return result; 544 } else { 545 return std::optional<Procedure>{}; 546 } 547 }, 548 [&](const semantics::UseDetails &use) { 549 return CharacterizeProcedure(use.symbol(), context, seenProcs); 550 }, 551 [](const semantics::UseErrorDetails &) { 552 // Ambiguous use-association will be handled later during symbol 553 // checks, ignore UseErrorDetails here without actual symbol usage. 554 return std::optional<Procedure>{}; 555 }, 556 [&](const semantics::HostAssocDetails &assoc) { 557 return CharacterizeProcedure(assoc.symbol(), context, seenProcs); 558 }, 559 [&](const semantics::EntityDetails &) { 560 context.messages().Say( 561 "Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US, 562 symbol.name()); 563 return std::optional<Procedure>{}; 564 }, 565 [&](const semantics::SubprogramNameDetails &) { 566 context.messages().Say( 567 "Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US, 568 symbol.name()); 569 return std::optional<Procedure>{}; 570 }, 571 [&](const auto &) { 572 context.messages().Say( 573 "'%s' is not a procedure"_err_en_US, symbol.name()); 574 return std::optional<Procedure>{}; 575 }, 576 }, 577 symbol.details()); 578 } 579 580 static std::optional<DummyProcedure> CharacterizeDummyProcedure( 581 const semantics::Symbol &symbol, FoldingContext &context, 582 semantics::UnorderedSymbolSet seenProcs) { 583 if (auto procedure{CharacterizeProcedure(symbol, context, seenProcs)}) { 584 // Dummy procedures may not be elemental. Elemental dummy procedure 585 // interfaces are errors when the interface is not intrinsic, and that 586 // error is caught elsewhere. Elemental intrinsic interfaces are 587 // made non-elemental. 588 procedure->attrs.reset(Procedure::Attr::Elemental); 589 DummyProcedure result{std::move(procedure.value())}; 590 CopyAttrs<DummyProcedure, DummyProcedure::Attr>(symbol, result, 591 { 592 {semantics::Attr::OPTIONAL, DummyProcedure::Attr::Optional}, 593 {semantics::Attr::POINTER, DummyProcedure::Attr::Pointer}, 594 }); 595 result.intent = GetIntent(symbol.attrs()); 596 return result; 597 } else { 598 return std::nullopt; 599 } 600 } 601 602 llvm::raw_ostream &DummyProcedure::Dump(llvm::raw_ostream &o) const { 603 attrs.Dump(o, EnumToString); 604 if (intent != common::Intent::Default) { 605 o << "INTENT(" << common::EnumToString(intent) << ')'; 606 } 607 procedure.value().Dump(o); 608 return o; 609 } 610 611 llvm::raw_ostream &AlternateReturn::Dump(llvm::raw_ostream &o) const { 612 return o << '*'; 613 } 614 615 DummyArgument::~DummyArgument() {} 616 617 bool DummyArgument::operator==(const DummyArgument &that) const { 618 return u == that.u; // name and passed-object usage are not characteristics 619 } 620 621 bool DummyArgument::IsCompatibleWith( 622 const DummyArgument &actual, std::string *whyNot) const { 623 if (const auto *ifaceData{std::get_if<DummyDataObject>(&u)}) { 624 if (const auto *actualData{std::get_if<DummyDataObject>(&actual.u)}) { 625 return ifaceData->IsCompatibleWith(*actualData, whyNot); 626 } 627 if (whyNot) { 628 *whyNot = "one dummy argument is an object, the other is not"; 629 } 630 } else if (const auto *ifaceProc{std::get_if<DummyProcedure>(&u)}) { 631 if (const auto *actualProc{std::get_if<DummyProcedure>(&actual.u)}) { 632 return ifaceProc->IsCompatibleWith(*actualProc, whyNot); 633 } 634 if (whyNot) { 635 *whyNot = "one dummy argument is a procedure, the other is not"; 636 } 637 } else { 638 CHECK(std::holds_alternative<AlternateReturn>(u)); 639 if (std::holds_alternative<AlternateReturn>(actual.u)) { 640 return true; 641 } 642 if (whyNot) { 643 *whyNot = "one dummy argument is an alternate return, the other is not"; 644 } 645 } 646 return false; 647 } 648 649 static std::optional<DummyArgument> CharacterizeDummyArgument( 650 const semantics::Symbol &symbol, FoldingContext &context, 651 semantics::UnorderedSymbolSet seenProcs) { 652 auto name{symbol.name().ToString()}; 653 if (symbol.has<semantics::ObjectEntityDetails>() || 654 