1 //===-- lib/Evaluate/characteristics.cpp ----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "flang/Evaluate/characteristics.h" 10 #include "flang/Common/indirection.h" 11 #include "flang/Evaluate/check-expression.h" 12 #include "flang/Evaluate/fold.h" 13 #include "flang/Evaluate/intrinsics.h" 14 #include "flang/Evaluate/tools.h" 15 #include "flang/Evaluate/type.h" 16 #include "flang/Parser/message.h" 17 #include "flang/Semantics/scope.h" 18 #include "flang/Semantics/symbol.h" 19 #include "flang/Semantics/tools.h" 20 #include "llvm/Support/raw_ostream.h" 21 #include <initializer_list> 22 23 using namespace Fortran::parser::literals; 24 25 namespace Fortran::evaluate::characteristics { 26 27 // Copy attributes from a symbol to dst based on the mapping in pairs. 28 template <typename A, typename B> 29 static void CopyAttrs(const semantics::Symbol &src, A &dst, 30 const std::initializer_list<std::pair<semantics::Attr, B>> &pairs) { 31 for (const auto &pair : pairs) { 32 if (src.attrs().test(pair.first)) { 33 dst.attrs.set(pair.second); 34 } 35 } 36 } 37 38 // Shapes of function results and dummy arguments have to have 39 // the same rank, the same deferred dimensions, and the same 40 // values for explicit dimensions when constant. 41 bool ShapesAreCompatible(const Shape &x, const Shape &y) { 42 if (x.size() != y.size()) { 43 return false; 44 } 45 auto yIter{y.begin()}; 46 for (const auto &xDim : x) { 47 const auto &yDim{*yIter++}; 48 if (xDim) { 49 if (!yDim || ToInt64(*xDim) != ToInt64(*yDim)) { 50 return false; 51 } 52 } else if (yDim) { 53 return false; 54 } 55 } 56 return true; 57 } 58 59 bool TypeAndShape::operator==(const TypeAndShape &that) const { 60 return type_ == that.type_ && ShapesAreCompatible(shape_, that.shape_) && 61 attrs_ == that.attrs_ && corank_ == that.corank_; 62 } 63 64 TypeAndShape &TypeAndShape::Rewrite(FoldingContext &context) { 65 LEN_ = Fold(context, std::move(LEN_)); 66 if (LEN_) { 67 if (auto n{ToInt64(*LEN_)}) { 68 type_ = DynamicType{type_.kind(), *n}; 69 } 70 } 71 shape_ = Fold(context, std::move(shape_)); 72 return *this; 73 } 74 75 std::optional<TypeAndShape> TypeAndShape::Characterize( 76 const semantics::Symbol &symbol, FoldingContext &context) { 77 const auto &ultimate{symbol.GetUltimate()}; 78 return common::visit( 79 common::visitors{ 80 [&](const semantics::ProcEntityDetails &proc) { 81 if (proc.procInterface()) { 82 return Characterize(*proc.procInterface(), context); 83 } else if (proc.type()) { 84 return Characterize(*proc.type(), context); 85 } else { 86 return std::optional<TypeAndShape>{}; 87 } 88 }, 89 [&](const semantics::AssocEntityDetails &assoc) { 90 return Characterize(assoc, context); 91 }, 92 [&](const semantics::ProcBindingDetails &binding) { 93 return Characterize(binding.symbol(), context); 94 }, 95 [&](const auto &x) -> std::optional<TypeAndShape> { 96 using Ty = std::decay_t<decltype(x)>; 97 if constexpr (std::is_same_v<Ty, semantics::EntityDetails> || 98 std::is_same_v<Ty, semantics::ObjectEntityDetails> || 99 std::is_same_v<Ty, semantics::TypeParamDetails>) { 100 if (const semantics::DeclTypeSpec * type{ultimate.GetType()}) { 101 if (auto dyType{DynamicType::From(*type)}) { 102 TypeAndShape result{ 103 std::move(*dyType), GetShape(context, ultimate)}; 104 result.AcquireAttrs(ultimate); 105 result.AcquireLEN(ultimate); 106 return std::move(result.Rewrite(context)); 107 } 108 } 109 } 110 return std::nullopt; 111 }, 112 }, 113 // GetUltimate() used here, not ResolveAssociations(), because 114 // we need the type/rank of an associate entity from TYPE IS, 115 // CLASS IS, or RANK statement. 116 ultimate.details()); 117 } 118 119 std::optional<TypeAndShape> TypeAndShape::Characterize( 120 const semantics::AssocEntityDetails &assoc, FoldingContext &context) { 121 std::optional<TypeAndShape> result; 122 if (auto type{DynamicType::From(assoc.type())}) { 123 if (auto rank{assoc.rank()}) { 124 if (*rank >= 0 && *rank <= common::maxRank) { 125 result = TypeAndShape{std::move(*type), Shape(*rank)}; 126 } 127 } else if (auto shape{GetShape(context, assoc.expr())}) { 128 result = TypeAndShape{std::move(*type), std::move(*shape)}; 129 } 130 if (result && type->category() == TypeCategory::Character) { 131 if (const auto *chExpr{UnwrapExpr<Expr<SomeCharacter>>(assoc.expr())}) { 132 if (auto len{chExpr->LEN()}) { 133 result->set_LEN(std::move(*len)); 134 } 135 } 136 } 137 } 138 return Fold(context, std::move(result)); 139 } 140 141 std::optional<TypeAndShape> TypeAndShape::Characterize( 142 const semantics::DeclTypeSpec &spec, FoldingContext &context) { 143 if (auto type{DynamicType::From(spec)}) { 144 return Fold(context, TypeAndShape{std::move(*type)}); 145 } else { 146 return std::nullopt; 147 } 148 } 149 150 std::optional<TypeAndShape> TypeAndShape::Characterize( 151 const ActualArgument &arg, FoldingContext &context) { 152 if (const auto *expr{arg.UnwrapExpr()}) { 153 return Characterize(*expr, context); 154 } else if (const Symbol * assumed{arg.GetAssumedTypeDummy()}) { 155 return Characterize(*assumed, context); 156 } else { 157 return std::nullopt; 158 } 159 } 160 161 bool TypeAndShape::IsCompatibleWith(parser::ContextualMessages &messages, 162 const TypeAndShape &that, const char *thisIs, const char *thatIs, 163 bool omitShapeConformanceCheck, 164 enum CheckConformanceFlags::Flags flags) const { 165 if (!type_.IsTkCompatibleWith(that.type_)) { 166 messages.Say( 167 "%1$s type '%2$s' is not compatible with %3$s type '%4$s'"_err_en_US, 168 thatIs, that.AsFortran(), thisIs, AsFortran()); 169 return false; 170 } 171 return omitShapeConformanceCheck || 172 CheckConformance(messages, shape_, that.shape_, flags, thisIs, thatIs) 173 .value_or(true /*fail only when nonconformance is known now*/); 174 } 175 176 std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureElementSizeInBytes( 177 FoldingContext &foldingContext, bool align) const { 178 if (LEN_) { 179 CHECK(type_.category() == TypeCategory::Character); 180 return Fold(foldingContext, 181 Expr<SubscriptInteger>{ 182 foldingContext.targetCharacteristics().GetByteSize( 183 type_.category(), type_.kind())} * 184 Expr<SubscriptInteger>{*LEN_}); 185 } 186 if (auto elementBytes{type_.MeasureSizeInBytes(foldingContext, align)}) { 187 return Fold(foldingContext, std::move(*elementBytes)); 188 } 189 return std::nullopt; 190 } 191 192 std::optional<Expr<SubscriptInteger>> TypeAndShape::MeasureSizeInBytes( 193 FoldingContext &foldingContext) const { 194 if (auto elements{GetSize(Shape{shape_})}) { 195 // Sizes of arrays (even with single elements) are multiples of 196 // their alignments. 