symbol.has<semantics::EntityDetails>()) { 655 if (auto obj{DummyDataObject::Characterize(symbol, context)}) { 656 return DummyArgument{std::move(name), std::move(obj.value())}; 657 } 658 } else if (auto proc{ 659 CharacterizeDummyProcedure(symbol, context, seenProcs)}) { 660 return DummyArgument{std::move(name), std::move(proc.value())}; 661 } 662 return std::nullopt; 663 } 664 665 std::optional<DummyArgument> DummyArgument::FromActual( 666 std::string &&name, const Expr<SomeType> &expr, FoldingContext &context) { 667 return common::visit( 668 common::visitors{ 669 [&](const BOZLiteralConstant &) { 670 return std::make_optional<DummyArgument>(std::move(name), 671 DummyDataObject{ 672 TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}); 673 }, 674 [&](const NullPointer &) { 675 return std::make_optional<DummyArgument>(std::move(name), 676 DummyDataObject{ 677 TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}); 678 }, 679 [&](const ProcedureDesignator &designator) { 680 if (auto proc{Procedure::Characterize(designator, context)}) { 681 return std::make_optional<DummyArgument>( 682 std::move(name), DummyProcedure{std::move(*proc)}); 683 } else { 684 return std::optional<DummyArgument>{}; 685 } 686 }, 687 [&](const ProcedureRef &call) { 688 if (auto proc{Procedure::Characterize(call, context)}) { 689 return std::make_optional<DummyArgument>( 690 std::move(name), DummyProcedure{std::move(*proc)}); 691 } else { 692 return std::optional<DummyArgument>{}; 693 } 694 }, 695 [&](const auto &) { 696 if (auto type{TypeAndShape::Characterize(expr, context)}) { 697 return std::make_optional<DummyArgument>( 698 std::move(name), DummyDataObject{std::move(*type)}); 699 } else { 700 return std::optional<DummyArgument>{}; 701 } 702 }, 703 }, 704 expr.u); 705 } 706 707 bool DummyArgument::IsOptional() const { 708 return common::visit( 709 common::visitors{ 710 [](const DummyDataObject &data) { 711 return data.attrs.test(DummyDataObject::Attr::Optional); 712 }, 713 [](const DummyProcedure &proc) { 714 return proc.attrs.test(DummyProcedure::Attr::Optional); 715 }, 716 [](const AlternateReturn &) { return false; }, 717 }, 718 u); 719 } 720 721 void DummyArgument::SetOptional(bool value) { 722 common::visit(common::visitors{ 723 [value](DummyDataObject &data) { 724 data.attrs.set(DummyDataObject::Attr::Optional, value); 725 }, 726 [value](DummyProcedure &proc) { 727 proc.attrs.set(DummyProcedure::Attr::Optional, value); 728 }, 729 [](AlternateReturn &) { DIE("cannot set optional"); }, 730 }, 731 u); 732 } 733 734 void DummyArgument::SetIntent(common::Intent intent) { 735 common::visit(common::visitors{ 736 [intent](DummyDataObject &data) { data.intent = intent; }, 737 [intent](DummyProcedure &proc) { proc.intent = intent; }, 738 [](AlternateReturn &) { DIE("cannot set intent"); }, 739 }, 740 u); 741 } 742 743 common::Intent DummyArgument::GetIntent() const { 744 return common::visit( 745 common::visitors{ 746 [](const DummyDataObject &data) { return data.intent; }, 747 [](const DummyProcedure &proc) { return proc.intent; }, 748 [](const AlternateReturn &) -> common::Intent { 749 DIE("Alternate returns have no intent"); 750 }, 751 }, 752 u); 753 } 754 755 bool DummyArgument::CanBePassedViaImplicitInterface() const { 756 if (const auto *object{std::get_if<DummyDataObject>(&u)}) { 757 return object->CanBePassedViaImplicitInterface(); 758 } else { 759 return true; 760 } 761 } 762 763 bool DummyArgument::IsTypelessIntrinsicDummy() const { 764 const auto *argObj{std::get_if<characteristics::DummyDataObject>(&u)}; 765 return argObj && argObj->type.type().IsTypelessIntrinsicArgument(); 766 } 767 768 llvm::raw_ostream &DummyArgument::Dump(llvm::raw_ostream &o) const { 769 if (!name.empty()) { 770 o << name << '='; 771 } 772 if (pass) { 773 o << " PASS"; 774 } 775 common::visit([&](const auto &x) { x.Dump(o); }, u); 776 return o; 777 } 778 779 FunctionResult::FunctionResult(DynamicType t) : u{TypeAndShape{t}} {} 780 FunctionResult::FunctionResult(TypeAndShape &&t) : u{std::move(t)} {} 781 FunctionResult::FunctionResult(Procedure &&p) : u{std::move(p)} {} 782 FunctionResult::~FunctionResult() {} 783 784 bool FunctionResult::operator==(const FunctionResult &that) const { 785 return attrs == that.attrs && u == that.u; 786 } 787 788 static std::optional<FunctionResult> CharacterizeFunctionResult( 789 const semantics::Symbol &symbol, FoldingContext &context, 790 semantics::UnorderedSymbolSet seenProcs) { 791 if (symbol.has<semantics::ObjectEntityDetails>()) { 792 if (auto type{TypeAndShape::Characterize(symbol, context)}) { 793 FunctionResult result{std::move(*type)}; 794 CopyAttrs<FunctionResult, FunctionResult::Attr>(symbol, result, 795 { 796 {semantics::Attr::ALLOCATABLE, FunctionResult::Attr::Allocatable}, 797 {semantics::Attr::CONTIGUOUS, FunctionResult::Attr::Contiguous}, 798 {semantics::Attr::POINTER, FunctionResult::Attr::Pointer}, 799 }); 800 return result; 801 } 802 } else if (auto maybeProc{ 803 CharacterizeProcedure(symbol, context, seenProcs)}) { 804 FunctionResult result{std::move(*maybeProc)}; 805 result.attrs.set(FunctionResult::Attr::Pointer); 806 return result; 807 } 808 return std::nullopt; 809 } 810 811 std::optional<FunctionResult> FunctionResult::Characterize( 812 const Symbol &symbol, FoldingContext &context) { 813 semantics::UnorderedSymbolSet seenProcs; 814 return CharacterizeFunctionResult(symbol, context, seenProcs); 815 } 816 817 bool FunctionResult::IsAssumedLengthCharacter() const { 818 if (const auto *ts{std::get_if<TypeAndShape>(&u)}) { 819 return ts->type().IsAssumedLengthCharacter(); 820 } else { 821 return false; 822 } 823 } 824 825 bool FunctionResult::CanBeReturnedViaImplicitInterface() const { 826 if (attrs.test(Attr::Pointer) || attrs.test(Attr::Allocatable)) { 827 return false; // 15.4.2.2(4)(b) 828 } else if (const auto *typeAndShape{GetTypeAndShape()}) { 829 if (typeAndShape->Rank() > 0) { 830 return false; // 15.4.2.2(4)(a) 831 } else { 832 const DynamicType &type{typeAndShape->type()}; 833 switch (type.category()) { 834 case TypeCategory::Character: 835 if (type.knownLength()) { 836 return true; 837 } else if (const auto *param{type.charLengthParamValue()}) { 838 if (const auto &expr{param->GetExplicit()}) { 839 return IsConstantExpr(*expr); // 15.4.2.2(4)(c) 840 } else if (param->isAssumed()) { 841 return true; 842 } 843 } 844 return false; 845 case TypeCategory::Derived: 846 if (!type.IsPolymorphic()) { 847 const auto &spec{type.GetDerivedTypeSpec()}; 848 for (const auto &pair : spec.parameters()) { 849 if (const auto &expr{pair.second.GetExplicit()}) { 850 if (!IsConstantExpr(*expr)) { 851 return false; // 15.4.2.2(4)(c) 852 } 853 } 854 } 855 return true; 856 } 857 return false; 858 default: 859 return true; 860 } 861 } 862 } else { 863 return false; // 15.4.2.2(4)(b) - procedure pointer 864 } 865 } 866 867 bool FunctionResult::IsCompatibleWith( 868 const FunctionResult &actual, std::string *whyNot) const { 869 Attrs actualAttrs{actual.attrs}; 870 if (!attrs.test(Attr::Contiguous)) { 871 actualAttrs.reset(Attr::Contiguous); 872 } 873 if (attrs != actualAttrs) { 874 if (whyNot) { 875 *whyNot = "function results have incompatible attributes"; 876 } 877 } else if (const auto *ifaceTypeShape{std::get_if<TypeAndShape>(&u)}) { 878 if (const auto *actualTypeShape{std::get_if<TypeAndShape>(&actual.u)}) { 879 if (ifaceTypeShape->Rank() != actualTypeShape->Rank()) { 880 if (whyNot) { 881 *whyNot = "function results have distinct ranks"; 882 } 883 } else if (!attrs.test(Attr::Allocatable) && !attrs.test(Attr::Pointer) && 884 ifaceTypeShape->shape() != actualTypeShape->shape()) { 885 if (whyNot) { 886 *whyNot = "function results have distinct extents"; 887 } 888 } else if (!ifaceTypeShape->type().IsTkCompatibleWith( 889 actualTypeShape->type())) { 890 if (whyNot) { 891 *whyNot = "function results have incompatible types: "s + 892 ifaceTypeShape->type().AsFortran() + " vs "s + 893 