197 if (auto elementBytes{ 198 MeasureElementSizeInBytes(foldingContext, GetRank(shape_) > 0)}) { 199 return Fold( 200 foldingContext, std::move(*elements) * std::move(*elementBytes)); 201 } 202 } 203 return std::nullopt; 204 } 205 206 void TypeAndShape::AcquireAttrs(const semantics::Symbol &symbol) { 207 if (IsAssumedShape(symbol)) { 208 attrs_.set(Attr::AssumedShape); 209 } 210 if (IsDeferredShape(symbol)) { 211 attrs_.set(Attr::DeferredShape); 212 } 213 if (const auto *object{ 214 symbol.GetUltimate().detailsIf<semantics::ObjectEntityDetails>()}) { 215 corank_ = object->coshape().Rank(); 216 if (object->IsAssumedRank()) { 217 attrs_.set(Attr::AssumedRank); 218 } 219 if (object->IsAssumedSize()) { 220 attrs_.set(Attr::AssumedSize); 221 } 222 if (object->IsCoarray()) { 223 attrs_.set(Attr::Coarray); 224 } 225 } 226 } 227 228 void TypeAndShape::AcquireLEN() { 229 if (auto len{type_.GetCharLength()}) { 230 LEN_ = std::move(len); 231 } 232 } 233 234 void TypeAndShape::AcquireLEN(const semantics::Symbol &symbol) { 235 if (type_.category() == TypeCategory::Character) { 236 if (auto len{DataRef{symbol}.LEN()}) { 237 LEN_ = std::move(*len); 238 } 239 } 240 } 241 242 std::string TypeAndShape::AsFortran() const { 243 return type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""); 244 } 245 246 llvm::raw_ostream &TypeAndShape::Dump(llvm::raw_ostream &o) const { 247 o << type_.AsFortran(LEN_ ? LEN_->AsFortran() : ""); 248 attrs_.Dump(o, EnumToString); 249 if (!shape_.empty()) { 250 o << " dimension"; 251 char sep{'('}; 252 for (const auto &expr : shape_) { 253 o << sep; 254 sep = ','; 255 if (expr) { 256 expr->AsFortran(o); 257 } else { 258 o << ':'; 259 } 260 } 261 o << ')'; 262 } 263 return o; 264 } 265 266 bool DummyDataObject::operator==(const DummyDataObject &that) const { 267 return type == that.type && attrs == that.attrs && intent == that.intent && 268 coshape == that.coshape && cudaDataAttr == that.cudaDataAttr; 269 ; 270 } 271 272 static bool AreCompatibleDummyDataObjectShapes(const Shape &x, const Shape &y) { 273 int n{GetRank(x)}; 274 if (n != GetRank(y)) { 275 return false; 276 } 277 auto xIter{x.begin()}; 278 auto yIter{y.begin()}; 279 for (; n-- > 0; ++xIter, ++yIter) { 280 if (auto xVal{ToInt64(*xIter)}) { 281 if (auto yVal{ToInt64(*yIter)}) { 282 if (*xVal != *yVal) { 283 return false; 284 } 285 } 286 } 287 } 288 return true; 289 } 290 291 bool DummyDataObject::IsCompatibleWith( 292 const DummyDataObject &actual, std::string *whyNot) const { 293 if (!AreCompatibleDummyDataObjectShapes(type.shape(), actual.type.shape())) { 294 if (whyNot) { 295 *whyNot = "incompatible dummy data object shapes"; 296 } 297 return false; 298 } 299 if (!type.type().IsTkLenCompatibleWith(actual.type.type())) { 300 if (whyNot) { 301 *whyNot = "incompatible dummy data object types: "s + 302 type.type().AsFortran() + " vs " + actual.type.type().AsFortran(); 303 } 304 return false; 305 } 306 if (type.type().category() == TypeCategory::Character) { 307 if (actual.type.type().IsAssumedLengthCharacter() != 308 type.type().IsAssumedLengthCharacter()) { 309 if (whyNot) { 310 *whyNot = "assumed-length character vs explicit-length character"; 311 } 312 return false; 313 } 314 if (!type.type().IsAssumedLengthCharacter() && type.LEN() && 315 actual.type.LEN()) { 316 auto len{ToInt64(*type.LEN())}; 317 auto actualLen{ToInt64(*actual.type.LEN())}; 318 if (len.has_value() != actualLen.has_value()) { 319 if (whyNot) { 320 *whyNot = "constant-length vs non-constant-length character dummy " 321 "arguments"; 322 } 323 return false; 324 } else if (len && *len != *actualLen) { 325 if (whyNot) { 326 *whyNot = "character dummy arguments with distinct lengths"; 327 } 328 return false; 329 } 330 } 331 } 332 if (attrs != actual.attrs) { 333 if (whyNot) { 334 *whyNot = "incompatible dummy data object attributes"; 335 } 336 return false; 337 } 338 if (intent != actual.intent) { 339 if (whyNot) { 340 *whyNot = "incompatible dummy data object intents"; 341 } 342 return false; 343 } 344 if (coshape != actual.coshape) { 345 if (whyNot) { 346 *whyNot = "incompatible dummy data object coshapes"; 347 } 348 return false; 349 } 350 if (ignoreTKR != actual.ignoreTKR) { 351 if (whyNot) { 352 *whyNot = "incompatible !DIR$ IGNORE_TKR directives"; 353 } 354 } 355 if (!attrs.test(Attr::Value) && 356 !common::AreCompatibleCUDADataAttrs( 357 cudaDataAttr, actual.cudaDataAttr, ignoreTKR)) { 358 if (whyNot) { 359 *whyNot = "incompatible CUDA data attributes"; 360 } 361 } 362 return true; 363 } 364 365 static common::Intent GetIntent(const semantics::Attrs &attrs) { 366 if (attrs.test(semantics::Attr::INTENT_IN)) { 367 return common::Intent::In; 368 } else if (attrs.test(semantics::Attr::INTENT_OUT)) { 369 return common::Intent::Out; 370 } else if (attrs.test(semantics::Attr::INTENT_INOUT)) { 371 return common::Intent::InOut; 372 } else { 373 return common::Intent::Default; 374 } 375 } 376 377 std::optional<DummyDataObject> DummyDataObject::Characterize( 378 const semantics::Symbol &symbol, FoldingContext &context) { 379 if (const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}; 380 object || symbol.has<semantics::EntityDetails>()) { 381 if (auto type{TypeAndShape::Characterize(symbol, context)}) { 382 std::optional<DummyDataObject> result{std::move(*type)}; 383 using semantics::Attr; 384 CopyAttrs<DummyDataObject, DummyDataObject::Attr>(symbol, *result, 385 { 386 {Attr::OPTIONAL, DummyDataObject::Attr::Optional}, 387 {Attr::ALLOCATABLE, DummyDataObject::Attr::Allocatable}, 388 {Attr::ASYNCHRONOUS, DummyDataObject::Attr::Asynchronous}, 389 {Attr::CONTIGUOUS, DummyDataObject::Attr::Contiguous}, 390 {Attr::VALUE, DummyDataObject::Attr::Value}, 391 {Attr::VOLATILE, DummyDataObject::Attr::Volatile}, 392 {Attr::POINTER, DummyDataObject::Attr::Pointer}, 393 {Attr::TARGET, DummyDataObject::Attr::Target}, 394 }); 395 result->intent = GetIntent(symbol.attrs()); 396 result->ignoreTKR = GetIgnoreTKR(symbol); 397 if (object) { 398 result->cudaDataAttr = object->cudaDataAttr(); 399 if (!result->cudaDataAttr && 400 !result->attrs.test(DummyDataObject::Attr::Value) && 401 semantics::IsCUDADeviceContext(&symbol.owner())) { 402 result->cudaDataAttr = common::CUDADataAttr::Device; 403 } 404 } 405 return result; 406 } 407 } 408 return std::nullopt; 409 } 410 411 bool DummyDataObject::CanBePassedViaImplicitInterface() const { 412 if ((attrs & 413 Attrs{Attr::Allocatable, Attr::Asynchronous, Attr::Optional, 414 Attr::Pointer, Attr::Target, Attr::Value, Attr::Volatile}) 415 .any()) { 416 return false; // 15.4.2.2(3)(a) 417 } else if ((type.attrs() & 418 TypeAndShape::Attrs{TypeAndShape::Attr::AssumedShape, 419 TypeAndShape::Attr::AssumedRank, 420 TypeAndShape::Attr::Coarray}) 421 .any()) { 422 return false; // 15.4.2.2(3)(b-d) 423 } else if (type.type().IsPolymorphic()) { 424 return false; // 15.4.2.2(3)(f) 425 } else if (cudaDataAttr) { 426 return false; 427 } else if (const auto *derived{GetDerivedTypeSpec(type.type())}) { 428 return derived->parameters().empty(); // 15.4.2.2(3)(e) 429 } else { 430 return true; 431 } 432 } 433 434 llvm::raw_ostream &DummyDataObject::Dump(llvm::raw_ostream &o) const { 435 attrs.Dump(o, EnumToString); 436 if (intent != common::Intent::Default) { 437 o << "INTENT(" << common::EnumToString(intent) << ')'; 438 } 439 type.Dump(o); 440 if (!coshape.empty()) { 441 char sep{'['}; 442 for (const auto &expr : coshape) { 443 expr.AsFortran(o << sep); 444 sep = ','; 445 } 446 } 447 if (cudaDataAttr) { 448 o << " cudaDataAttr: " << common::EnumToString(*cudaDataAttr); 449 } 450 if (!ignoreTKR.empty()) { 451 ignoreTKR.Dump(o << ' ', common::EnumToString); 452 } 453 return o; 454 } 455 456 DummyProcedure::DummyProcedure(Procedure &&p) 457 : procedure{new Procedure{std::move(p)}} {} 458 459 bool DummyProcedure::operator==(const DummyProcedure &that) const { 460 return attrs == that.attrs && intent == that.intent && 461 procedure.value() == that.procedure.value(); 462 } 463 464 bool DummyProcedure::IsCompatibleWith( 465 const DummyProcedure &actual, std::string *whyNot) const { 466 if (attrs != actual.attrs) { 467 if (whyNot) { 468 *whyNot = "incompatible dummy procedure attributes"; 469 } 470 return false; 471 } 472 if (intent != actual.intent) { 473 if (whyNot) { 474 *whyNot = "incompatible dummy procedure intents"; 475 } 476 return false; 477 } 478 if (!procedure.value().IsCompatibleWith(actual.procedure.value(), whyNot)) { 479 if (whyNot) { 480 *whyNot = "incompatible dummy procedure interfaces: "s + *whyNot; 481 } 482 return false; 483 } 484 return true; 485 } 486 487 bool DummyProcedure::CanBePassedViaImplicitInterface() const { 488 if ((attrs & Attrs{Attr::Optional, Attr::Pointer}).any()) { 489 return false; // 15.4.2.2(3)(a) 490 } 491 return true; 492 } 493 494 static std::string GetSeenProcs( 495 const semantics::UnorderedSymbolSet &seenProcs) { 496 // Sort the symbols so that they appear in the same order on all platforms 497 auto ordered{semantics::OrderBySourcePosition(seenProcs)}; 498 std::string result; 499 llvm::interleave( 500 ordered, 501 [&](const SymbolRef p) { result += '\'' + p->name().ToString() + '\''; }, 502 [&]() { result += ", "; }); 503 return result; 504 } 505 506 // These functions with arguments of type UnorderedSymbolSet are used with 507 // mutually recursive calls when characterizing a Procedure, a DummyArgument, 508 // or a DummyProcedure to detect circularly defined procedures as required by 509 // 15.4.3.6, paragraph 2. 510 static std::optional<DummyArgument> CharacterizeDummyArgument( 511 const semantics::Symbol &symbol, FoldingContext &context, 512 semantics::UnorderedSymbolSet seenProcs); 513 static std::optional<FunctionResult> CharacterizeFunctionResult( 514 const semantics::Symbol &symbol, FoldingContext &context, 515 semantics::UnorderedSymbolSet seenProcs); 516 517 static std::optional<Procedure> CharacterizeProcedure( 518 const semantics::Symbol &original, FoldingContext &context, 519 semantics::UnorderedSymbolSet seenProcs) { 520 Procedure result; 521 const auto &symbol{ResolveAssociations(original)}; 522 if (seenProcs.find(symbol) != seenProcs.end()) { 523 std::string procsList{GetSeenProcs(seenProcs)}; 524 context.messages().Say(symbol.name(), 525 "Procedure '%s' is recursively defined. Procedures in the cycle:" 526 " %s"_err_en_US, 527 symbol.name(), procsList); 528 return std::nullopt; 529 } 530 seenProcs.insert(symbol); 531 if (IsElementalProcedure(symbol)) { 532 result.attrs.set(Procedure::Attr::Elemental); 533 } 534 CopyAttrs<Procedure, Procedure::Attr>(symbol, result, 535 { 536 {semantics::Attr::BIND_C, Procedure::Attr::BindC}, 537 }); 538 if (IsPureProcedure(symbol) || // works for ENTRY too 539 (!symbol.attrs().test(semantics::Attr::IMPURE) && 540 result.attrs.test(Procedure::Attr::Elemental))) { 541 result.attrs.set(Procedure::Attr::Pure); 542 } 543 return common::visit( 544 common::visitors{ 545 [&](const semantics::SubprogramDetails &subp) 546 -> std::optional<Procedure> { 547 if (subp.isFunction()) { 548 if (auto fr{CharacterizeFunctionResult( 549 subp.result(), context, seenProcs)}) { 550 result.functionResult = std::move(fr); 551 } else { 552 return std::nullopt; 553 } 554 } else { 555 result.attrs.set(Procedure::Attr::Subroutine); 556 } 557 for (const semantics::Symbol *arg : subp.dummyArgs()) { 558 if (!arg) { 559 if (subp.isFunction()) { 560 return std::nullopt; 561 } else { 562 result.dummyArguments.emplace_back(AlternateReturn{}); 563 } 564 } else if (auto argCharacteristics{CharacterizeDummyArgument( 565 *arg, context, seenProcs)}) { 566 result.dummyArguments.emplace_back( 567 std::move(argCharacteristics.value())); 568 } else { 569 return std::nullopt; 570 } 571 } 572 result.cudaSubprogramAttrs = subp.cudaSubprogramAttrs(); 573 return result; 574 }, 575 [&](const semantics::ProcEntityDetails &proc) 576 -> std::optional<Procedure> { 577 if (symbol.attrs().test(semantics::Attr::INTRINSIC)) { 578 // Fails when the intrinsic is not a specific intrinsic function 579 // from F'2018 table 16.2. In order to handle forward references, 580 // attempts to use impermissible intrinsic procedures as the 581 // interfaces of procedure pointers are caught and flagged in 582 // declaration checking in Semantics. 583 auto intrinsic{context.intrinsics().IsSpecificIntrinsicFunction( 584 symbol.name().ToString())}; 585 if (intrinsic && intrinsic->isRestrictedSpecific) { 586 intrinsic.reset(); // Exclude intrinsics from table 16.3. 587 } 588 return intrinsic; 589 } 590 if (const semantics::Symbol * 591 interfaceSymbol{proc.procInterface()}) { 592 auto interface { 593 CharacterizeProcedure(*interfaceSymbol, context, seenProcs) 594 }; 595 if (interface && IsPointer(symbol)) { 596 interface->attrs.reset(Procedure::Attr::Elemental); 597 } 598 return interface; 599 } else { 600 result.attrs.set(Procedure::Attr::ImplicitInterface); 601 const semantics::DeclTypeSpec *type{proc.type()}; 602 if (symbol.test(semantics::Symbol::Flag::Subroutine)) { 603 // ignore any implicit typing 604 result.attrs.set(Procedure::Attr::Subroutine); 605 if (proc.isCUDAKernel()) { 606 result.cudaSubprogramAttrs = 607 common::CUDASubprogramAttrs::Global; 608 } 609 } else if (type) { 610 if (auto resultType{DynamicType::From(*type)}) { 611 result.functionResult = FunctionResult{*resultType}; 612 } else { 613 return std::nullopt; 614 } 615 } else if (symbol.test(semantics::Symbol::Flag::Function)) { 616 return std::nullopt; 617 } 618 // The PASS name, if any, is not a characteristic. 619 return result; 620 } 621 }, 622 [&](const semantics::ProcBindingDetails &binding) { 623 if (auto result{CharacterizeProcedure( 624 binding.symbol(), context, seenProcs)}) { 625 if (binding.symbol().attrs().test(semantics::Attr::INTRINSIC)) { 626 result->attrs.reset(Procedure::Attr::Elemental); 627 } 628 if (!symbol.attrs().test(semantics::Attr::NOPASS)) { 629 auto passName{binding.passName()}; 630 for (auto &dummy : result->dummyArguments) { 631 if (!passName || dummy.name.c_str() == *passName) { 632 dummy.pass = true; 633 break; 634 } 635 } 636 } 637 return result; 638 } else { 639 return std::optional<Procedure>{}; 640 } 641 }, 642 [&](const semantics::UseDetails &use) { 643 return CharacterizeProcedure(use.symbol(), context, seenProcs); 644 }, 645 [](const semantics::UseErrorDetails &) { 646 // Ambiguous use-association will be handled later during symbol 647 // checks, ignore UseErrorDetails here without actual symbol usage. 