actualTypeShape->type().AsFortran(); 894 } 895 } else { 896 return true; 897 } 898 } else { 899 if (whyNot) { 900 *whyNot = "function result type and shape are not known"; 901 } 902 } 903 } else { 904 const auto *ifaceProc{std::get_if<CopyableIndirection<Procedure>>(&u)}; 905 CHECK(ifaceProc != nullptr); 906 if (const auto *actualProc{ 907 std::get_if<CopyableIndirection<Procedure>>(&actual.u)}) { 908 if (ifaceProc->value().IsCompatibleWith(actualProc->value(), whyNot)) { 909 return true; 910 } 911 if (whyNot) { 912 *whyNot = 913 "function results are incompatible procedure pointers: "s + *whyNot; 914 } 915 } else { 916 if (whyNot) { 917 *whyNot = 918 "one function result is a procedure pointer, the other is not"; 919 } 920 } 921 } 922 return false; 923 } 924 925 llvm::raw_ostream &FunctionResult::Dump(llvm::raw_ostream &o) const { 926 attrs.Dump(o, EnumToString); 927 common::visit(common::visitors{ 928 [&](const TypeAndShape &ts) { ts.Dump(o); }, 929 [&](const CopyableIndirection<Procedure> &p) { 930 p.value().Dump(o << " procedure(") << ')'; 931 }, 932 }, 933 u); 934 return o; 935 } 936 937 Procedure::Procedure(FunctionResult &&fr, DummyArguments &&args, Attrs a) 938 : functionResult{std::move(fr)}, dummyArguments{std::move(args)}, attrs{a} { 939 } 940 Procedure::Procedure(DummyArguments &&args, Attrs a) 941 : dummyArguments{std::move(args)}, attrs{a} {} 942 Procedure::~Procedure() {} 943 944 bool Procedure::operator==(const Procedure &that) const { 945 return attrs == that.attrs && functionResult == that.functionResult && 946 dummyArguments == that.dummyArguments; 947 } 948 949 bool Procedure::IsCompatibleWith(const Procedure &actual, std::string *whyNot, 950 const SpecificIntrinsic *specificIntrinsic) const { 951 // 15.5.2.9(1): if dummy is not pure, actual need not be. 952 // Ditto with elemental. 953 Attrs actualAttrs{actual.attrs}; 954 if (!attrs.test(Attr::Pure)) { 955 actualAttrs.reset(Attr::Pure); 956 } 957 if (!attrs.test(Attr::Elemental) && specificIntrinsic) { 958 actualAttrs.reset(Attr::Elemental); 959 } 960 Attrs differences{attrs ^ actualAttrs}; 961 differences.reset(Attr::Subroutine); // dealt with specifically later 962 if (!differences.empty()) { 963 if (whyNot) { 964 auto sep{": "s}; 965 *whyNot = "incompatible procedure attributes"; 966 differences.IterateOverMembers([&](Attr x) { 967 *whyNot += sep + EnumToString(x); 968 sep = ", "; 969 }); 970 } 971 } else if ((IsFunction() && actual.IsSubroutine()) || 972 (IsSubroutine() && actual.IsFunction())) { 973 if (whyNot) { 974 *whyNot = 975 "incompatible procedures: one is a function, the other a subroutine"; 976 } 977 } else if (functionResult && actual.functionResult && 978 !functionResult->IsCompatibleWith(*actual.functionResult, whyNot)) { 979 } else if (dummyArguments.size() != actual.dummyArguments.size()) { 980 if (whyNot) { 981 *whyNot = "distinct numbers of dummy arguments"; 982 } 983 } else { 984 for (std::size_t j{0}; j < dummyArguments.size(); ++j) { 985 if (!dummyArguments[j].IsCompatibleWith( 986 actual.dummyArguments[j], whyNot)) { 987 if (whyNot) { 988 *whyNot = "incompatible dummy argument #"s + std::to_string(j + 1) + 989 ": "s + *whyNot; 990 } 991 return false; 992 } 993 } 994 return true; 995 } 996 return false; 997 } 998 999 int Procedure::FindPassIndex(std::optional<parser::CharBlock> name) const { 1000 int argCount{static_cast<int>(dummyArguments.size())}; 1001 int index{0}; 1002 if (name) { 1003 while (index < argCount && *name != dummyArguments[index].name.c_str()) { 1004 ++index; 1005 } 1006 } 1007 CHECK(index < argCount); 1008 return index; 1009 } 1010 1011 bool Procedure::CanOverride( 1012 const Procedure &that, std::optional<int> passIndex) const { 1013 // A pure procedure may override an impure one (7.5.7.3(2)) 1014 if ((that.attrs.test(Attr::Pure) && !attrs.test(Attr::Pure)) || 1015 that.attrs.test(Attr::Elemental) != attrs.test(Attr::Elemental) || 1016 functionResult != that.functionResult) { 