648 return std::optional<Procedure>{}; 649 }, 650 [&](const semantics::HostAssocDetails &assoc) { 651 return CharacterizeProcedure(assoc.symbol(), context, seenProcs); 652 }, 653 [&](const semantics::GenericDetails &generic) { 654 if (const semantics::Symbol * specific{generic.specific()}) { 655 return CharacterizeProcedure(*specific, context, seenProcs); 656 } else { 657 return std::optional<Procedure>{}; 658 } 659 }, 660 [&](const semantics::EntityDetails &) { 661 context.messages().Say( 662 "Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US, 663 symbol.name()); 664 return std::optional<Procedure>{}; 665 }, 666 [&](const semantics::SubprogramNameDetails &) { 667 context.messages().Say( 668 "Procedure '%s' is referenced before being sufficiently defined in a context where it must be so"_err_en_US, 669 symbol.name()); 670 return std::optional<Procedure>{}; 671 }, 672 [&](const auto &) { 673 context.messages().Say( 674 "'%s' is not a procedure"_err_en_US, symbol.name()); 675 return std::optional<Procedure>{}; 676 }, 677 }, 678 symbol.details()); 679 } 680 681 static std::optional<DummyProcedure> CharacterizeDummyProcedure( 682 const semantics::Symbol &symbol, FoldingContext &context, 683 semantics::UnorderedSymbolSet seenProcs) { 684 if (auto procedure{CharacterizeProcedure(symbol, context, seenProcs)}) { 685 // Dummy procedures may not be elemental. Elemental dummy procedure 686 // interfaces are errors when the interface is not intrinsic, and that 687 // error is caught elsewhere. Elemental intrinsic interfaces are 688 // made non-elemental. 689 procedure->attrs.reset(Procedure::Attr::Elemental); 690 DummyProcedure result{std::move(procedure.value())}; 691 CopyAttrs<DummyProcedure, DummyProcedure::Attr>(symbol, result, 692 { 693 {semantics::Attr::OPTIONAL, DummyProcedure::Attr::Optional}, 694 {semantics::Attr::POINTER, DummyProcedure::Attr::Pointer}, 695 }); 696 result.intent = GetIntent(symbol.attrs()); 697 return result; 698 } else { 699 return std::nullopt; 700 } 701 } 702 703 llvm::raw_ostream &DummyProcedure::Dump(llvm::raw_ostream &o) const { 704 attrs.Dump(o, EnumToString); 705 if (intent != common::Intent::Default) { 706 o << "INTENT(" << common::EnumToString(intent) << ')'; 707 } 708 procedure.value().Dump(o); 709 return o; 710 } 711 712 llvm::raw_ostream &AlternateReturn::Dump(llvm::raw_ostream &o) const { 713 return o << '*'; 714 } 715 716 DummyArgument::~DummyArgument() {} 717 718 bool DummyArgument::operator==(const DummyArgument &that) const { 719 return u == that.u; // name and passed-object usage are not characteristics 720 } 721 722 bool DummyArgument::IsCompatibleWith( 723 const DummyArgument &actual, std::string *whyNot) const { 724 if (const auto *ifaceData{std::get_if<DummyDataObject>(&u)}) { 725 if (const auto *actualData{std::get_if<DummyDataObject>(&actual.u)}) { 726 return ifaceData->IsCompatibleWith(*actualData, whyNot); 727 } 728 if (whyNot) { 729 *whyNot = "one dummy argument is an object, the other is not"; 730 } 731 } else if (const auto *ifaceProc{std::get_if<DummyProcedure>(&u)}) { 732 if (const auto *actualProc{std::get_if<DummyProcedure>(&actual.u)}) { 733 return ifaceProc->IsCompatibleWith(*actualProc, whyNot); 734 } 735 if (whyNot) { 736 *whyNot = "one dummy argument is a procedure, the other is not"; 737 } 738 } else { 739 CHECK(std::holds_alternative<AlternateReturn>(u)); 740 if (std::holds_alternative<AlternateReturn>(actual.u)) { 741 return true; 742 } 743 if (whyNot) { 744 *whyNot = "one dummy argument is an alternate return, the other is not"; 745 } 746 } 747 return false; 748 } 749 750 static std::optional<DummyArgument> CharacterizeDummyArgument( 751 const semantics::Symbol &symbol, FoldingContext &context, 752 semantics::UnorderedSymbolSet seenProcs) { 753 auto name{symbol.name().ToString()}; 754 if (symbol.has<semantics::ObjectEntityDetails>() || 755 symbol.has<semantics::EntityDetails>()) { 756 if (auto obj{DummyDataObject::Characterize(symbol, context)}) { 757 return DummyArgument{std::move(name), std::move(obj.value())}; 758 } 759 } else if (auto proc{ 760 CharacterizeDummyProcedure(symbol, context, seenProcs)}) { 761 return DummyArgument{std::move(name), std::move(proc.value())}; 762 } 763 return std::nullopt; 764 } 765 766 std::optional<DummyArgument> DummyArgument::FromActual( 767 std::string &&name, const Expr<SomeType> &expr, FoldingContext &context) { 768 return common::visit( 769 common::visitors{ 770 [&](const BOZLiteralConstant &) { 771 return std::make_optional<DummyArgument>(std::move(name), 772 DummyDataObject{ 773 TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}); 774 }, 775 [&](const NullPointer &) { 776 return std::make_optional<DummyArgument>(std::move(name), 777 DummyDataObject{ 778 TypeAndShape{DynamicType::TypelessIntrinsicArgument()}}); 779 }, 780 [&](const ProcedureDesignator &designator) { 781 if (auto proc{Procedure::Characterize(designator, context)}) { 782 return std::make_optional<DummyArgument>( 783 std::move(name), DummyProcedure{std::move(*proc)}); 784 } else { 785 return std::optional<DummyArgument>{}; 786 } 787 }, 788 [&](const ProcedureRef &call) { 789 if (auto proc{Procedure::Characterize(call, context)}) { 790 return std::make_optional<DummyArgument>( 791 std::move(name), DummyProcedure{std::move(*proc)}); 792 } else { 793 return std::optional<DummyArgument>{}; 794 } 795 }, 796 [&](const auto &) { 797 if (auto type{TypeAndShape::Characterize(expr, context)}) { 798 return std::make_optional<DummyArgument>( 799 std::move(name), DummyDataObject{std::move(*type)}); 800 } else { 801 return std::optional<DummyArgument>{}; 802 } 803 }, 804 }, 805 expr.u); 806 } 807 808 std::optional<DummyArgument> DummyArgument::FromActual( 809 std::string &&name, const ActualArgument &arg, FoldingContext &context) { 810 if (const auto *expr{arg.UnwrapExpr()}) { 811 return FromActual(std::move(name), *expr, context); 812 } else if (arg.GetAssumedTypeDummy()) { 813 return std::nullopt; 814 } else { 815 return DummyArgument{AlternateReturn{}}; 816 } 817 } 818 819 bool DummyArgument::IsOptional() const { 820 return common::visit( 821 common::visitors{ 822 [](const DummyDataObject &data) { 823 return data.attrs.test(DummyDataObject::Attr::Optional); 824 }, 825 [](const DummyProcedure &proc) { 826 return proc.attrs.test(DummyProcedure::Attr::Optional); 827 }, 828 [](const AlternateReturn &) { return false; }, 829 }, 830 u); 831 } 832 833 void DummyArgument::SetOptional(bool value) { 834 common::visit(common::visitors{ 835 [value](DummyDataObject &data) { 836 data.attrs.set(DummyDataObject::Attr::Optional, value); 837 }, 838 [value](DummyProcedure &proc) { 839 proc.attrs.set(DummyProcedure::Attr::Optional, value); 840 }, 841 [](AlternateReturn &) { DIE("cannot set optional"); }, 842 }, 843 u); 844 } 845 846 void DummyArgument::SetIntent(common::Intent intent) { 847 common::visit(common::visitors{ 848 [intent](DummyDataObject &data) { data.intent = intent; }, 849 [intent](DummyProcedure &proc) { proc.intent = intent; }, 850 [](AlternateReturn &) { DIE("cannot set intent"); }, 851 }, 852 u); 853 } 854 855 common::Intent DummyArgument::GetIntent() const { 856 return common::visit( 857 common::visitors{ 858 [](const DummyDataObject &data) { return data.intent; }, 859 [](const DummyProcedure &proc) { return proc.intent; }, 860 [](const AlternateReturn &) -> common::Intent { 861 DIE("Alternate returns have no intent"); 862 }, 863 }, 864 u); 865 } 866 867 bool DummyArgument::CanBePassedViaImplicitInterface() const { 868 if (const auto *object{std::get_if<DummyDataObject>(&u)}) { 869 return object->CanBePassedViaImplicitInterface(); 870 } else if (const auto *proc{std::get_if<DummyProcedure>(&u)}) { 871 return proc->CanBePassedViaImplicitInterface(); 872 } else { 873 return true; 874 } 875 } 876 877 bool DummyArgument::IsTypelessIntrinsicDummy() const { 878 const auto *argObj{std::get_if<characteristics::DummyDataObject>(&u)}; 879 return argObj && argObj->type.type().IsTypelessIntrinsicArgument(); 880 } 881 882 llvm::raw_ostream &DummyArgument::Dump(llvm::raw_ostream &o) const { 883 if (!name.empty()) { 884 o << name << '='; 885 } 886 if (pass) { 887 o << " PASS"; 888 } 889 common::visit([&](const auto &x) { x.Dump(o); }, u); 890 return o; 891 } 892 893 FunctionResult::FunctionResult(DynamicType t) : u{TypeAndShape{t}} {} 894 FunctionResult::FunctionResult(TypeAndShape &&t) : u{std::move(t)} {} 895 FunctionResult::FunctionResult(Procedure &&p) : u{std::move(p)} {} 896 FunctionResult::~FunctionResult() {} 897 898 bool FunctionResult::operator==(const FunctionResult &that) const { 899 return attrs == that.attrs && cudaDataAttr == that.cudaDataAttr && 900 u == that.u; 901 } 902 903 static std::optional<FunctionResult> CharacterizeFunctionResult( 904 const semantics::Symbol &symbol, FoldingContext &context, 905 semantics::UnorderedSymbolSet seenProcs) { 906 if (const auto *object{symbol.detailsIf<semantics::ObjectEntityDetails>()}) { 907 if (auto type{TypeAndShape::Characterize(symbol, context)}) { 908 FunctionResult result{std::move(*type)}; 909 CopyAttrs<FunctionResult, FunctionResult::Attr>(symbol, result, 910 { 911 {semantics::Attr::ALLOCATABLE, FunctionResult::Attr::Allocatable}, 912 {semantics::Attr::CONTIGUOUS, FunctionResult::Attr::Contiguous}, 913 {semantics::Attr::POINTER, FunctionResult::Attr::Pointer}, 914 }); 915 result.cudaDataAttr = object->cudaDataAttr(); 916 return result; 917 } 918 } else if (auto maybeProc{ 919 CharacterizeProcedure(symbol, context, seenProcs)}) { 920 FunctionResult result{std::move(*maybeProc)}; 921 result.attrs.set(FunctionResult::Attr::Pointer); 922 return result; 923 } 924 return std::nullopt; 925 } 926 927 std::optional<FunctionResult> FunctionResult::Characterize( 928 const Symbol &symbol, FoldingContext &context) { 929 semantics::UnorderedSymbolSet seenProcs; 930 return CharacterizeFunctionResult(symbol, context, seenProcs); 931 } 932 933 bool FunctionResult::IsAssumedLengthCharacter() const { 934 if (const auto *ts{std::get_if<TypeAndShape>(&u)}) { 935 return ts->type().IsAssumedLengthCharacter(); 936 } else { 937 return false; 938 } 939 } 940 941 bool FunctionResult::CanBeReturnedViaImplicitInterface() const { 942 if (attrs.test(Attr::Pointer) || attrs.test(Attr::Allocatable)) { 943 return false; // 15.4.2.2(4)(b) 944 } else if (cudaDataAttr) { 945 return false; 946 } else if (const auto *typeAndShape{GetTypeAndShape()}) { 947 if (typeAndShape->Rank() > 0) { 948 return false; // 15.4.2.2(4)(a) 949 } else { 950 const DynamicType &type{typeAndShape->type()}; 951 switch (type.category()) { 952 case TypeCategory::Character: 953 if (type.knownLength()) { 954 return true; 955 } else if (const auto *param{type.charLengthParamValue()}) { 956 if (const auto &expr{param->GetExplicit()}) { 957 return IsConstantExpr(*expr); // 15.4.2.2(4)(c) 958 } else if (param->isAssumed()) { 959 return true; 960 } 961 } 962 return false; 963 case TypeCategory::Derived: 964 if (!type.IsPolymorphic()) { 965 const auto &spec{type.GetDerivedTypeSpec()}; 966 for (const auto &pair : spec.parameters()) { 967 if (const auto &expr{pair.second.GetExplicit()}) { 968 if (!IsConstantExpr(*expr)) { 969 return false; // 15.4.2.2(4)(c) 970 } 971 } 972 } 973 return true; 974 } 975 return false; 976 default: 977 return true; 978 } 979 } 980 } else { 981 return false; // 15.4.2.2(4)(b) - procedure pointer 982 } 983 } 984 985 static bool AreCompatibleFunctionResultShapes(const Shape &x, const Shape &y) { 986 int rank{GetRank(x)}; 987 if (GetRank(y) != rank) { 988 return false; 989 } 990 for (int j{0}; j < rank; ++j) { 991 if (auto xDim{ToInt64(x[j])}) { 992 if (auto yDim{ToInt64(y[j])}) { 993 if (*xDim != *yDim) { 994 return false; 995 } 996 } 997 } 998 } 999 return true; 1000 } 1001 1002 bool FunctionResult::IsCompatibleWith( 1003 const FunctionResult &actual, std::string *whyNot) const { 1004 Attrs actualAttrs{actual.attrs}; 1005 if (!attrs.test(Attr::Contiguous)) { 1006 actualAttrs.reset(Attr::Contiguous); 1007 } 1008 if (attrs != actualAttrs) { 1009 if (whyNot) { 1010 *whyNot = "function results have incompatible attributes"; 1011 } 1012 } else if (cudaDataAttr != actual.cudaDataAttr) { 1013 if (whyNot) { 1014 *whyNot = "function results have incompatible CUDA data attributes"; 1015 } 1016 } else if (const auto *ifaceTypeShape{std::get_if<TypeAndShape>(&u)}) { 1017 if (const auto *actualTypeShape{std::get_if<TypeAndShape>(&actual.u)}) { 1018 if (ifaceTypeShape->Rank() != actualTypeShape->Rank()) { 1019 if (whyNot) { 1020 *whyNot = "function results have distinct ranks"; 1021 } 1022 } else if (!attrs.test(Attr::Allocatable) && !attrs.test(Attr::Pointer) && 1023 !AreCompatibleFunctionResultShapes( 1024 ifaceTypeShape->shape(), actualTypeShape->shape())) { 1025 if (whyNot) { 1026 *whyNot = "function results have distinct constant extents"; 1027 } 1028 } else if (ifaceTypeShape->type() != actualTypeShape->type()) { 1029 if (ifaceTypeShape->type().category() == 1030 actualTypeShape->type().category()) { 1031 if (ifaceTypeShape->type().category() == TypeCategory::Character) { 1032 if (ifaceTypeShape->type().kind() == 1033 actualTypeShape->type().kind()) { 1034 auto ifaceLen{ifaceTypeShape->type().knownLength()}; 1035 auto actualLen{actualTypeShape->type().knownLength()}; 1036 if (!ifaceLen || !actualLen || *ifaceLen == *actualLen) { 1037 return true; 1038 } 1039 } 1040 } else if (ifaceTypeShape->type().category() == 1041 TypeCategory::Derived) { 1042 if (ifaceTypeShape->type().IsPolymorphic() == 1043 actualTypeShape->type().IsPolymorphic() && 1044 !ifaceTypeShape->type().IsUnlimitedPolymorphic() && 1045 !actualTypeShape->type().IsUnlimitedPolymorphic() && 1046 AreSameDerivedType(ifaceTypeShape->type().GetDerivedTypeSpec(), 1047 actualTypeShape->type().GetDerivedTypeSpec())) { 1048 return true; 1049 } 1050 } 1051 } 1052 if (whyNot) { 1053 *whyNot = "function results have distinct types: "s + 1054 ifaceTypeShape->type().AsFortran() + " vs "s + 1055 actualTypeShape->type().AsFortran(); 1056 } 1057 } else { 1058 return true; 1059 } 1060 } else { 1061 if (whyNot) { 1062 *whyNot = "function result type and shape are not known"; 1063 } 1064 } 1065 } else { 1066 const auto *ifaceProc{std::get_if<CopyableIndirection<Procedure>>(&u)}; 1067 CHECK(ifaceProc != nullptr); 1068 if (const auto *actualProc{ 1069 std::get_if<CopyableIndirection<Procedure>>(&actual.u)}) { 1070 if (ifaceProc->value().IsCompatibleWith(actualProc->value(), whyNot)) { 1071 return true; 1072 } 1073 if (whyNot) { 1074 *whyNot = 1075 "function results are incompatible procedure pointers: "s + *whyNot; 1076 } 1077 } else { 1078 if (whyNot) { 1079 *whyNot = 1080 "one function result is a procedure pointer, the other is not"; 1081 } 1082 } 1083 } 1084 return false; 1085 } 1086 1087 llvm::raw_ostream &FunctionResult::Dump(llvm::raw_ostream &o) const { 1088 attrs.Dump(o, EnumToString); 1089 common::visit(common::visitors{ 1090 [&](const TypeAndShape &ts) { ts.Dump(o); }, 1091 [&](const CopyableIndirection<Procedure> &p) { 1092 p.value().Dump(o << " procedure(") << ')'; 1093 }, 1094 }, 1095 u); 1096 if (cudaDataAttr) { 1097 o << " cudaDataAttr: " << common::EnumToString(*cudaDataAttr); 1098 } 1099 return o; 1100 } 1101 1102 Procedure::Procedure(FunctionResult &&fr, DummyArguments &&args, Attrs a) 1103 : functionResult{std::move(fr)}, dummyArguments{std::move(args)}, attrs{a} { 1104 } 1105 Procedure::Procedure(DummyArguments &&args, Attrs a) 1106 : dummyArguments{std::move(args)}, attrs{a} {} 1107 Procedure::~Procedure() {} 1108 1109 bool Procedure::operator==(const Procedure &that) const { 1110 return attrs == that.attrs && functionResult == that.functionResult && 1111 dummyArguments == that.dummyArguments && 1112 cudaSubprogramAttrs == that.cudaSubprogramAttrs; 1113 } 1114 1115 bool Procedure::IsCompatibleWith(const Procedure &actual, std::string *whyNot, 1116 const SpecificIntrinsic *specificIntrinsic) const { 1117 // 15.5.2.9(1): if dummy is not pure, actual need not be. 1118 // Ditto with elemental. 