1017 return false; 1018 } 1019 int argCount{static_cast<int>(dummyArguments.size())}; 1020 if (argCount != static_cast<int>(that.dummyArguments.size())) { 1021 return false; 1022 } 1023 for (int j{0}; j < argCount; ++j) { 1024 if ((!passIndex || j != *passIndex) && 1025 dummyArguments[j] != that.dummyArguments[j]) { 1026 return false; 1027 } 1028 } 1029 return true; 1030 } 1031 1032 std::optional<Procedure> Procedure::Characterize( 1033 const semantics::Symbol &original, FoldingContext &context) { 1034 semantics::UnorderedSymbolSet seenProcs; 1035 return CharacterizeProcedure(original, context, seenProcs); 1036 } 1037 1038 std::optional<Procedure> Procedure::Characterize( 1039 const ProcedureDesignator &proc, FoldingContext &context) { 1040 if (const auto *symbol{proc.GetSymbol()}) { 1041 if (auto result{ 1042 characteristics::Procedure::Characterize(*symbol, context)}) { 1043 return result; 1044 } 1045 } else if (const auto *intrinsic{proc.GetSpecificIntrinsic()}) { 1046 return intrinsic->characteristics.value(); 1047 } 1048 return std::nullopt; 1049 } 1050 1051 std::optional<Procedure> Procedure::Characterize( 1052 const ProcedureRef &ref, FoldingContext &context) { 1053 if (auto callee{Characterize(ref.proc(), context)}) { 1054 if (callee->functionResult) { 1055 if (const Procedure * 1056 proc{callee->functionResult->IsProcedurePointer()}) { 1057 return {*proc}; 1058 } 1059 } 1060 } 1061 return std::nullopt; 1062 } 1063 1064 bool Procedure::CanBeCalledViaImplicitInterface() const { 1065 // TODO: Pass back information on why we return false 1066 if (attrs.test(Attr::Elemental) || attrs.test(Attr::BindC)) { 1067 return false; // 15.4.2.2(5,6) 1068 } else if (IsFunction() && 1069 !functionResult->CanBeReturnedViaImplicitInterface()) { 1070 return false; 1071 } else { 1072 for (const DummyArgument &arg : dummyArguments) { 1073 if (!arg.CanBePassedViaImplicitInterface()) { 1074 return false; 1075 } 1076 } 1077 return true; 1078 } 1079 } 1080 1081 llvm::raw_ostream &Procedure::Dump(llvm::raw_ostream &o) const { 1082 attrs.Dump(o, EnumToString); 1083 if (functionResult) { 1084 functionResult->Dump(o << "TYPE(") << ") FUNCTION"; 1085 } else if (attrs.test(Attr::Subroutine)) { 1086 o << "SUBROUTINE"; 1087 } else { 1088 o << "EXTERNAL"; 1089 } 1090 char sep{'('}; 1091 for (const auto &dummy : dummyArguments) { 1092 dummy.Dump(o << sep); 1093 sep = ','; 1094 } 1095 return o << (sep == '(' ? "()" : ")"); 1096 } 1097 1098 // Utility class to determine if Procedures, etc. are distinguishable 1099 class DistinguishUtils { 1100 public: 1101 explicit DistinguishUtils(const common::LanguageFeatureControl &features) 1102 : features_{features} {} 1103 1104 // Are these procedures distinguishable for a generic name? 1105 bool Distinguishable(const Procedure &, const Procedure &) const; 1106 // Are these procedures distinguishable for a generic operator or assignment? 1107 bool DistinguishableOpOrAssign(const Procedure &, const Procedure &) const; 1108 1109 private: 1110 struct CountDummyProcedures { 1111 CountDummyProcedures(const DummyArguments &args) { 1112 for (const DummyArgument &arg : args) { 1113 if (std::holds_alternative<DummyProcedure>(arg.u)) { 1114 total += 1; 1115 notOptional += !arg.IsOptional(); 1116 } 1117 } 1118 } 1119 int total{0}; 1120 int notOptional{0}; 1121 }; 1122 1123 bool Rule3Distinguishable(const Procedure &, const Procedure &) const; 1124 const DummyArgument *Rule1DistinguishingArg( 1125 const DummyArguments &, const DummyArguments &) const; 1126 int FindFirstToDistinguishByPosition( 1127 const DummyArguments &, const DummyArguments &) const; 1128 int FindLastToDistinguishByName( 1129 const DummyArguments &, const DummyArguments &) const; 1130 int CountCompatibleWith(const DummyArgument &, const DummyArguments &) const; 1131 int CountNotDistinguishableFrom( 1132 const DummyArgument &, const DummyArguments &) const; 1133 bool Distinguishable(const DummyArgument &, const DummyArgument &) const; 1134 bool Distinguishable(const DummyDataObject &, const DummyDataObject &) const; 1135 bool Distinguishable(const DummyProcedure &, const DummyProcedure &) const; 1136 bool Distinguishable(const FunctionResult &, const FunctionResult &) const; 1137 bool Distinguishable(const TypeAndShape &, const TypeAndShape &) const; 1138 bool IsTkrCompatible(const DummyArgument &, const DummyArgument &) const; 1139 bool IsTkrCompatible(const TypeAndShape &, const TypeAndShape &) const; 1140 const DummyArgument *GetAtEffectivePosition( 1141 const DummyArguments &, int) const; 1142 const DummyArgument *GetPassArg(const Procedure &) const; 1143 1144 const common::LanguageFeatureControl &features_; 1145 }; 1146 1147 // Simpler distinguishability rules for operators and assignment 1148 bool DistinguishUtils::DistinguishableOpOrAssign( 1149 const Procedure &proc1, const Procedure &proc2) const { 1150 auto &args1{proc1.dummyArguments}; 1151 auto &args2{proc2.dummyArguments}; 1152 if (args1.size() != args2.size()) { 1153 return true; // C1511: distinguishable based on number of arguments 1154 } 1155 for (std::size_t i{0}; i < args1.size(); ++i) { 1156 if (Distinguishable(args1[i], args2[i])) { 1157 return true; // C1511, C1512: distinguishable based on this arg 1158 } 1159 } 1160 return false; 1161 } 1162 1163 bool DistinguishUtils::Distinguishable( 1164 const Procedure &proc1, const Procedure &proc2) const { 1165 auto &args1{proc1.dummyArguments}; 1166 auto &args2{proc2.dummyArguments}; 1167 auto count1{CountDummyProcedures(args1)}; 1168 auto count2{CountDummyProcedures(args2)}; 1169 if (count1.notOptional > count2.total || count2.notOptional > count1.total) { 1170 return true; // distinguishable based on C1514 rule 2 1171 } 1172 if (Rule3Distinguishable(proc1, proc2)) { 1173 return true; // distinguishable based on C1514 rule 3 1174 } 1175 if (Rule1DistinguishingArg(args1, args2)) { 1176 return true; // distinguishable based on C1514 rule 1 1177 } 1178 int pos1{FindFirstToDistinguishByPosition(args1, args2)}; 1179 int name1{FindLastToDistinguishByName(args1, args2)}; 1180 if (pos1 >= 0 && pos1 <= name1) { 1181 return true; // distinguishable based on C1514 rule 4 1182 } 1183 int pos2{FindFirstToDistinguishByPosition(args2, args1)}; 1184 int name2{FindLastToDistinguishByName(args2, args1)}; 1185 if (pos2 >= 0 && pos2 <= name2) { 1186 return true; // distinguishable based on C1514 rule 4 1187 } 1188 return false; 1189 } 1190 1191 // C1514 rule 3: Procedures are distinguishable if both have a passed-object 1192 // dummy argument and those are distinguishable. 1193 bool DistinguishUtils::Rule3Distinguishable( 1194 const Procedure &proc1, const Procedure &proc2) const { 1195 const DummyArgument *pass1{GetPassArg(proc1)}; 1196 const DummyArgument *pass2{GetPassArg(proc2)}; 1197 return pass1 && pass2 && Distinguishable(*pass1, *pass2); 1198 } 1199 1200 // Find a non-passed-object dummy data object in one of the argument lists 1201 // that satisfies C1514 rule 1. I.e. x such that: 1202 // - m is the number of dummy data objects in one that are nonoptional, 1203 // are not passed-object, that x is TKR compatible with 1204 // - n is the number of non-passed-object dummy data objects, in the other 1205 // that are not distinguishable from x 1206 // - m is greater than n 1207 const DummyArgument *DistinguishUtils::Rule1DistinguishingArg( 1208 const DummyArguments &args1, const DummyArguments &args2) const { 1209 auto size1{args1.size()}; 1210 auto size2{args2.size()}; 1211 for (std::size_t i{0}; i < size1 + size2; ++i) { 1212 const DummyArgument &x{i < size1 ? args1[i] : args2[i - size1]}; 1213 if (!x.pass && std::holds_alternative<DummyDataObject>(x.u)) { 1214 if (CountCompatibleWith(x, args1) > 1215 CountNotDistinguishableFrom(x, args2) || 1216 CountCompatibleWith(x, args2) > 1217 CountNotDistinguishableFrom(x, args1)) { 1218 return &x; 1219 } 1220 } 1221 } 1222 return nullptr; 1223 } 1224 1225 // Find the index of the first nonoptional non-passed-object dummy argument 1226 // in args1 at an effective position such that either: 1227 // - args2 has no dummy argument at that effective position 1228 // - the dummy argument at that position is distinguishable from it 1229 int DistinguishUtils::FindFirstToDistinguishByPosition( 1230 const DummyArguments &args1, const DummyArguments &args2) const { 1231 int effective{0}; // position of arg1 in list, ignoring passed arg 1232 for (std::size_t i{0}; i < args1.size(); ++i) { 1233 const DummyArgument &arg1{args1.at(i)}; 1234 if (!arg1.pass && !arg1.IsOptional()) { 1235 const DummyArgument *arg2{GetAtEffectivePosition(args2, effective)}; 1236 if (!arg2 || Distinguishable(arg1, *arg2)) { 1237 return i; 1238 } 1239 } 1240 effective += !arg1.pass; 1241 } 1242 return -1; 1243 } 1244 1245 // Find the index of the last nonoptional non-passed-object dummy argument 1246 // in args1 whose name is such that either: 1247 // - args2 has no dummy argument with that name 1248 // - the dummy argument with that name is distinguishable from it 1249 int DistinguishUtils::FindLastToDistinguishByName( 1250 const DummyArguments &args1, const DummyArguments &args2) const { 1251 std::map<std::string, const DummyArgument *> nameToArg; 1252 for (const auto &arg2 : args2) { 1253 nameToArg.emplace(arg2.name, &arg2); 1254 } 1255 for (int i = args1.size() - 1; i >= 0; --i) { 1256 const DummyArgument &arg1{args1.at(i)}; 1257 if (!arg1.pass && !arg1.IsOptional()) { 1258 auto it{nameToArg.find(arg1.name)}; 1259 if (it == nameToArg.end() || Distinguishable(arg1, *it->second)) { 1260 return i; 1261 } 1262 } 1263 } 1264 return -1; 1265 } 1266 1267 // Count the dummy data objects in args that are nonoptional, are not 1268 // passed-object, and that x is TKR compatible with 1269 int DistinguishUtils::CountCompatibleWith( 1270 const DummyArgument &x, const DummyArguments &args) const { 1271 return std::count_if(args.begin(), args.end(), [&](const DummyArgument &y) { 1272 return !y.pass && !y.IsOptional() && IsTkrCompatible(x, y); 1273 }); 1274 } 1275 1276 // Return the number of dummy data objects in args that are not 1277 // distinguishable from x and not passed-object. 1278 int DistinguishUtils::CountNotDistinguishableFrom( 1279 const DummyArgument &x, const DummyArguments &args) const { 1280 return std::count_if(args.begin(), args.end(), [&](const DummyArgument &y) { 1281 return !y.pass && std::holds_alternative<DummyDataObject>(y.u) && 1282 !Distinguishable(y, x); 1283 }); 1284 } 1285 1286 bool DistinguishUtils::Distinguishable( 1287 const DummyArgument &x, const DummyArgument &y) const { 1288 if (x.u.index() != y.u.index()) { 1289 return true; // different kind: data/proc/alt-return 1290 } 1291 return common::visit( 1292 common::visitors{ 1293 [&](const DummyDataObject &z) { 1294 return Distinguishable(z, std::get<DummyDataObject>(y.u)); 1295 }, 1296 [&](const DummyProcedure &z) { 1297 return Distinguishable(z, std::get<DummyProcedure>(y.u)); 1298 }, 1299 [&](const AlternateReturn &) { return false; }, 1300 }, 1301 x.u); 1302 } 1303 1304 bool DistinguishUtils::Distinguishable( 1305 const DummyDataObject &x, const DummyDataObject &y) const { 1306 using Attr = DummyDataObject::Attr; 1307 if (Distinguishable(x.type, y.type)) { 1308 return true; 1309 } else if (x.attrs.test(Attr::Allocatable) && y.attrs.test(Attr::Pointer) && 1310 y.intent != common::Intent::In) { 1311 return true; 1312 } else if (y.attrs.test(Attr::Allocatable) && x.attrs.test(Attr::Pointer) && 1313 x.intent != common::Intent::In) { 1314 return true; 1315 } else if (features_.IsEnabled( 1316 common::LanguageFeature::DistinguishableSpecifics) && 1317 (x.attrs.test(Attr::Allocatable) || x.attrs.test(Attr::Pointer)) && 1318 (y.attrs.test(Attr::Allocatable) || y.attrs.test(Attr::Pointer)) && 1319 (x.type.type().IsUnlimitedPolymorphic() != 1320 y.type.type().IsUnlimitedPolymorphic() || 1321 x.type.type().IsPolymorphic() != y.type.type().IsPolymorphic())) { 