1119 Attrs actualAttrs{actual.attrs}; 1120 if (!attrs.test(Attr::Pure)) { 1121 actualAttrs.reset(Attr::Pure); 1122 } 1123 if (!attrs.test(Attr::Elemental) && specificIntrinsic) { 1124 actualAttrs.reset(Attr::Elemental); 1125 } 1126 Attrs differences{attrs ^ actualAttrs}; 1127 differences.reset(Attr::Subroutine); // dealt with specifically later 1128 if (!differences.empty()) { 1129 if (whyNot) { 1130 auto sep{": "s}; 1131 *whyNot = "incompatible procedure attributes"; 1132 differences.IterateOverMembers([&](Attr x) { 1133 *whyNot += sep + std::string{EnumToString(x)}; 1134 sep = ", "; 1135 }); 1136 } 1137 } else if ((IsFunction() && actual.IsSubroutine()) || 1138 (IsSubroutine() && actual.IsFunction())) { 1139 if (whyNot) { 1140 *whyNot = 1141 "incompatible procedures: one is a function, the other a subroutine"; 1142 } 1143 } else if (functionResult && actual.functionResult && 1144 !functionResult->IsCompatibleWith(*actual.functionResult, whyNot)) { 1145 } else if (cudaSubprogramAttrs != actual.cudaSubprogramAttrs) { 1146 if (whyNot) { 1147 *whyNot = "incompatible CUDA subprogram attributes"; 1148 } 1149 } else if (dummyArguments.size() != actual.dummyArguments.size()) { 1150 if (whyNot) { 1151 *whyNot = "distinct numbers of dummy arguments"; 1152 } 1153 } else { 1154 for (std::size_t j{0}; j < dummyArguments.size(); ++j) { 1155 // Subtlety: the dummy/actual distinction must be reversed for this 1156 // compatibility test in order to correctly check extended vs. 1157 // base types. Example: 1158 // subroutine s1(base); subroutine s2(extended) 1159 // procedure(s1), pointer :: p 1160 // p => s2 ! an error, s2 is more restricted, can't handle "base" 1161 if (!actual.dummyArguments[j].IsCompatibleWith( 1162 dummyArguments[j], whyNot)) { 1163 if (whyNot) { 1164 *whyNot = "incompatible dummy argument #"s + std::to_string(j + 1) + 1165 ": "s + *whyNot; 1166 } 1167 return false; 1168 } 1169 } 1170 return true; 1171 } 1172 return false; 1173 } 1174 1175 int Procedure::FindPassIndex(std::optional<parser::CharBlock> name) const { 1176 int argCount{static_cast<int>(dummyArguments.size())}; 1177 int index{0}; 1178 if (name) { 1179 while (index < argCount && *name != dummyArguments[index].name.c_str()) { 1180 ++index; 1181 } 1182 } 1183 CHECK(index < argCount); 1184 return index; 1185 } 1186 1187 bool Procedure::CanOverride( 1188 const Procedure &that, std::optional<int> passIndex) const { 1189 // A pure procedure may override an impure one (7.5.7.3(2)) 1190 if ((that.attrs.test(Attr::Pure) && !attrs.test(Attr::Pure)) || 1191 that.attrs.test(Attr::Elemental) != attrs.test(Attr::Elemental) || 1192 functionResult != that.functionResult) { 1193 return false; 1194 } 1195 int argCount{static_cast<int>(dummyArguments.size())}; 1196 if (argCount != static_cast<int>(that.dummyArguments.size())) { 1197 return false; 1198 } 1199 for (int j{0}; j < argCount; ++j) { 1200 if (passIndex && j == *passIndex) { 1201 if (!that.dummyArguments[j].IsCompatibleWith(dummyArguments[j])) { 1202 return false; 1203 } 1204 } else if (dummyArguments[j] != that.dummyArguments[j]) { 1205 return false; 1206 } 1207 } 1208 return true; 1209 } 1210 1211 std::optional<Procedure> Procedure::Characterize( 1212 const semantics::Symbol &original, FoldingContext &context) { 1213 semantics::UnorderedSymbolSet seenProcs; 1214 return CharacterizeProcedure(original, context, seenProcs); 1215 } 1216 1217 std::optional<Procedure> Procedure::Characterize( 1218 const ProcedureDesignator &proc, FoldingContext &context) { 1219 if (const auto *symbol{proc.GetSymbol()}) { 1220 if (auto result{ 1221 characteristics::Procedure::Characterize(*symbol, context)}) { 1222 return result; 1223 } 1224 } else if (const auto *intrinsic{proc.GetSpecificIntrinsic()}) { 1225 return intrinsic->characteristics.value(); 1226 } 1227 return std::nullopt; 1228 } 1229 1230 std::optional<Procedure> Procedure::Characterize( 1231 const ProcedureRef &ref, FoldingContext &context) { 1232 if (auto callee{Characterize(ref.proc(), context)}) { 1233 if (callee->functionResult) { 1234 if (const Procedure * 1235 proc{callee->functionResult->IsProcedurePointer()}) { 1236 return {*proc}; 1237 } 1238 } 1239 } 1240 return std::nullopt; 1241 } 1242 1243 std::optional<Procedure> Procedure::FromActuals(const ProcedureDesignator &proc, 1244 const ActualArguments &args, FoldingContext &context) { 1245 auto callee{Characterize(proc, context)}; 1246 if (callee) { 1247 if (callee->dummyArguments.empty() && 1248 callee->attrs.test(Procedure::Attr::ImplicitInterface)) { 1249 int j{0}; 1250 for (const auto &arg : args) { 1251 ++j; 1252 if (arg) { 1253 if (auto dummy{DummyArgument::FromActual( 1254 "x"s + std::to_string(j), *arg, context)}) { 1255 callee->dummyArguments.emplace_back(std::move(*dummy)); 1256 continue; 1257 } 1258 } 1259 callee.reset(); 1260 break; 1261 } 1262 } 1263 } 1264 return callee; 1265 } 1266 1267 bool Procedure::CanBeCalledViaImplicitInterface() const { 1268 // TODO: Pass back information on why we return false 1269 if (attrs.test(Attr::Elemental) || attrs.test(Attr::BindC)) { 1270 return false; // 15.4.2.2(5,6) 1271 } else if (cudaSubprogramAttrs && 1272 *cudaSubprogramAttrs != common::CUDASubprogramAttrs::Host && 1273 *cudaSubprogramAttrs != common::CUDASubprogramAttrs::Global) { 1274 return false; 1275 } else if (IsFunction() && 1276 !functionResult->CanBeReturnedViaImplicitInterface()) { 1277 return false; 1278 } else { 1279 for (const DummyArgument &arg : dummyArguments) { 1280 if (!arg.CanBePassedViaImplicitInterface()) { 1281 return false; 1282 } 1283 } 1284 return true; 1285 } 1286 } 1287 1288 llvm::raw_ostream &Procedure::Dump(llvm::raw_ostream &o) const { 1289 attrs.Dump(o, EnumToString); 1290 if (functionResult) { 1291 functionResult->Dump(o << "TYPE(") << ") FUNCTION"; 1292 } else if (attrs.test(Attr::Subroutine)) { 1293 o << "SUBROUTINE"; 1294 } else { 1295 o << "EXTERNAL"; 1296 } 1297 char sep{'('}; 1298 for (const auto &dummy : dummyArguments) { 1299 dummy.Dump(o << sep); 1300 sep = ','; 1301 } 1302 o << (sep == '(' ? "()" : ")"); 1303 if (cudaSubprogramAttrs) { 1304 o << " cudaSubprogramAttrs: " << common::EnumToString(*cudaSubprogramAttrs); 1305 } 1306 return o; 1307 } 1308 1309 // Utility class to determine if Procedures, etc. are distinguishable 1310 class DistinguishUtils { 1311 public: 1312 explicit DistinguishUtils(const common::LanguageFeatureControl &features) 1313 : features_{features} {} 1314 1315 // Are these procedures distinguishable for a generic name? 1316 bool Distinguishable(const Procedure &, const Procedure &) const; 1317 // Are these procedures distinguishable for a generic operator or assignment? 1318 bool DistinguishableOpOrAssign(const Procedure &, const Procedure &) const; 1319 1320 private: 1321 struct CountDummyProcedures { 1322 CountDummyProcedures(const DummyArguments &args) { 1323 for (const DummyArgument &arg : args) { 1324 if (std::holds_alternative<DummyProcedure>(arg.u)) { 1325 total += 1; 1326 notOptional += !arg.IsOptional(); 1327 } 1328 } 1329 } 1330 int total{0}; 1331 int notOptional{0}; 1332 }; 1333 1334 bool Rule3Distinguishable(const Procedure &, const Procedure &) const; 1335 const DummyArgument *Rule1DistinguishingArg( 1336 const DummyArguments &, const DummyArguments &) const; 1337 int FindFirstToDistinguishByPosition( 1338 const DummyArguments &, const DummyArguments &) const; 1339 int FindLastToDistinguishByName( 1340 const DummyArguments &, const DummyArguments &) const; 1341 int CountCompatibleWith(const DummyArgument &, const DummyArguments &) const; 1342 int CountNotDistinguishableFrom( 1343 const DummyArgument &, const DummyArguments &) const; 1344 bool Distinguishable(const DummyArgument &, const DummyArgument &) const; 1345 bool Distinguishable(const DummyDataObject &, const DummyDataObject &) const; 1346 bool Distinguishable(const DummyProcedure &, const DummyProcedure &) const; 1347 bool Distinguishable(const FunctionResult &, const FunctionResult &) const; 1348 bool Distinguishable( 1349 const TypeAndShape &, const TypeAndShape &, common::IgnoreTKRSet) const; 1350 bool IsTkrCompatible(const DummyArgument &, const DummyArgument &) const; 1351 bool IsTkCompatible(const DummyDataObject &, const DummyDataObject &) const; 1352 const DummyArgument *GetAtEffectivePosition( 1353 const DummyArguments &, int) const; 1354 const DummyArgument *GetPassArg(const Procedure &) const; 1355 1356 const common::LanguageFeatureControl &features_; 1357 }; 1358 1359 // Simpler distinguishability rules for operators and assignment 1360 bool DistinguishUtils::DistinguishableOpOrAssign( 1361 const Procedure &proc1, const Procedure &proc2) const { 1362 if ((proc1.IsFunction() && proc2.IsSubroutine()) || 1363 (proc1.IsSubroutine() && proc2.IsFunction())) { 1364 return true; 1365 } 1366 auto &args1{proc1.dummyArguments}; 1367 auto &args2{proc2.dummyArguments}; 1368 if (args1.size() != args2.size()) { 1369 return true; // C1511: distinguishable based on number of arguments 1370 } 1371 for (std::size_t i{0}; i < args1.size(); ++i) { 1372 if (Distinguishable(args1[i], args2[i])) { 1373 return true; // C1511, C1512: distinguishable based on this arg 1374 } 1375 } 1376 return false; 1377 } 1378 1379 bool DistinguishUtils::Distinguishable( 1380 const Procedure &proc1, const Procedure &proc2) const { 1381 if ((proc1.IsFunction() && proc2.IsSubroutine()) || 1382 (proc1.IsSubroutine() && proc2.IsFunction())) { 1383 return true; 1384 } 1385 auto &args1{proc1.dummyArguments}; 1386 auto &args2{proc2.dummyArguments}; 1387 auto count1{CountDummyProcedures(args1)}; 1388 auto count2{CountDummyProcedures(args2)}; 1389 if (count1.notOptional > count2.total || count2.notOptional > count1.total) { 1390 return true; // distinguishable based on C1514 rule 2 1391 } 1392 if (Rule3Distinguishable(proc1, proc2)) { 1393 return true; // distinguishable based on C1514 rule 3 1394 } 1395 if (Rule1DistinguishingArg(args1, args2)) { 1396 return true; // distinguishable based on C1514 rule 1 1397 } 1398 int pos1{FindFirstToDistinguishByPosition(args1, args2)}; 1399 int name1{FindLastToDistinguishByName(args1, args2)}; 1400 if (pos1 >= 0 && pos1 <= name1) { 1401 return true; // distinguishable based on C1514 rule 4 1402 } 1403 int pos2{FindFirstToDistinguishByPosition(args2, args1)}; 1404 int name2{FindLastToDistinguishByName(args2, args1)}; 1405 if (pos2 >= 0 && pos2 <= name2) { 1406 return true; // distinguishable based on C1514 rule 4 1407 } 1408 if (proc1.cudaSubprogramAttrs != proc2.cudaSubprogramAttrs) { 1409 return true; 1410 } 1411 return false; 1412 } 1413 1414 // C1514 rule 3: Procedures are distinguishable if both have a passed-object 1415 // dummy argument and those are distinguishable. 1416 bool DistinguishUtils::Rule3Distinguishable( 1417 const Procedure &proc1, const Procedure &proc2) const { 1418 const DummyArgument *pass1{GetPassArg(proc1)}; 1419 const DummyArgument *pass2{GetPassArg(proc2)}; 1420 return pass1 && pass2 && Distinguishable(*pass1, *pass2); 1421 } 1422 1423 // Find a non-passed-object dummy data object in one of the argument lists 1424 // that satisfies C1514 rule 1. I.e. x such that: 1425 // - m is the number of dummy data objects in one that are nonoptional, 1426 // are not passed-object, that x is TKR compatible with 1427 // - n is the number of non-passed-object dummy data objects, in the other 1428 // that are not distinguishable from x 1429 // - m is greater than n 1430 const DummyArgument *DistinguishUtils::Rule1DistinguishingArg( 1431 const DummyArguments &args1, const DummyArguments &args2) const { 1432 auto size1{args1.size()}; 1433 auto size2{args2.size()}; 1434 for (std::size_t i{0}; i < size1 + size2; ++i) { 1435 const DummyArgument &x{i < size1 ? args1[i] : args2[i - size1]}; 1436 if (!x.pass && std::holds_alternative<DummyDataObject>(x.u)) { 1437 if (CountCompatibleWith(x, args1) > 1438 CountNotDistinguishableFrom(x, args2) || 1439 CountCompatibleWith(x, args2) > 1440 CountNotDistinguishableFrom(x, args1)) { 1441 return &x; 1442 } 1443 } 1444 } 1445 return nullptr; 1446 } 1447 1448 // Find the index of the first nonoptional non-passed-object dummy argument 1449 // in args1 at an effective position such that either: 1450 // - args2 has no dummy argument at that effective position 1451 // - the dummy argument at that position is distinguishable from it 1452 int DistinguishUtils::FindFirstToDistinguishByPosition( 1453 const DummyArguments &args1, const DummyArguments &args2) const { 1454 int effective{0}; // position of arg1 in list, ignoring passed arg 1455 for (std::size_t i{0}; i < args1.size(); ++i) { 1456 const DummyArgument &arg1{args1.at(i)}; 1457 if (!arg1.pass && !arg1.IsOptional()) { 1458 const DummyArgument *arg2{GetAtEffectivePosition(args2, effective)}; 1459 if (!arg2 || Distinguishable(arg1, *arg2)) { 1460 return i; 1461 } 1462 } 1463 effective += !arg1.pass; 1464 } 1465 return -1; 1466 } 1467 1468 // Find the index of the last nonoptional non-passed-object dummy argument 1469 // in args1 whose name is such that either: 1470 // - args2 has no dummy argument with that name 1471 // - the dummy argument with that name is distinguishable from it 1472 int DistinguishUtils::FindLastToDistinguishByName( 1473 const DummyArguments &args1, const DummyArguments &args2) const { 1474 std::map<std::string, const DummyArgument *> nameToArg; 1475 for (const auto &arg2 : args2) { 1476 nameToArg.emplace(arg2.name, &arg2); 1477 } 1478 for (int i = args1.size() - 1; i >= 0; --i) { 1479 const DummyArgument &arg1{args1.at(i)}; 1480 if (!arg1.pass && !arg1.IsOptional()) { 1481 auto it{nameToArg.find(arg1.name)}; 1482 if (it == nameToArg.end() || Distinguishable(arg1, *it->second)) { 1483 return i; 1484 } 1485 } 1486 } 1487 return -1; 1488 } 1489 1490 // Count the dummy data objects in args that are nonoptional, are not 1491 // passed-object, and that x is TKR compatible with 1492 int DistinguishUtils::CountCompatibleWith( 1493 const DummyArgument &x, const DummyArguments &args) const { 1494 return llvm::count_if(args, [&](const DummyArgument &y) { 1495 return !y.pass && !y.IsOptional() && IsTkrCompatible(x, y); 1496 }); 1497 } 1498 1499 // Return the number of dummy data objects in args that are not 1500 // distinguishable from x and not passed-object. 