1322 // Extension: Per 15.5.2.5(2), an allocatable/pointer dummy and its 1323 // corresponding actual argument must both or neither be polymorphic, 1324 // and must both or neither be unlimited polymorphic. So when exactly 1325 // one of two dummy arguments is polymorphic or unlimited polymorphic, 1326 // any actual argument that is admissible to one of them cannot also match 1327 // the other one. 1328 return true; 1329 } else { 1330 return false; 1331 } 1332 } 1333 1334 bool DistinguishUtils::Distinguishable( 1335 const DummyProcedure &x, const DummyProcedure &y) const { 1336 const Procedure &xProc{x.procedure.value()}; 1337 const Procedure &yProc{y.procedure.value()}; 1338 if (Distinguishable(xProc, yProc)) { 1339 return true; 1340 } else { 1341 const std::optional<FunctionResult> &xResult{xProc.functionResult}; 1342 const std::optional<FunctionResult> &yResult{yProc.functionResult}; 1343 return xResult ? !yResult || Distinguishable(*xResult, *yResult) 1344 : yResult.has_value(); 1345 } 1346 } 1347 1348 bool DistinguishUtils::Distinguishable( 1349 const FunctionResult &x, const FunctionResult &y) const { 1350 if (x.u.index() != y.u.index()) { 1351 return true; // one is data object, one is procedure 1352 } 1353 return common::visit( 1354 common::visitors{ 1355 [&](const TypeAndShape &z) { 1356 return Distinguishable(z, std::get<TypeAndShape>(y.u)); 1357 }, 1358 [&](const CopyableIndirection<Procedure> &z) { 1359 return Distinguishable(z.value(), 1360 std::get<CopyableIndirection<Procedure>>(y.u).value()); 1361 }, 1362 }, 1363 x.u); 1364 } 1365 1366 bool DistinguishUtils::Distinguishable( 1367 const TypeAndShape &x, const TypeAndShape &y) const { 1368 return !IsTkrCompatible(x, y) && !IsTkrCompatible(y, x); 1369 } 1370 1371 // Compatibility based on type, kind, and rank 1372 bool DistinguishUtils::IsTkrCompatible( 1373 const DummyArgument &x, const DummyArgument &y) const { 1374 const auto *obj1{std::get_if<DummyDataObject>(&x.u)}; 1375 const auto *obj2{std::get_if<DummyDataObject>(&y.u)}; 1376 return obj1 && obj2 && IsTkrCompatible(obj1->type, obj2->type); 1377 } 1378 bool DistinguishUtils::IsTkrCompatible( 1379 const TypeAndShape &x, const TypeAndShape &y) const { 1380 return x.type().IsTkCompatibleWith(y.type()) && 1381 (x.attrs().test(TypeAndShape::Attr::AssumedRank) || 1382 y.attrs().test(TypeAndShape::Attr::AssumedRank) || 1383 x.Rank() == y.Rank()); 1384 } 1385 1386 // Return the argument at the given index, ignoring the passed arg 1387 const DummyArgument *DistinguishUtils::GetAtEffectivePosition( 1388 const DummyArguments &args, int index) const { 1389 for (const DummyArgument &arg : args) { 1390 if (!arg.pass) { 1391 if (index == 0) { 1392 return &arg; 1393 } 1394 --index; 1395 } 1396 } 1397 return nullptr; 1398 } 1399 1400 // Return the passed-object dummy argument of this procedure, if any 1401 const DummyArgument *DistinguishUtils::GetPassArg(const Procedure &proc) const { 1402 for (const auto &arg : proc.dummyArguments) { 1403 if (arg.pass) { 1404 return &arg; 1405 } 1406 } 1407 return nullptr; 1408 } 1409 1410 bool Distinguishable(const common::LanguageFeatureControl &features, 1411 const Procedure &x, const Procedure &y) { 1412 return DistinguishUtils{features}.Distinguishable(x, y); 1413 } 1414 1415 bool DistinguishableOpOrAssign(const common::LanguageFeatureControl &features, 1416 const Procedure &x, const Procedure &y) { 1417 return DistinguishUtils{features}.DistinguishableOpOrAssign(x, y); 1418 } 1419 1420 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyArgument) 1421 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyProcedure) 1422 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(FunctionResult) 1423 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(Procedure) 1424 } // namespace Fortran::evaluate::characteristics 1425 1426 template class Fortran::common::Indirection< 1427 Fortran::evaluate::characteristics::Procedure, true>; 1428