1501 int DistinguishUtils::CountNotDistinguishableFrom( 1502 const DummyArgument &x, const DummyArguments &args) const { 1503 return llvm::count_if(args, [&](const DummyArgument &y) { 1504 return !y.pass && std::holds_alternative<DummyDataObject>(y.u) && 1505 !Distinguishable(y, x); 1506 }); 1507 } 1508 1509 bool DistinguishUtils::Distinguishable( 1510 const DummyArgument &x, const DummyArgument &y) const { 1511 if (x.u.index() != y.u.index()) { 1512 return true; // different kind: data/proc/alt-return 1513 } 1514 return common::visit( 1515 common::visitors{ 1516 [&](const DummyDataObject &z) { 1517 return Distinguishable(z, std::get<DummyDataObject>(y.u)); 1518 }, 1519 [&](const DummyProcedure &z) { 1520 return Distinguishable(z, std::get<DummyProcedure>(y.u)); 1521 }, 1522 [&](const AlternateReturn &) { return false; }, 1523 }, 1524 x.u); 1525 } 1526 1527 bool DistinguishUtils::Distinguishable( 1528 const DummyDataObject &x, const DummyDataObject &y) const { 1529 using Attr = DummyDataObject::Attr; 1530 if (Distinguishable(x.type, y.type, x.ignoreTKR | y.ignoreTKR)) { 1531 return true; 1532 } else if (x.attrs.test(Attr::Allocatable) && y.attrs.test(Attr::Pointer) && 1533 y.intent != common::Intent::In) { 1534 return true; 1535 } else if (y.attrs.test(Attr::Allocatable) && x.attrs.test(Attr::Pointer) && 1536 x.intent != common::Intent::In) { 1537 return true; 1538 } else if (!common::AreCompatibleCUDADataAttrs( 1539 x.cudaDataAttr, y.cudaDataAttr, x.ignoreTKR | y.ignoreTKR)) { 1540 return true; 1541 } else if (features_.IsEnabled( 1542 common::LanguageFeature::DistinguishableSpecifics) && 1543 (x.attrs.test(Attr::Allocatable) || x.attrs.test(Attr::Pointer)) && 1544 (y.attrs.test(Attr::Allocatable) || y.attrs.test(Attr::Pointer)) && 1545 (x.type.type().IsUnlimitedPolymorphic() != 1546 y.type.type().IsUnlimitedPolymorphic() || 1547 x.type.type().IsPolymorphic() != y.type.type().IsPolymorphic())) { 1548 // Extension: Per 15.5.2.5(2), an allocatable/pointer dummy and its 1549 // corresponding actual argument must both or neither be polymorphic, 1550 // and must both or neither be unlimited polymorphic. So when exactly 1551 // one of two dummy arguments is polymorphic or unlimited polymorphic, 1552 // any actual argument that is admissible to one of them cannot also match 1553 // the other one. 1554 return true; 1555 } else { 1556 return false; 1557 } 1558 } 1559 1560 bool DistinguishUtils::Distinguishable( 1561 const DummyProcedure &x, const DummyProcedure &y) const { 1562 const Procedure &xProc{x.procedure.value()}; 1563 const Procedure &yProc{y.procedure.value()}; 1564 if (Distinguishable(xProc, yProc)) { 1565 return true; 1566 } else { 1567 const std::optional<FunctionResult> &xResult{xProc.functionResult}; 1568 const std::optional<FunctionResult> &yResult{yProc.functionResult}; 1569 return xResult ? !yResult || Distinguishable(*xResult, *yResult) 1570 : yResult.has_value(); 1571 } 1572 } 1573 1574 bool DistinguishUtils::Distinguishable( 1575 const FunctionResult &x, const FunctionResult &y) const { 1576 if (x.u.index() != y.u.index()) { 1577 return true; // one is data object, one is procedure 1578 } 1579 if (x.cudaDataAttr != y.cudaDataAttr) { 1580 return true; 1581 } 1582 return common::visit( 1583 common::visitors{ 1584 [&](const TypeAndShape &z) { 1585 return Distinguishable( 1586 z, std::get<TypeAndShape>(y.u), common::IgnoreTKRSet{}); 1587 }, 1588 [&](const CopyableIndirection<Procedure> &z) { 1589 return Distinguishable(z.value(), 1590 std::get<CopyableIndirection<Procedure>>(y.u).value()); 1591 }, 1592 }, 1593 x.u); 1594 } 1595 1596 bool DistinguishUtils::Distinguishable(const TypeAndShape &x, 1597 const TypeAndShape &y, common::IgnoreTKRSet ignoreTKR) const { 1598 if (!x.type().IsTkCompatibleWith(y.type(), ignoreTKR) && 1599 !y.type().IsTkCompatibleWith(x.type(), ignoreTKR)) { 1600 return true; 1601 } 1602 if (ignoreTKR.test(common::IgnoreTKR::Rank)) { 1603 } else if (x.attrs().test(TypeAndShape::Attr::AssumedRank) || 1604 y.attrs().test(TypeAndShape::Attr::AssumedRank)) { 1605 } else if (x.Rank() != y.Rank()) { 1606 return true; 1607 } 1608 return false; 1609 } 1610 1611 // Compatibility based on type, kind, and rank 1612 1613 bool DistinguishUtils::IsTkrCompatible( 1614 const DummyArgument &x, const DummyArgument &y) const { 1615 const auto *obj1{std::get_if<DummyDataObject>(&x.u)}; 1616 const auto *obj2{std::get_if<DummyDataObject>(&y.u)}; 1617 return obj1 && obj2 && IsTkCompatible(*obj1, *obj2) && 1618 (obj1->type.Rank() == obj2->type.Rank() || 1619 obj1->type.attrs().test(TypeAndShape::Attr::AssumedRank) || 1620 obj2->type.attrs().test(TypeAndShape::Attr::AssumedRank) || 1621 obj1->ignoreTKR.test(common::IgnoreTKR::Rank) || 1622 obj2->ignoreTKR.test(common::IgnoreTKR::Rank)); 1623 } 1624 1625 bool DistinguishUtils::IsTkCompatible( 1626 const DummyDataObject &x, const DummyDataObject &y) const { 1627 return x.type.type().IsTkCompatibleWith( 1628 y.type.type(), x.ignoreTKR | y.ignoreTKR); 1629 } 1630 1631 // Return the argument at the given index, ignoring the passed arg 1632 const DummyArgument *DistinguishUtils::GetAtEffectivePosition( 1633 const DummyArguments &args, int index) const { 1634 for (const DummyArgument &arg : args) { 1635 if (!arg.pass) { 1636 if (index == 0) { 1637 return &arg; 1638 } 1639 --index; 1640 } 1641 } 1642 return nullptr; 1643 } 1644 1645 // Return the passed-object dummy argument of this procedure, if any 1646 const DummyArgument *DistinguishUtils::GetPassArg(const Procedure &proc) const { 1647 for (const auto &arg : proc.dummyArguments) { 1648 if (arg.pass) { 1649 return &arg; 1650 } 1651 } 1652 return nullptr; 1653 } 1654 1655 bool Distinguishable(const common::LanguageFeatureControl &features, 1656 const Procedure &x, const Procedure &y) { 1657 return DistinguishUtils{features}.Distinguishable(x, y); 1658 } 1659 1660 bool DistinguishableOpOrAssign(const common::LanguageFeatureControl &features, 1661 const Procedure &x, const Procedure &y) { 1662 return DistinguishUtils{features}.DistinguishableOpOrAssign(x, y); 1663 } 1664 1665 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyArgument) 1666 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(DummyProcedure) 1667 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(FunctionResult) 1668 DEFINE_DEFAULT_CONSTRUCTORS_AND_ASSIGNMENTS(Procedure) 1669 } // namespace Fortran::evaluate::characteristics 1670 1671 template class Fortran::common::Indirection< 1672 Fortran::evaluate::characteristics::Procedure, true>; 1673